HIVIBIX: HIERARCHICAL VISUALLY-INFORMED BIN-AURAL AUDIO GENERATION USING AMBISONICS

Anonymous authorsPaper under double-blind review

ABSTRACT

Binaural audio, a specialized form of stereo sound, provides depth and spatial localization for highly immersive listening experiences, making it fundamental in modern entertainment. Prior research has largely relied on visual cues to directly adapt mono signals into binaural or to estimate transfer functions that induce spatiality. In contrast, we introduce HiViBiX, a novel framework that redefines the audio representation by predicting first-order Ambisonics channels, which explicitly control the spatial positioning of audio components in the generated binaural signal. Unlike existing multimodal approaches that extract spatial cues exclusively from full-frame RGB images, HiViBiX incorporates a hierarchical visual encoder that jointly models local sound sources and their spatial depth with global environmental context. This design enables richer multimodal grounding and more precise spatialization. Extensive experiments on three widely used benchmarks: FAIR-Play, Music-Stereo, and YT-Music demonstrate that HiViBiX establishes new state-of-the-art performance for mono-to-binaural generation. Samples are available in the following repository: https://hivibix.vercel.app.

1 Introduction

Immersive audio playback, where the spatial position of a sound source can be perceived solely through auditory cues, has become a cornerstone of modern media applications. In domains such as gaming, virtual and augmented reality, and cinematic production, spatial audio is not merely an aesthetic enhancement but a functional necessity. It enables dramaturgical control by directing user attention, articulating scale and distance, and conveying events that occur outside the immediate visual frame. Unlike conventional stereo, binaural audio recreates a perceptual sense of space that aligns more closely with natural human hearing, allowing two-channel playback systems to deliver an experience of depth, realism, and presence. As interactive and immersive technologies continue to grow in scale and impact, the demand for accurate and efficient methods of binaural audio generation is more pressing than ever.

Ambisonics Zotter & Frank (2019) represents a special class of format, extensively used across the audio industry by hardware manufacturers, broadcasting services, and streaming platforms. Beyond these technical domains, Ambisonics also play a central role in entertainment applications such as cinema, gaming, and virtual reality, where precise spatial rendering is essential for immersion and realism. Using this format, audio sources can be captured, stored and played in an arbitrary manner by relying on spherical harmonics encoding. We selected this format as it represents a stronger alternative to Head Related Transfer Functions (HRTFs) because it allows for energy-preserving rotations and more stable localization in the high frequency domain. Another important advantage of the Ambisonics over classical HRTFs is that the later are highly dependent on the ear anatomy of the listener, while Ambisonics are more generalizable, especially if higher-order are used.

Visual cues are also an indispensable tool in binaural generation, as they contain priors over both import aspects, such as source sounding object position or depth but also over intrinsic scene-related features such as room reverberations or different occlusion. This phenomenon is close related to the multisensory integration mechanisms that governs over human hearing. As such, the visual stream is often used to create an implicit abstract visual-to-spatial mapping. Most previous methods have focused on obtaining this mapping solely from a single pre-trained model. Our approach focuses on extracting modality-specific priors, thereby enforcing more coherence between the available mono audio and visual knowledge to help in rendering more realistic binaurals.

In this work, we present **HiViBiX**, a novel approach to image-conditioned mono-to-binaural conversion with intrinsic learning of Ambisonics-like channels. We can summarise the main contributions into the following points:

- We propose a novel approach for binaural generation, inspired from the Ambisonics format.
 This method works by predicting shared time-frequency internal representation alongside gain parameters. We use these to construct the binaural representation from its mono counterpart, taking inspiration from the Ambisonic format for the representation and decoding to obtain the final result;
- We propose a new hierarchical spatio-visual module for conditioning binaural audio generation. This conditioning is used in the latent space to obtain crude representations that are decoded into the channels mentioned above;
- To the best of our knowledge, our work is the first to incorporate both multi-scale and multi-modality visual prior knowledge with learnable position encoding, to obtain a full representation of the observed surroundings a key component for achieving the spatiality of binaural audio;
- We demonstrate the efficacy of our approach on four commonly used binaural audio-visual datasets. The proposed method obtains state-of-the-art results, cementing our hypothesis on combining traditional and deep-learning methods for more robust mono-to-binaural.

The rest of the manuscript is organized as follows: Section 2 briefly describes the previous works in this domain, Section 3 introduces our proposed solution, Section 4 validates our approach, while Section 5 provides general conclusions.

2 BACKGROUND & RELATED WORKS

2.1 CONDITIONAL AUDIO GENERATION

Conditional audio generation has advanced significantly in recent years, largely propelled by break-throughs in conditional image modelling. This progress spans a wide range of domains, from specialized tasks such as speech synthesis Lee et al. (2025); Wang et al. (2025) and music generation Mariani et al. (2024), to more general approaches involving multimodal conditioning Tian et al. (2025). Building on these developments, recent works have proposed systematic taxonomies of conditional audio generation, typically distinguishing between tasks such as text-to-audio, image-to-audio, and joint audio—visual generation Hayakawa et al. (2025). Our work focuses on generating a binaural audio from its mono counterpart, conditioned on visual cues.

Text-to-Audio generation: Early works for this task are closely linked to TTS systems. However, this task has been recently extended to open-domain audio generation with the introduction of AudioLDM Liu et al. (2023), a text-guided latent diffusion model which operates in the latent space of a spectrogram-based VAE, aligning the captioning with the provided audio during training. Follow-up works, such as AudioLDM2 Liu et al. (2024a) or Tango2 Majumder et al. (2024), have focused on generating higher quality audio or adhere to user preference, optimizing the listening experience. Due to limited data, text-based approaches for audio generation do not take into account sound direction, solely measuring the prompt alignment using contrastive models Wu et al. (2023).

Vision-conditioned audio: These models leverage pretrained visual encoders with audio generation backbones, enabling image-to-audio or video-to-audio generation. One common approach Wang et al. (2024) is to make use of lightweight mappers to connect vision foundation models to audio generators without fully re-training, while others have drawn inspiration from LLM training strategies to introduce token-based audio generation Mehta et al. (2025). This approach has sparked many research directions, showcasing the need for low-bit but precise neural audio encoders Ji et al. (2025) and for shared, modality-independent, embedding spaces Girdhar et al. (2023). However, both of these directions are still mainly operating in the single channel audio domain, while our works extends not only on general purpose stereo, but on binaural audio.

2.2 Mono-to-binaural using visual information

Most prior work has treated audio generation as a monophonic task, producing signals with a single channel. In practice, however, the majority of real-world audio is stereophonic, reflecting both the

binaural nature of human hearing and the widespread use of headphones in everyday listening. To bridge the gap between mono and stereo audio, several studies have incorporated visual information to guide spatial positioning of sounds, thereby improving object localization and enhancing the immersive quality of the generated audio. Pioneering this domain, Gao & Grauman (2019) propose the combination of a spectrogram-based UNet for binaural generation. Inside the UNet bottleneck the visual features extracted by an ResNet-18 a model pretrained on ImageNet are concatenated, which has become outdated. Our solution is to create an ensemble of methods that extract multimodal visual information, guaranteeing a more robust solution.

Sep-stereo Zhou et al. (2020) aims to improve stereophonic learning by also including audio-visual source separation. By allowing parallel training on mono audio separation aided by visual information, they improve the stereo generation in the context of scarce binaural data. This strategy has been also applied more recently by CLUP Li et al. (2024), combined with a diffusion strategy. PseudoBinaural Xu et al. (2021), as the name implies, focuses on generating binaural data without mono-stereo pairs. Using visual-coordinate mapping, their focus is on producing Ambisonics coefficients and HRIR filters from spatial priors, which can be applied to the mono signals to encode their location inside a stereo audio. Beyond Mono2Binaural (Beyond M2B) Parida et al. (2022) is the first work to add a Depth network to improve the results of previous works, with a decoder that attends to both image-audio and depth-audio features. SAGM Li et al. (2023) uses a GAN-style method for generating audios, with a discriminator to decide between features of real binaurals and generated ones, which are concatenated with video features.

Recently, CMC Liu et al. (2024b) proposed a dual-encoder approach, for the left and right channel, alongside a new cross-matching loss. Finally, CCStereo Chen et al. (2025) makes better use of the temporal dimension in both audio and video data with the introduction of a conditional normalisation layer and audio-video alignment. As such, previous methods tend to focus on better separation of the sounding elements or channels, to obtain better alignment, while under-exploring available prior in both domains. In our work, we introduce several novelties in both the internal processing of our proposed solution, which captures the audio (mono) prior, as well as focusing on extracting more relevant information using multimodal vision approaches and hierarchically extracted features.

2.3 Ambisonics nomenclature and coding

Ambisonics is a spatial audio technique for representing the sound field description around a listening point using spherical harmonic decomposition. Instead of directly capturing the signal that should be played on speakers placed at certain locations, Ambisonics encodes the sound itself, allowing for arbitrary decoding for any speaker layout. Let $s(t) \in \mathbb{R}$ be the value of an audio waveform at timestep t of a single sounding source s, e.g. a voice, an instrument or a noise, and (r, θ, ϕ) be the source polar coordinates. To encode this, a special *Ambisonics Channel Signal* (ACN) is used:

$$ACN_m^{(l)}(t) = s(t)S_m^{(l)}(\theta, \phi), \qquad (1)$$

where $S_m^{(\ell)}$ is the spherical harmonic function, $\ell \geq 0$ denotes the Ambisonics order, and m denotes the Ambisonics index, while respecting the $-l \leq m \leq l$ constraint.

In practice, only the first-order Ambisonics ($\ell=1$, abbreviated as FOA) are frequently used, where the following channels are defined using truncated spherical harmonic expansions, representing dipoles for each Cartesian axis: **W channel**: omnidirectional components (zero order), which capture the sound from all directions equally, similar to the mono audio format; **X channel**: contains differences on the front-back axis, giving the audio more depth and **Y channel**: left-right pattern, used for giving the directional feeling of audio. For a full 3D experience, the **Z channel** is also used to allow for up-down direction. These channels are computed as follows, using the initial source s(t) and its spherical positions (θ, ϕ) :

$$ACN_0^{(0)} = W(t) = s(t), (2)$$

$$ACN_1^{(1)} = X(t) = s(t)\cos\theta\cos\phi, \tag{3}$$

$$ACN_1^{(-1)} = Y(t) = s(t)\sin\theta\cos\phi, \tag{4}$$

$$ACN_1^{(0)} = Z(t) = s(t)\sin\phi.$$
 (5)

Since an audio recording can contain multiple sounding objects, each with its own spatial position, obtaining the final audio is done by summing up all the representations. Considering the classical

stereo position, where left L(t) and right R(t) speakers are positioned at ground level, *i.e.* $\phi = 0$, and opposite angles, *i.e.* $\alpha = \theta_L = -\theta_R$, the FOA for N sources must also account for the position of the speakers playing each sound, individually:

$$L(t) = \sum_{i=1}^{N} \frac{1}{\sqrt{2}} W_i(t) + X_i(t) \cos \alpha_i + Y_i(t) \sin \alpha_i, \tag{6}$$

$$R(t) = \sum_{i=1}^{N} \frac{1}{\sqrt{2}} W_i(t) + X_i(t) \cos \alpha_i - Y_i(t) \sin \alpha_i.$$
 (7)

This formulation highlights how Ambisonics provides a structured intermediate representation for spatial audio, which we leverage as the foundation of our approach. Moreover, using this approach also incorporates the panning of the speakers w.r.t. the source original position.

3 APPROACH: HIVIBIX

The overall architecture of the proposed model is depicted in Fig. 1. We denote the input data with $v \in \mathbb{R}^{(T_v \times C_v \times H_v \times W_v)}$ for the video sequence, where T_v, C_v, H_v and W_v denote the frame, channel, height and width dimension, respectively. Let $a_{\rm bi} \in \mathbb{R}^{(C_a \times T_a)}$ be the binaural audio, with C_a and T_a denoting the channels and sample (time) sizes. From $a_{\rm bi}$ we extract the mono signal $a_{\rm m}$ by summing the channels and obtain the $S_m \in \mathbb{C}^{(1 \times F \times T)}$ spectrogram by applying the Short-Time Fourier Transform (STFT) operation, with F and T denoting the frequency and the time bins, respectively. Since we are using the mono representation as the W channel from the Ambisonics format, we use the same notation throughout the text, i.e. $W = S_{\rm m}$. The goal of our network is to generate the other Ambisonics channels, i.e. \hat{X} and \hat{Y} and to combine them into the final binaural spectrogram $\hat{S}_{\rm bi} \in \mathbb{C}^{(2 \times F \times T)}$ to obtain the final binaural audio $\hat{a}_{\rm bi} \approx a_{\rm bi}$. To implement this pipeline, we employ several modules: an Encoder-Decoder strategy, presented in Section 3.1, with a latent space conditioned on a new visual encoder, detailed in Section 3.2, followed by the Ambisonics FiLM layer, which ensures our internal representation, described in Section 3.3.

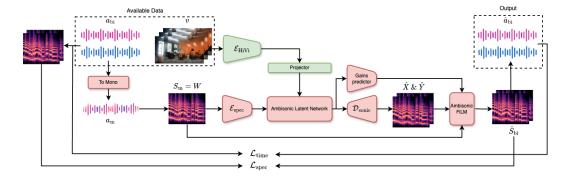


Figure 1: Proposed training scheme. We start from a video and its associated binaural, that is converted to mono and further to its spectrogram representation. Next, we encode it into a latent space that is conditioned using our new hierarchical vision (HiVi) encoder. We then decode this into both the Ambisonics channels and required gains, which are used to produce the binaural spectrogram and the final audio. We use two classes of losses: in the waveform and spectrogram domains.

3.1 Mono-to-Ambisonics encoder & Decoder

AudioLDM Liu et al. (2023) has recently emerged as a powerful framework capable of learning intricate audio input-output relationships in the time-frequency domain, based on textual conditioning. Since our goal involves mapping mono audio to its binaural representation with the aid of visual cues, this model provides a natural and suitable inspiration for our overall architecture design. First, we start by designing a Convolutional encoder that reduces the input spectrogram into a compact,

more abstract representation. The Decoder mirrors this structure, and generates the output corresponding to the desired channels. Because the input-output representations are not semantically similar, we omit the skip connections that are common in such settings. We construct the latent space by employing a conditional residual Attention UNet (ResAttnUNet) for a guided transformation of the mono latent representation towards the Ambisonics one, using the conditioning vector extracted by $\mathcal{E}_{\text{HiVi}}$. For both the magnitude and the phase we use the complex representation of S_m and individual networks to predict the \hat{X} and \hat{Y} channels, as opposed to a multi-channel output network, to allow each Encoder-Decoder structure to focus on channel-specific features. Moreover, we convert the Ambisonics position and gain coefficients into learnable parameters, enabling the model to have full control over the desired distribution. As in the case of channels, we treat these parameters independently for each modality, *i.e.* magnitude and phase. For a more detailed view about the implementation of this module, check Appendix A.

3.2 HIERARCHICAL VISUAL (HIVI) ENCODER

To improve the audio generation, we added a new module for extracting conditions from the provided video, as depicted in Fig. 2. The binaural audio benefits from visual cues, as each sounding object can be associated with its position from the video, information which we inject in the Ambisonics latent space. To obtain this conditioning vector, firstly, we are selecting an anchor image $v^{(i)} \in \mathbb{R}^{(C_v \times H_v \times W_v)}$ to extract prior knowledge that would guide the generation. From the anchor image, we extract a list of sounding objects from the image using YOLOv8 ¹ by selecting the bounding boxes associated with the person label. We chose this approach as most instruments require a human operator, and several solutions are unable to detect all the instruments from the used datasets. We used YOLO as a faster and lighter alternative over other object detection approaches. We crop the regions using the predicted bounding box, enlarged by 20%, and treat them as local information, in contrast to the full image, which serves as global context. The extracted knowledge domains are three-folded: scene, position and depth. For general and depth features, we employ a cross-attention structure to combine them into a single representation for its corresponding modality.

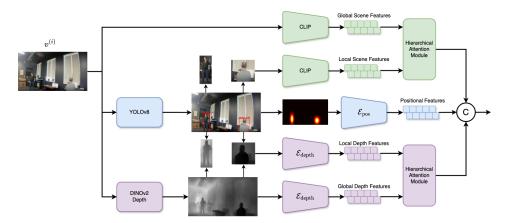


Figure 2: Hierarchical Visual encoder. We extract both local and global features from multiple modalities, *i.e.* RGB, depth and position, computed solely based on the provided image.

We use the image encoder from CLIP Radford et al. (2021) to extract both local and global scene features. The local features to distinguish between different instruments, while the global ones are responsible for giving the overall audio dynamics of the scene (indoors, sound reflecting elements such as walls or other obstacles, microphone positioning, etc.). For positioning, we select 2D Fourier Features for Positional Encoding (FFPE) Li et al. (2021) to generate prior knowledge about the location of the sounding objects in the frame, Fig. 2 (middle row). We choose this method for representing this knowledge because a video frame can contain multiple audio sources. By selecting the Gaussian kernel provided by FFPE, and summing them into a single position image $P \in \mathbb{R}^{(1 \times H_v \times W_v)}$, we are able to distinguish between both separate and overlapping sounding ob-

¹YOLOv8 available at: https://github.com/ultralytics/ultralytics

jects. Finally, depth information is also useful, especially for the X channel. As such, we use a depth estimation model based on DINOv2 Oquab et al. (2024). As in the scene feature case, we extract both global and local features. Global depth features are useful for better understanding the room configuration, which can help for internal modelling of reverberations, while local ones provide the necessary distance comprehension to each sounding object.

Combining the global and local prior knowledge is an essential step to obtain an efficient conditioning. As such, we carefully craft the Hierarchical Attention Module, which is an adaptation of the classical cross-attention. This block receives the global features as queries, while the keys and values are the local ones. The global representation selectively gathers fine details from the local parts, allowing them to be informative inside the broader context, for each modality that has this component. Finally, we concatenate all the modalities to obtain a single conditioning vector, which is further projected inside the latent Ambisonics space.

3.3 AMBISONICS FILM

270

271

272

273

274

275

276

277

278

279

280

281 282 283

284

285

286

287

288

289

290

291

292

293

295 296

297 298 299

300

301

302 303

304 305 306

307 308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Our method closely follows the Ambisonics format for binaural generation. Since most datasets do not contain the Ambisonics representation, and only the final stereo is available, we based our experiments on internally learning the FOA-like spectrograms. This is facilitated by the new Ambisonics FiLM layer, also described in Algorithm 1. As per previous steps, we compute the magnitude and phase independently. Moreover, we use the mono (unidirectional) signal as a replacement for the W channel in both cases. For phase reconstruction, we predict only the interaural phase difference (IPD), as other works suggested Pan et al. (2021). The main idea of the Ambisonics FiLM layer is to use the available prior, i.e. W, and predicted, i.e. \hat{X} and \hat{Y} channels, and to force the reconstruction in the same way as the Ambisonics decoding of binaural audios, as shown in Section 2.3.

```
Algorithm 1: Ambisonics FiLM Layer
```

```
Data: Mono spectrogram magnitude and phase: W = \{W_M, W_P\} \in \mathbb{R}^{(1 \times F \times T)};
Predicted Ambisonics channels for magnitudes and phases: \{\hat{X}, \hat{Y}\}_{\{M,P\}} \in \mathbb{R}^{(1 \times F \times T)};
```

Predicted position and gain coefficients: $\hat{\alpha}_{\{M,P\}}^{\{X,Y\}}, \hat{\beta}_{\{M,P\}} \in \mathbb{R}$ Result: Predicted binaural spectrogram: $\hat{S}_{\mathrm{bi}} \in \mathbb{C}^{(2 \times F \times T)}$

$$\begin{split} \widehat{M}_{\text{bi}}^L &= \left(W_M + \cos(\widehat{\alpha}_M^X)\, \hat{X}_M + \sin(\widehat{\alpha}_M^Y)\, \hat{Y}_M\right)\beta_M^{-1} \\ \widehat{M}_{\text{bi}}^R &= \left(W_M + \cos(\widehat{\alpha}_M^X)\, \hat{X}_M - \sin(\widehat{\alpha}_M^Y)\, \hat{Y}_M\right)\beta_M^{-1} \\ \widehat{\text{IPD}} &= \left(W_P + \cos(\widehat{\alpha}_M^Z)\, \hat{X}_P - \sin(\widehat{\alpha}_P^Y)\, \hat{Y}_P\right)\beta_P^{-1} \\ \widehat{S}_{\text{bi}} &= \left[\, \widehat{M}_{\text{bi}}^L,\, \widehat{M}_{\text{bi}}^R \,\right] \cdot \exp\!\left(j \left[W_P + \widehat{\text{IPD}},\, W_P - \widehat{\text{IPD}}\right]\right) \end{split}$$

EXPERIMENTS

IMPLEMENTATION DETAILS

For training, we used three distinct datasets: FAIR-Play Gao & Grauman (2019), Music-Stereo Xu et al. (2021) and YT-Music. More details about the datasets can be found in Appendix B. We used a sample rate of 16kHz, following recommendations from previous works. The generated spectrograms were computed with a rectangular window of 1024 samples, which also defined the number of FFT points, and a hop size of 25% (256 samples) settings yielded spectrograms of size 513×512 , corresponding to approximately 8.2 seconds of audio. We removed the last frequency bin and applied zero-padding during iSTFT reconstruction. No data augmentation was employed. The models were optimized using a compositional loss that jointly accounted magnitude, phase and time domain changes, as detailed in Appendix C. Training was performed from scratch for up to 500 epochs with the AdamW optimizer Loshchilov & Hutter (2019), a decaying learning rate scheduler with 5 epochs for patience to avoid plateaus, and an early stopping mechanism triggered if the validation loss did not improve within 15 epochs. All experiments were performed on an NVIDIA A100 with 40GB of VRAM, using minibatches of 16 examples. For testing, we used the same parameters as Chen et al. (2025) to obtain comparable results in the frequency domain. Each signal was split into two parts and zero-padded at both ends. After prediction, we reconstructed the original, full 10 seconds samples by combining only the relevant parts of each segment.

4.2 QUANTITATIVE RESULTS

We compared our approach against prior works that employed visual conditioning for mono to binaural audio conversion. To evaluate the performance, we adopted metrics spanning both the time and spectrogram domains. Specifically, we used the STFT L2 distance (STFT) to measure differences in the time-frequency domain, and the envelope distance (ENV) served as a well established metric in the time domain. Moreover, we assessed the overall quality of the generated binaural signals, using the signal-to-noise ration (SNR). Further implementation details and metrics are provided in the Supplementary Materials.

All baseline results were either taken from the respective papers or obtained from publicly available re-implementations, where possible. Table 1 presents the results on the FAIR-Play dataset 10-splits and 5-splits, respectively, while Table 2 is designated for the results on Music-Stereo and YT-Music.

Methods	FAIR	-Play 10 s	plits	FAIR-Play 5 splits		
Tributo do	STFT ↓	ENV ↓	SNR ↑	STFT ↓	ENV ↓	SNR ↑
Baseline (Mono-as-Stereo)	2.356	0.281	3.565	1.828	0.240	0.000
Mono2Binaural [CVPR '19]	0.836	0.132	-	1.024	0.145	4.968
Sep-stereo [ECCV '20]	0.879	0.135	6.422	0.906	0.136	5.221
PseudoBinaural [CVPR '21]	0.878	0.134	5.316	0.944	0.139	5.124
Beyond M2B [WACV '22]	0.909	0.139	6.397	0.909	0.139	6.397
SAGM [KBS '23]	0.851	0.134	7.044	-	-	-
CMC [ICASSP '24]	0.849	0.133	-	0.912	0.141	6.238
CLUP [CVPR '24]	0.787	0.128	7.546	-	-	-
CCStereo [ACM MM '25]	0.823	0.132	7.144	0.883	0.137	<u>6.475</u>
HiViBi (Ours)	0.6319	0.123	7.629	0.880	0.126	6.483

Table 1: Comparison of HiViBi against other methods on FAIR-Play dataset, on both splits. The best results are bolded, while the second-best are underlined.

Compared to other methods, our approach achieves superior performance across all datasets. Firstly, the results on FAIR-Play 10-splits indicate that the model is capable of rendering room acoustics across different angles and instruments, while the results on the 5-split illustrate that the model is also able to generalize from unseen cases. On the YouTube datasets, which include a multitude of instruments and other noises, we can observe that our model is capable of understanding the interdependency between sounding sources, their position and other sounding objects or people. Importantly, the performances on Music-Stereo and YT-MUSIC, datasets containing both indoor and outdoor scenes, highlight the ability of our model to generalize beyond the constrained setting of enclosed rooms present in the FAIR-Play dataset.

Methods	Music-Stereo			YT-Music		
	STFT ↓	ENV ↓	SNR ↑	$STFT \downarrow$	ENV ↓	SNR ↑
Baseline (Mono-as-Stereo)	3.400	0.369	0.000	1.067	0.180	0.000
Mono2Binaural [CVPR '19]	0.942	0.138	8.255	0.501	0.110	6.712
Sep-stereo [ECCV '20]	-	-	-	1.051	0.145	4.779
PseudoBinaural [CVPR '21]	0.891	0.132	8.419	0.489	0.109	7.601
Beyond M2B [WACV '22]	0.670	0.108	10.754	1.070	0.148	4.542
SAGM [KBS '23]	0.875	0.126	5.601	0.875	0.126	5.601
CMC [ICASSP '24]	0.759	0.113	-	-	-	-
CLUP [CVPR '24]	-	-	-	0.856	0.124	5.711
CCStereo [ACM MM '25]	0.624	0.097	12.985	0.432	0.102	8.245
HiViBi (Ours)	0.331	0.070	14.363	0.260	0.073	<u>7.805</u>

Table 2: Comparison of HiViBi against other methods on Music-Stereo and YT-Music datasets. The best results are bolded, while the second-best are underlined.

4.3 QUALITATIVE RESULTS

We further demonstrate the quality of our proposed solution trough both time and frequency domain evaluations on the FAIR-Play dataset. Results for the remaining datasets are included in the Supplementary Materials. Fig. 3 illustrates the ground truth and predicted binaural signals in the

time domain. We averaged them over 40 samples, for better visualisation, creating piecewise-like representations. Our predictions closely follow the real ones, in multiple scenarios: on the first row, where there is only one instrument close to the left of the microphone and reflective element (the door) close to the right of it, capturing the delayed sounds; on the second row, where the trumpet is further back but leans towards a side; and on the final row where two instruments are in completely opposite locations.

Figure 3: Piecewise signals, ground truth (in blue) and predicted (in red) for the left and right channels. Each row represents an individual example. The image in the middle showcases the localisation of the sounding objects for easier discrimination in the audio.

A similar phenomenon can be observed in the time-frequency domain, as illustrated in Fig. 4. Our predictions respect a similar pattern to the original binaural spectrograms. The first example show-cases a smothering effect, especially in the higher frequencies. This is similar to a low pass filter, indicating that our network does not fully capture the finest details. The last example shows the opposite effect, where small gapes in the original spectrogram appear as larger in the prediction, indicating that low-energy regions tend to be more persistent in our predictions than in the case of real binaural.

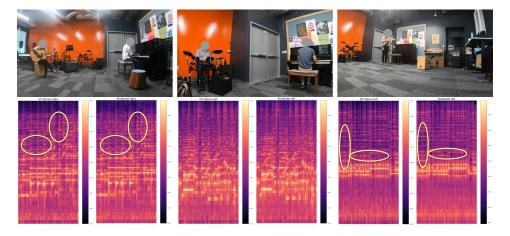


Figure 4: Spectrogram comparison. The first row depicts the visual image, while the second row showcases the ground truth and predicted spectrogram. We selected only one channel for each example, for easier visualisation.

4.4 ABLATION STUDIES

To assess the contribution of each component in our approach, we conducted an ablation study, with the results summarized in Table 3. For consistency, all ablation experiments were trained only on the first split of the FAIR-Play (10-split) dataset. We systematically evaluate the following aspects of our design: (i) the output representation, where we compare our Ambisonics-like format against direct prediction of magnitude and phase spectrograms; (ii) the loss function, contrasting our proposed

compound loss \mathcal{L}_C with a standard end-to-end L_2 loss on the predicted and ground-truth binaural signals; and (iii) the design of the visual encoder, where we separately evaluate the contributions of CLIP embeddings, depth cues, and positional information. The HiVi column indicates the use of our hierarchical visual encoder, which integrates both global and local features, as opposed to global features alone.

Components				STFT ↓	ENV ↓	SNR ↑		
AS	\mathcal{L}_C	CLIP	Depth	Pos	HiVi	-		
X	/	1	✓	/	1	1.492	0.199	4.644
/	X	✓	✓	/	✓	0.715	0.132	6.938
1	1	X	✓	1	1	0.692	0.128	7.165
1	1	1	X	1	1	0.700	0.129	6.912
/	/	✓	✓	X	✓	0.712	0.132	6.868
1	1	1	✓	1	X	0.734	0.134	6.633
✓	/	✓	✓	✓	✓	0.669	0.125	7.489

Table 3: Ablation study showing performance impact of individual components of our proposed method. X denotes a removed component while Y indicates a kept one.

Our findings reveal two key insights. First, Ambisonics-like representations, multimodal conditioning, and hierarchical visual encoding each provide substantial and complementary performance gains. Second, while each component individually achieves results comparable to the state of the art, only their combination establishes a new performance benchmark. These results highlight two promising research directions: improving the intermediate representation of audio and enhancing the extraction of conditioning signals from other visual modalities.

5 DISCUSSIONS & CONCLUSION

5.1 LIMITATIONS

Our approach relies mainly on two components: the Ambisonics and Hierarchical Visual, each with its own potential limitation. Firstly, the Ambisonics-like format is only enforced by the Ambisonics FiLM layer, described in Section 3.3, due to lack of real Ambisonics data to be compared with. However, since YT-Music dataset contains the Ambisonics audios, we present a comparison between the intermediate feature maps and real Ambisonics in Appendix E. We show that using this novel layer results in the learning of Ambisonics-like channels without any direct Ambisonics supervision. For the vision component, the fine-grained features are extracted based on the object detection model prediction, which can be incorrect or ambiguous in some cases, *e.g.* when there are several people in the frame. Finally, rapidly changing videos can also induce problems in our framework. We took advantage of the dataset distribution, which poses mostly static videos, and relied on single-frame predictions. However, in real scenarios, aggregation of multiple, different frames might be a more well suited approach for dynamic videos.

5.2 CONCLUSION

In this paper, we presented HiViBiX, a mono-to-binaural generation framework that leverages multimodal visual priors from a single image to transform mono audio into its corresponding binaural counterpart. The key innovation lies in internally predicting Ambisonics-like channels and gains, which serve as an intermediate representation for decoding the binaural signal. Our method overcomes the limitations of prior works by exploiting the mono input, and by enriching the visual conditioning beyond global contrastive features. To achieve this, we also incorporate depth and position information from both local and global cues, arranging them in a hierarchical manner. Extensive experiments across multiple datasets demonstrated that HiViBiX consistently outperforms existing methods and sets a new state of the art in the domain.

This works paves the way for future research in the binaural generation domain, by providing the necessary introduction to new representation formats, as well as a method for combining multivision information.

REFERENCES

- Yuanhong Chen, Kazuki Shimada, Christian Simon, Yukara Ikemiya, Takashi Shibuya, and Yuki Mitsufuji. CCStereo: Audio-Visual Contextual and Contrastive Learning for Binaural Audio Generation. In *ACM MM*, 2025.
 - Ruohan Gao and Kristen Grauman. 2.5D Visual Sound. In CVPR, 2019.
- Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra. ImageBind: One Embedding Space To Bind Them All. In *CVPR*, 2023.
- Akio Hayakawa, Masato Ishii, Takashi Shibuya, and Yuki Mitsufuji. MMDisCo: Multi-Modal Discriminator-Guided Cooperative Diffusion for Joint Audio and Video Generation. In *ICLR*, 2025.
 - Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize Cheng, Zehan Wang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang, Qian Chen, Siqi Zheng, and Zhou Zhao. WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling. In *ICLR*, 2025.
 - Keon Lee, Dong Won Kim, Jaehyeon Kim, Seungjun Chung, and Jaewoong Cho. DiTTo-TTS: Diffusion Transformers for Scalable Text-to-Speech without Domain-Specific Factors. In *ICLR*, 2025.
 - Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding. In *NeurIPS*, 2021.
 - Zhaojian Li, Bin Zhao, and Yuan Yuan. Cross-modal Generative Model for Visual-Guided Binaural Stereo Generation. In *Knowledge-Based Systems*, 2023.
 - Zhaojian Li, Bin Zhao, and Yuan Yuan. Cyclic Learning for Binaural Audio Generation and Localization. In CVPR, 2024.
 - Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D. Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. In ICML, 2023.
 - Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and Mark D. Plumbley. AudioLDM 2: Learning Holistic Audio Generation With Self-Supervised Pretraining. In *IEEE/ACM TASLP*, 2024a.
 - Miao Liu, Jing Wang, Xinyuan Qian, and Xiang Xie. Visually Guided Binaural Audio Generation with Cross-Modal Consistency. In *ICASSP*, 2024b.
 - Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2019.
 - Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Soujanya Poria. Tango 2: Aligning diffusion-based text-to-audio generative models through direct preference optimization. In *ACM MM*, 2024.
 - Giorgio Mariani, Irene Tallini, Emilian Postolache, Michele Mancusi, Luca Cosmo, and Emanuele Rodolà. Multi-Source Diffusion Models for Simultaneous Music Generation and Separation. In *ICLR*, 2024.
 - Shivam Mehta, Nebojsa Jojic, and Hannes Gamper. Make Some Noise: Towards LLM audio reasoning and generation using sound tokens. In *ICASSP*, 2025.
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,
 Armand Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features without Supervision. In TMLR, 2024.

- Zihan Pan, Malu Zhang, Jibin Wu, Jiadong Wang, and Haizhou Li. Multi-Tone Phase Coding of Interaural Time Difference for Sound Source Localization With Spiking Neural Networks. In *IEEE/ACM TASLP*, 2021.
- Kranti Kumar Parida, Siddharth Srivastava, and Gaurav Sharma. Beyond Mono to Binaural: Generating Binaural Audio from Mono Audio with Depth and Cross Modal Attention. In *CVPR*, 2022.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In *ICML*, 2021.
- Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and Yike Guo. AudioX: Diffusion Transformer for Anything-to-Audio Generation. In *arXiv:2503.10522*, 2025.
- Heng Wang, Jianbo Ma, Santiago Pascual, Richard Cartwright, and Weidong Cai. V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models. In *AAI*, 2024.
- Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer. In *ICLR*, 2025.
- Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation. In *ICASSP*, 2023.
- Xudong Xu, Hang Zhou, Ziwei Liu, Bo Dai, Xiaogang Wang, and Dahua Lin. Visually Informed Binaural Audio Generation without Binaural Audios. In *CVPR*, 2021.
- Hang Zhou, Xudong Xu, Dahua Lin, Xiaogang Wang, and Ziwei Liu. Sep-Stereo: Visually Guided Stereophonic Audio Generation by Associating Source Separation. In *ECCV*, 2020.
- Franz Zotter and Matthias Frank. Ambisonics: A practical 3D audio theory for recording, studio production, sound reinforcement, and virtual reality. In *Springer Nature*, 2019.

A MONO-TO-AMBISONICS ENCODER-DECODER DETAILS

Our networks operates in the time-frequency domain, on two separate branches: magnitude and phase. Firstly, to ease the learning process, we adopted the logarithmic scale for magnitude and normalized the phase to the ± 1 range. The two branches are identical, and consist of the spectrogram encoder \mathcal{E}_{spec} , Ambisonics Latent Network (ALN) and Ambisonics-like decoder \mathcal{D}_{sonic} . Since the information contained within the spectrograms is spatially correlated (both in time and frequency axis), we use the \mathcal{E}_{spec} to reduce the dimensionality of the input from $512 \times 512 \rightsquigarrow 128 \times 128$, effectively reducing the computational cost of the ALN by 4. To do so, we employ a 3-layered CNN, with ReLU activations and max pooling. For ALN, we employ a 4-layer ResAttnUNet, with cross-attention between the input and the projected visual encodings. For projection, we use a fully-connected layer to reduce the dimensionality, in order to match the input size. Finally, the prediction is then upscaled using transposed convolutions inside \mathcal{D}_{sonic} .

We discovered empirically that employing this framework for each Ambisonics channel, *i.e.* \hat{X} and \hat{Y} , work better than predicting them as two separate channels of the same network. Fig. 5 describes this internal process visually. For the gains and panning coefficients, we treat them as learnable parameters for the Ambisonics FiLM channels to use.

B DATASETS

FAIR-Play: Firstly, we used the most popular dataset for this task, the FAIR-Play dataset. We followed both the initial (10-split) Gao & Grauman (2019) and newly organized (5-split) Xu et al.

Figure 5: Detailed view of our proposed network. Top branches are dedicated to the phase processing while bottom ones are for magnitude approximation. We omit the normalization steps, for better clarity. The HiVi projection (in green) is shared in all branched.

(2021) set, with the later being created to better showcase the generalization capabilities of models trained on this dataset. It consists of 1,871 10-seconds clips, recorded in a music room, from different angles, each clip being accompanied by its binaural version.

Music-Stereo: Introduced in Xu et al. (2021), this dataset is composed of music audio clips recorded from 21 different instruments in solo and duet parts. Initially containing 1,120 videos (from which, at time of writing, only 1,145 are still available), it is the largest available binaural dataset, totalling almost 50 hours, $10 \times$ larger than FAIR-Play. We followed the same pre-processing steps as the initial authors to obtain 20,096 10-seconds clips, from which we used a 80/10/10 split for training/validation/testing.

YT-Music: This dataset is comprised of 397 (from which only 358 are still available) YouTube videos in the 360° format and audio in the Ambisonics format. We converted each audio to a binaural one using the same split and processing steps as Gao & Grauman (2019). This is the most challenging dataset, as it contains a greater variation in overall scenes and present sources. We selected only the clips that contain at least one human and at most 20, resulting in 10,477 clips.

C Losses & metrics details

Following the notations from Section 3, we can define the following losses for time and time-frequency domain. Firstly, since our network computes the predicted magnitude and phase of the binaural signal, we are using modified versions of the L2 magnitude and angle loss as our losses for spectrograms. These are presented in Eqs. (8) and (9), respectively.

$$\mathcal{L}_{\text{MAG}}\left(S_{\text{bi}}; \hat{S}_{\text{bi}}\right) = \left(|S_{\text{bi}}^{L}| - |\hat{S}_{\text{bi}}^{L}|\right)^{2} + \left(|S_{\text{bi}}^{R}| - |\hat{S}_{\text{bi}}^{R}|\right)^{2},\tag{8}$$

where $|\cdot|$ denotes the modulus operator.

$$\mathcal{L}_{\text{IPD}}\left(S_{\text{bi}}; \hat{S}_{\text{bi}}\right) = |\angle(S_{\text{bi}}^L - S_{\text{bi}}^R) - \angle(\hat{S}_{\text{bi}}^L - \hat{S}_{\text{bi}}^R)|,\tag{9}$$

where $\angle(\cdot)$ denotes the phase angle of the complex spectrogram.

For time domain, however, we are relying on two losses adaptations: waveform distance, depicted in Eq. (10), and the signal-to-noise ratio (SNR), see Eq. (11). Our experiments shows that including an end-to-end loss, such as WAV help in better regularizing this domain specific caveats, such as offering more consistency between the samples transitions.

$$\mathcal{L}_{\text{WAV}}(a_{\text{bi}}; \hat{a}_{\text{bi}}) = \frac{1}{T_a} \sum_{c=1}^{C_a} \sum_{t=1}^{T_a} \left(a_{\text{bi}}^{(c,t)} - \hat{a}_{\text{bi}}^{(c,t)} \right)^2, \tag{10}$$

$$\mathcal{L}_{SNR}(a_{bi}; \hat{a}_{bi}) = \Gamma - \frac{\mathbb{E}(a_{bi})}{\mathbb{E}(a_{bi} - \hat{a}_{bi})},\tag{11}$$

where $\mathbb{E}(\cdot)$ denotes the expectation operator and Γ is an empirically upper bound selected w.r.t the used dataset. For Music-Stereo, we used $\Gamma = 20$ and for the rest of the experiments, we set $\Gamma = 15$.

To accommodate for the different values of our losses, we used a compound loss, with the weights illustrated in Eq. (12).

$$\mathcal{L}_C = \mathcal{L}_{MAG} + \mathcal{L}_{IPD} + 100\mathcal{L}_{WAV} + 0.1\mathcal{L}_{SNR}$$
 (12)

For metrics, we focus on comprehensive ones, such as the Short-Time Fourier Transform (STFT) distance, see Eq. (13) for the time-frequency domain, and signal envelope (ENV), Eq. (14) for the time domain. Additionally, we report the SNR, Eq. (15), to quantify the quality of our generated binaurals.

STFT
$$(S_{bi}; \hat{S}_{bi}) = ||S_{bi}^L - \hat{S}_{bi}^L||_2 + ||S_{bi}^R - \hat{S}_{bi}^R||_2,$$
 (13)

where $\|\cdot\|_2$ denote the Euclidean distance.

$$ENV(a_{bi}; \hat{a}_{bi}) = ||E[a_{bi}^L] - E[\hat{a}_{bi}^L]||_2 + ||E[a_{bi}^R] - E[\hat{a}_{bi}^R]||_2, \tag{14}$$

where $E[\cdot]$ denotes the envelope of the signal.

$$SNR(a_{bi}; \hat{a}_{bi}) = \frac{\mathbb{E}(a_{bi})}{\mathbb{E}(a_{bi} - \hat{a}_{bi})},$$
(15)

D Better understanding of 360° videos

We downloaded the 360° videos, necessary for YT-Music dataset, directly from YouTube in the equirectangular projection format, under the .webp format, which allows the user to freely move the camera. However, this setup is not adequate for our pipeline, which uses visual information for conditioning the binaural generation. As such, we needed a method for capturing as much information from the provided video. We choose to trade-off the quality of the image by applying a stereographic projection, which distorts the original image using a fisheye-like effect, but allows captures more information about the surrounding space, in the classical rectangular frame. For this operation, we set the horizontal and vertial field of view (hFOV and vFOV) to 300° . During this transformation, we also set a sample aspect ratio (SAR) to 1, to ensure that pxuels are kept as square as possible in the final output image. One example of such transformation is depicted in Fig. 6.

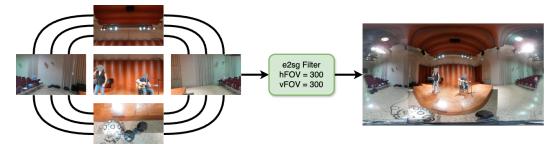


Figure 6: Equirectangular to stereographic projection

E COMPARISON WITH REAL AMBISONICS

Available dataset mostly contain the binaural audio under a simple stereo-like format, where only the left and right channels are provided. However, in the case of YT-Music dataset, where the videos are 360° , the audio also comes in different formats. One of them is the Ambisonics one, where some audio files are in the 3-channels (W,X,Y) or 4-channels (includes Z) B-format of Ambisonics. Although we do not explicitly enforce the predicted channels, *i.e.* \hat{X}, \hat{Y} , Fig. 7 showcases similarities between predicted and real Ambisonics channels.

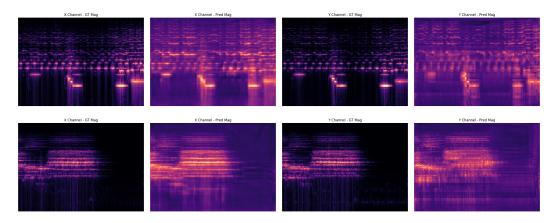


Figure 7: Visual analysis of real Ambisonics channels (first and third columns) and internally learned ones (second and last column). Please note that the model never saw real Ambisonics data. The predicted channels are taken before scaling, and normalized for a better view.

F USER STUDY

In order to evaluate our proposed method in a subjective manner, we conducted a user study. The study was composed of a series of 20 videos, where the audio was obtained using different methods. We also included the ground truth video as a control mechanism. The participants were asked to rate each sample in terms of spatiality, with value ranging from 1 (no spatiality) to 5, denoting a spatial audio. In total, 13 users with normal hearing participated to our study. From the results, presented in Fig. 8, we can conclude that the users considered our proposed solution to be the best one, excluding the ground truth, which further demonstrates the effectiveness of our method.

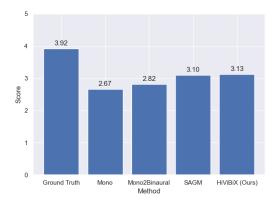


Figure 8: Results of the conducted user study. We asked the participants to rate videos containing binaural audios on a scale on 1 (worst) to 5 (best). Our method achieves the second position in terms of preferences, after the ground truth.

G MORE EXAMPLES

We dedicate this section to showcasing the results on the other two datasets. As such, Fig. 9 illustrates the results on Music-Stereo dataset, while Fig. 10 is dedicated to the YT-Music one. For both figures, we focused on choosing examples that are have a different data distribution than the FAIR-Play one, to showcase their edge cases. On Music-Streore, we selected three examples, as follows: the first one is very focused on the people singing, with little room context; the second one provides an entirely different scenario, with the filming locations being outside and the third example illustrates a case when one sounding instrument (guitar) is closer to the microphone than the other one (violin). We can see that in all cases, our proposed solution achieves impressive results, closely following the original signal.

Figure 9: Examples of piecewise signals on Music-Stereo, ground truth (in blue) and predicted (in red) for the left and right channels.

For the YT-Music dataset, where the videos are 360, the model needs to have a larger understanding of the scene, as described in Appendix D. We selected examples which depicts this phenomenon. On the first row, we have a crowded room, with 5 different instruments, from multiple directions. Second row is dedicated for an outdoor example, while the third row showcases a music video, which can be catalogued as an outlier from the other examples.

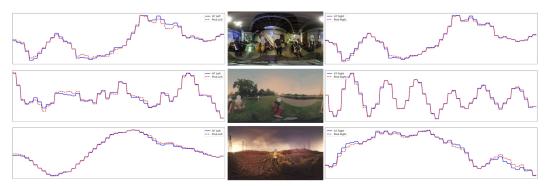


Figure 10: Examples of piecewise signals on YT-Music, ground truth (in blue) and predicted (in red) for the left and right channels.