

000 HIViBiX: HIERARCHICAL VISUALLY-INFORMED 001 MONO-TO-BINAURAL **MUSIC** GENERATION USING 002 AMBISONICS 003

004
 005
 006 **Anonymous authors**
 007 Paper under double-blind review
 008
 009
 010
 011

ABSTRACT

012 Binaural audio, a specialised form of stereo sound, provides depth and spatial lo-
 013 calisation for highly immersive listening experiences, making it fundamental in
 014 modern entertainment. Prior research has largely relied on visual cues to directly
 015 adapt mono signals into binaural or to estimate transfer functions that induce spa-
 016 tiality. In contrast, we introduce HiViBiX, a novel framework that redefines the
 017 **music** representation by predicting first-order Ambisonics channels, which ex-
 018 plicitly control the spatial positioning of the audio components in the generated
 019 binaural signal. Unlike existing multimodal approaches that extract spatial cues
 020 exclusively from full-frame RGB images, HiViBiX incorporates a hierarchical vi-
 021 sual encoder that jointly models local **music** sound sources and their spatial depth
 022 with global environmental context. This design enables richer multimodal ground-
 023 ing and more precise spatialization. Extensive experiments on three widely used
 024 **musical** benchmarks: FAIR-Play, Music-Stereo, and YT-Music demonstrate that
 025 HiViBiX establishes new state-of-the-art performance for mono-to-binaural gen-
 026 eration. **We also show that our method achieves good results in out-of-domain**
 027 **context, using a simple adapter.** Samples are available in the following repository:
 028 <https://hivibix.vercel.app>.
 029

030 1 INTRODUCTION

031 Immersive audio playback, where the spatial position of a sound source can be perceived solely
 032 through auditory cues, has become a cornerstone of modern media applications. In domains such
 033 as gaming, virtual and augmented reality, and cinematic production, spatial audio is not merely an
 034 aesthetic enhancement but a functional necessity. It enables dramaturgical control by directing user
 035 attention, articulating scale and distance, and conveying events that occur outside the immediate
 036 visual frame. Unlike conventional stereo, binaural audio recreates a perceptual sense of space that
 037 aligns more closely with natural human hearing, allowing two-channel playback systems to deliver
 038 an experience of depth, realism, and presence. As interactive and immersive technologies continue to
 039 grow in scale and impact, the demand for accurate and efficient methods of binaural audio generation
 040 is more pressing than ever.

041 Ambisonics (Zotter & Frank, 2019) represents a special class of format, extensively used across the
 042 audio **and music** industry by hardware manufacturers, broadcasting services, and streaming plat-
 043 forms. Beyond these technical domains, Ambisonics also play a central role in entertainment ap-
 044 plications such as cinema, gaming, and virtual reality, where precise spatial rendering is essential
 045 for immersion and realism. Using this format, audio sources can be captured, stored and played in
 046 an arbitrary manner by relying on spherical harmonics encoding. We selected this format as it rep-
 047 presents a stronger alternative to Head-Related Transfer Functions (HRTFs) or Impulse Responses
 048 (IRs) (Ratnarajah & Manocha, 2024) because it allows for energy-preserving rotations and more
 049 stable localisation in the high frequency domain. Another important advantage of the Ambisonics
 050 over classical HRTFs is that the latter are highly dependent on the ear anatomy of the listener, while
 051 Ambisonics are more generalizable, especially if higher-order are used.

052 Visual cues are also an indispensable tool in binaural generation, as they contain priors over both
 053 important aspects, such as source sounding object position or depth, but also over intrinsic scene-
 054 related features such as room reverberations or different occlusions. This phenomenon is closely

related to the multisensory integration mechanisms that govern over human hearing. As such, the visual stream is often used to create an implicit abstract visual-to-spatial mapping. Most previous methods have focused on obtaining this mapping solely from a single pre-trained model. Our approach focuses on extracting modality-specific priors, thereby enforcing more coherence between the available mono **music audio signal** and visual knowledge to help in rendering more realistic binaurals.

In this work, we present **HiViBiX**, a novel approach to image-conditioned mono-to-binaural conversion with intrinsic learning of Ambisonics-like channels. We can summarise the main contributions into the following points:

- We propose a novel approach for **mono-to-binaural music** generation, inspired from the Ambisonics format. This method works by predicting shared time-frequency internal representation alongside gain parameters. We use these to construct the binaural representation from its mono counterpart, taking inspiration from the Ambisonic format for the representation and decoding to obtain the final result;
- We propose a new hierarchical spatio-visual module for conditioning binaural audio generation. This conditioning is used in the latent space to obtain crude representations that are decoded into the channels mentioned above;
- To the best of our knowledge, our work is the first to incorporate both multi-scale and multi-modality visual prior knowledge with learnable position encoding, to obtain a full representation of the observed surroundings – a key component for achieving the spatiality of binaural audio;
- We demonstrate the efficacy of our approach on three commonly used binaural audio-visual **music** datasets. The proposed method obtains state-of-the-art results, cementing our hypothesis on combining traditional and deep-learning methods for more robust mono-to-binaural. **Moreover, we extended our work to out-of-domain, general audio with a plug-in-play HiVi module adaptation.**

The rest of the manuscript is organised as follows: Section 2 briefly describes the previous works in this domain, Section 3 introduces our proposed solution, Section 4 validates our approach, while Section 5 provides general conclusions.

2 BACKGROUND & RELATED WORKS

2.1 CONDITIONAL AUDIO GENERATION

Conditional audio generation has advanced significantly in recent years, largely propelled by breakthroughs in conditional image modelling. This progress spans a wide range of domains, from specialised tasks such as speech synthesis (Lee et al., 2025; Wang et al., 2025) and music generation (Mariani et al., 2024), to more general approaches involving multimodal conditioning (Tian et al., 2025). Building on these developments, recent works have proposed systematic taxonomies of conditional audio generation, typically distinguishing between tasks such as text-to-audio, image-to-audio, and joint audio–visual generation (Hayakawa et al., 2025). Our work focuses on generating a binaural audio from its mono counterpart, conditioned on visual cues.

Text-to-Audio generation: Early works for this task are closely linked to TTS systems. However, this task has been recently extended to open-domain audio generation with the introduction of Audi-oLDM (Liu et al., 2023), a text-guided latent diffusion model which operates in the latent space of a spectrogram-based VAE, aligning the captioning with the provided audio during training. Follow-up works, such as AudioLDM2 (Liu et al., 2024a) or Tango2 (Majumder et al., 2024), have focused on generating higher quality audio or adhering to user preference, optimising the listening experience. Due to limited data, text-based approaches for audio generation do not take into account sound direction, solely measuring the prompt alignment using contrastive models (Wu et al., 2023).

Vision-conditioned audio: These models leverage pretrained visual encoders with audio generation backbones, enabling image-to-audio or video-to-audio generation. One common approach (Wang et al., 2024) is to make use of lightweight mappers to connect vision foundation models to audio generators without fully re-training, while others have drawn inspiration from LLM training strategies

108 to introduce token-based audio generation (Mehta et al., 2025). This approach has sparked many re-
 109 search directions, showcasing the need for low-bit but precise neural audio encoders (Ji et al., 2025)
 110 and for shared, modality-independent, embedding spaces (Girdhar et al., 2023). However, both of
 111 these directions are still mainly operating in the single-channel audio domain, while our work ex-
 112 tends not only to general-purpose stereo but on binaural audio.

113 **Spatial audio generation:** Recently, generative models have expanded to address the more complex
 114 problem of spatial audio generation. Recently, (Kim et al., 2025) proposed ViSAGe, a silent video-
 115 to-spatial audio generation method, which uses First-Order Ambisonics (FOA) (see Section 2.3 for
 116 details) extracted from silent Field-of-View (FoV) videos. Moreover, they introduce a new dataset,
 117 YT-Ambigen, featuring in-the-wild videos with spatial audio. Another direction is represented by
 118 OmniAudio (Liu et al., 2025), which introduces the 360° panoramic view to spatial audio genera-
 119 tion, since FoV inputs do not capture the full spatial context. To train their method, the authors
 120 introduce the Sphere360 dataset, containing 360° videos and their associated FOAs. While the
 121 aforementioned systems rely on visual conditioning, (Sun et al., 2025) proposed SpatialSonic, a
 122 language-driven spatial synthesis model. Their generation method can be conditioned on textual
 123 descriptions as well as a variety of types of visual inputs, such as bounding boxes, or interactive ac-
 124 tions, *i.e.* selecting which object is the sounding one. However, a major drawback of these methods
 125 is represented by the lack of fine-grained control over the output, *e.g.* sounds are generated based
 126 on the extracted semantics of the provided input, which is not suitable for music, where small in-
 127 consistencies are extremely noticeable. One alternative, INRAS (Su et al., 2022), aims at generating
 128 impulse responses (IRs), w.r.t. the room configuration and the sounding and listening locations, to be
 129 convolved with the mono audio to obtain the spatial variant. This approach is completely different
 130 from ours, in which we generate the Ambisonics channels directly instead of relying on additional
 131 signals to serve as filters.

132 2.2 MONO-TO-BINAURAL USING VISUAL INFORMATION

133
 134 Most prior works have treated **music** generation as a monophonic task, producing signals with a
 135 single channel. In practice, however, the majority of real-world audio is stereophonic, thus spatial,
 136 reflecting both the binaural nature of human hearing and the widespread use of headphones in every-
 137 day listening. To bridge the gap between mono and stereo audio, several studies have incorporated
 138 visual information to guide the spatial positioning of sounds, thereby improving object localisation
 139 and enhancing the immersive quality of the generated audio. Pioneering this domain, (Gao & Grau-
 140 man, 2019) proposes the combination of a spectrogram-based UNet for binaural generation. Inside
 141 the UNet bottleneck, the visual features extracted by a ResNet-18 model pretrained on ImageNet are
 142 concatenated, which has become outdated. Our solution is to create an ensemble of methods that
 143 extract multimodal visual information, guaranteeing a more robust solution.

144 Sep-stereo (Zhou et al., 2020) aims to improve stereophonic learning by also including audio-visual
 145 source separation. By allowing parallel training on mono audio separation aided by visual informa-
 146 tion, they improve the stereo generation in the context of scarce binaural **music** data. This strategy
 147 has also been applied more recently by CLUP (Li et al., 2024), combined with a diffusion strategy.
 148 PseudoBinaural (Xu et al., 2021), as the name implies, focuses on generating binaural data without
 149 mono-stereo pairs. Using visual-coordinate mapping, their focus is on producing Ambisonics co-
 150 efficients and HRIR filters from spatial priors, which can be applied to the mono signals to encode
 151 their location inside a stereo audio. Beyond Mono2Binaural (Beyond M2B) (Parida et al., 2022) is
 152 the first work to add a Depth network to improve the results of previous works, with a decoder that
 153 attends to both image-audio and depth-audio features. SAGM (Li et al., 2023) uses a GAN-style
 154 method for generating **music**, with a discriminator to decide between features of real binaurals and
 155 generated ones, which are concatenated with video features.

156 Recently, CMC (Liu et al., 2024b) proposed a dual-encoder approach for the left and right channels,
 157 alongside a new cross-matching loss. Finally, CCStereo (Chen et al., 2025) makes better use of the
 158 temporal dimension in both audio and video data with the introduction of a conditional normalisa-
 159 tion layer and audio-video alignment. As such, previous methods tend to focus on better separation
 160 of the sounding elements or channels, to obtain better alignment, while under-exploring available
 161 prior information in both domains. In our work, we introduce several novelties in both the internal
 162 processing of our proposed solution, which captures the audio (mono) prior, as well as focusing
 163 on extracting more relevant information using multimodal vision approaches and hierarchically ex-
 164 tracted features.

162 2.3 AMBISONICS NOMENCLATURE AND CODING
163

164 Ambisonics is a spatial audio technique for representing the sound field description around a lis-
165 tening point using spherical harmonic decomposition. Instead of directly capturing the signal that
166 should be played on speakers placed at certain locations, Ambisonics encodes the sound itself, allow-
167 ing for arbitrary decoding for any speaker layout. Let $s(t) \in \mathbb{R}$ be the value of an audio waveform
168 at timestep t of a single sounding source s , *e.g.* a voice, an instrument or a noise, and (r, θ, ϕ) be the
169 source polar coordinates. To encode this, a special *Ambisonics Channel Signal* (ACN) is used:

$$170 \quad \text{ACN}_m^{(l)}(t) = s(t)S_m^{(l)}(\theta, \phi), \quad (1)$$

171 where $S_m^{(\ell)}$ is the spherical harmonic function, $\ell \geq 0$ denotes the Ambisonics order, and m denotes
172 the Ambisonics index, while respecting the $-l \leq m \leq l$ constraint.
173

174 In practice, only the first-order Ambisonics ($\ell = 1$, abbreviated as FOA) are frequently used, where
175 the following channels are defined using truncated spherical harmonic expansions, representing
176 dipoles for each Cartesian axis: **W channel**: omnidirectional components (zero order), which cap-
177 ture the sound from all directions equally, similar to the mono audio format; **X channel**: contains
178 differences on the front-back axis, giving the audio more depth and **Y channel**: left-right pattern,
179 used for giving the directional feeling of audio. For a full 3D experience, the **Z channel** is also used
180 to allow for up-down direction. These channels are computed as follows, using the initial source
181 $s(t)$ and its spherical positions (θ, ϕ) :

$$182 \quad \text{ACN}_0^{(0)} = W(t) = s(t), \quad (2)$$

$$183 \quad \text{ACN}_1^{(1)} = X(t) = s(t) \cos \theta \cos \phi, \quad (3)$$

$$184 \quad \text{ACN}_1^{(-1)} = Y(t) = s(t) \sin \theta \cos \phi, \quad (4)$$

$$186 \quad \text{ACN}_1^{(0)} = Z(t) = s(t) \sin \phi. \quad (5)$$

187 Since an audio recording can contain multiple sounding objects, each with its own spatial position,
188 obtaining the final audio is done by summing up all the representations. Considering the classical
189 stereo position, where left $L(t)$ and right $R(t)$ speakers are positioned at ground level, *i.e.* $\phi = 0$,
190 and opposite angles, *i.e.* $\alpha = \theta_L = -\theta_R$, the FOA for N sources must also account for the position
191 of the speakers playing each sound, individually:

$$192 \quad L(t) = \sum_{i=1}^N \frac{1}{\sqrt{2}} W_i(t) + X_i(t) \cos \alpha_i + Y_i(t) \sin \alpha_i, \quad (6)$$

$$196 \quad R(t) = \sum_{i=1}^N \frac{1}{\sqrt{2}} W_i(t) + X_i(t) \cos \alpha_i - Y_i(t) \sin \alpha_i. \quad (7)$$

198 This formulation highlights how Ambisonics provides a structured intermediate representation for
199 spatial audio, which we leverage as the foundation of our approach. Moreover, using this approach
200 also incorporates the panning of the speakers w.r.t. the source's original position.
201

202 3 APPROACH: HiViBiX
203

204 The overall architecture of the proposed model is depicted in Fig. 1. We denote the input data with
205 $v \in \mathbb{R}^{(T_v \times C_v \times H_v \times W_v)}$ for the video sequence, where T_v , C_v , H_v and W_v denote the frame, channel,
206 height and width dimension, respectively. Let $a_{bi} \in \mathbb{R}^{(C_a \times T_a)}$ be the binaural audio, with C_a and T_a
207 denoting the channels and sample (time) sizes. From a_{bi} we extract the mono signal a_m by summing
208 the channels and obtain the $S_m \in \mathbb{C}^{(1 \times F \times T)}$ spectrogram by applying the Short-Time Fourier
209 Transform (STFT) operation, with F and T denoting the frequency and the time bins, respectively.
210 Since we are using the mono representation as the W channel from the Ambisonics format, we use
211 the same notation throughout the text, *i.e.* $W = S_m$. The goal of our network is to generate the
212 other Ambisonics channels, *i.e.* \hat{X} and \hat{Y} and to combine them into the final binaural spectrogram
213 $\hat{S}_{bi} \in \mathbb{C}^{(2 \times F \times T)}$ to obtain the final binaural audio $\hat{a}_{bi} \approx a_{bi}$. To implement this pipeline, we
214 employ several modules: an Encoder-Decoder strategy, presented in Section 3.1, with a latent space
215 conditioned on a new visual encoder, detailed in Section 3.2, followed by the Ambisonics FiLM
layer, which ensures our internal representation, described in Section 3.3.

Figure 1: Proposed training scheme. We start from a video and its associated binaural, that is converted to mono and further to its spectrogram representation. Next, we encode it into a latent space that is conditioned using our new hierarchical vision (HiVi) encoder. We then decode this into both the Ambisonics channels and required gains, which are used to produce the binaural spectrogram and the final audio. We use two classes of losses: in the waveform and spectrogram domains.

3.1 MONO-TO-AMBISONICS ENCODER & DECODER

AudioLDM (Liu et al., 2023) has recently emerged as a powerful framework capable of learning intricate audio input-output relationships in the time-frequency domain, based on textual conditioning. Since our goal involves mapping mono audio to its binaural representation with the aid of visual cues, this model provides a natural and suitable inspiration for our overall architecture design. First, we start by designing a Convolutional encoder $\mathcal{E}_{\text{spec}}$ that reduces the input spectrogram into a compact, more abstract representation. The Decoder $\mathcal{D}_{\text{sonic}}$ mirrors this structure, and generates the output corresponding to the desired channels. Because the input-output representations are not semantically similar *i.e.* encoding mono channels but decoding difference-related channels (X, Y) , we omit the skip connections between $\mathcal{E}_{\text{spec}}$ and $\mathcal{D}_{\text{sonic}}$. We construct the latent space by employing a conditional residual Attention UNet (ResAttnUNet) for a guided transformation of the mono latent representation towards the Ambisonics one, using the conditioning vector extracted by $\mathcal{E}_{\text{Hifi}}$. For both the magnitude and the phase we use the complex representation of S_m and individual networks to predict the \hat{X} and \hat{Y} channels, as opposed to a multi-channel output network, to allow each Encoder-Decoder structure to focus on channel-specific features. Moreover, we convert the Ambisonics position and gain coefficients into learnable parameters, enabling the model to have full control over the desired distribution. As in the case of channels, we treat these parameters independently for each modality, *i.e.* magnitude and phase. For a more detailed view about the implementation of this module, check Appendix A.

3.2 HIERARCHICAL VISUAL (HiVi) ENCODER

To improve the **audio, especially music**, generation, we added a new module for extracting conditions from the provided video, as depicted in Fig. 2. The binaural audio benefits from visual cues, as each sounding object can be associated with its position from the video, information which we inject in the Ambisonics latent space. To obtain this conditioning vector, firstly, we are selecting an anchor image $v^{(i)} \in \mathbb{R}^{(C_v \times H_v \times W_v)}$ to extract prior knowledge that would guide the generation. From the anchor image, we extract a list of sounding objects from the image using YOLOv8¹ by selecting the bounding boxes associated with the `person` label. We chose this approach as most instruments require a human operator, and several solutions are unable to detect all the instruments from the used datasets. We used YOLO as a faster and lighter alternative to other object detection approaches. We crop the regions using the predicted bounding box, enlarged by 20%, and treat them as local information, in contrast to the full image, which serves as global context. The extracted knowledge domains are three-folded: scene, position and depth. For general and depth features, we employ a cross-attention structure to combine them into a single representation for their corresponding modality.

¹YOLOv8 available at: <https://github.com/ultralytics/ultralytics>

Figure 2: Hierarchical Visual encoder. We extract both local and global features from multiple modalities, *i.e.* RGB, depth and position, computed solely based on the provided image.

We use the image encoder from CLIP (Radford et al., 2021) to extract both local and global scene features. The local features to distinguish between different instruments, while the global ones are responsible for giving the overall audio dynamics of the scene (indoors, sound reflecting elements such as walls or other obstacles, microphone positioning, *etc.*). For positioning, we select 2D Fourier Features for Positional Encoding (FFPE) (Li et al., 2021) to generate prior knowledge about the location of the sounding objects in the frame, Fig. 2 (middle row). We chose this method for representing this knowledge because a video frame can contain multiple audio sources. By selecting the Gaussian kernel provided by FFPE, and summing them into a single position image $P \in \mathbb{R}^{(1 \times H_v \times W_v)}$, we are able to distinguish between both separate and overlapping sounding objects. Finally, depth information is also useful, especially for the X channel. As such, we use a depth estimation model based on DINOv2 (Oquab et al., 2024). As in the scene feature case, we extract both global and local features. Global depth features are useful for better understanding the room configuration, which can help for internal modelling of reverberations, while local ones provide the necessary distance comprehension to each sounding object.

Combining the global and local prior knowledge is an essential step to obtain an efficient conditioning. As such, we carefully craft the Hierarchical Attention Module, which is an adaptation of the classical cross-attention. This block receives the global features as queries, while the keys and values are the local ones. The global representation selectively gathers fine details from the local parts, allowing them to be informative inside the broader context, for each modality that has this component. Finally, we concatenate all the modalities to obtain a single conditioning vector, which is further projected inside the latent Ambisonics space.

3.3 AMBISONICS FiLM

Our method closely follows the Ambisonics format for binaural generation **of music and general audio**. Since most datasets do not contain the Ambisonics representation, and only the final stereo is available, we based our experiments on internally learning the FOA-like spectrograms. This is facilitated by the new Ambisonics FiLM layer, also described in Algorithm 1. As per previous steps, we compute the magnitude and phase independently. Moreover, we use the mono (unidirectional) signal as a replacement for the W channel in both cases. For phase reconstruction, we predict only the interaural phase difference (IPD), as other works suggested (Pan et al., 2021). The main idea of the Ambisonics FiLM layer is to use the available prior, *i.e.* W , and predicted, *i.e.* \hat{X} and \hat{Y} channels, and to force the reconstruction in the same way as the Ambisonics decoding of binaural audios, as shown in Section 2.3.

324

Algorithm 1: Ambisonics FiLM Layer

325

Data: Mono spectrogram magnitude and phase: $W = \{W_M, W_P\} \in \mathbb{R}^{(1 \times F \times T)}$;

326

Predicted Ambisonics channels for magnitudes and phases: $\{\hat{X}, \hat{Y}\}_{\{M, P\}} \in \mathbb{R}^{(1 \times F \times T)}$;

327

Predicted position and gain coefficients: $\hat{\alpha}_{\{M, P\}}^{\{X, Y\}}, \hat{\beta}_{\{M, P\}} \in \mathbb{R}$

328

Result: Predicted binaural spectrogram: $\hat{S}_{\text{bi}} \in \mathbb{C}^{(2 \times F \times T)}$

329

$$\hat{M}_{\text{bi}}^L = \left(W_M + \cos(\hat{\alpha}_M^X) \hat{X}_M + \sin(\hat{\alpha}_M^Y) \hat{Y}_M \right) \beta_M^{-1}$$

330

$$\hat{M}_{\text{bi}}^R = \left(W_M + \cos(\hat{\alpha}_M^X) \hat{X}_M - \sin(\hat{\alpha}_M^Y) \hat{Y}_M \right) \beta_M^{-1}$$

331

$$\widehat{\text{IPD}} = \left(W_P + \cos(\hat{\alpha}_P^X) \hat{X}_P - \sin(\hat{\alpha}_P^Y) \hat{Y}_P \right) \beta_P^{-1}$$

332

$$\hat{S}_{\text{bi}} = [\hat{M}_{\text{bi}}^L, \hat{M}_{\text{bi}}^R] \cdot \exp\left(j[\widehat{\text{IPD}}, W_P - \widehat{\text{IPD}}]\right)$$

333

334

335

4 EXPERIMENTS

336

4.1 IMPLEMENTATION DETAILS

339

For training, we used three distinct datasets: FAIR-Play (Gao & Grauman, 2019), Music-Stereo (Xu et al., 2021) and YT-Music (Morgado et al., 2018). More details about the datasets can be found in Appendix B. We used a sample rate of 16kHz, following recommendations from previous works. The generated spectrograms were computed with a rectangular window of 1024 samples, which also defined the number of FFT points, and a hop size of 25% (256 samples). These settings yielded spectrograms of size 513×512 , corresponding to approximately 8.2 seconds of audio. We removed the last frequency bin and applied zero-padding during iSTFT reconstruction. No data augmentation was employed. The models were optimized using a compositional loss that jointly accounted magnitude, phase and time domain changes, as detailed in Appendix C. Training was performed from scratch for up to 500 epochs with the AdamW optimizer (Loshchilov & Hutter, 2019), a decaying learning rate scheduler with 5 epochs for patience to avoid plateaus, and an early stopping mechanism triggered if the validation loss did not improve within 15 epochs. All experiments were performed on an NVIDIA A100 with 40GB of VRAM, using minibatches of 16 examples. For testing, we used the same parameters as (Chen et al., 2025) to obtain comparable results in the frequency domain. Each signal was split into two parts and zero-padded at both ends. After prediction, we reconstructed the original, full 10 seconds samples by combining only the relevant parts of each segment.

360

4.2 QUANTITATIVE RESULTS

361

We compared our approach against prior works that employed visual conditioning for mono to binaural audio conversion. To evaluate the performance, we adopted metrics spanning both the time and spectrogram domains. Specifically, we used the STFT L_2 distance (STFT) to measure differences in the time-frequency domain, and the envelope distance (ENV) served as a well established metric in the time domain. Moreover, we assessed the overall quality of the generated binaural signals, using the signal-to-noise ration (SNR). Further implementation details and metrics are provided in the Supplementary Materials.

362

All baseline results were either taken from the respective papers or obtained from publicly available re-implementations, where possible. Table 1 presents the results on the FAIR-Play dataset 10-splits and 5-splits, respectively, while Table 2 is designated for the results on Music-Stereo and YT-Music.

363

Compared to other methods, our approach achieves superior performance across all datasets. Firstly, the results on FAIR-Play 10-splits indicate that the model is capable of rendering room acoustics across different angles and instruments. The results on the new 5-split (Xu et al., 2021), which reduces the overlap between the splits, illustrate that the model is also able to generalize to unseen cases. On the YouTube datasets, which include a multitude of instruments and other noises, we can observe that our model is capable of understanding the interdependency between sounding sources, their position and other sounding objects or people. Importantly, the performances on Music-Stereo and YT-MUSIC, datasets containing both indoor and outdoor scenes, highlight the ability of our model to generalize beyond the constrained setting of enclosed rooms present in the FAIR-Play dataset.

Methods	FAIR-Play 10 splits			FAIR-Play 5 splits		
	STFT ↓	ENV ↓	SNR ↑	STFT ↓	ENV ↓	SNR ↑
Baseline (Mono-as-Stereo)	2.356	0.281	3.565	1.828	0.240	0.000
Mono2Binaural [<i>CVPR '19</i>]	0.836	0.132	-	1.024	0.145	4.968
Sep-stereo [<i>ECCV '20</i>]	0.879	0.135	6.422	0.906	<u>0.136</u>	5.221
PseudoBinaural [<i>CVPR '21</i>]	0.878	0.134	5.316	0.944	0.139	5.124
Beyond M2B [<i>WACV '22</i>]	0.909	0.139	6.397	0.909	0.139	6.397
SAGM [<i>KBS '23</i>]	0.851	0.134	7.044	-	-	-
CMC [<i>ICASSP '24</i>]	0.849	0.133	-	0.912	0.141	6.238
CLUP [<i>CVPR '24</i>]	<u>0.787</u>	<u>0.128</u>	<u>7.546</u>	-	-	-
CCStereo [<i>ACM MM '25</i>]	0.823	0.132	7.144	<u>0.883</u>	0.137	<u>6.475</u>
HiViBi (Ours)	0.6319	0.123	7.629	0.880	0.126	6.483

Table 1: Comparison of HiViBi against other methods on FAIR-Play dataset, on both splits. The best results are bolded, while the second-best are underlined.

Methods	Music-Stereo			YT-Music		
	STFT ↓	ENV ↓	SNR ↑	STFT ↓	ENV ↓	SNR ↑
Baseline (Mono-as-Stereo)	3.400	0.369	0.000	1.067	0.180	0.000
Mono2Binaural [<i>CVPR '19</i>]	0.942	0.138	8.255	0.501	0.110	6.712
Sep-stereo [<i>ECCV '20</i>]	-	-	-	1.051	0.145	4.779
PseudoBinaural [<i>CVPR '21</i>]	0.891	0.132	8.419	0.489	0.109	7.601
Beyond M2B [<i>WACV '22</i>]	0.670	0.108	10.754	1.070	0.148	4.542
SAGM [<i>KBS '23</i>]	0.875	0.126	5.601	0.875	0.126	5.601
CMC [<i>ICASSP '24</i>]	0.759	0.113	-	-	-	-
CLUP [<i>CVPR '24</i>]	-	-	-	0.856	0.124	5.711
CCStereo [<i>ACM MM '25</i>]	<u>0.624</u>	<u>0.097</u>	<u>12.985</u>	<u>0.432</u>	<u>0.102</u>	8.245
HiViBi (Ours)	0.331	0.070	14.363	0.260	0.073	<u>7.805</u>

Table 2: Comparison of HiViBi against other methods on Music-Stereo and YT-Music datasets. The best results are bolded, while the second-best are underlined.

4.3 QUALITATIVE RESULTS

We further demonstrate the quality of our proposed solution through both time and frequency domain evaluations on the FAIR-Play dataset. Results for the remaining datasets are included in the Supplementary Materials. Fig. 3 illustrates the ground truth and predicted binaural signals in the time domain. We averaged them over 40 samples, for better visualisation, creating piecewise-like representations. Our predictions closely follow the real ones, in multiple scenarios: on the first row, where there is only one instrument close to the left of the microphone and reflective element (the door) close to the right of it, capturing the delayed sounds; on the second row, where the trumpet is further back but leans towards a side; and on the final row where two instruments are in completely opposite locations.

Figure 3: Piecewise signals, ground truth (in blue) and predicted (in red) for the left and right channels. Each row represents an individual example. The image in the middle showcases the localisation of the sounding objects for easier discrimination in the audio.

432 A similar phenomenon can be observed in the time-frequency domain, as illustrated in Fig. 4. Our
 433 predictions respect a similar pattern to the original binaural spectrograms. The first example show-
 434 cases a smothering effect, especially in the higher frequencies. This is similar to a low pass filter,
 435 indicating that our network does not fully capture the finest details. The last example shows the
 436 opposite effect, where small gapes in the original spectrogram appear as larger in the prediction,
 437 indicating that low-energy regions tend to be more persistent in our predictions than in the case of
 438 real binaural.

449 Figure 4: Spectrogram comparison. The first row depicts the visual image, while the second row
 450 showcases the ground truth and predicted spectrogram. We selected only one channel for each
 451 example, for easier visualisation.

459 4.4 ABLATION STUDIES

460 To assess the contribution of each component in our approach, we conducted an ablation study, with
 461 the results summarized in Table 3. For consistency, all ablation experiments were trained only on the
 462 first split of the FAIR-Play (10-split) dataset. We systematically evaluate the following aspects of our
 463 design: (i) the output representation, where we compare our Ambisonics-like format against direct
 464 prediction of magnitude and phase spectrograms; (ii) the loss function, contrasting our proposed
 465 compound loss \mathcal{L}_C with a standard end-to-end L_2 loss on the predicted and ground-truth binaural
 466 signals; and (iii) the design of the visual encoder, where we separately evaluate the contributions of
 467 CLIP embeddings, depth cues, and positional information. The HiVi column indicates the use of
 468 our hierarchical visual encoder, which integrates both global and local features, as opposed to global
 469 features alone.

471	Components						STFT \downarrow	ENV \downarrow	SNR \uparrow
	AS	\mathcal{L}_C	CLIP	Depth	Pos	HiVi			
473	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1.492	0.199	4.644
474	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	0.715	0.132	6.938
475	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	0.692	0.128	7.165
476	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	0.700	0.129	6.912
477	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	0.712	0.132	6.868
478	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	0.734	0.134	6.633
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.669	0.125	7.489

479 Table 3: Ablation study showing performance impact of individual components of our proposed
 480 method. \times denotes a removed component while \checkmark indicates a kept one.

481 Our findings reveal two key insights. First, Ambisonics-like representations, multimodal condi-
 482 tioning, and hierarchical visual encoding each provide substantial and complementary performance
 483 gains. Second, while each component individually achieves results comparable to the state of the
 484 art, only their combination establishes a new performance benchmark. These results highlight two

486 promising research directions: improving the intermediate representation of audio and enhancing
 487 the extraction of conditioning signals from other visual modalities.
 488

489 5 DISCUSSIONS & CONCLUSION

491 5.1 LIMITATIONS

493 Our approach relies mainly on two components: the Ambisonics and Hierarchical Visual, each with
 494 its own potential limitation. Firstly, the Ambisonics-like format is only enforced by the Ambisonics
 495 FiLM layer, described in Section 3.3, due to lack of real Ambisonics data to be compared with.
 496 However, since YT-Music dataset contains the Ambisonics audios, we present a comparison between
 497 the intermediate feature maps and real Ambisonics in Appendix E. We show that using this novel
 498 layer results in the learning of Ambisonics-like channels without any direct Ambisonics supervision.
 499 For the vision component, the fine-grained features are extracted based on the object detection model
 500 prediction, which can be incorrect or ambiguous in some cases, *e.g.* when there are several people
 501 in the frame. Moreover, using the person class for instrument detection can be disadvantageous,
 502 especially when considering other sounding objects, *e.g.* speakers. To mitigate this, we also kept the
 503 global features branch. Finally, rapidly changing videos can also induce problems in our framework,
 504 as illustrated in Appendix G. We took advantage of the dataset distribution, which poses mostly
 505 static videos, and relied on single-frame predictions. However, in real scenarios, aggregation of
 506 multiple, different frames might be a more well suited approach for dynamic videos.
 507

508 5.2 CONCLUSION

509 In this paper, we presented HiViBiX, a mono-to-binaural generation framework that leverages multi-
 510 modal visual priors from a single image to transform mono audio into its corresponding binaural
 511 counterpart. The key innovation lies in internally predicting Ambisonics-like channels and gains,
 512 which serve as an intermediate representation for decoding the binaural signal. Our method over-
 513 comes the limitations of prior works by exploiting the mono input, and by enriching the visual
 514 conditioning beyond global contrastive features. To achieve this, we also incorporate depth and
 515 position information from both local and global cues, arranging them in a hierarchical manner. Ex-
 516 tensive experiments across multiple datasets demonstrated that HiViBiX consistently outperforms
 517 existing methods and sets a new state of the art in the domain.

518 This works paves the way for future research in the binaural generation domain, by providing the
 519 necessary introduction to new representation formats, as well as a method for combining multi-
 520 vision information.

521 REFERENCES

- 523 Yuanhong Chen, Kazuki Shimada, Christian Simon, Yukara Ikemiya, Takashi Shibuya, and Yuki
 524 Mitsufuji. CCSTereo: Audio-Visual Contextual and Contrastive Learning for Binaural Audio
 525 Generation. In *ACM MM*, 2025.
- 526 Ruohan Gao and Kristen Grauman. 2.5D Visual Sound. In *CVPR*, 2019.
- 528 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 529 Joulin, and Ishan Misra. ImageBind: One Embedding Space To Bind Them All. In *CVPR*, 2023.
- 531 Akio Hayakawa, Masato Ishii, Takashi Shibuya, and Yuki Mitsufuji. MMDisCo: Multi-Modal
 532 Discriminator-Guided Cooperative Diffusion for Joint Audio and Video Generation. In *ICLR*,
 533 2025.
- 534 Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang, Xize
 535 Cheng, Zehan Wang, Ruiqi Li, Ziang Zhang, Xiaoda Yang, Rongjie Huang, Yidi Jiang, Qian
 536 Chen, Siqi Zheng, and Zhou Zhao. WavTokenizer: an Efficient Acoustic Discrete Codec Tok-
 537 enizer for Audio Language Modeling. In *ICLR*, 2025.
- 538 Jaeyeon Kim, Heeseung Yun, and Gunhee Kim. ViSAGE: Video-to-Spatial Audio Generation. In
 539 *ICLR*, 2025.

- 540 Keon Lee, Dong Won Kim, Jaehyeon Kim, Seungjun Chung, and Jaewoong Cho. DiTTo-TTS:
 541 Diffusion Transformers for Scalable Text-to-Speech without Domain-Specific Factors. In *ICLR*,
 542 2025.
- 543 Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable Fourier Features for Multi-
 544 Dimensional Spatial Positional Encoding. In *NeurIPS*, 2021.
- 545 Zhaojian Li, Bin Zhao, and Yuan Yuan. Cross-modal Generative Model for Visual-Guided Binaural
 546 Stereo Generation. In *Knowledge-Based Systems*, 2023.
- 547 Zhaojian Li, Bin Zhao, and Yuan Yuan. Cyclic Learning for Binaural Audio Generation and Local-
 548 ization. In *CVPR*, 2024.
- 549 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
 550 Mark D. Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. In
 551 *ICML*, 2023.
- 552 Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
 553 Wang, Yuxuan Wang, and Mark D. Plumbley. AudioLDM 2: Learning Holistic Audio Generation
 554 With Self-Supervised Pretraining. In *IEEE/ACM TASLP*, 2024a.
- 555 Huadai Liu, Tianyi Luo, Kaicheng Luo, Qikai Jiang, Peiwen Sun, Jialei Wang, Rongjie Huang,
 556 Qian Chen, Wen Wang, Xiangtai Li, Shiliang Zhang, Zhijie Yan, Zhou Zhao, and Wei Xue.
 557 OmniAudio: Generating Spatial Audio from 360-Degree Video. In *ICML*, 2025.
- 558 Miao Liu, Jing Wang, Xinyuan Qian, and Xiang Xie. Visually Guided Binaural Audio Generation
 559 with Cross-Modal Consistency. In *ICASSP*, 2024b.
- 560 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In *ICLR*, 2019.
- 561 Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Sou-
 562 janya Poria. Tango 2: Aligning diffusion-based text-to-audio generative models through direct
 563 preference optimization. In *ACM MM*, 2024.
- 564 Giorgio Mariani, Irene Tallini, Emilian Postolache, Michele Mancusi, Luca Cosmo, and Emanuele
 565 Rodolà. Multi-Source Diffusion Models for Simultaneous Music Generation and Separation. In
 566 *ICLR*, 2024.
- 567 Shivam Mehta, Nebojsa Jojic, and Hannes Gamper. Make Some Noise: Towards LLM audio rea-
 568 soning and generation using sound tokens. In *ICASSP*, 2025.
- 569 Pedro Morgado, Nuno Vasconcelos, Timothy Langlois, and Oliver Wang. Self-Supervised Genera-
 570 tion of Spatial Audio for 360 Video. In *NeurIPS*, 2018.
- 571 Maxime Oquab, Timothée Darct, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 572 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 573 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 574 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,
 575 Armand Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features without Su-
 576 pervision. In *TMLR*, 2024.
- 577 Zihan Pan, Malu Zhang, Jibin Wu, Jiadong Wang, and Haizhou Li. Multi-Tone Phase Coding of
 578 Interaural Time Difference for Sound Source Localization With Spiking Neural Networks. In
 579 *IEEE/ACM TASLP*, 2021.
- 580 Kranti Kumar Parida, Siddharth Srivastava, and Gaurav Sharma. Beyond Mono to Binaural: Gen-
 581 erating Binaural Audio from Mono Audio with Depth and Cross Modal Attention. In *CVPR*,
 582 2022.
- 583 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 584 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 585 Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In *ICML*,
 586 2021.

- 594 Anton Ratnarajah and Dinesh Manocha. Listen2Scene: Interactive material-aware binaural sound
 595 propagation for reconstructed 3D scenes. In *IEEE VR*, 2024.
 596
- 597 Kun Su, Mingfei Chen, and Eli Shlizerman. INRAS: Implicit Neural Representation for Audio
 598 Scenes. In *NeurIPS*, 2022.
- 599 Peiwen Sun, Sitong Cheng, Xiangtai Li, Zhen Ye, Huadai Liu, Honggang Zhang, Wei Xue, and
 600 Yike Guo. Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation. In *ICLR*,
 601 2025.
- 602 Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and Yike Guo.
 603 AudioX: Diffusion Transformer for Anything-to-Audio Generation. In *arXiv:2503.10522*, 2025.
- 604
- 605 Heng Wang, Jianbo Ma, Santiago Pascual, Richard Cartwright, and Weidong Cai. V2A-Mapper: A
 606 Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models. In *AAI*,
 607 2024.
- 608 Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
 609 Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. MaskGCT: Zero-Shot Text-to-Speech
 610 with Masked Generative Codec Transformer. In *ICLR*, 2025.
- 611
- 612 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dub-
 613 nov. Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-
 614 Caption Augmentation. In *ICASSP*, 2023.
- 615 Xudong Xu, Hang Zhou, Ziwei Liu, Bo Dai, Xiaogang Wang, and Dahua Lin. Visually Informed
 616 Binaural Audio Generation without Binaural Audios. In *CVPR*, 2021.
- 617
- 618 Hang Zhou, Xudong Xu, Dahua Lin, Xiaogang Wang, and Ziwei Liu. Sep-Stereo: Visually Guided
 619 Stereophonic Audio Generation by Associating Source Separation. In *ECCV*, 2020.
- 620 Franz Zotter and Matthias Frank. Ambisonics: A practical 3D audio theory for recording, studio
 621 production, sound reinforcement, and virtual reality. In *Springer Nature*, 2019.
- 622
- 623

A MONO-TO-AMBISONICS ENCODER-DECODER DETAILS

624 Our networks operate in the time-frequency domain, on two separate branches: magnitude and
 625 phase. Firstly, to ease the learning process, we adopted the logarithmic scale for magnitude and
 626 normalised the phase to the ± 1 range. The two branches are identical, and consist of the spectrogram
 627 encoder $\mathcal{E}_{\text{spec}}$, Ambisonics Latent Network (ALN) and Ambisonics-like decoder $\mathcal{D}_{\text{sonic}}$. Since the
 628 information contained within the spectrograms is spatially correlated (both in time and frequency
 629 axis), we use the $\mathcal{E}_{\text{spec}}$ to reduce the dimensionality of the input from $512 \times 512 \rightsquigarrow 128 \times 128$,
 630 effectively reducing the computational cost of the ALN by 4. To do so, we employ a 3-layered
 631 CNN, with ReLU activations and max pooling. For ALN, we employ a 4-layer ResAttnUNet, with
 632 cross-attention between the input and the projected visual encodings. For projection, we use a fully-
 633 connected layer to reduce the dimensionality, in order to match the input size. Finally, the prediction
 634 is then upscaled using transposed convolutions inside $\mathcal{D}_{\text{sonic}}$.
 635

636 We discovered empirically that employing this framework for each Ambisonics channel, *i.e.* \hat{X} and
 637 \hat{Y} , works better than predicting them as two separate channels of the same network. Fig. 5 describes
 638 this internal process visually. For the gains and panning coefficients, we treat them as learnable
 639 parameters for the Ambisonics FiLM channels to use.
 640

B DATASETS

641 **FAIR-Play:** Firstly, we used the most popular dataset for this task, the FAIR-Play dataset. We fol-
 642 lowed both the initial (10-split) (Gao & Grauman, 2019) and newly organised (5-split) (Xu et al.,
 643 2021) set, with the latter being created to better showcase the generalisation capabilities of models
 644 trained on this dataset. It consists of 1,871 10-second clips, recorded in a music room, from different
 645 angles, each clip being accompanied by its binaural version.
 646

Figure 5: Detailed view of our proposed network. Top branches are dedicated to the phase processing, while bottom ones are for magnitude approximation. We omit the normalisation steps for better clarity. The HiVi projection (in green) is shared in all branches.

Music-Stereo: Introduced in (Xu et al., 2021), this dataset is composed of music audio clips recorded from 21 different instruments in solo and duet parts. Initially containing 1,120 videos (from which, at time of writing, only 1,145 are still available), it is the largest available binaural dataset, totalling almost 50 hours, 10× larger than FAIR-Play. We followed the same pre-processing steps as the initial authors to obtain 20,096 10-second clips, from which we used a 80/10/10 split for training/validation/testing.

YT-Music: This dataset is comprised of 397 (from which only 358 are still available) YouTube videos in the 360° format and audio in the Ambisonics format. We converted each audio to a binaural one using the same split and processing steps as (Gao & Grauman, 2019). This is the most challenging dataset, as it contains a greater variation in overall scenes and present sources. We selected only the clips that contain at least one human and at most 20, resulting in 10,477 clips.

C LOSSES & METRICS DETAILS

Following the notations from Section 3, we can define the following losses for the time and time-frequency domains. Firstly, since our network computes the predicted magnitude and phase of the binaural signal, we are using modified versions of the L_2 magnitude and angle loss as our losses for spectrograms. These are presented in Eqs. (8) and (9), respectively.

$$\mathcal{L}_{\text{MAG}}(S_{\text{bi}}; \hat{S}_{\text{bi}}) = \left(|S_{\text{bi}}^L| - |\hat{S}_{\text{bi}}^L| \right)^2 + \left(|S_{\text{bi}}^R| - |\hat{S}_{\text{bi}}^R| \right)^2, \quad (8)$$

where $|\cdot|$ denotes the modulus operator.

$$\mathcal{L}_{\text{IPD}}(S_{\text{bi}}; \hat{S}_{\text{bi}}) = |\angle(S_{\text{bi}}^L - S_{\text{bi}}^R) - \angle(\hat{S}_{\text{bi}}^L - \hat{S}_{\text{bi}}^R)|, \quad (9)$$

where $\angle(\cdot)$ denotes the phase angle of the complex spectrogram.

For the time domain, however, we are relying on two loss adaptations: waveform distance, depicted in Eq. (10), and the signal-to-noise ratio (SNR), see Eq. (11). Our experiments show that including an end-to-end loss, such as WAV, helps in better regularising this domain-specific caveats, such as offering more consistency between the sample transitions.

$$\mathcal{L}_{\text{WAV}}(a_{\text{bi}}; \hat{a}_{\text{bi}}) = \frac{1}{T_a} \sum_{c=1}^{C_a} \sum_{t=1}^{T_a} \left(a_{\text{bi}}^{(c,t)} - \hat{a}_{\text{bi}}^{(c,t)} \right)^2, \quad (10)$$

$$\mathcal{L}_{\text{SNR}}(a_{\text{bi}}; \hat{a}_{\text{bi}}) = \Gamma - \frac{\mathbb{E}(a_{\text{bi}})}{\mathbb{E}(a_{\text{bi}} - \hat{a}_{\text{bi}})}, \quad (11)$$

where $\mathbb{E}(\cdot)$ denotes the expectation operator and Γ is an empirically upper bound selected w.r.t the used dataset. For Music-Stereo, we used $\Gamma = 20$, and for the rest of the experiments, we set $\Gamma = 15$.

702 To accommodate the different values of our losses, we used a compound loss, with the weights
 703

$$704 \quad \mathcal{L}_C = \mathcal{L}_{\text{MAG}} + \mathcal{L}_{\text{IPD}} + 100\mathcal{L}_{\text{WAV}} + 0.1\mathcal{L}_{\text{SNR}}. \quad (12)$$

706 For metrics, we focus on comprehensive ones, such as the Short-Time Fourier Transform (STFT)
 707 distance, see Eq. (13) for the time-frequency domain, and signal envelope (ENV), Eq. (14) for the
 708 time domain. Additionally, we report the SNR, Eq. (15), to quantify the quality of our generated
 709 binaurals.
 710

$$711 \quad \text{STFT} \left(S_{\text{bi}}; \hat{S}_{\text{bi}} \right) = \| S_{\text{bi}}^L - \hat{S}_{\text{bi}}^L \|_2 + \| S_{\text{bi}}^R - \hat{S}_{\text{bi}}^R \|_2, \quad (13)$$

713 where $\| \cdot \|_2$ denote the Euclidean distance.
 714

$$715 \quad \text{ENV}(a_{\text{bi}}; \hat{a}_{\text{bi}}) = \| E[a_{\text{bi}}^L] - E[\hat{a}_{\text{bi}}^L] \|_2 + \| E[a_{\text{bi}}^R] - E[\hat{a}_{\text{bi}}^R] \|_2, \quad (14)$$

717 where $E[\cdot]$ denotes the envelope of the signal.
 718

The final SNR is computed as
 719

$$720 \quad \text{SNR}(a_{\text{bi}}; \hat{a}_{\text{bi}}) = \frac{\mathbb{E}(a_{\text{bi}})}{\mathbb{E}(a_{\text{bi}} - \hat{a}_{\text{bi}})}. \quad (15)$$

722 D BETTER UNDERSTANDING OF 360° VIDEOS

725 We downloaded the 360° videos, necessary for the YT-Music dataset, directly from YouTube in the
 726 equirectangular projection format, under the .webp format, which allows the user to freely move
 727 the camera. However, this setup is not adequate for our pipeline, which uses visual information
 728 for conditioning the binaural generation. As such, we needed a method for capturing as much
 729 information from the provided video. We choose to trade off the quality of the image by applying a
 730 stereographic projection, which distorts the original image using a fisheye-like effect, but allows for
 731 capturing more information about the surrounding space, in the classical rectangular frame. For this
 732 transformation, we set the horizontal and vertical field of view (hFOV and vFOV) to 300°. During this
 733 transformation, we also set a sample aspect ratio (SAR) to 1, to ensure that pixels are kept as square
 734 as possible in the final output image. One example of such a transformation is depicted in Fig. 6.

744 Figure 6: Equirectangular to stereographic projection
 745
 746
 747

748 E COMPARISON WITH REAL AMBISONICS

750 Available datasets mostly contain the binaural audio under a simple stereo-like format, where only
 751 the left and right channels are provided. However, in the case of the YT-Music dataset, where
 752 the videos are 360°, the audio also comes in different formats. One of them is the Ambisonics
 753 one, where some audio files are in the 3-channel (W, X, Y) or 44-channel(includes Z) B-format
 754 of Ambisonics. Although we do not explicitly enforce the predicted channels, *i.e.* \hat{X}, \hat{Y} , Fig. 7
 755 showcases similarities between predicted and real Ambisonics channels. Additionally, we present
 Table 4, in which we computed the STFT distance to numerically showcase the similarity between

756 the predicted and real Ambisonics channels. Since the magnitude level difference is not perceptible
 757 for the human ear, we also evaluated using the envelope distance (ENV), which requires the time-
 758 domain signal, smoothing the error during the inverse transform. As such, we see a low value for the
 759 ENV, indicating similar perceptual structure. Moreover, these results also emphasise the importance
 760 of the gain predictions for the Ambisonics FiLM layer, which are responsible for adjusting the
 761 magnitude of the predicted spectrograms.

762
 763 Figure 7: Visual analysis of real Ambisonics channels (first and third columns) and internally learned
 764 ones (second and last column). Please note that the model never saw real Ambisonics data. The
 765 predicted channels are taken before scaling and normalised for a better view.
 766

Methods	X channel		Y channel	
	STFT ↓	ENV ↓	STFT ↓	ENV ↓
HiViBi	5.084	0.006	1.779	0.002

767
 768 Table 4: Metrics on the internally predicted Ambisonics channel.
 769

770 F USER STUDY

771 In order to evaluate our proposed method in a subjective manner, we conducted a user study. The
 772 study was composed of a series of 20 videos, where the audio was obtained using different methods.
 773 We also included the ground truth video as a control mechanism. The participants were asked to
 774 rate each sample in terms of spatiality, with a value ranging from 1 (no spatiality) to 5, denoting
 775 a spatial audio. In total, 13 users with normal hearing participated in our study. From the results,
 776 presented in Fig. 8, we can conclude that the users considered our proposed solution to be the best
 777 one, excluding the ground truth, which further demonstrates the effectiveness of our method.
 778

824 Figure 8: Results of the conducted user study. We asked the participants to rate videos containing
825 binaural audio on a scale of 1 (worst) to 5 (best). Our method achieves the second position in terms
826 of preferences, after the ground truth.

G MORE EXAMPLES

830 In this section we showcase the results on the other two datasets. As such, Fig. 9 illustrates the results
831 on the Music-Stereo dataset, while Fig. 10 is dedicated to the YT-Music one. For both figures, we
832 focused on choosing examples that have a different data distribution from the FAIR-Play one to
833 showcase their edge cases. On Music-Streore, we selected three examples, as follows: the first one
834 is very focused on the people singing, with little room context; the second one provides an entirely
835 different scenario, with the filming locations being outside, and the third example illustrates a case
836 when one sounding instrument (guitar) is closer to the microphone than the other one (violin). We
837 can see that in all cases, our proposed solution achieves impressive results, closely following the
838 original signal.

851 Figure 9: Examples of piecewise signals on Music-Stereo, ground truth (in blue) and predicted (in
852 red) for the left and right channels.

854 For the YT-Music dataset, where the videos are 360, the model needs to have a larger understanding
855 of the scene, as described in Appendix D. We selected examples which depict this phenomenon. On
856 the first row, we have a crowded room with 5 different instruments, from multiple directions. The
857 second row is dedicated to an outdoor example, while the third row showcases a music video, which
858 can be catalogued as an outlier from the other examples.

859 **Failure cases.** Finally, we show one example in which our method is unable to grasp the full concept
860 of the video. The example in Fig. 11 is taken from the YT-Music dataset and consists of a group of
861 people dancing in a park. This dynamic video easily jailbreaks our proposed system, since we are
862 only selecting one frame to extract the information from. As such, the full range of motions, and
863 thus the acoustic propagation, might not be captured enough in this scenario. As a solution, we propose
two research directions: (i) estimating the best correlation/synchronization between a set of frames,

Figure 10: Examples of piecewise signals on YT-Music, ground truth (in blue) and predicted (in red) for the left and right channels.

Figure 11: Example of a dynamic video: *people dancing*. The top part represents different frames from the video. The bottom part represents the left and right piecewise signals alongside the selected frame for analysis.

and the appropriate combination of the extracted features, and (ii) better motion representation of a dynamic video, *i.e.* moving sound sources, such as a car passing by.

H COMPARISON WITH GENERATIVE METHODS

We dedicate this section to comparing our method with other state-of-the-art solutions for video-to-spatial audio. Namely, we compare HiViBiX with ViSAGe (Kim et al., 2025) and OmniAudio (Liu et al., 2025) on their proposed datasets. Since these models aim at generating only coherent and plausible audio for the silent video, our distance-based metrics have a higher value for them. This phenomenon can also be seen in Fig. 12, where our method closely follows the ground-truth, because of the mono audio prior, while the OmniAudio variant is completely different.

Methods	YT-Ambigen			Sphere360		
	STFT ↓	ENV ↓	SNR ↑	STFT ↓	ENV ↓	SNR ↑
Baseline (Mono-as-Stereo)	2.953	0.244	0.000	3.926	0.260	0.000
PseudoBinaural † [CVPR '21]	2.096	0.257	4.371	3.383	0.250	1.045
PseudoBinaural [CVPR '21]	1.694	0.211	4.592	2.636	0.220	1.558
CCStereo † [ACM MM '25]	2.107	0.244	1.707	2.166	0.211	2.523
CCStereo [ACM MM '25]	1.813	1.716	4.208	2.064	0.207	6.350
ViSAGe [ICLR '25]	7.790	0.304	-4.979	-	-	-
OmniAudio [ICML '25]	-	-	-	8.965	0.317	-4.843
HiViBi † (Ours)	2.132	0.204	1.265	2.921	0.228	1.018
HiViBi (Ours)	0.997	0.147	5.804	1.010	0.164	3.916
HiViBi-v2 (Ours)	1.132	0.132	6.478	1.046	0.136	5.320

Table 5: Comparison of mono-to-binaural models against generative ones. The † signifies that the model is not trained on the specified dataset (zero-shot scenario). The v2 denotes changes made to HiVi encoder.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 Table 5 reports the numerical results. For a fairer comparison, we evaluate PseudoBinaural (Xu et al., 2021) and CCStereo (Chen et al., 2025) both in a zero-shot setting (marked with \dagger) and after fine-tuning them using their original training configurations, thereby establishing competitive baselines. For HiViBiX, we fine-tune starting from the YT-Music checkpoint. Since the two new datasets are not music-related, we also introduce a variant of the HiViBiX visual encoder, denoted v2. In this new variant, we replace YOLOv8 with the newer YOLOv11 and modify the detection strategy: instead of restricting detections to people, we use all available bounding boxes, irrespective of object category, *i.e.* all the possible 80 categories. We applied these modifications for v2 as an out-of-domain adaptation strategy, expanding the mono-to-binaural generation capabilities from music to more general audio. This leads to improved ENV distance and higher SNR on both datasets, at the cost of only a minor increase in STFT distance.

929
 930
 931
 932
 933
 934
 935
 936
 Figure 12: Piecewise signal comparison on Sphere360 dataset with OmniAudio.

937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971