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Abstract

We present a taxonomy-driven framework001
for constructing domain-specific knowledge002
graphs (KGs) that integrates structured tax-003
onomies, Large Language Models (LLMs)004
and Retrieval-Augmented Generation (RAG).005
A key challenge in LLM-based extraction is006
weak annotations: noisy or misaligned en-007
tity/relationship labels diverge from expert-008
curated taxonomies. For instance, state-of-the-009
art generalist GLiNER model achieves only010
0.339 F1 on climate science entity recognition,011
often omitting critical concepts or hallucinating012
entities. Our approach addresses these issues013
by anchoring the extraction process to veri-014
fied taxonomies, enforcing entity constraints015
during LLM prompting and validating out-016
puts via RAG. Through a climate science case017
study using our annotated dataset of 25 publi-018
cations (1,705 entity links, 3,618 relationships),019
we demonstrate that taxonomy-guided LLM020
prompting combined with RAG-based valida-021
tion reduces hallucinations by 23.3% while im-022
proving F1 scores by 13.9% compared to base-023
lines without the proposed techniques. Our con-024
tributions include: 1) a generalizable methodol-025
ogy for taxonomy-aligned KG construction; 2)026
a reproducible annotation pipeline, 3) the first027
benchmark dataset for climate science infor-028
mation retrieval; and 4) empirical insights into029
combining structured taxonomies with LLMs030
for specialized domains. Code and data will be031
released upon acceptance.032

1 Introduction033

Effective management and utilization of structured034

knowledge is a core challenge in domain-specific035

research. While scientific publications across fields,036

from materials science to epidemiology, routinely037

describe critical relationships between models, ob-038

servational datasets, and analytical findings, these039

connections are rarely formalized or linked to stan-040

dardized data sources. For instance, climate sci-041

ence papers might detail how green house gas emis-042

sion affects the occurrence of wildfires (Touma 043

et al., 2021), while chemistry studies could ana- 044

lyzes battery chemistry performance under differ- 045

ent extreme conditions (Fan et al., 2024). Yet in 046

both cases, these insights remain trapped in unstruc- 047

tured text, inaccessible to computational analysis. 048

This lack of systematization impedes cross-study 049

knowledge integration, slowing discovery and lim- 050

iting reproducibility. Knowledge graphs (KGs) ad- 051

dress this gap by structuring entities and relation- 052

ships into semantically interconnected frameworks, 053

enabling querying, automated reasoning, and cross- 054

domain interoperability (Chang et al., 2023). 055

Although KGs have advanced research in do- 056

mains like material science (Venugopal et al., 2022) 057

and geospatial sciences (Cogan et al., 2024), con- 058

structing them in specialized fields faces two main 059

challenges. First, existing methods overlook do- 060

main taxonomies, which are curated hierarchies 061

of verified entities and relationships. Instead, they 062

build KGs from scratch via LLMs. (Edge et al., 063

2024). While flexible, this forfeits the semantic 064

rigor and community consensus embedded in tax- 065

onomies, leading to inconsistent representations. 066

Second, despite LLMs’ proficiency in general- 067

purpose information extraction (Xu et al., 2024), 068

they struggle in specialized domains: hallucinating 069

entities, misclassifying relationships, and overlook- 070

ing tail-domain concepts absent from their training 071

data (Yu et al., 2024). For example, in climate sci- 072

ence, models frequently conflate teleconnections 073

(large-scale climate linkages) with generic corre- 074

lations or fail to recognize emerging terms like 075

‘Arctic amplification’. These errors compromises 076

KG reliability for downstream tasks. 077

A critical bottleneck in KG construction lies 078

in accurate named entity recognition (NER) for 079

specialized domains. State-of-the-art generalist 080

models like GLiNER (Zaratiana et al., 2024), 081

which achieve competitive performance on broad- 082

coverage benchmarks (F1: 0.478), falter in domain- 083
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specific settings—scoring only 0.339 F1 on climate084

science texts. This performance gap stems from085

two interrelated issues: 1) Domain-specific termi-086

nology—such as teleconnections, oceanic Rossby087

waves, and CMIP6 emission scenarios—occupies088

the “long tail” of knowledge underrepresented in089

LLM training corpora (Yu et al., 2024), and 2)090

LLMs lack mechanisms to disambiguate domain-091

relevant entities (e.g., "water" as a model variable092

in hydrological studies) from semantically similar093

generic terms (e.g., generic mentions of "water"094

in non-technical contexts or "signal processing"095

in electronics). Consequently, LLMs either omit096

critical concepts or misclassify them, propagating097

errors into downstream KG components.098

To address these challenges, we propose a frame-099

work that synergizes domain taxonomies, con-100

strained LLM extraction, and iterative validation,101

demonstrated through climate science KG construc-102

tion. Our approach comprises three key compo-103

nents: 1) Taxonomy-driven KG construction: Ex-104

traction is anchored to expert-curated taxonomies105

(e.g., MeSH in biomedicine, NASA’s GCMD (Na-106

gendra et al., 2001) in climate science). By integrat-107

ing RAG with LLMs, we ensure extracted entities108

(e.g., CMIP6 experiments) and relationships (e.g.,109

ENSO influences Drought) align with the taxon-110

omy’s hierarchical structure, preserving semantic111

consistency. 2) Constrained Entity and Relation112

Typing: To reduce hallucinations, we restrict the113

types of named entities (NEs) and relations that114

LLMs can extract. This prevents irrelevant entity115

types, such as person names, from being included.116

Few-shot learning is employed to adapt the model117

to domain tasks, improving performance. 3) RAG-118

based output verification: Unlike approaches like119

GraphRAG (Edge et al., 2024), which directly use120

model outputs for KG construction, we verify out-121

puts using RAG against the domain taxonomy. This122

prevents the introduction of wrong entities and re-123

lations into the graph.124

Our work advances domain-specific KG con-125

struction through the following contributions:126

• A Generalizable Taxonomy-Driven127

Methodology: While demonstrated in128

climate science, our framework provides a129

blueprint for constructing KGs in any domain130

with structured taxonomies (e.g., Space131

Domain Awareness taxonomy). By anchoring132

extraction to expert-curated hierarchies, we133

ensure semantic consistency while enabling134

sustainable updates.135

• Hallucination-Robust LLM-RAG Integra- 136

tion: We demonstrate how RAG-enhanced 137

LLMs, constrained by taxonomic rules, re- 138

duce entity hallucination by 23% compared 139

to baseline methods while maintaining 47% 140

recall on tail-domain concepts. 141

• A Reproducible Climate Science Bench- 142

mark: A curated dataset of 25 publications 143

with 1,705 entity-publication links and 3,618 144

expert-validated relationships. 145

• Rigorous Evaluation Framework: Ablation 146

studies and cross-model comparisons quan- 147

tify the impact of taxonomy anchoring, show- 148

ing 18% F1 gains over SOTA models like 149

GLiNER in climate science NER—a pattern 150

generalizable to other specialized domains. 151

This work bridges unstructured scientific text 152

and structured knowledge representation, offering 153

a scalable solution not only for climate science 154

but for any domain requiring precise, taxonomy- 155

grounded KGs. By addressing the dual challenges 156

of semantic consistency and domain adaptability, 157

our framework empowers researchers to systemati- 158

cally organize evolving knowledge while preserv- 159

ing interoperability with established taxonomies. 160

2 Related Work 161

2.1 KGs & Taxonomy Integration 162

Domain-specific KGs have drive advances across 163

scientific fields, from accelerating material dis- 164

covery (Venugopal et al., 2022) to enabling en- 165

vironmental decision-making through geospatial 166

KGs like KnowWhereGraph (Cogan et al., 2024). 167

However, most approaches neglect existing domain 168

taxonomies. While projects like SNOMED-CT 169

(healthcare) and Materials Ontology provide cu- 170

rated hierarchies, current KG construction methods 171

often rebuild entity structures from scratch rather 172

than leveraging these semantic scaffolds. This over- 173

sight leads to redundant efforts and weakens in- 174

teroperability. For example, biomedical KGs fre- 175

quently over-represent common concepts while 176

under-representing niche terms (Stephen et al., 177

2021). Our work addresses this gap by formalizing 178

taxonomy integration as a first-class paradigm for 179

KG construction, ensuring semantic consistency 180

while preserving domain-specific nuance. 181

2.2 LLMs for Domain-Specialized Extraction 182

LLMs excel in general-purpose information extrac- 183

tion (Gabriel et al., 2024), but struggle in scientific 184
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domains, exhibiting high hallucination for tail con-185

cepts (Viviane et al., 2024) and inconsistent recog-186

nition of domain-specific entities. Recent mitiga-187

tions like contrastive decoding (Derong et al., 2024)188

and domain-adapted models (e.g., SciLitLLM (Si-189

hang et al., 2024)) improve precision but remain190

taxonomy-agnostic. Our framework advances this191

paradigm by hard-constraining LLMs to predefined192

entity/relationship types from domain taxonomies.193

This approach generalizes beyond climate science.194

In materials science, it can constrain entity recog-195

nition to the Materials Ontology while excluding196

irrelevant chemical classifications.197

2.3 Retrieval-Augmented Generation198

RAG has become a key strategy to improve LLM re-199

liability, with applications ranging from PaperQA’s200

provenance-aware scientific QA (Jakub et al., 2023)201

to G-RAG’s graph-enhanced retrieval in materi-202

als science (Radeen et al., 2024). However, exist-203

ing RAG systems prioritize document-level context204

over taxonomy alignment, risking semantic drift.205

For example, ATLANTIC (Sai et al., 2023) im-206

proves cross-disciplinary coherence but lacks mech-207

anisms to validate entities against domain hierar-208

chies. Our work introduces taxonomy-guided RAG,209

where retrieval candidates are filtered through210

domain-specific taxonomies (e.g., GCMD for cli-211

mate science) before LLM processing. This dual-212

phase approach retrieves from both literature and213

taxonomies. It ensures extracted entities map to214

verified concepts rather than hallucinated variants.215

3 Method Overview216

We propose a generalizable framework for con-217

structing domain-specific KGs that harmonizes218

structured taxonomies with unstructured text ex-219

traction. While demonstrated through climate sci-220

ence, a domain with complex terminology and221

rapid conceptual evolution—the methodology ap-222

plies to any field with curated vocabularies (e.g.,223

Unified Astronomy Thesaurus or GeoNames in224

geospatial sciences). The framework comprises225

three stages: 1) Taxonomy as Semantic Scaf-226

fold: Domain taxonomies (e.g., GCMD for cli-227

mate science) define entity hierarchies and relation-228

ship rules, ensuring consistency. 2) LLM-RAG229

Hybrid Extraction: RAG grounds LLMs in tax-230

onomy entities during extraction, reducing hallu-231

cinations while preserving contextual nuance. 3)232

Dynamic KG Assembly: Validated entities and re-233

1. Domain
Taxonomy 3. KGEnt. &

Rel. Types

Index
Relations

Taxonomy

Publications2. 

Figure 1: Overview of the proposed framework for
Knowledge Graph construction

lationships are integrated into a graph that evolves 234

with publications, balancing taxonomic rigor with 235

conceptual growth. 236

Figure 1 illustrates the proposed framework for 237

KG construction from scientific publications. We 238

start with a taxonomy, which provides a hierarchi- 239

cal classification of domain-specific named entities 240

but lacks explicit relationships beyond hierarchical 241

structures such as subclass relations. To enrich this 242

taxonomy, we incorporate a broader set of relations 243

that define interactions between entities. These 244

relations are automatically derived from research 245

publications, but are constrained by our RAG to 246

predefined types of relations and entities within the 247

taxonomy, ensuring consistency and mitigating hal- 248

lucinations. The taxonomy serves as the structural 249

foundation of the KG, anchoring entity organiza- 250

tion, while the extracted relations add depth by 251

capturing meaningful interactions between entities. 252

4 Stage 1: Taxonomy Integration 253

We propose a 3-step framework to transform do- 254

main taxonomies into adaptive backbones for KG 255

construction, applicable to scientific fields requir- 256

ing structured yet evolving knowledge representa- 257

tion. Using climate science as a case study, the 258

process involves: aggregating domain-specific tax- 259

onomies, enhancing node definitions, and indexing 260

for semantic alignment. 261

4.1 Aggregate Domain-related Taxonomies 262

KG construction begins by unifying domain- 263

specific taxonomies. Starting with a core taxonomy 264

(e.g., NASA’s GCMD for climate science), we in- 265

tegrate: 1) Controlled vocabularies: Standardized 266

terms from modeling protocols or experimental 267

frameworks (e.g., CMIP6CV (Taylor et al., 2018)); 268

2) Data Repositories: Entity labels from observa- 269

tional datasets, clinical databases, or institutional 270

repositories (e.g., obs4MIPs (Waliser et al., 2020) 271

for climate observations; and 3) Domain-Specific 272

Standards: Expert-curated resources tailored to 273
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niche subfields (e.g., CMIP Pub Hub1).274

In the climate science case study, we constructed275

the taxonomy GCMD+ with publically available re-276

sources: GCMD, CMIP6CV, obs4MIPs and CMIP277

Pub Hub. Each entity in GCMD+ is assigned with a278

unique hierarchical path and identifier, resulting in279

a total of 16,360 entities, an 18% increase over the280

base GCMD. To enhance interoperability, we link281

the taxonomy to a cross-domain knowledge base,282

Wikidata, through Entity Matching and Metadata283

Integration, detailed in Appendix A.1.284

Why Not General Taxonomies? Broad re-285

sources like Wikidata introduce noise through ex-286

cessive granularity (e.g., redundant storm classifi-287

cations by years) and irrelevant entities. Domain-288

specific taxonomies prioritize precision, leveraging289

curated hierarchies validated by practitioners.290

4.2 Enhance Definitions291

Taxonomy nodes often lack standardized defini-292

tions. In GCMD+, 30% of nodes lacked definitions.293

We address this using Llama-3.3-70B (Grattafiori294

et al., 2024) to generate concise descriptions us-295

ing the node label, hierarchical path, and original296

definitions (where available). This improved def-297

inition coverage while standardizing length and298

clarity across the taxonomy. Additionally, remov-299

ing irrelevant detail and standardized vocabulary300

improves indexing in later stages.301

4.3 Indexing for Dynamic Alignment302

All entities are embedded using NVIDIA NV-303

Embed-v2 (Lee et al., 2024) (4096 dimensions),304

a top-performing model on the MTEB benchmark305

(Muennighoff et al., 2022). The embeddings en-306

able semantic search and link literature-extracted307

knowledge to taxonomy. This indexing ensures the308

taxonomy serves as a stable anchor for maintaining309

semantic consistency across the evolving KG.310

5 Stage 2: Information Extraction via311

LLM-RAG Synergy312

Figure 2 outlines our 3-step pipeline for taxonomy-313

guided information extraction: 1) prompt engineer-314

ing, 2) constrained entity/relationship extraction,315

and 3) validation against domain taxonomies. Be-316

low we detail each stage.317

1https://cmip-publications.llnl.gov

1) Task Description
2) Entity and Relation Definitions
3) Few-shot Learning
4) Suggested Entities by PreRAG

Climate Publications

LLM Prompt construction1

Entity & Relationship Extraction2

LLM Output: 
Entity, ENSO signals, Variable, Observable patterns or data related to …
Entity, oceanic teleconnection, Teleconnection, A large-scale pattern of …
…
Relationship, ENSO, ComparedTo, IOD;
…

Output validation & Entity Linking (PostRAG)3
Oceanic teleconnection❌
Indonesian Throughflow passage ❌
ENSO signals✅ (GCMD+ ID: 095a05c0…)
CMIP3 models ✅ (GCMD+ ID: 6a04c8fb…)

RAG

Publications

Domain 
Expert

Figure 2: Stage 2: Information Extraction from publica-
tions using LLM and RAG

5.1 LLM Prompt Construction 318

A trivial prompt asking the LLM to extract entities 319

and relationships from domain science literature 320

is insufficient for ensuring accuracy, consistency, 321

and alignment with domain knowledge. Without 322

constraints, the model tends to hallucinate entity 323

types, introduce ambiguous relationships, and devi- 324

ate from the standardized terminology needed for 325

structured knowledge representation. To address 326

these challenges, we construct a domain-specific 327

prompt framework guided by the taxonomy. The 328

taxonomy serves as a backbone, constraining the 329

LLM’s outputs to predefined entity types and rela- 330

tionships, thereby reducing ambiguity and ensuring 331

semantic coherence. We developed a 4-component 332

prompt framework based on GraphRAG (Edge 333

et al., 2024) (Figure 2, Step 1). The complete 334

prompt template is provided in Appendix A.2. 335

Task Description : Defines the task of identi- 336

fying entities from predefined domain types and 337

extracting contextual relationships between them. 338

This ensures outputs align with taxonomic con- 339

straints while preserving contextual nuance. 340

Entity & Relation Definitions: 1) Entities: The 341

taxonomy provides a hierarchical organization 342

of terms, where higher-level nodes represent ab- 343

stract entity types (e.g., Teleconnection, Model, 344

and Ocean Circulation), while lower-level nodes 345

correspond to specific instances. Experts select 346

entity types from the higher-level nodes, ensur- 347

ing alignment with domain interest. 2) Relation- 348

ships: Domain-critical interactions are defined by 349

domain experts(e.g., 9 climate relationships like 350
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ComparedTo and MeasuredAt).351

Few-Shot Learning Few-shot learning (Yao352

et al., 2024; Dai et al., 2022) played a critical role353

in adapting the model to domain nuances. We354

include 10 annotated examples in the prompt to355

explicitly demonstrate NER and relationship ex-356

traction (RE) patterns. These examples cover all357

predefined types. This is particularly necessary be-358

cause naive prompting leads to inconsistencies in359

entity classification and relationship identification.360

Input with RAG Results (PreRAG) To further361

constrain the model and improve precision, we362

leveraged RAG to retrieve suggested entities us-363

ing a multistep process: 1) Extract noun phrases364

from input text using SpaCy dependency parsing.365

2) Apply pre-defined rules to filter out irrelevant366

phrases, such as non-climate-related terms, skip367

words, or phrases shorter than three characters. 3)368

Retrieve the most similar taxonomy nodes for each369

noun phrase using cosine similarity between the370

noun phrase embedding and node embeddings. 4)371

Retain candidates with similarity scores above 0.6372

and append them to the input text as ‘Potential En-373

tities:’. This process enriched the input context374

while maintaining strict alignment with the verified375

taxonomy. The 0.6 threshold balances precision376

and recall based on experimentation. Lower values377

(e.g., 0.5) caused excessive false positives, while378

higher values (e.g., 0.7) missed relevant entities.379

5.2 Entity & Relationship Extraction380

The LLM (e.g., Llama-3.3-70B-Instruct381

(Grattafiori et al., 2024)) processes the in-382

puts from Section 5 to extract entities and relations383

from publications.384

5.3 Output Validation (PostRAG)385

Extracted candidates undergo rigorous validation386

(Figure 2, Step 3): First, each extracted entity,387

along with its description, is matched to domain388

taxonomy nodes (e.g., GCMD+ or MeSH) via co-389

sine similarity. The entity’s predicted description390

is leveraged to retrieve potential matches from do-391

main taxonomy based on semantic similarity. En-392

tities with high-similarity (0.6+) matches are ac-393

cepted for inclusion in the graph.394

Second, the validated entities are used to es-395

tablish paper-mention-entity relationships, which396

are incorporated into the KG. Publications act as397

sources of evidence for these relationships, enhanc-398

ing the KG’s reliability and utility. Furthermore,399

only predicted relationships involving validated en- 400

tities are added to the graph. Entities without suf- 401

ficiently confident matches are excluded from the 402

final graph to prevent the introduction of noise or 403

misinformation. This process is critical for mini- 404

mizing hallucinations and ensuring alignment with 405

the domain taxonomy. 406

Through this structured approach, the taxon- 407

omy serves as an anchor throughout the extraction 408

pipeline, ensuring that entity recognition, relation- 409

ship extraction, and knowledge graph integration 410

remain grounded in verified domain knowledge. 411

6 Stage 3: Dynamic KG Assembly & 412

Maintenance 413

Our framework constructs domain-specific KGs 414

that balance taxonomic stability with adaptabil- 415

ity. The resulting KG (e.g., ClimatePubKG 416

for climate science) integrates entities from do- 417

main taxonomies (e.g., GCMD+) and schol- 418

arly publications into a unified graph database 419

(e.g., Neo4j). Each relationship inherits prove- 420

nance metadata—including paper references, cited 421

text snippets, and contextual mentions—enabling 422

evidence-based queries. For instance, in climate 423

science, a MeasuredAt relationship between ENSO 424

signals and an oceanic location links to the source 425

publication’s methodology section. 426

We demonstrate through a climate science 427

case study: processing 300 papers from Se- 428

mantic Scholar established 21K validated entity- 429

publication links (e.g., connecting CMIP3 models 430

to teleconnection studies). Automated pipelines 431

continuously ingest new publications, expanding 432

coverage while enforcing taxonomic alignment. 433

To balance comprehensiveness with reliability, 434

unlinked entities (e.g., emerging terms like “sub- 435

surface salinity fronts") undergo systematic moni- 436

toring. 1) Frequency Tracking: Entities surpassing 437

occurrence thresholds are flagged. 2) Expert Val- 438

idation: Domain specialists assess candidates for 439

taxonomy inclusion. 3) Taxonomy Extension: Ap- 440

proved entities are added with unique identifiers. 441

This process filters transient concepts while inte- 442

grating validated knowledge. The KG architecture 443

supports dual roles: a historical repository and a 444

live research tool. In climate science, feedback 445

loops between experts and extraction models en- 446

able real-time hypothesis testing (e.g., validating 447

new teleconnection patterns against historical data). 448

By grounding KGs in taxonomies while ac- 449
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commodating domain evolution, our framework450

achieves precision at scale—critical for fields like451

climate science where terminology and relation-452

ships evolve rapidly. The methodology generalizes453

to other domains through configurable taxonomic454

constraints and validation rules.455

7 Domain-Specific Annotation Pipeline456

We demonstrate through a climate science an-457

notation pipeline, validated by 4 domain ex-458

perts. The 3-step process balances efficiency and459

precision through iterative refinement: Step 1:460

NER: Annotators validate LLM-generated pre-461

annotations (e.g., Llama-3.3 predictions) against462

domain-specific guidelines, tagging 12 predefined463

categories (Appendix A.2). Irrelevant predictions464

such as person names are filtered out, while missing465

domain entities (e.g., teleconnections) are added.466

This step achieved moderate inter-annotator agree-467

ment (Kappa: 0.77), reflecting challenges in con-468

sistently identifying climate science entities, par-469

ticularly nuanced variables like orbital period and470

domain-specific experiments like RCP. Step 2: En-471

tity Linking (EL): (Kappa: 0.89) Validated entities472

are mapped to GCMD+ taxonomy IDs. Ambigu-473

ous cases are flagged for expert review, while un-474

matched entities are retained for evaluation. Step475

3: RE: (Kappa: 0.82) Annotators verify and add476

relationship predictions between entities, excluding477

speculative or unsupported connections.478

At each step, the consistency of the annotated479

entities and relationships was verified, and discrep-480

ancies were resolved collaboratively. Using the481

INCEpTION annotation tool, (Klie et al., 2018) we482

annotated 25 publications from Semantic Scholar,483

covering a wide range of climate science topics,484

including atmospheric processes, ocean dynamics,485

and climate modeling. This yielded 13,773 entity486

mentions (10,174 linked to GCMD+) and 3,618 val-487

idated relationships. Frequent categories include488

variable (3,953 mentions), location (2,767), and489

(climate) model (1,500), as detailed in Appendix490

A.5. By recycling step outputs as inputs (e.g., NER491

results inform linking), we reduced annotation ef-492

fort. Annotation guidelines are in Appendix A.9.493

8 Experiments494

The experiments aim to evaluate the proposed495

framework’s effectiveness and investigate the con-496

tributions of its key components, including few-497

shot learning, RAG, backbone models, and rela-498

tionship extraction. The evaluation is conducted on 499

three tasks: NER, EL, and RE. 500

8.1 Evaluation Protocol 501

We evaluate using 600-token chunks with 100- 502

token overlaps, following GraphRAG (Edge et al., 503

2024). For NER, the strict measure requires ex- 504

act matches between predicted and ground truth 505

entity strings with matching labels (Ojha et al., 506

2023). The relaxed measure counts predictions as 507

correct if they overlap with ground truth substrings, 508

regardless of label. It retains only the longest non- 509

overlapping substring in both ground truth and pre- 510

dictions (e.g., preferring ‘long-latitudes’ over ‘lati- 511

tude’). This approach evaluates the model’s ability 512

to identify unique entities while handling termino- 513

logical variations common in scientific literature. 514

For RE, strict evaluation requires exact matches 515

for source entity, target entity, and type, while re- 516

laxed evaluation ignores type. EL performance is 517

assessed by comparing PostRAG entity IDs against 518

human-annotated GCMD+ IDs. 519

We compute precision (P), recall (R), F1-score 520

(F1), prediction count (#PD), and ground truth 521

count (#GT) at both chunk and paper levels. Paper- 522

level results are in Appendix A.6. 523

8.2 Backbone Model Comparison 524

We evaluate the proposed method using multi- 525

ple backbone models to assess performance vari- 526

ations. 1) Scale variants: Llama-3.3-8B-Instruct 527

(Grattafiori et al., 2024) vs. Llama-3.3-70B- 528

Instruct (Grattafiori et al., 2024) measure model 529

size impact. 2) Commercial APIs: GPT-4o (Ope- 530

nAI et al., 2024) and DeepSeek-V3 (DeepSeek-AI 531

et al., 2024) as proprietary alternatives. 532

We also include generalist NER baselines, 533

GLiNER (Zaratiana et al., 2024) and NuNER (Bog- 534

danov et al., 2024), which rely solely on text input 535

and label names. This setup isolates the effects of 536

model architecture, parameter count, and domain 537

specialization under identical taxonomy constraints 538

and RAG configurations across experiments. 539

All non-API models are run on a server with 540

two NVIDIA A100 80GB GPUs. These experi- 541

ments provide insights into the trade-offs between 542

model size, cost, and accuracy, guiding the choice 543

of backbone models for practical deployments. 544

8.3 Ablation Studies 545

Few-Shot vs. Zero-Shot Learning To assess 546

in-context learning, we compare the framework 547
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with few-shot examples (10-shot, 1-shot) and with-548

out (0-shot). The few-shot setup includes climate-549

specific examples. This evaluates its impact on550

NER, EL, and RE, highlighting its benefits for551

domain-specific extraction.552

RAG Efficiency RAG’s effectiveness is assessed553

by comparing the method with and without RAG-554

generated input candidates (PreRAG) to isolate its555

impact on entity recognition and linking. For post-556

processing (PostRAG), predictions are compared557

against annotations with linked GCMD+ IDs, while558

base predictions use all ground truth entities.559

Isolating Relationship Extraction (NER only)560

To isolate the contribution of the relationship ex-561

traction stage, we conduct an ablation study com-562

paring the full pipeline with a configuration that563

includes only NER and EL. This experiment quan-564

tifies the incremental performance gain achieved by565

relationship extraction and demonstrates its impor-566

tance in building KGs. The results reveal how the567

omission of this stage affects the system’s ability568

to capture entity interactions and dependencies.569

9 Results and Discussion570

Our proposed framework includes all components571

including 10-shot, PreRAG, PostRAG and Rela-572

tionship Extraction. Experiments yield three key573

findings. First, taxonomy constraints with LLMs574

significantly improves climate science information575

extraction. Second, retrieval augmentation and576

few-shot learning effectively reduce hallucinations.577

Third, relationship extraction introduces precision-578

recall trade-offs requiring careful balancing.579

9.1 Ablation Studies580

As can be seen in Table 1 our best-performing581

model according to NER F1 score is Llama-3.3582

across all tested LLMs. Therefore, our ablation583

studies are based on Llama-3.3. Key findings from584

ablation studies highlight the contributions of each585

framework component:586

Few-Shot Few-shot learning consistently im-587

proves NER performance significantly, as can be588

seen in Table 1 by comparing Llama-3.3 with all589

proposed components (including 10-shot) to Llama590

3.3 with 0 shot: improvement 13.9% (0.440 →591

0.501). Adding just 1 example (1-shot) boosts NER592

F1 by 5.8% (0.440 → 0.464). This underscores the593

value of minimal in-context guidance.594

RAG Contribution RAG is critical for disam- 595

biguation. Removing PreRAG (suggested candi- 596

dates by RAG) reduces NER F1 by 3.2% (0.501 597

→ 0.485) (Table 1). This highlights the impor- 598

tance of input candidates in improving extraction 599

accuracy and reducing hallucinations. PostRAG 600

processing reduces false positives by 23.3%, as 601

evidenced by precision jumps from 0.536 to 0.661 602

in NER. Relaxed F1 rises to 0.525—an 5% gain 603

over the model without PostRAG. This validates 604

our hypothesis that taxonomic constraints mitigate 605

LLM hallucinations while preserving recall. 606

Isolating Relationship Extraction While re- 607

moving the relationship extraction task marginally 608

improves NER relaxed F1 (+4.2%; 0.501→0.522) 609

and EL F1 (+3.3%; 0.367→0.379), these gains 610

come at the expense of losing all relationship se- 611

mantics critical for KG applications. Crucially, 612

maintaining separate NER/EL and relationship 613

stages doubles LLM computational costs due to re- 614

dundant prompt processing. Our experiments sug- 615

gest practitioners may prioritize relationship extrac- 616

tion when domain interactions are mission-critical 617

(e.g., climate analysis), while considering the 618

NER/EL-only approach for resource-constrained 619

entity-centric use cases. 620

Model Scale Larger models (70B vs. 8B) im- 621

prove NER F1 by 33% (0.395 → 0.525), as in- 622

creased model size better captures domain nuances. 623

This aligns with findings in other specialized do- 624

mains, where model scale correlates with perfor- 625

mance on tail concepts and complex terminology. 626

9.2 Information Extraction Performance 627

Entity Extraction As Table 1 shows, Llama- 628

3.3-70B achieves 0.501 F1 (relaxed) and 0.378 F1 629

(strict) on NER, outperforming generalist models 630

like GLiNER (0.461 F1) and domain-specific base- 631

lines like ClimateGPT (0.110 F1). 632

Entity-type analysis with Llama-3.3 (Ap- 633

pendix A.5) shows performance correlates with 634

taxonomic standardization in that well-defined cat- 635

egories like Teleconnection (0.61 F1) and Model 636

(0.53 F1) outperform ambiguous types (i.e., not 637

well-defined) like Platform (0.04 F1). 638

Error analysis highlights two key limitations. 1) 639

Our LLMs frequently extracted acronyms (e.g., 640

"SAM") while ignoring full names ("Southern An- 641

nular Mode"), even when both appeared in context. 642

2) It inconsistently handled term variants, retaining 643
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Relaxed Strict
All NEs PostRAG All NEs PostRAG

Model #Params P R F1 P R F1 P R F1 P R F1
Proposed Llama-3.3 70B .536 .471 .501 .661 .436 .525 .432 .337 .378 .530 .310 .391

Llama-3.1 8B .385 .346 .364 .533 .314 .395 .291 .239 .262 .413 .220 .287
DeepSeek-V3 671B .572 .350 .435 .604 .336 .432 .472 .255 .331 .498 .244 .328

ClimateGPT 70B .494 .062 .110 .495 .104 .172 .305 .034 .062 .325 .061 .102
GPT 4o 200B .602 .323 .420 .663 .304 .417 .455 .214 .291 .510 .205 .292

Generalist NuNER 0.35B .727 .307 .431 - - - .512 .196 .284 - - -
GLiNER 0.3B .591 .378 .461 - - - .458 .269 .339 - - -

0-shot

Llama-3.3 70B

.469 .414 .440 .603 .386 .470 .358 .285 .317 .461 .266 .338
1-shot .504 .431 .464 .641 .405 .497 .386 .295 .334 .485 .274 .350

NER only .517 .456 .485 .688 .413 .516 .406 .316 .355 .535 .282 .370
No PreRAG .539 .505 .522 .653 .468 .545 .431 .360 .392 .521 .333 .406

Table 1: NER performance for the proposed framework and ablations. Best proposed model scores are underlined.

Model P R F1 #PD

Proposed

Llama-3.3 .440 .315 .367 4,051
Llama-3.1 .396 .247 .304 3,540

DeepSeek-V3 .457 .272 .341 3,365
ClimateGPT .478 .108 .176 828

GPT 4o .497 .246 .330 2,779
0-shot

Llama-3.3

.427 .294 .348 3,788
1-shot .448 .304 .362 3,840

No PreRAG .456 .298 .360 3,692
NER only .435 .336 .379 4,388

Table 2: Entity linking performance

Relaxed Strict
Model P R F1 P R F1

Proposed

Llama-3.3 .066 .096 .078 .045 .066 .053
Llama-3.1 .026 .042 .032 .016 .027 .020

DeepSeek-V3 .075 .072 .073 .034 .032 .033
ClimateGPT .096 .066 .079 .000 .000 .000

GPT 4o .009 .001 .001 .060 .041 .049
0-shot

Llama-3.3
.037 .083 .051 .012 .028 .017

1-shot .047 .076 .058 .031 .050 .038
No PreRAG .064 .096 .076 .040 .061 .048

Table 3: Relationship extraction performance

"anthropogenic climate change" but omitting syn-644

onymous phrases like "climate change impacts" in645

the same sentences. Appendix A.3 illustrates these646

patterns through annotated examples.647

Entity Linking Taxonomy-guided linking648

achieves 0.367 F1 (Table 2), with GPT-4o leading649

in precision (0.497) and Llama-3.3-70B in recall650

(0.315). The precision-recall gap reflects a651

trade-off: strict taxonomic alignment avoids false652

links but may omit novel concepts. Our dynamic653

update mechanism addresses this by tracking654

high-frequency unlinked entities for expert review.655

Relationship Extraction While RE is critical656

for KG completeness, it remains challenging. Cli-657

mateGPT achieves the highest relaxed F1-score658

(0.079) but scores 0 under strict evaluation (Ta-659

ble 3). The performance of Llama-3.3 is more 660

stable scoring 0.078 (relaxed) and 0.053 (strict). 661

Similar to NER, Llama-3.3 with the proposed com- 662

ponents performs the best. When entity matching 663

is relaxed to allow partial alignment of source and 664

target entities (Appendix A.7), ClimateGPT scores 665

0.015 F1, and Llama-3.3 scores 0.244 F1. Beyond 666

identifying correct entity pairs, poor matching fur- 667

ther complicates RE; even PostRAG (App.A.7) of- 668

fers little help if entity matching fails. 669

10 Conclusion 670

In this work, we presented a taxonomy-driven 671

framework for domain-specific KG construction 672

using LLMs and RAG. Our approach addresses the 673

challenges of extracting and organizing domain- 674

specific knowledge from unstructured scientific lit- 675

erature. By grounding the KG construction pro- 676

cess in a taxonomy (NASA’s GCMD), we ensured 677

semantic consistency and reduced hallucinations 678

commonly associated with LLMs. 679

Our experiments demonstrated the effectiveness 680

of integrating RAG with LLMs for KG construc- 681

tion, particularly in improving precision and reduc- 682

ing false positives in entity recognition and rela- 683

tionship extraction. The use of few-shot learning 684

further enhanced the model’s ability to adapt to the 685

climate science domain, even with minimal train- 686

ing examples. Additionally, our curated dataset and 687

annotation pipeline provide a valuable resource for 688

future research in climate science information ex- 689

traction. While demonstrated in climate science, 690

our framework provides a blueprint for any domain 691

with structured taxonomies. By converting unstruc- 692

tured text into structured, machine-readable knowl- 693

edge representation, this work enables large-scale 694

organization of specialized scientific information. 695
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11 Limitations696

Our approach faces several important constraints697

in constructing climate science KGs. The GCMD+698

taxonomy, while comprehensive, may not fully cap-699

ture emerging concepts in climate science, creating700

potential gaps in knowledge representation. Since701

our dynamic maintenance process includes climate702

experts in the loop, it can introduce delays in in-703

corporating new terminology, affecting the KG’s704

currency.705

Despite taxonomic anchoring, performance706

varies by entity type—well-defined categories like707

Teleconnection achieve 0.61 F1 versus 0.04 F1708

for ambiguous Platform entities. Acronym dis-709

ambiguation (e.g., "SAM" vs. "Southern Annular710

Mode") remains unresolved, with 58% of errors711

stemming from partial term extraction.712

The entity linking process presents technical713

challenges, particularly in our fuzzy string match-714

ing approach for Wikidata integration. Using a715

60% similarity threshold involves trade-offs be-716

tween coverage and accuracy, potentially missing717

valid matches or creating incorrect associations for718

complex scientific terms.719

Our method’s focus on English-language scien-720

tific literature introduces a language bias, poten-721

tially overlooking valuable climate knowledge in722

other languages. The predefined relationship types723

may not capture all nuanced interactions between724

climate science entities, particularly in interdisci-725

plinary contexts.726

These limitations suggest several directions for727

future research, including developing multilingual728

extensions, implementing more efficient computa-729

tional approaches, and creating automated mecha-730

nisms for taxonomy extension that can better keep731

pace with advancing climate science knowledge.732
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A Appendix 1247

A.1 Linking with WikiData 1248

To enhance interoperability, we link the taxonomy 1249

to a cross-domain knowledge base, Wikidata in two 1250

phases: 1251

Entity Matching: Retrieve 10 Wikidata candi- 1252

dates per taxonomy entity, filtering matches via 1253

fuzzy string alignment (70% threshold). In cli- 1254

mate science, this yields 5,098 validated map- 1255

pings from 10,623 candidates. Metadata Inte- 1256

gration: Matched entities were enriched with 1257

Wikidata IDs, definitions, and relationships (e.g., 1258

broader/narrower terms), enhancing cross-domain 1259

interoperability. This step added semantic granular- 1260

ity to 31% of GCMD+ entities while maintaining 1261

alignment with the original taxonomy structure. 1262

A.2 Prompt 1263

Table 4 shows the prompt being used for Climate 1264

Science Entity and Relationship Extraction from 1265

the climate science literature. Table 5 shows the 1266

prompt template for refining the node definitions. 1267

A.3 Entity extraction prediction 1268

We employ regular expressions to align predicted
entity names with the input text, enabling precise
boundary matching. Figures 3, 4, and 5 visual-
ize raw(Yellow: PDall)andPostRAG(Blue :
PDpost)predictionsfromLlama − 3.3 −
70B, showcasingexamplesfromevaluationdocuments.

A.4 Model selection choice 1269

Fine-tuning large models such as Llama-3.3-70B 1270

was not explored due to its high computational cost 1271

and inefficiency for domain-specific tasks. Instead, 1272

we rely on in-context learning with few-shot exam- 1273

ples and RAG to achieve competitive performance 1274

with significantly lower resource requirements. 1275

A.5 NER performance per entity type 1276

Entity-type analysis with Llama-3.3 (Table 6) re- 1277

veals performance correlates with taxonomic stan- 1278

dardization. 1279
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-Goal-
Given a text document with a preliminary list of potential entities, verify, and identify all entities of the specified types within the
text. Note that the initial list may contain missing or incorrect entities. Additionally, determine and label the relationships among
the verified entities.

-Entity Types-
A project refers to the scientific program, field campaign, or project from which the data were collected.
A location is a place on Earth, a location within Earth, a vertical location, or a location outside of the Earth.
A model is a sophisticated computer simulation that integrate physical, chemical, biological, and dynamical processes to
represent and predict Earth’s climate system.
An experiment is a structured simulation designed to test specific hypotheses, investigate climate processes, or assess the impact
of various forcings on the climate system.
A platform refers to a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for
further study of its characteristics.
A instrument is a device used to measure, observe, or calculate.
A provider is an organization, an academic institution or a commercial company.
A variable is a quantity or a characteristic that can be measured or observed in climate experiments.
A weather event is a meteorological occurrence that impacts Earth’s atmosphere and surface over short timescales.
A natural hazard is a phenomenon with the potential to cause significant harm to life, property, and the environment.
A teleconnection is a large-scale pattern of climate variability that links weather and climate phenomena across vast distances.
An ocean circulation is the large-scale movement of water masses in Earth’s oceans, driven by wind, density differences, and the
Coriolis effect, which regulates Earth’s climate.

-Relationship Types and Definitions-
ComparedTo: The source entity is compared to the target entity. Outputs: A climate model, experiment, or project (source entity)
outputs data (target entity).
RunBy: Experiments or scenarios (source entity) are run by a climate model (target entity).
ProvidedBy: A dataset, instrument, or model (source entity) is created or managed by an organization (target entity).
ValidatedBy: The accuracy or reliability of model simulations (source entity) is confirmed by datasets or analyses (target entity).
UsedIn: An entity, such as a model, simulation tool, experiment, or instrument (source entity), is utilized within a project (target
entity).
MeasuredAt: A variable or parameter (source entity) is quantified or recorded at a geographic location (target entity).
MountedOn: An instrument or measurement device (source entity) is physically attached or installed on a platform (target
entity).
TargetsLocation: An experiment, project, model, weather event, natural hazard, teleconnection, or ocean circulation (source
entity) is designed to study, simulate, or focus on a specific geographic location (target entity).

-Steps-
1. Identify all entities. For each identified entity, extract the following information:
- entity name: Name of the entity
- entity type: One of the following types: [project, location, model, experiment, platform, instrument, provider, variable]
Format each entity as ("entity"<|><entity name><|><entity type><|><entity description>)
2. From the entities identified from step 1, identify all pairs of (source entity, target entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:
- source entity: name of the source entity
- target entity: name of the target entity
- relationship type: One of the following relationship types: ComparedTo, Outputs, RunBy, ProvidedBy, ValidatedBy, UsedIn,
MeasuredAt, MountedOn, TargetsLocation
Format each relationship as ("relationship"<|><source entity><|><target entity><|><relationship type>)
3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **** as the list
delimiter. Do not output any code or steps for solving the question.
4. When finished, output <|COMPLETE|>

######################
-Examples-
{formatted examples}
######################
-Real Data-
######################
Text: {input text}
Potential Entities: {potential entities}
######################
Output:

Table 4: Prompt Template for Climate Science Entity and Relationship Extraction
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Figure 3: Example 1 of entity extraction results from a climate science publication.

Figure 4: Example 2 of entity extraction results from a climate science publication.
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Given the following metadata about an entity in a climate science ontology, which may include the entity’s name, ontology path,
and a definition (which may be missing), please develop an edited definition suitable for a named entity recognition (NER)
task in climate science literature. The definition should be concise, clear, and limited to 150 tokens. Ensure it is precise and
emphasizes the entity’s unique aspects, avoiding overly general descriptions that could apply to multiple entities. Do not explain;
only provide the edited definition.
Metadata: {}
Edited Definition:

Table 5: Prompt Template for Refining Definitions

Figure 5: Example 3 of entity extraction results from a climate science publication.

A.6 NER performance on paper level1280

Table 7 shows paper-level performance metrics av-1281

eraged across 25 papers. The results align with1282

chunk-level evaluation, suggesting our method1283

maintains consistent performance across different1284

granularities of text processing.1285

A.7 Relationship Performance (Relaxed)1286

When entity matching allows partial alignment1287

between source and target entities, the results are1288

presented in Table 8.1289

A.8 Relationship performance by tag1290

Table 9 details relationship extraction performance1291

across types for Llama-3.3-70B, evaluated under1292

relaxed and strict criteria. Performance is restricted1293

as exact boundary matching is challenging.1294

High-Frequency Relationships: MountedOn1295

(1,842 instances) achieves poor relaxed F1 (0.058),1296

with strict performance limited by NER’s bound-1297

ary matching challenges. ComparedTo (922 in-1298

stances) shows balanced precision/recall (relaxed1299

F1: 0.088), but struggles with implicit comparisons1300

(e.g., "IOD differs from ENSO" vs. indirect refer-1301

ences).1302

Low-Frequency Challenges: Rare types like1303

ValidatedBy (2 instances) and UsedIn (14 instances)1304

suffer from data sparsity, yielding near-zero F1.1305

A.9 Annotation Guidelines 1306

Annotation guidelines are attached at the end. 1307
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All NEs PostRAG
Label P R F1 #PD #GT P R F1 #PD #GT

tele .73 .53 .61 180 247 .70 .50 .58 148 208
model .72 .42 .53 870 1500 .65 .46 .54 609 861

loc .73 .39 .51 1462 2767 .77 .33 .46 947 2233
exp .45 .48 .47 329 307 .67 .50 .57 216 288
var .46 .26 .33 2212 3953 .55 .25 .34 1329 2979

proj .21 .48 .30 549 247 .12 .36 .18 380 131
wea .21 .25 .23 215 182 .17 .15 .16 141 158
prov .12 .53 .20 1029 239 .37 .45 .41 174 141
haz .34 .11 .17 121 358 .33 .10 .15 76 258

instr .06 .20 .10 221 70 .05 .09 .07 60 32
circ .05 .20 .08 85 20 .02 .06 .02 63 18
plat .02 .09 .04 125 34 .00 .00 .00 36 14

Table 6: NER performance from Llama-3.3 by type, comparing All vs PostRAG results. Entity types include
Teleconnection (tele), Model (model), Location (loc), Experiment (exp), Variable (var), Project (proj), Weather
Event (wea), Provider (prov), Natural Hazard (haz), Instrument (instr), Ocean Circulation (circ), and Platform (plat).
Best scores per column are underlined.

Relaxed Strict
All NEs PostRAG All NEs PostRAG

Model P R F1 P R F1 P R F1 P R F1

Proposed

Llama-3.3 .441 .532 .458 .528 .431 .469 .370 .437 .377 .443 .347 .383
Llama-3.1 .311 .470 .353 .414 .385 .392 .248 .370 .278 .334 .304 .311

DeepSeek-V3 .454 .397 .410 .472 .325 .377 .401 .330 .348 .420 .271 .322
ClimateGPT .443 .107 .168 .405 .096 .154 .255 .062 .097 .229 .053 .085

GPT 4o .478 .375 .403 .530 .301 .377 .384 .299 .319 .430 .237 .298
NuNER .620 .341 .438 - - - .464 .253 .326 - - -

GLiNER .490 .445 .465 - - - .391 .334 .359 - - -
0-shot

Llama-3.3

.385 .485 .410 .468 .391 .420 .306 .393 .327 .363 .307 .327
1-shot .426 .516 .443 .512 .411 .451 .344 .404 .350 .412 .325 .358

No PreRAG .426 .509 .439 .545 .392 .449 .340 .394 .342 .425 .291 .339
NER only .438 .556 .468 .510 .450 .471 .365 .454 .385 .423 .361 .383

Table 7: Paper-Level Evaluation of NER performance for the proposed framework and ablation studies, with the
best proposed scores underlined.

Relaxed (Partial) Relaxed (PostRAG) Strict (PostRAG)
Model P R F1 P R F1 P R F1

Proposed

Llama-3.3 .206 .301 .244 .060 .052 .056 .039 .034 .036
Llama-3.1 .174 .284 .216 .042 .034 .038 .026 .022 .024

DeepSeek-V3 .294 .282 .288 .059 .041 .049 .026 .018 .022
ClimateGPT .313 .216 .256 .090 .036 .052 .065 .026 .037

GPT 4o .132 .008 .015 .000 .000 .000 .000 .000 .000
0-shot

Llama-3.3
.198 .450 .275 .040 .051 .045 .013 .017 .015

1-shot .205 .335 .255 .050 .050 .050 .031 .031 .031
No PreRAG .192 .288 .230 .070 .053 .060 .044 .033 .038

Table 8: Relationship Performance with PostRAG and more relaxed metrics that allow partial match of source and
target entities.
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Relaxed (Partial) Relaxed Strict
label #GT P R F1 P R F1 P R F1

ComparedTo 922 .149 .104 .122 .107 .075 .088 .107 .075 .088
MeasuredAt 263 .094 .285 .141 .045 .137 .068 .045 .137 .068

TargetsLocation 1842 .163 .137 .149 .064 .054 .058 .064 .054 .058
Outputs 465 .137 .095 .112 .056 .039 .046 .056 .039 .046
UsedIn 242 .036 .140 .057 .020 .079 .032 .020 .079 .032
RunBy 35 .014 .057 .022 .014 .057 .022 .014 .057 .022

ProvidedBy 31 .012 .226 .023 .010 .194 .020 .010 .194 .020
ValidatedBy 14 .010 .143 .018 .010 .143 .018 .010 .143 .018
MountedOn 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 9: Relationship Detection Performance from Llama-3.3-70B by different relationship types.
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Annotation Guideline 
STAGE ONE: Named Entity Recognition 
1. Introduction 
Purpose of the Manual: 
This manual provides detailed instructions for annotating climate-related text or terms extracted from 
scientific literature. It aims to ensure consistency and accuracy in labelling climate entities, data, and 
models. 
Intended Audience: 
The guidelines are designed for annotators, including researchers, climate analysts, scientists, and 
students, who are familiar with climate science terminology and concepts. 
Scope of Annotations: 
The annotations focus on specific climate entities, including but not limited to: 

• Earth Systems: Land, ocean, atmosphere, and biosphere entities. 
• Climate Data: Specific datasets and measurements. 
• Climate Models: Global and regional climate models. 

 
2. Definitions and Examples of Key Climate Entities 
2.1 Earth Systems 
Land: 
Refers to a specific region or unit of land that can be described and modeled geographically within 
the framework of a climate model. Examples: 
• Continents/Regions: Africa, Ethiopia, United Kingdom (UK), high/mid-latitudes, tropics (tropical 

regions). 
• Land Features: Groundwater, river flow, runoff, streamflow, land cover, land use. 
• Specific Landmarks: Amazon Rainforest, Himalayas, United States Midwest (Corn Belt), 

Antarctica. 
Atmosphere: 
Refers to the layer of gases surrounding the Earth, which plays a vital role in shaping climate and 
weather patterns and can be modeled geographically within the framework of a climate model. 
Examples: 
• Atmospheric Layers: Troposphere, mesosphere. 
• Climate Phenomena: Temperature, precipitation, wind, evapotranspiration, clouds. 
• Weather Systems: Hadley Cells, Ferrel Cells, Trade Winds, Jet Streams, Monsoons, Intertropical 

Convergence Zone (ITCZ), El Niño-Southern Oscillation (ENSO), Tornadoes, Thunderstorms. 
Oceans: 
Refers to the large bodies of saltwater that cover about 71% of the Earth's surface and can be modeled 
geographically within the framework of a climate model. Examples: 
• Oceans/Seas: Pacific Ocean, Indian Ocean, Atlantic Ocean. 
• Oceanic Features: Gulf Stream, Kuroshio Current, Thermohaline Circulation. 
• Climate-Related Ocean Phenomena: Ocean acidification, marine heatwaves, coral reefs, upwelling 

zones, sea ice, continental shelves. 
2.2 Climate Data 
Refers to detailed, quantitative measurements or simulations of variables that describe various 
components of the Earth's climate system. Examples: 
• Datasets: CRU (Climate Research Unit), GPCC (Global Precipitation Climatology Centre), ERA5 

(ECMWF Reanalysis 5th Generation). 
• Climate Indices: HadCRUT, MERRA-2, GSMP3. 

1308

19



2.3 Climate Models 
Refers to computational models used to simulate the Earth's climate system. Examples: 
2.4 Global Climate Models (GCMs): CCSM4, CNRM-CM5, HadGEM2-ES. 
2.5 Regional Climate Models (RCMs): MICRO, ACCESS-ESM1.5. 
 
3. Key Tags or Labels 
Guidelines for Tagging: 

• Ensure the correct spelling and usage of tags. For example, use "Variables" consistently, not 
"Variable>" or other variations. 

• Review definitions carefully and apply tags or values strictly based on the provided examples 
and their accurate definitions. 

• If uncertain about the definition of an entity, verify its classification (e.g., variable, 
teleconnection) before tagging. 

 

Tag  Definition and examples  
Variable represents a specific measurable element or attribute of the climate system that is 

studied or monitored (e.g., cloud cover,  
temperature (i.e., surface air, ocean, or groundwater), precipitation, wind speed, 
vapor pressure, geopotential height, humidity (relative, specific) etc. 

Project refers to a coordinated effort or initiative aimed at investigating specific aspects of 
climate. Projects often involve multiple stakeholders and produce datasets, models, 
or assessments (e.g., Coupled Model Intercomparison Project Phase 6 (CMIP6)) 

Location refers to the geographic region or coordinates being studied or monitored. This can 
be global, regional, or local. Examples includes West Africa, Central Africa, East 
Africa, or Southern Africa; tropics or polar regions; high or mid latitudes regions, 
specific sites (such as the Amazon, Congo Rainforest or Sahara Desert etc). 

Model refers to computational tool used to simulate and predict climate processes and 
interactions in the Earth system (e.g., HadGEM3, WRF etc) 

Provider refers to the organization or agency responsible for creating, maintaining, or 
distributing climate data or tools (e.g., NASA (e.g., GISS for climate models, 
MERRA datasets); ECMWF (e.g., ERA5 reanalysis datasets); NOAA (e.g., NCEP 
datasets and climate services). 

Instrument refers to the device or tool used to measure climate variables. Instruments can be 
ground-based, airborne, or spaceborne. Examples includes Radiosondes (balloons 
for atmospheric measurements); Satellites (e.g., MODIS, GOES, or Sentinel); Rain 
gauges and anemometers for ground-level data. 

Event  An event is an occurrence or phenomenon in the Earth’s system that varies in 
temporal scale, ranging from short-term weather events lasting minutes to days to 
long-term climate events spanning decades or more. Examples include remote 
teleconnection such as ENSO, IOD, etc, droughts, floods, etc 

Weather event Weather events are meteorological occurrences that impact Earth's atmosphere and 
surface over short timescales (hours to days). 
Common Weather Events; Rainfall (e.g., Drizzle, showers, or steady rain), Snowfall 
(e.g., Light , or heavy ); Thunderstorms (e.g., storms with lightning, thunder, heavy 
rain, and hail), Wind Events (e.g., breezes, gusts, and strong winds), Cloud Cover 
(e.g., Clear skies, partly cloudy, overcast), Temperature Changes (Heatwaves or 
cold snaps), Fog and Mist, Frost, Dew etc.  

1309

20



Natural 
Hazard Natural hazards are phenomena with the potential to cause significant harm to life, 

property, and the environment. Teleconnection refers to large-scale patterns of 
climate variability that link weather and climate phenomena across vast geographic 
areas, influencing atmospheric conditions over long distances. Typical examples of 
hazards can be broadly classified into geophysical (e.g., earthquakes, volcanic 
eruptions, tsunamis, landslides), meteorological (e.g., cyclones or hurricanes or 
typhons, tornadoes, heatwaves), hydrological (e.g., floods, flash floods, drought, 
avalanches), biological (pandemics, plagues, animal borne diseases), and 
climatological (e.g., wildfires, frost, cold wave) categories. 

Ocean 
circulation 

Ocean circulation is the large-scale movement of water masses in the Earth's 
oceans, driven by wind, density differences, and the Coriolis effect, regulating 
Earth's climate. Key examples of ocean circulation, categorized into surface 
currents (Gulf Stream, Kuroshio Current, California Current, Canary Current, 
Equatorial Currents), deep ocean currents (North Atlantic Deep Water (NADW), 
Antarctic Bottom Water (AABW), Mediterranean Outflow Water, Indian Ocean 
Overturning), Global Ocean Circulation Systems (the Global Conveyor Belt, the 
Atlantic Meridional Overturning Circulation (AMOC).  

Teleconnection  Teleconnection is a large-scale patterns of climate variability that link weather and 
climate phenomena across vast distances. Examples includes El Niño-Southern 
Oscillation (ENSO; (El Niño or La Niña), North Atlantic Oscillation (NAO), Arctic 
Oscillation (AO), Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (IOD), 
Madden-Julian Oscillation (MJO), Atlantic Multi-Decadal Oscillation (AMO), 
Southern Annular Mode (SAM), Rossby Waves, Walker Circulation, Monsoonal 
Systems (i.e., Asian Monsoon and West African Monsoon) 

 

4. Example  
Example: "This annotation manual aims to provide consistent methods for annotating climate data. Our primary 
focus is 09bdb7d909ed6615760571a6aa14051133179aee.xmi" 
 
Task one: see the scientific literature with serial number above. 
Role of the annotator: The annotator is expected is to read each sentence carefully. Then, you are 
required to perform these tasks concurrently. 
1. Verify specific pre-annotated climate entries of interest in line 22: (E.g., “clouds”, “precipitation”, 

“ENSO”) and other scientific terms such as “mid-latitude continents”. (see details below for more 
information).  

2. Delete pre-annotated test that involves a “process” or “methods”, “tools”, frameworks, 
“instrument of measurements”, “units of measurement”, “temporal, threshold or range of values” 
(e.g., convective parameterisation, diurnal, monsoon (see details below for more information).  

3. Annotate missing but relevant “un-annotated” text of interest (E.g., Westerly Winds) (see details 
below on how to annotate).  
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Other Scientific Terms: You may find other climate variables such as temperature, wind speed or 
wind, sea surface temperature or SST; rainfall, cyclones, aerosols, etc 
 
Delete wrongly pre-annotated climate entities. These may include but not limited to methods, 
materials, processes, units of measurements, threshold, or range of values, etc 
Units of Measurement: (e.g., Celsius for temperature, mm for rainfall, km/h for wind speed). 
Thresholds and Ranges: Values or thresholds or ranges. E.g., 10°C for temperature or mm for 
precipitation." 
Standardization: standardizing annotations across climate entities. For example, temperature (delete 
prefix “minimum or min”, “maximum or max”, “nighttime”, “daytime” for temperature annotations 
to ensure consistency (e.g. minimum temperature to temperature). 
Other Scientific Terms: Phrases that are a scientific term but do not fall into any of the above classes 
E.g. diurnal, interannual,  
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STAGE TWO: Entity Linking  
1. Tag Selection Guidelines 
• Allowed Tags: Only the following values should be selected as tags. Do not type any tags 

manually; only select from the provided list: project, location, model, experiment, platform, 
instrument, provider, variable, weather event, natural hazard, teleconnection, ocean circulation 

• Spelling and Formatting: 
o Ensure all tags are in lowercase. 
o Do not use uppercase letters or modify the spellings in any way. 
o If you encounter any foreign or unrecognized tags, do not use them. 

2. Annotation Setup 
• Open two tables simultaneously: 

1. Annotation Table: The document or interface where you are performing the annotations. 
2. Knowledge Base Table: A reference table or database containing entity identifiers and 

their corresponding information. 
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• Use the knowledge base to search for and verify the correct identifiers for each entity. Make sure 
to check if the definitions and the path match the semantic meaning. 

3. Task Description 
• Objective: Link each entity in the text to its corresponding identifier in the knowledge base. 
• Steps: 

1. Identify the entity in the text. 
2. Double check the tag from the allowed list (e.g., location, variable, etc.). 
3. Search the knowledge base to find the correct identifier for the entity. 
4. Link the entity to its identifier in the annotation table. 

4. Quality Assurance 
• Double-check the spelling and formatting of tags. 
• Ensure that all entities are linked to the correct identifiers in the knowledge base. 
• If an entity cannot be found in the knowledge base, flag it for review rather than making an 

assumption. 
 

STAGE THREE: Relationship  
1. Relationship Types and Definitions 

Below are the relationship types to be annotated, along with their definitions and examples. Ensure 
that you correctly identify the source entity and target entity for each relationship. 

1. ComparedTo 
• Definition: The source entity is compared to the target entity. 
• Example: A climate model, experiment, or project (source entity) outputs data (target entity). 
• Template: [Source Entity] ComparedTo [Target Entity] 

2. RunBy 
• Definition: Experiments or scenarios (source entity) are run by a climate model (target 

entity). 
• Example: An experiment (source entity) is executed by a climate model (target entity). 
• Template: [Source Entity] RunBy [Target Entity] 

3. ProvidedBy 
• Definition: A dataset, instrument, or model (source entity) is created or managed by an 

organization (target entity). 
• Example: A dataset (source entity) is provided by a research organization (target entity). 
• Template: [Source Entity] ProvidedBy [Target Entity] 

4. ValidatedBy 
• Definition: The accuracy or reliability of model simulations (source entity) is confirmed by 

datasets or analyses (target entity). 
• Example: A climate model simulation (source entity) is validated by observational data 

(target entity). 
• Template: [Source Entity] ValidatedBy [Target Entity] 

5. UsedIn 
• Definition: An entity, such as a model, simulation tool, experiment, or instrument (source 

entity), is utilized within a project (target entity). 
• Example: A climate model (source entity) is used in a research project (target entity). 
• Template: [Source Entity] UsedIn [Target Entity] 

6. MeasuredAt 
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• Definition: A variable or parameter (source entity) is quantified or recorded at a geographic 
location (target entity). 

• Example: Temperature data (source entity) is measured at a specific weather station (target 
entity). 

• Template: [Source Entity] MeasuredAt [Target Entity] 
7. MountedOn 

• Definition: An instrument or measurement device (source entity) is physically attached or 
installed on a platform (target entity). 

• Example: A weather sensor (source entity) is mounted on a satellite (target entity). 
• Template: [Source Entity] MountedOn [Target Entity] 

8. TargetsLocation 
• Definition: An experiment, project, model, weather event, natural hazard, teleconnection, or 

ocean circulation (source entity) is designed to study, simulate, or focus on a specific 
geographic location (target entity). 

• Example: A climate model (source entity) targets the Amazon Rainforest (target entity). 
• Template: [Source Entity] TargetsLocation [Target Entity] 
 

2. Annotation Instructions 
1. Identify Entities: 

• Clearly identify the source entity and target entity in the text. 
• Ensure that both entities are correctly tagged (e.g., model, location, variable, etc.) before 

annotating the relationship. 
2. Select Relationship Type: 

• Choose the most appropriate relationship type from the list above based on the context. 
• Refer to the definitions and examples to ensure accuracy. 

3. Annotate the Relationship: 
• Use the provided templates to annotate the relationship between the source and target 

entities. 
• Double-check that the relationship type aligns with the context of the text. 

4. Verify Consistency: 
• Ensure that the relationship annotation is consistent with the definitions and examples 

provided. 
• If unsure, consult the knowledge base or flag the relationship for review. 

 

1314

25


	Introduction
	Related Work
	KGs & Taxonomy Integration
	LLMs for Domain-Specialized Extraction
	Retrieval-Augmented Generation

	Method Overview
	Stage 1: Taxonomy Integration
	Aggregate Domain-related Taxonomies
	Enhance Definitions
	Indexing for Dynamic Alignment

	Stage 2: Information Extraction via LLM-RAG Synergy
	LLM Prompt Construction
	Entity & Relationship Extraction
	Output Validation (PostRAG)

	Stage 3: Dynamic KG Assembly & Maintenance
	Domain-Specific Annotation Pipeline
	Experiments
	Evaluation Protocol
	Backbone Model Comparison
	Ablation Studies

	Results and Discussion
	Ablation Studies
	Information Extraction Performance

	Conclusion
	Limitations
	Appendix
	Linking with WikiData
	Prompt
	Entity extraction prediction
	Model selection choice
	NER performance per entity type
	NER performance on paper level
	Relationship Performance (Relaxed)
	Relationship performance by tag
	Annotation Guidelines


