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ABSTRACT

Binaural audio, a specialised form of stereo sound, provides depth and spatial lo-
calisation for highly immersive listening experiences, making it fundamental in
modern entertainment. Prior research has largely relied on visual cues to directly
adapt mono signals into binaural or to estimate transfer functions that induce spa-
tiality. In contrast, we introduce HiViBiX, a novel framework that redefines the
music representation by predicting first-order Ambisonics channels, which ex-
plicitly control the spatial positioning of the audio components in the generated
binaural signal. Unlike existing multimodal approaches that extract spatial cues
exclusively from full-frame RGB images, HiViBiX incorporates a hierarchical vi-
sual encoder that jointly models local music sound sources and their spatial depth
with global environmental context. This design enables richer multimodal ground-
ing and more precise spatialization. Extensive experiments on three widely used
musical benchmarks: FAIR-Play, Music-Stereo, and YT-Music demonstrate that
HiViBiX establishes new state-of-the-art performance for mono-to-binaural gen-
eration. We also show that our method achieves good results in out-of-domain
context, using a simple adapter. Samples are available in the following repository:
https://hivibix.vercel.app.

1 INTRODUCTION

Immersive audio playback, where the spatial position of a sound source can be perceived solely
through auditory cues, has become a cornerstone of modern media applications. In domains such
as gaming, virtual and augmented reality, and cinematic production, spatial audio is not merely an
aesthetic enhancement but a functional necessity. It enables dramaturgical control by directing user
attention, articulating scale and distance, and conveying events that occur outside the immediate
visual frame. Unlike conventional stereo, binaural audio recreates a perceptual sense of space that
aligns more closely with natural human hearing, allowing two-channel playback systems to deliver
an experience of depth, realism, and presence. As interactive and immersive technologies continue to
grow in scale and impact, the demand for accurate and efficient methods of binaural audio generation
is more pressing than ever.

Ambisonics (Zotter & Frank, 2019) represents a special class of format, extensively used across the
audio and music industry by hardware manufacturers, broadcasting services, and streaming plat-
forms. Beyond these technical domains, Ambisonics also play a central role in entertainment ap-
plications such as cinema, gaming, and virtual reality, where precise spatial rendering is essential
for immersion and realism. Using this format, audio sources can be captured, stored and played in
an arbitrary manner by relying on spherical harmonics encoding. We selected this format as it rep-
resents a stronger alternative to Head-Related Transfer Functions (HRTFs) or Impulse Responses
(IRs) (Ratnarajah & Manocha, 2024) because it allows for energy-preserving rotations and more
stable localisation in the high frequency domain. Another important advantage of the Ambisonics
over classical HRTFs is that the latter are highly dependent on the ear anatomy of the listener, while
Ambisonics are more generalizable, especially if higher-order are used.
Visual cues are also an indispensable tool in binaural generation, as they contain priors over both
important aspects, such as source sounding object position or depth, but also over intrinsic scene-
related features such as room reverberations or different occlusions. This phenomenon is closely
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related to the multisensory integration mechanisms that govern over human hearing. As such, the
visual stream is often used to create an implicit abstract visual-to-spatial mapping. Most previous
methods have focused on obtaining this mapping solely from a single pre-trained model. Our ap-
proach focuses on extracting modality-specific priors, thereby enforcing more coherence between
the available mono music audio signal and visual knowledge to help in rendering more realistic
binaurals.

In this work, we present HiViBiX, a novel approach to image-conditioned mono-to-binaural conver-
sion with intrinsic learning of Ambisonics-like channels. We can summarise the main contributions
into the following points:

• We propose a novel approach for mono-to-binaural music generation, inspired from the
Ambisonics format. This method works by predicting shared time-frequency internal rep-
resentation alongside gain parameters. We use these to construct the binaural representation
from its mono counterpart, taking inspiration from the Ambisonic format for the represen-
tation and decoding to obtain the final result;

• We propose a new hierarchical spatio-visual module for conditioning binaural audio gener-
ation. This conditioning is used in the latent space to obtain crude representations that are
decoded into the channels mentioned above;

• To the best of our knowledge, our work is the first to incorporate both multi-scale and
multi-modality visual prior knowledge with learnable position encoding, to obtain a full
representation of the observed surroundings – a key component for achieving the spatiality
of binaural audio;

• We demonstrate the efficacy of our approach on three commonly used binaural audio-visual
music datasets. The proposed method obtains state-of-the-art results, cementing our hy-
pothesis on combining traditional and deep-learning methods for more robust mono-to-
binaural. Moreover, we extended our work to out-of-domain, general audio with a plug-in-
play HiVi module adaptation.

The rest of the manuscript is organised as follows: Section 2 briefly describes the previous works
in this domain, Section 3 introduces our proposed solution, Section 4 validates our approach, while
Section 5 provides general conclusions.

2 BACKGROUND & RELATED WORKS

2.1 CONDITIONAL AUDIO GENERATION

Conditional audio generation has advanced significantly in recent years, largely propelled by break-
throughs in conditional image modelling. This progress spans a wide range of domains, from spe-
cialised tasks such as speech synthesis (Lee et al., 2025; Wang et al., 2025) and music generation
(Mariani et al., 2024), to more general approaches involving multimodal conditioning (Tian et al.,
2025). Building on these developments, recent works have proposed systematic taxonomies of con-
ditional audio generation, typically distinguishing between tasks such as text-to-audio, image-to-
audio, and joint audio–visual generation (Hayakawa et al., 2025). Our work focuses on generating
a binaural audio from its mono counterpart, conditioned on visual cues.
Text-to-Audio generation: Early works for this task are closely linked to TTS systems. However,
this task has been recently extended to open-domain audio generation with the introduction of Audi-
oLDM (Liu et al., 2023), a text-guided latent diffusion model which operates in the latent space of a
spectrogram-based VAE, aligning the captioning with the provided audio during training. Follow-up
works, such as AudioLDM2 (Liu et al., 2024a) or Tango2 (Majumder et al., 2024), have focused on
generating higher quality audio or adhering to user preference, optimising the listening experience.
Due to limited data, text-based approaches for audio generation do not take into account sound di-
rection, solely measuring the prompt alignment using contrastive models (Wu et al., 2023).
Vision-conditioned audio: These models leverage pretrained visual encoders with audio generation
backbones, enabling image-to-audio or video-to-audio generation. One common approach (Wang
et al., 2024) is to make use of lightweight mappers to connect vision foundation models to audio gen-
erators without fully re-training, while others have drawn inspiration from LLM training strategies
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to introduce token-based audio generation (Mehta et al., 2025). This approach has sparked many re-
search directions, showcasing the need for low-bit but precise neural audio encoders (Ji et al., 2025)
and for shared, modality-independent, embedding spaces (Girdhar et al., 2023). However, both of
these directions are still mainly operating in the single-channel audio domain, while our work ex-
tends not only to general-purpose stereo but on binaural audio.
Spatial audio generation: Recently, generative models have expanded to address the more complex
problem of spatial audio generation. Recently, (Kim et al., 2025) proposed ViSAGe, a silent video-
to-spatial audio generation method, which uses First-Order Ambisonics (FOA) (see Section 2.3 for
details) extracted from silent Field-of-View (FoV) videos. Moreover, they introduce a new dataset,
YT-Ambigen, featuring in-the-wild videos with spatial audio. Another direction is represented by
OmniAudio (Liu et al., 2025), which introduces the 360◦ panoramic view to spatial audio gener-
ation, since FoV inputs do not capture the full spatial context. To train their method, the authors
introduce the Sphere360 dataset, containing 360◦ videos and their associated FOAs. While the
aforementioned systems rely on visual conditioning, (Sun et al., 2025) proposed SpatialSonic, a
language-driven spatial synthesis model. Their generation method can be conditioned on textual
descriptions as well as a variety of types of visual inputs, such as bounding boxes, or interactive ac-
tions, i.e. selecting which object is the sounding one. However, a major drawback of these methods
is represented by the lack of fine-grained control over the output, e.g. sounds are generated based
on the extracted semantics of the provided input, which is not suitable for music, where small in-
consistencies are extremely noticeable. One alternative, INRAS (Su et al., 2022), aims at generating
impulse responses (IRs), w.r.t. the room configuration and the sounding and listening locations, to be
convolved with the mono audio to obtain the spatial variant. This approach is completely different
from ours, in which we generate the Ambisonics channels directly instead of relying on additional
signals to serve as filters.

2.2 MONO-TO-BINAURAL USING VISUAL INFORMATION

Most prior works have treated music generation as a monophonic task, producing signals with a
single channel. In practice, however, the majority of real-world audio is stereophonic, thus spatial ,
reflecting both the binaural nature of human hearing and the widespread use of headphones in every-
day listening. To bridge the gap between mono and stereo audio, several studies have incorporated
visual information to guide the spatial positioning of sounds, thereby improving object localisation
and enhancing the immersive quality of the generated audio. Pioneering this domain, (Gao & Grau-
man, 2019) proposes the combination of a spectrogram-based UNet for binaural generation. Inside
the UNet bottleneck, the visual features extracted by a ResNet-18 model pretrained on ImageNet are
concatenated, which has become outdated. Our solution is to create an ensemble of methods that
extract multimodal visual information, guaranteeing a more robust solution.
Sep-stereo (Zhou et al., 2020) aims to improve stereophonic learning by also including audio-visual
source separation. By allowing parallel training on mono audio separation aided by visual informa-
tion, they improve the stereo generation in the context of scarce binaural music data. This strategy
has also been applied more recently by CLUP (Li et al., 2024), combined with a diffusion strategy.
PseudoBinaural (Xu et al., 2021), as the name implies, focuses on generating binaural data without
mono-stereo pairs. Using visual-coordinate mapping, their focus is on producing Ambisonics co-
efficients and HRIR filters from spatial priors, which can be applied to the mono signals to encode
their location inside a stereo audio. Beyond Mono2Binaural (Beyond M2B) (Parida et al., 2022) is
the first work to add a Depth network to improve the results of previous works, with a decoder that
attends to both image-audio and depth-audio features. SAGM (Li et al., 2023) uses a GAN-style
method for generating music, with a discriminator to decide between features of real binaurals and
generated ones, which are concatenated with video features.
Recently, CMC (Liu et al., 2024b) proposed a dual-encoder approach for the left and right channels,
alongside a new cross-matching loss. Finally, CCStereo (Chen et al., 2025) makes better use of the
temporal dimension in both audio and video data with the introduction of a conditional normalisa-
tion layer and audio-video alignment. As such, previous methods tend to focus on better separation
of the sounding elements or channels, to obtain better alignment, while under-exploring available
prior information in both domains. In our work, we introduce several novelties in both the internal
processing of our proposed solution, which captures the audio (mono) prior, as well as focusing
on extracting more relevant information using multimodal vision approaches and hierarchically ex-
tracted features.
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2.3 AMBISONICS NOMENCLATURE AND CODING

Ambisonics is a spatial audio technique for representing the sound field description around a lis-
tening point using spherical harmonic decomposition. Instead of directly capturing the signal that
should be played on speakers placed at certain locations, Ambisonics encodes the sound itself, allow-
ing for arbitrary decoding for any speaker layout. Let s(t) ∈ R be the value of an audio waveform
at timestep t of a single sounding source s, e.g. a voice, an instrument or a noise, and (r, θ, ϕ) be the
source polar coordinates. To encode this, a special Ambisonics Channel Signal (ACN) is used:

ACN(l)
m (t) = s(t)S(l)

m (θ, ϕ) , (1)

where S
(ℓ)
m is the spherical harmonic function, ℓ ≥ 0 denotes the Ambisonics order, and m denotes

the Ambisonics index, while respecting the −l ≤ m ≤ l constraint.

In practice, only the first-order Ambisonics (ℓ = 1, abbreviated as FOA) are frequently used, where
the following channels are defined using truncated spherical harmonic expansions, representing
dipoles for each Cartesian axis: W channel: omnidirectional components (zero order), which cap-
ture the sound from all directions equally, similar to the mono audio format; X channel: contains
differences on the front-back axis, giving the audio more depth and Y channel: left-right pattern,
used for giving the directional feeling of audio. For a full 3D experience, the Z channel is also used
to allow for up-down direction. These channels are computed as follows, using the initial source
s(t) and its spherical positions (θ, ϕ):

ACN(0)
0 = W (t) = s(t), (2)

ACN(1)
1 = X(t) = s(t) cos θ cosϕ, (3)

ACN(−1)
1 = Y (t) = s(t) sin θ cosϕ, (4)

ACN(0)
1 = Z(t) = s(t) sinϕ. (5)

Since an audio recording can contain multiple sounding objects, each with its own spatial position,
obtaining the final audio is done by summing up all the representations. Considering the classical
stereo position, where left L(t) and right R(t) speakers are positioned at ground level, i.e. ϕ = 0,
and opposite angles, i.e. α = θL = −θR, the FOA for N sources must also account for the position
of the speakers playing each sound, individually:

L(t) =

N∑
i=1

1√
2
Wi(t) +Xi(t) cosαi + Yi(t) sinαi, (6)

R(t) =

N∑
i=1

1√
2
Wi(t) +Xi(t) cosαi − Yi(t) sinαi. (7)

This formulation highlights how Ambisonics provides a structured intermediate representation for
spatial audio, which we leverage as the foundation of our approach. Moreover, using this approach
also incorporates the panning of the speakers w.r.t. the source’s original position.

3 APPROACH: HIVIBIX

The overall architecture of the proposed model is depicted in Fig. 1. We denote the input data with
v ∈ R(Tv×Cv×Hv×Wv) for the video sequence, where Tv, Cv, Hv and Wv denote the frame, channel,
height and width dimension, respectively. Let abi ∈ R(Ca×Ta) be the binaural audio, with Ca and Ta

denoting the channels and sample (time) sizes. From abi we extract the mono signal am by summing
the channels and obtain the Sm ∈ C(1×F×T ) spectrogram by applying the Short-Time Fourier
Transform (STFT) operation, with F and T denoting the frequency and the time bins, respectively.
Since we are using the mono representation as the W channel from the Ambisonics format, we use
the same notation throughout the text, i.e. W = Sm. The goal of our network is to generate the
other Ambisonics channels, i.e. X̂ and Ŷ and to combine them into the final binaural spectrogram
Ŝbi ∈ C(2×F×T ) to obtain the final binaural audio âbi ≈ abi. To implement this pipeline, we
employ several modules: an Encoder-Decoder strategy, presented in Section 3.1, with a latent space
conditioned on a new visual encoder, detailed in Section 3.2, followed by the Ambisonics FiLM
layer, which ensures our internal representation, described in Section 3.3.
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Figure 1: Proposed training scheme. We start from a video and its associated binaural, that is con-
verted to mono and further to its spectrogram representation. Next, we encode it into a latent space
that is conditioned using our new hierarchical vision (HiVi) encoder. We then decode this into both
the Ambisonics channels and required gains, which are used to produce the binaural spectrogram
and the final audio. We use two classes of losses: in the waveform and spectrogram domains.

3.1 MONO-TO-AMBISONICS ENCODER & DECODER

AudioLDM (Liu et al., 2023) has recently emerged as a powerful framework capable of learning
intricate audio input-output relationships in the time-frequency domain, based on textual condition-
ing. Since our goal involves mapping mono audio to its binaural representation with the aid of
visual cues, this model provides a natural and suitable inspiration for our overall architecture de-
sign. First, we start by designing a Convolutional encoder Espec that reduces the input spectrogram
into a compact, more abstract representation. The Decoder Dsonic mirrors this structure, and gen-
erates the output corresponding to the desired channels. Because the input-output representations
are not semantically similar i.e. encoding mono channels but decoding difference-related channels
(X,Y ) , we omit the skip connections between Espec and Dsonic . We construct the latent space by
employing a conditional residual Attention UNet (ResAttnUNet) for a guided transformation of the
mono latent representation towards the Ambisonics one, using the conditioning vector extracted by
EHiVi. For both the magnitude and the phase we use the complex representation of Sm and indi-
vidual networks to predict the X̂ and Ŷ channels, as opposed to a multi-channel output network,
to allow each Encoder-Decoder structure to focus on channel-specific features. Moreover, we con-
vert the Ambisonics position and gain coefficients into learnable parameters, enabling the model to
have full control over the desired distribution. As in the case of channels, we treat these parame-
ters independently for each modality, i.e. magnitude and phase. For a more detailed view about the
implementation of this module, check Appendix A.

3.2 HIERARCHICAL VISUAL (HIVI) ENCODER

To improve the audio, especially music, generation, we added a new module for extracting condi-
tions from the provided video, as depicted in Fig. 2. The binaural audio benefits from visual cues,
as each sounding object can be associated with its position from the video, information which we
inject in the Ambisonics latent space. To obtain this conditioning vector, firstly, we are selecting
an anchor image v(i) ∈ R(Cv×Hv×Wv) to extract prior knowledge that would guide the generation.
From the anchor image, we extract a list of sounding objects from the image using YOLOv8 1 by
selecting the bounding boxes associated with the person label. We chose this approach as most
instruments require a human operator, and several solutions are unable to detect all the instruments
from the used datasets. We used YOLO as a faster and lighter alternative to other object detection
approaches. We crop the regions using the predicted bounding box, enlarged by 20%, and treat them
as local information, in contrast to the full image, which serves as global context. The extracted
knowledge domains are three-folded: scene, position and depth. For general and depth features, we
employ a cross-attention structure to combine them into a single representation for their correspond-
ing modality.

1YOLOv8 available at: https://github.com/ultralytics/ultralytics
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Figure 2: Hierarchical Visual encoder. We extract both local and global features from multiple
modalities, i.e. RGB, depth and position, computed solely based on the provided image.

We use the image encoder from CLIP (Radford et al., 2021) to extract both local and global scene
features. The local features to distinguish between different instruments, while the global ones are
responsible for giving the overall audio dynamics of the scene (indoors, sound reflecting elements
such as walls or other obstacles, microphone positioning, etc.). For positioning, we select 2D Fourier
Features for Positional Encoding (FFPE) (Li et al., 2021) to generate prior knowledge about the loca-
tion of the sounding objects in the frame, Fig. 2 (middle row). We chose this method for representing
this knowledge because a video frame can contain multiple audio sources. By selecting the Gaus-
sian kernel provided by FFPE, and summing them into a single position image P ∈ R(1×Hv×Wv),
we are able to distinguish between both separate and overlapping sounding objects. Finally, depth
information is also useful, especially for the X channel. As such, we use a depth estimation model
based on DINOv2 (Oquab et al., 2024). As in the scene feature case, we extract both global and local
features. Global depth features are useful for better understanding the room configuration, which
can help for internal modelling of reverberations, while local ones provide the necessary distance
comprehension to each sounding object.

Combining the global and local prior knowledge is an essential step to obtain an efficient condi-
tioning. As such, we carefully craft the Hierarchical Attention Module, which is an adaptation of
the classical cross-attention. This block receives the global features as queries, while the keys and
values are the local ones. The global representation selectively gathers fine details from the local
parts, allowing them to be informative inside the broader context, for each modality that has this
component. Finally, we concatenate all the modalities to obtain a single conditioning vector, which
is further projected inside the latent Ambisonics space.

3.3 AMBISONICS FILM

Our method closely follows the Ambisonics format for binaural generation of music and general
audio. Since most datasets do not contain the Ambisonics representation, and only the final stereo
is available, we based our experiments on internally learning the FOA-like spectrograms. This is
facilitated by the new Ambisonics FiLM layer, also described in Algorithm 1. As per previous steps,
we compute the magnitude and phase independently. Moreover, we use the mono (unidirectional)
signal as a replacement for the W channel in both cases. For phase reconstruction, we predict only
the interaural phase difference (IPD), as other works suggested (Pan et al., 2021). The main idea
of the Ambisonics FiLM layer is to use the available prior, i.e. W , and predicted, i.e. X̂ and Ŷ
channels, and to force the reconstruction in the same way as the Ambisonics decoding of binaural
audios, as shown in Section 2.3.
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Algorithm 1: Ambisonics FiLM Layer

Data: Mono spectrogram magnitude and phase: W = {WM ,WP } ∈ R(1×F×T );
Predicted Ambisonics channels for magnitudes and phases: {X̂, Ŷ }{M,P} ∈ R(1×F×T );

Predicted position and gain coefficients: α̂{X,Y }
{M,P}, β̂{M,P} ∈ R

Result: Predicted binaural spectrogram: Ŝbi ∈ C(2×F×T )

M̂L
bi =

(
WM + cos(α̂X

M ) X̂M + sin(α̂Y
M ) ŶM

)
β−1
M

M̂R
bi =

(
WM + cos(α̂X

M ) X̂M − sin(α̂Y
M ) ŶM

)
β−1
M

ÎPD =
(
WP + cos(α̂X

P ) X̂P − sin(α̂Y
P ) ŶP

)
β−1
P

Ŝbi =
[
M̂L

bi , M̂
R
bi

]
· exp

(
j
[
WP + ÎPD, WP − ÎPD

])

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For training, we used three distinct datasets: FAIR-Play (Gao & Grauman, 2019), Music-Stereo
(Xu et al., 2021) and YT-Music (Morgado et al., 2018). More details about the datasets can be
found in Appendix B. We used a sample rate of 16kHz, following recommendations from previous
works. The generated spectrograms were computed with a rectangular window of 1024 samples,
which also defined the number of FFT points, and a hop size of 25% (256 samples). These settings
yielded spectrograms of size 513 × 512, corresponding to approximately 8.2 seconds of audio. We
removed the last frequency bin and applied zero-padding during iSTFT reconstruction. No data
augmentation was employed. The models were optimized using a compositional loss that jointly
accounted magnitude, phase and time domain changes, as detailed in Appendix C. Training was
performed from scratch for up to 500 epochs with the AdamW optimizer (Loshchilov & Hutter,
2019), a decaying learning rate scheduler with 5 epochs for patience to avoid plateaus, and an
early stopping mechanism triggered if the validation loss did not improve within 15 epochs. All
experiments were performed on an NVIDIA A100 with 40GB of VRAM, using minibatches of 16
examples. For testing, we used the same parameters as (Chen et al., 2025) to obtain comparable
results in the frequency domain. Each signal was split into two parts and zero-padded at both ends.
After prediction, we reconstructed the original, full 10 seconds samples by combining only the
relevant parts of each segment.

4.2 QUANTITATIVE RESULTS

We compared our approach against prior works that employed visual conditioning for mono to bin-
aural audio conversion. To evaluate the performance, we adopted metrics spanning both the time and
spectrogram domains. Specifically, we used the STFT L2 distance (STFT) to measure differences
in the time-frequency domain, and the envelope distance (ENV) served as a well established metric
in the time domain. Moreover, we assessed the overall quality of the generated binaural signals,
using the signal-to-noise ration (SNR). Further implementation details and metrics are provided in
the Supplementary Materials.

All baseline results were either taken from the respective papers or obtained from publicly available
re-implementations, where possible. Table 1 presents the results on the FAIR-Play dataset 10-splits
and 5-splits, respectively, while Table 2 is designated for the results on Music-Stereo and YT-Music.

Compared to other methods, our approach achieves superior performance across all datasets. Firstly,
the results on FAIR-Play 10-splits indicate that the model is capable of rendering room acoustics
across different angles and instruments. The results on the new 5-split (Xu et al., 2021), which
reduces the overlap between the splits, illustrate that the model is also able to generalize to unseen
cases. On the YouTube datasets, which include a multitude of instruments and other noises, we can
observe that our model is capable of understanding the interdependency between sounding sources,
their position and other sounding objects or people. Importantly, the performances on Music-Stereo
and YT-MUSIC, datasets containing both indoor and outdoor scenes, highlight the ability of our
model to generalize beyond the constrained setting of enclosed rooms present in the FAIR-Play
dataset.

7
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Methods FAIR-Play 10 splits FAIR-Play 5 splits

STFT ↓ ENV ↓ SNR ↑ STFT ↓ ENV ↓ SNR ↑
Baseline (Mono-as-Stereo) 2.356 0.281 3.565 1.828 0.240 0.000
Mono2Binaural [CVPR ‘19] 0.836 0.132 - 1.024 0.145 4.968
Sep-stereo [ECCV ‘20] 0.879 0.135 6.422 0.906 0.136 5.221
PseudoBinaural [CVPR ‘21] 0.878 0.134 5.316 0.944 0.139 5.124
Beyond M2B [WACV ‘22] 0.909 0.139 6.397 0.909 0.139 6.397
SAGM [KBS ‘23] 0.851 0.134 7.044 - - -
CMC [ICASSP ‘24] 0.849 0.133 - 0.912 0.141 6.238
CLUP [CVPR ‘24] 0.787 0.128 7.546 - - -
CCStereo [ACM MM ‘25] 0.823 0.132 7.144 0.883 0.137 6.475

HiViBi (Ours) 0.6319 0.123 7.629 0.880 0.126 6.483

Table 1: Comparison of HiViBi against other methods on FAIR-Play dataset, on both splits. The
best results are bolded, while the second-best are underlined.

Methods Music-Stereo YT-Music

STFT ↓ ENV ↓ SNR ↑ STFT ↓ ENV ↓ SNR ↑
Baseline (Mono-as-Stereo) 3.400 0.369 0.000 1.067 0.180 0.000
Mono2Binaural [CVPR ‘19] 0.942 0.138 8.255 0.501 0.110 6.712
Sep-stereo [ECCV ‘20] - - - 1.051 0.145 4.779
PseudoBinaural [CVPR ‘21] 0.891 0.132 8.419 0.489 0.109 7.601
Beyond M2B [WACV ‘22] 0.670 0.108 10.754 1.070 0.148 4.542
SAGM [KBS ‘23] 0.875 0.126 5.601 0.875 0.126 5.601
CMC [ICASSP ‘24] 0.759 0.113 - - - -
CLUP [CVPR ‘24] - - - 0.856 0.124 5.711
CCStereo [ACM MM ‘25] 0.624 0.097 12.985 0.432 0.102 8.245
HiViBi (Ours) 0.331 0.070 14.363 0.260 0.073 7.805

Table 2: Comparison of HiViBi against other methods on Music-Stereo and YT-Music datasets. The
best results are bolded, while the second-best are underlined.

4.3 QUALITATIVE RESULTS

We further demonstrate the quality of our proposed solution through both time and frequency do-
main evaluations on the FAIR-Play dataset. Results for the remaining datasets are included in the
Supplementary Materials. Fig. 3 illustrates the ground truth and predicted binaural signals in the
time domain. We averaged them over 40 samples, for better visualisation, creating piecewise-like
representations. Our predictions closely follow the real ones, in multiple scenarios: on the first row,
where there is only one instrument close to the left of the microphone and reflective element (the
door) close to the right of it, capturing the delayed sounds; on the second row, where the trumpet is
further back but leans towards a side; and on the final row where two instruments are in completely
opposite locations.

Figure 3: Piecewise signals, ground truth (in blue) and predicted (in red) for the left and right
channels. Each row represents an individual example. The image in the middle showcases the
localisation of the sounding objects for easier discrimination in the audio.
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A similar phenomenon can be observed in the time-frequency domain, as illustrated in Fig. 4. Our
predictions respect a similar pattern to the original binaural spectrograms. The first example show-
cases a smothering effect, especially in the higher frequencies. This is similar to a low pass filter,
indicating that our network does not fully capture the finest details. The last example shows the
opposite effect, where small gapes in the original spectrogram appear as larger in the prediction,
indicating that low-energy regions tend to be more persistent in our predictions than in the case of
real binaural.

Figure 4: Spectrogram comparison. The first row depicts the visual image, while the second row
showcases the ground truth and predicted spectrogram. We selected only one channel for each
example, for easier visualisation.

4.4 ABLATION STUDIES

To assess the contribution of each component in our approach, we conducted an ablation study, with
the results summarized in Table 3. For consistency, all ablation experiments were trained only on the
first split of the FAIR-Play (10-split) dataset. We systematically evaluate the following aspects of our
design: (i) the output representation, where we compare our Ambisonics-like format against direct
prediction of magnitude and phase spectrograms; (ii) the loss function, contrasting our proposed
compound loss LC with a standard end-to-end L2 loss on the predicted and ground-truth binaural
signals; and (iii) the design of the visual encoder, where we separately evaluate the contributions of
CLIP embeddings, depth cues, and positional information. The HiVi column indicates the use of
our hierarchical visual encoder, which integrates both global and local features, as opposed to global
features alone.

Components STFT ↓ ENV ↓ SNR ↑
AS LC CLIP Depth Pos HiVi

✗ ✓ ✓ ✓ ✓ ✓ 1.492 0.199 4.644
✓ ✗ ✓ ✓ ✓ ✓ 0.715 0.132 6.938
✓ ✓ ✗ ✓ ✓ ✓ 0.692 0.128 7.165
✓ ✓ ✓ ✗ ✓ ✓ 0.700 0.129 6.912
✓ ✓ ✓ ✓ ✗ ✓ 0.712 0.132 6.868
✓ ✓ ✓ ✓ ✓ ✗ 0.734 0.134 6.633
✓ ✓ ✓ ✓ ✓ ✓ 0.669 0.125 7.489

Table 3: Ablation study showing performance impact of individual components of our proposed
method. ✗ denotes a removed component while ✓ indicates a kept one.

Our findings reveal two key insights. First, Ambisonics-like representations, multimodal condi-
tioning, and hierarchical visual encoding each provide substantial and complementary performance
gains. Second, while each component individually achieves results comparable to the state of the
art, only their combination establishes a new performance benchmark. These results highlight two
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promising research directions: improving the intermediate representation of audio and enhancing
the extraction of conditioning signals from other visual modalities.

5 DISCUSSIONS & CONCLUSION

5.1 LIMITATIONS

Our approach relies mainly on two components: the Ambisonics and Hierarchical Visual, each with
its own potential limitation. Firstly, the Ambisonics-like format is only enforced by the Ambisonics
FiLM layer, described in Section 3.3, due to lack of real Ambisonics data to be compared with.
However, since YT-Music dataset contains the Ambisonics audios, we present a comparison between
the intermediate feature maps and real Ambisonics in Appendix E. We show that using this novel
layer results in the learning of Ambisonics-like channels without any direct Ambisonics supervision.
For the vision component, the fine-grained features are extracted based on the object detection model
prediction, which can be incorrect or ambiguous in some cases, e.g. when there are several people
in the frame. Moreover, using the person class for instrument detection can be disadvantageous,
especially when considering other sounding objects, e.g. speakers. To mitigate this, we also kept the
global features branch. Finally, rapidly changing videos can also induce problems in our framework,
as illustrated in Appendix G . We took advantage of the dataset distribution, which poses mostly
static videos, and relied on single-frame predictions. However, in real scenarios, aggregation of
multiple, different frames might be a more well suited approach for dynamic videos.

5.2 CONCLUSION

In this paper, we presented HiViBiX, a mono-to-binaural generation framework that leverages mul-
timodal visual priors from a single image to transform mono audio into its corresponding binaural
counterpart. The key innovation lies in internally predicting Ambisonics-like channels and gains,
which serve as an intermediate representation for decoding the binaural signal. Our method over-
comes the limitations of prior works by exploiting the mono input, and by enriching the visual
conditioning beyond global contrastive features. To achieve this, we also incorporate depth and
position information from both local and global cues, arranging them in a hierarchical manner. Ex-
tensive experiments across multiple datasets demonstrated that HiViBiX consistently outperforms
existing methods and sets a new state of the art in the domain.
This works paves the way for future research in the binaural generation domain, by providing the
necessary introduction to new representation formats, as well as a method for combining multi-
vision information.
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A MONO-TO-AMBISONICS ENCODER-DECODER DETAILS

Our networks operate in the time-frequency domain, on two separate branches: magnitude and
phase. Firstly, to ease the learning process, we adopted the logarithmic scale for magnitude and
normalised the phase to the ±1 range. The two branches are identical, and consist of the spectrogram
encoder Espec, Ambisonics Latent Network (ALN) and Ambisonics-like decoder Dsonic. Since the
information contained within the spectrograms is spatially correlated (both in time and frequency
axis), we use the Espec to reduce the dimensionality of the input from 512 × 512 ⇝ 128 × 128,
effectively reducing the computational cost of the ALN by 4. To do so, we employ a 3-layered
CNN, with ReLU activations and max pooling. For ALN, we employ a 4-layer ResAttnUNet, with
cross-attention between the input and the projected visual encodings. For projection, we use a fully-
connected layer to reduce the dimensionality, in order to match the input size. Finally, the prediction
is then upscaled using transposed convolutions inside Dsonic.

We discovered empirically that employing this framework for each Ambisonics channel, i.e. X̂ and
Ŷ , works better than predicting them as two separate channels of the same network. Fig. 5 describes
this internal process visually. For the gains and panning coefficients, we treat them as learnable
parameters for the Ambisonics FiLM channels to use.

B DATASETS

FAIR-Play: Firstly, we used the most popular dataset for this task, the FAIR-Play dataset. We fol-
lowed both the initial (10-split) (Gao & Grauman, 2019) and newly organised (5-split) (Xu et al.,
2021) set, with the latter being created to better showcase the generalisation capabilities of models
trained on this dataset. It consists of 1,871 10-second clips, recorded in a music room, from different
angles, each clip being accompanied by its binaural version.
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Figure 5: Detailed view of our proposed network. Top branches are dedicated to the phase process-
ing, while bottom ones are for magnitude approximation. We omit the normalisation steps for better
clarity. The HiVi projection (in green) is shared in all branches.

Music-Stereo: Introduced in (Xu et al., 2021), this dataset is composed of music audio clips
recorded from 21 different instruments in solo and duet parts. Initially containing 1,120 videos (from
which, at time of writing, only 1,145 are still available), it is the largest available binaural dataset,
totalling almost 50 hours, 10× larger than FAIR-Play. We followed the same pre-processing steps
as the initial authors to obtain 20,096 10-second clips, from which we used aan80/10/10 split for
training/validation/testing.
YT-Music: This dataset is comprised of 397 (from which only 358 are still available) YouTube
videos in the 360◦ format and audio in the Ambisonics format. We converted each audio to a bin-
aural one using the same split and processing steps as (Gao & Grauman, 2019). This is the most
challenging dataset, as it contains a greater variation in overall scenes and present sources. We
selected only the clips that contain at least one human and at most 20, resulting in 10,477 clips.

C LOSSES & METRICS DETAILS

Following the notations from Section 3, we can define the following losses for the time and time-
frequency domains. Firstly, since our network computes the predicted magnitude and phase of the
binaural signal, we are using modified versions of the L2 magnitude and angle loss as our losses for
spectrograms. These are presented in Eqs. (8) and (9), respectively.

LMAG

(
Sbi; Ŝbi

)
=

(
|SL

bi | − |ŜL
bi |
)2

+
(
|SR

bi | − |ŜR
bi |
)2

, (8)

where | · | denotes the modulus operator.

LIPD

(
Sbi; Ŝbi

)
= |∠(SL

bi − SR
bi )− ∠(ŜL

bi − ŜR
bi )|, (9)

where ∠(·) denotes the phase angle of the complex spectrogram.

For the time domain, however, we are relying on two loss adaptations: waveform distance, depicted
in Eq. (10), and the signal-to-noise ratio (SNR), see Eq. (11). Our experiments show that including
an end-to-end loss, such as WAV, helps in better regularising this domain-specific caveats, such as
offering more consistency between the sample transitions.

LWAV(abi; âbi) =
1

Ta

Ca∑
c=1

Ta∑
t=1

(
a
(c,t)
bi − â

(c,t)
bi

)2

, (10)

LSNR(abi; âbi) = Γ− E(abi)

E(abi − âbi)
, (11)

where E(·) denotes the expectation operator and Γ is an empirically upper bound selected w.r.t the
used dataset. For Music-Stereo, we used Γ = 20, and for the rest of the experiments, we set Γ = 15.
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To accommodate the different values of our losses, we used a compound loss, with the weights

LC = LMAG + LIPD + 100LWAV + 0.1LSNR. (12)

For metrics, we focus on comprehensive ones, such as the Short-Time Fourier Transform (STFT)
distance, see Eq. (13) for the time-frequency domain, and signal envelope (ENV), Eq. (14) for the
time domain. Additionally, we report the SNR, Eq. (15), to quantify the quality of our generated
binaurals.

STFT
(
Sbi; Ŝbi

)
= ∥SL

bi − ŜL
bi∥2 + ∥SR

bi − ŜR
bi ∥2, (13)

where ∥ · ∥2 denote the Euclidean distance.

ENV(abi; âbi) = ∥E[aLbi]− E[âLbi]∥2 + ∥E[aRbi ]− E[âRbi ]∥2, (14)
where E[·] denotes the envelope of the signal.

The final SNR is computed as

SNR(abi; âbi) =
E(abi)

E(abi − âbi)
. (15)

D BETTER UNDERSTANDING OF 360◦ VIDEOS

We downloaded the 360◦ videos, necessary for the YT-Music dataset, directly from YouTube in the
equirectangular projection format, under the .webp format, which allows the user to freely move
the camera. However, this setup is not adequate for our pipeline, which uses visual information
for conditioning the binaural generation. As such, we needed a method for capturing as much
information from the provided video. We choose to trade off the quality of the image by applying a
stereographic projection, which distorts the original image using a fisheye-like effect, but allows for
capturing more information about the surrounding space, in the classical rectangular frame. For this
operation, we set the horizontal and vertical field of view (hFOV and vFOV) to 300◦. During this
transformation, we also set a sample aspect ratio (SAR) to 1, to ensure that pixels are kept as square
as possible in the final output image. One example of such a transformation is depicted in Fig. 6.

Figure 6: Equirectangular to stereographic projection

E COMPARISON WITH REAL AMBISONICS

Available datasets mostly contain the binaural audio under a simple stereo-like format, where only
the left and right channels are provided. However, in the case of the YT-Music dataset, where
the videos are 360◦, the audio also comes in different formats. One of them is the Ambisonics
one, where some audio files are in the 3-channel (W,X, Y ) or 44-channel(includes Z) B-format
of Ambisonics. Although we do not explicitly enforce the predicted channels, i.e. X̂, Ŷ , Fig. 7
showcases similarities between predicted and real Ambisonics channels. Additionally, we present
Table 4, in which we computed the STFT distance to numerically showcase the similarity between
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the predicted and real Ambisonics channels. Since the magnitude level difference is not perceptible
for the human ear, we also evaluated using the envelope distance (ENV), which requires the time-
domain signal, smoothing the error during the inverse transform. As such, we see a low value for the
ENV, indicating similar perceptual structure. Moreover, these results also emphasise the importance
of the gain predictions for the Ambisonics FiLM layer, which are responsible for adjusting the
magnitude of the predicted spectrograms.

Figure 7: Visual analysis of real Ambisonics channels (first and third columns) and internally learned
ones (second and last column). Please note that the model never saw real Ambisonics data. The
predicted channels are taken before scaling and normalised for a better view.

Methods X channel Y channel

STFT ↓ ENV ↓ STFT ↓ ENV ↓
HiViBi 5.084 0.006 1.779 0.002

Table 4: Metrics on the internally predicted Ambisonics channel.

F USER STUDY

In order to evaluate our proposed method in a subjective manner, we conducted a user study. The
study was composed of a series of 20 videos, where the audio was obtained using different methods.
We also included the ground truth video as a control mechanism. The participants were asked to
rate each sample in terms of spatiality, with a value ranging from 1 (no spatiality) to 5, denoting
a spatial audio. In total, 13 users with normal hearing participated in our study. From the results,
presented in Fig. 8, we can conclude that the users considered our proposed solution to be the best
one, excluding the ground truth, which further demonstrates the effectiveness of our method.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Results of the conducted user study. We asked the participants to rate videos containing
binaural audio on a scale of 1 (worst) to 5 (best). Our method achieves the second position in terms
of preferences, after the ground truth.

G MORE EXAMPLES

In this section we showcase the results on the other two datasets. As such, Fig. 9 illustrates the results
on the Music-Stereo dataset, while Fig. 10 is dedicated to the YT-Music one. For both figures, we
focused on choosing examples that have a different data distribution from the FAIR-Play one to
showcase their edge cases. On Music-Streore, we selected three examples, as follows: the first one
is very focused on the people singing, with little room context; the second one provides an entirely
different scenario, with the filming locations being outside, and the third example illustrates a case
when one sounding instrument (guitar) is closer to the microphone than the other one (violin). We
can see that in all cases, our proposed solution achieves impressive results, closely following the
original signal.

Figure 9: Examples of piecewise signals on Music-Stereo, ground truth (in blue) and predicted (in
red) for the left and right channels.

For the YT-Music dataset, where the videos are 360, the model needs to have a larger understanding
of the scene, as described in Appendix D. We selected examples which depict this phenomenon. On
the first row, we have a crowded room with 5 different instruments, from multiple directions. The
second row is dedicated to an outdoor example, while the third row showcases a music video, which
can be catalogued as an outlier from the other examples.

Failure cases. Finally, we show one example in which our method is unable to grasp the full concept
of the video. The example in Fig. 11 is taken from the YT-Music dataset and consists of a group of
people dancing in a park. This dynamic video easily jailbreaks our proposed system, since we are
only selecting one frame to extract the information from. As such, the full range of motions, and
thus the acoustic propagation, might not captured enough in this scenario. As a solution, we propose
two research directions: (i) estimating the best correlation/synchronization between a set of frames,
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Figure 10: Examples of piecewise signals on YT-Music, ground truth (in blue) and predicted (in
red) for the left and right channels.

Figure 11: Example of a dynamic video: people dancing. The top part represents different frames
from the video. The bottom part represents the left and right piecewise signals alongside the selected
frame for analysis.

and the appropriate combination of the extracted features, and (ii) better motion representation of a
dynamic video, i.e. moving sound sources, such as a car passing by.

H COMPARISON WITH GENERATIVE METHODS

We dedicate this section to comparing our method with other state-of-the-art solutions for video-
to-spatial audio. Namely, we compare HiViBiX with ViSAGe (Kim et al., 2025) and OmniAudio
(Liu et al., 2025) on their proposed datasets. Since these models aim at generating only coherent
and plausible audio for the silent video, our distance-based metrics have a higher value for them.
This phenomenon can also be seen in Fig. 12, where our method closely follows the ground-truth,
because of the mono audio prior, while the OmniAudio variant is completely different.

Methods YT-Ambigen Sphere360

STFT ↓ ENV ↓ SNR ↑ STFT ↓ ENV ↓ SNR ↑
Baseline (Mono-as-Stereo) 2.953 0.244 0.000 3.926 0.260 0.000
PseudoBinaural † [CVPR ‘21] 2.096 0.257 4.371 3.383 0.250 1.045
PseudoBinaural[CVPR ‘21] 1.694 0.211 4.592 2.636 0.220 1.558
CCStereo † [ACM MM ‘25] 2.107 0.244 1.707 2.166 0.211 2.523
CCStereo [ACM MM ‘25] 1.813 1.716 4.208 2.064 0.207 6.350

ViSAGe [ICLR ‘25] 7.790 0.304 -4.979 - - -
OmniAudio [ICML ‘25] - - - 8.965 0.317 -4.843

HiViBi † (Ours) 2.132 0.204 1.265 2.921 0.228 1.018
HiViBi (Ours) 0.997 0.147 5.804 1.010 0.164 3.916
HiViBi-v2 (Ours) 1.132 0.132 6.478 1.046 0.136 5.320

Table 5: Comparison of mono-to-binaural models against generative ones. The † signifies that the
model is not trained on the specified dataset (zero-shot scenario). The v2 denotes changes made to
HiVi encoder.
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Table 5 reports the numerical results. For a fairer comparison, we evaluate PseudoBinaural (Xu
et al., 2021) and CCStereo (Chen et al., 2025) both in a zero-shot setting (marked with †) and
after fine-tuning them using their original training configurations, thereby establishing competitive
baselines. For HiViBiX, we fine-tune starting from the YT-Music checkpoint. Since the two new
datasets are not music-related, we also introduce a variant of the HiViBiX visual encoder, denoted
v2. In this new variant, we replace YOLOv8 with the newer YOLOv11 and modify the detection
strategy: instead of restricting detections to people, we use all available bounding boxes, irrespective
of object category, i.e. all the possible 80 categories. We applied these modifications for v2 as an out-
of-domain adaptation strategy, expanding the mono-to-binaural generation capabilities from music
to more general audio. This leads to improved ENV distance and higher SNR on both datasets, at
the cost of only a minor increase in STFT distance.

Figure 12: Piecewise signal comparison on Sphere360 dataset with OmniAudio.
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