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ABSTRACT

To make safe and informed decisions, autonomous driving systems can benefit
from the capability of predicting the intentions and trajectories of other agents on
the road in real-time. Trajectory forecasting for traffic scenarios has seen great
strides in recent years in parallel with advancements in attention-based network
architectures and robust, large-scale benchmarks. However, such models are be-
coming larger, resource-hungry, and less portable as state-of-the-art pushes for
larger-scale of road networks and real-world complexity. Previous works that
achieve state-of-the-art results predict future trajectories as a series of waypoints
in Euclidean space, yet do not frame learning through the lenses of classical kine-
matic models that describe the motion of moving vehicles. Instead of leaving the
network to learn the inherent dynamics of traffic agents, we can instead leverage
kinematic models of vehicle dynamics as priors to guide neural networks toward
physics-informed solutions earlier in learning. By combining existing knowledge
of how agents move with powerful deep learning techniques, agents learn trajecto-
ries that are not only more interpretable but also more plausible in terms of vehicle
kinematic constraints. In this work, we investigate the use of different kinematic
formulations as learning priors for trajectory forecasting tasks and evaluate how
each affects learning both empirically and analytically. In addition, we take ad-
vantage of time integration in order to derive the original output format of future
trajectory coordinates, enabling the use of existing architectures and complement-
ing previous work. This approach is easy to implement for trajectory forecasting
and achieves a considerable performance gain on large-scale benchmarks.

1 INTRODUCTION

Rapid improvements in deep learning research directly bolster improvements on learning-based
tasks in autonomous driving. In the last five years, perception and planning models for autonomous
driving have not only seen great progress but also scaled well in size. For example, NVIDIA’s end-
to-end driving network (Bojarski et al., 2016) in 2016, contained about 250 thousand parameters
on a convolutional neural network (CNN) architecture, while vision transformer (ViT) based model
TransFuser (Chitta et al., 2022) appeared in 2022, now has over 168 million parameters! Simi-
lar patterns have emerged for other autonomous driving tasks, such as trajectory forecasting and
small-scale agent simulation, where model size and complexity continue to grow. As model sizes
become bigger and performance increases, so does the complexity of learning the basics of vehicle
dynamics, where most vehicles travel in relatively straight lines behind the vehicle directly in front.

Since training a deep neural network is costly, it would be beneficial on both resource consump-
tion and technique generalization to incorporate the use of existing dynamics models in the training
process. Kinematic models have been widely used in robotics and simulation research for solv-
ing classical robot constraint and path planning problems. These models explicitly describe how
changes in the input parameters influence the output of the dynamical system. These input param-
eters are often provided by either the robot policy as an action, or by a human in direct interaction
with the robot, e.g. steering, throttle, and brake for driving a vehicle. For tasks modeling decision-
making, such as trajectory forecasting of traffic agents, modeling the input parameters may be more
descriptive and interpretable than modeling the output directly. Moreover, kinematic models relate
the input actions directly to the output observation; thus, any output of the kinematic model should,
at the very least, be physically feasible in the real world.
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We hypothesize that learning first- or second-order terms via a differentiable kinematic model for tra-
jectory forecasting will lead to better generalization of existing methods in various settings, whether
it is smaller models, smaller datasets, or in the presence of noise.

In this paper, we present a method for incorporating car-following models as priors into modern tra-
jectory forecasting network architectures. By leveraging the advantages of both network complexity
and simplicity of traffic equations, the network can prioritize learning the complex patterns of human
behavior on top of basic vehicle dynamics, which can be directly modeled with kinematics.

In summary, the main contributions of this work include:

1. A simple and effective method for incorporating kinematic priors into probabilistic models
for trajectory forecasting (Section 4), which boosts performance (Section 5);

2. Results and analysis on three different kinematic formulations: velocity components, ac-
celeration components, and speed + heading components (Section 4.2).

3. Analytical error bounds for the first and second-order kinematic formulations (section 4.3).

2 RELATED WORKS

2.1 TRAJECTORY FORECASTING FOR TRAFFIC

Traffic trajectory forecasting is a popular task where the goal is to predict the short-term future tra-
jectory of multiple agents in a traffic scene. Being able to predict the future positions and intents
of each vehicle provide context for other modules in autonomous driving, such as path planning.
Large, robust benchmarks such as the Waymo Motion Dataset (Ettinger et al., 2021; Chen et al.,
2023), Argoverse (Wilson et al., 2021), and the NuScenes Dataset (Caesar et al., 2020) have pro-
vided a standardized setting for advancements in the task, with leaderboards showing clear rankings
for state-of-the-art models. Amongst the top performing architectures, most are based on Trans-
formers for feature extraction (Shi et al., 2022; Qian et al., 2023; Liu et al., 2021; Zhou et al., 2023;
Ngiam et al., 2021; Girgis et al., 2021). Current SOTA models also model trajectory prediction
probabilistically, as inspired by the use of GMMs in Multipath (Chai et al., 2020b).

One common theme amongst all state-of-the-art, however, is that none employ elements of classi-
cal kinematics in combination with powerful attention-based networks. In our work, we present a
method for use of kinematic priors which can be complemented with any previous work in trajectory
forecasting. Our contribution can be implemented in any of the SOTA methods above, since it is a
simple reformulation of the task with no additional information needed.

2.2 PHYSICS-BASED PRIORS FOR LEARNING

Model-based learning has shown to be effective in many applications, especially in robotics and
graphics. There are generally two approaches to using models of the real world: 1) learning a model
of dynamics via a separate neural network (Deisenroth & Rasmussen, 2011; Rempe et al., 2022;
Lutter et al., 2019; Greydanus et al., 2019; Janner et al., 2019), or 2) using existing models of the
real world via differentiable simulation (de Avila Belbute-Peres et al., 2018; Degrave et al., 2019;
Geilinger et al., 2020; Qiao et al., 2020; Freeman et al., 2021; Son et al., 2023; Xu et al., 2021; Liang
et al., 2019).

In our method, we pursue the latter method. Since we are not modeling complex systems such
as cloth or fluid, simulation of traffic agent states require only a simple, fast, and differentiable
update. In addition, since the kinematic models do not describe interactions between agents, the
complexity of the necessary model is greatly reduced. Many current SOTA trajectory prediction
models are designed intentionally to study the relationships between agents via self-attention; thus,
in our method, we leave the complex tasks to the network, and model the simple tasks (e.g., how a
vehicle moves forward) to the kinematic model.
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a) Generic Prediction Scheme b) Prediction Scheme with Kinematic Prior
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Figure 1: Generic trajectory prediction versus prediction with a kinematic prior. In generic
prediction schemes (a), the model will directly predict trajectory positions across time. With a
kinematic prior (b), the model predicts first or second-order terms instead of the positions directly,
then obtain positions via time integration following the kinematic model.

3 KINEMATICS OF TRAFFIC AGENTS

Our method borrows concepts from simulation and kinematics. In a traffic simulation, each vehicle
holds some sort of state consisting of position along the global x-axis x, position along the global
y-axis y, velocity v, and heading θ. This state is propagated forward in time via a kinematic model
describing the constraints of movement with respect to some input acceleration a and steering angle
δ actions. The Bicycle Model, a classical and popularly utilized in path planning for robots, describes
the kinematic dynamics of a wheeled agent given its length L:

d

dt

x
y
θ
v

 =

ẋ
ẏ

θ̇
v̇

 =

v · cosθ
v · sinθ
v·tanθ

L
a


We refer to this model throughout our method to derive the relationship between predicted distribu-
tions of kinematic variables and the corresponding distributions of positions x and y for the objective
trajectory prediction task.

We use Euler time integration in forward simulation of the kinematic model to obtain future posi-
tions. As we will show later, explicit Euler time integration is simple for handling Gaussian distri-
butions, despite being less precise than higher-order methods like Runge-Kutta. In other words, an
agent’s state is propagated forward from timestep t to t + 1 with the following, given a timestep
interval ∆t:

xt+1

yt+1

θt+1

vt+1

 =

xt

yt
θt
vt

+

ẋ
ẏ

θ̇
v̇

 ·∆t

4 METHODOLOGY

In this section, we discuss in detail four different kinematic formulations as priors for current trajec-
tory forecasting methods.

4.1 PROBABILISTIC TRAJECTORY FORECASTING

Trajectory forecasting is a popular task in autonomous systems where the objective is to predict the
future trajectory of multiple agents for T total future timesteps, given a short trajectory history. Re-
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cently, state-of-the-art methods (Chai et al., 2020a; Varadarajan et al., 2022; Wang et al., 2023; Shi
et al., 2022) utilize Gaussian Mixture Models (GMMs) to model the distribution of potential future
trajectories, given some intention waypoint or destination of the agent and various extracted agent
or map features. Each method utilizes GMMs slightly differently, however, all methods use GMMs
to model the distribution of future agent trajectories. We apply a kinematic prior to the GMM head
directly, thus our method is agnostic to the design of the learning framework. Instead of predicting a
future trajectory deterministically, current works instead predict a mixture of Gaussian components
(µx, µy, σx, σy, ρ) describing the mean µ and standard deviation σ of x and y, in addition to a cor-
relation coefficient ρ and Gaussian component probability p. The standard deviation terms, σx and
σy , along with correlation coefficient ρ, parameterize the covariance matrix of a Gaussian centered
around µx and µy .

Ultimately, the prediction objective is, for each timestep, to maximize the log-likelihood of the
ground truth trajectory waypoint (x, y) belonging to the position distribution outputted by the GMM:

L = − log ph − logNh(x− µ̂x, σ̂x; y − µ̂y; ρ)

This formulation assumes that distributions between timesteps are conditionally independent, sim-
ilar to (Chai et al., 2020a) and its derivatives. Alternatively, it’s possible to implement predic-
tions with GMMs in an autoregressive manner, where trajectory distributions are dependent on the
position of the previous timestep. The drawback of this is the additional overhead of computing
conditional distributions with recurrent architectures, rather than jointly predicting for all timesteps
at once. In the following section, we derive the relationship between each timestep distribution
through several kinematic formulations, then use Euler time integration to apply transformations to
distributions at all timesteps. In other words, we use conditionally independent kinematic parameter
distributions to derive conditionally dependent position distributions.

4.2 KINEMATIC PRIORS FOR GAUSSIAN MIXTURE MODEL PREDICTIONS

The high-level idea for kinematic priors is simple: instead of predicting the distribution of positions
at each timestep, we can instead predict the distribution of first-order or second-order kinematic
terms and then use time integration to derive the subsequent position distributions.

Linear 
Approximation
𝒙 ∼ 𝑵(𝝁, 𝚺)

Actual Distribution 
of Positions at Next 

Timestep

Figure 2: Linear approximation of position distri-
butions via kinematic prior.

The intuition for enforcing kinematic priors
comes from the idea that even conditionally in-
dependent predicted trajectory waypoints have
inherent relationships with each other depend-
ing on the state of the agent, even if the neu-
ral network does not model it. By propagating
these relationships across the time horizon, we
focus optimization of the network in the space
of kinematically feasible trajectories. We con-
sider three different formulations: 1) with ve-
locity components vx and vy , 2) with accelera-
tion components ax and ay , and finally 3) with
speed s = ∥v∥ and heading θ.

Additionally, we derive the analytical form with
direction-less acceleration a = ∥a∥ and steer-
ing angle δ in Section A.1 of the Appendix.

4.2.1 FORMULATION 1: VELOCITY COMPONENTS

The velocity component formulation is the simplest kinematic formulation, where the GMMs predict
the distribution of velocity components vx and vy for each timestep t.

Our goal is to derive (µt+1
x , µt+1

y , σt+1
x , σt+1

y ) given (µt
vx
, µt

vy , σ
t
vx , σ

t
vy
).

In the deterministic setting, the position at the next timestep can be generated via Euler time inte-
gration given a time interval (in seconds) ∆t, which varies depending on the dataset:

xt+1 = xt + vtx ·∆t
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If we consider both x and v to be Gaussian distributions rather than scalar values, we can repre-
sent the above in terms of distribution parameters below with the reparameterization trick used in
Variational Autoencoders (VAEs) (Kingma & Welling, 2022):

Nxt+1 = (µt
x + σt

x · ϵx) + (µt
vx + σt

vx · ϵv) ·∆t

where ϵx, ϵv ∼ N (0, 1). By grouping deterministic (without ϵ) and perturbed terms (with ϵ), we
obtain the reparameterized form of the Gaussian distribution describing xt+1:

Nxt+1 = (µt
x + µt

vx ·∆t) + (σt
x · ϵx + σt

vx ·∆t · ϵv)
Nyt+1 = (µt

y + µt
vy ·∆t) + (σt

y · ϵy + σt
vy ·∆t · ϵv)

µt+1
x = µt

x + µt
vx

·∆t, σt+1
x = σt

x + σt
vx ·∆t

µt+1
y = µt

y + µt
vy ·∆t, σt+1

y = σt
y + σt

vy ·∆t

Also, for the first prediction timestep, we consider the starting trajectory position to represent a
distribution with standard deviation equal to zero.

This Gaussian form is also intuitive as the sum of two Gaussian random variables is also Gaussian.
Since this formulation is not dependent on any term outside of timestep t, distributions for all T
timesteps can be computed with vectorized cumulative sum operations. We derive the same distri-
butions in the following sections in a similar fashion with different kinematic parameterizations.

Linear interpolation based on timestep. In addition to the three formulations described above, we
also show results for Formulation 1 (velocity components) with linear interpolation of trajectories
based on timestep. Although the Waymo dataset samples trajectories at 10hz, or 10 frames per
second, which is extraordinarily granular for real world measurements, this sampling rate may also
produce accumulating errors when used in simulation problems (∆t = 0.1). We implement an
alternative version of Formulation 1 where predicted velocities are interpolated to smaller “sub-
timesteps” where ∆t = 0.01.

4.2.2 FORMULATION 2: ACCELERATION COMPONENTS

Following directly from the first formulation above, we now consider the second-order case where
the GMM predicts acceleration components. Here, our goal is to derive (µt+1

x , µt+1
y , σt+1

x , σt+1
y )

given (µt
ax
, µt

ay
, σt

ax
, σt

ay
). The deterministic relationship between acceleration components ax and

ay with vx and vy via Euler time integration is simply

vt+1
x = vtx + atx ·∆t

vt+1
y = vty + aty ·∆t

Following similar steps to Formulation 1, we obtain the parameterized distributions of vx and vy:

µt+1
vx = µt

vx + µt
ax

·∆t, σt+1
vx = σt

vx + σt
ax

·∆t

µt+1
vy = µt

vy + µt
ay

·∆t, σt+1
vy = σt

vy + σt
ay

·∆t

When computed for all timesteps, we now have T total distributions representing vx and vy , which
then degenerates to Formulation 1 in Section 4.2.1.

4.2.3 FORMULATION 3: SPEED AND HEADING

Now, we derive the approximated analytical form of position distributions according to first-order
dynamics of the Bicycle Model, speed s = ∥v∥ and heading θ. Similarly as before, our goal is to
derive (µt+1

x , µt+1
y , σt+1

x , σt+1
y ) given (µt

s, µ
t
θ, σ

t
s, σ

t
θ). Deterministically, we can get the update for

xt+1 and yt+1 with the following relation from the Bicycle Model:[
xt+1

yt+1

]
=

[
xt + st · cos θ ·∆t
yt + st · sin θ ·∆t

]
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When representing this formulation in terms of Gaussian parameters, we notice that the functions
cos(·) and sin(·) applied on Gaussian random variables do not produce Gaussians:[

Nxt+1

Nyt+1

]
=

[
(µt

x + σt
s · ϵx) + (µt

s + σt
s · ϵs) · cos(µt

θ + σt
θ · ϵx) ·∆t

(µt
y + σt

s · ϵy) + (µt
s + σt

s · ϵs) · sin(µt
θ + σt

θ · ϵy) ·∆t

]
To amend this, we instead replace cos(·) and sin(·) with linear approximations T (·) evaluated at
µθ.

Tsin(θ) = sin(µθ) + cos(µθ) · (θ − µθ)

Tcos(θ) = cos(µθ)− sin(µθ) · (θ − µθ)

We now derive the formulation of the distribution of positions with the linear approximations in-
stead: [

Nxt+1

Nyt+1

]
=

[
(µt

x + σt
x · ϵx) + (µt

s + σt
s · ϵs) · Tcos(µ

t
θ + σt

θ · ϵx) ·∆t
(µt

y + σt
y · ϵy) + (µt

s + σt
s · ϵs) · Tsin(µ

t
θ + σt

θ · ϵy) ·∆t

]
=

[
(µt

x + σt
x · ϵx) + (cos(µθ)− sin(µθ) · σθ · ϵθ) · (µs + σs · ϵs) ·∆t

(µt
y + σt

y · ϵy) + (sin(µθ) + cos(µθ) · σθ · ϵθ) · (µs + σs · ϵs) ·∆t

]

=



 µt
x + (µs · cos(µθ) ·∆t)

+σt
x · ϵx − (µs · σθ · sin(µθ) ·∆t) · ϵθ + (σs · cos(µθ) ·∆t) · ϵs

−(σs · σθ · sin(µθ) ·∆t) · ϵs · ϵθ

 µt
y + (µs · sin(µθ) ·∆t)

+σt
y · ϵy + (µs · σθ · cos(µθ) ·∆t) · ϵθ + (σs · sin(µθ) ·∆t) · ϵs

+(σs · σθ · cos(µθ) ·∆t) · ϵs · ϵθ





Notice that the last term of both entries involve the product of two univariate Gaussian random
variables. Since both ϵs, ϵθ ∼ N (0, 1), we know that the product density of ϵsϵθ produces an
unnormalized Gaussian PDF with mean 0 and variance 1√

2
, per the proof from (Bromiley, 2003).

Thus, we treat the last terms with ϵsϵθ as belonging to a third scaled standard normal distribution,
1√
2
ϵγ . The resulting approximated distributions of position following this becomes, approximately,

µt+1
x = µt

x + µs · cos(µθ) ·∆t

σt+1
x = σt

x − µs · σθ · sin(µθ) ·∆t+ σs · cos(µθ) ·∆t− 1√
2
(σs · σθ · sin(µθ) ·∆t)

µt+1
y = µt

y + µs · sin(µθ) ·∆t

σt+1
y = σt

y + µs · σθ · cos(µθ) ·∆t+ σs · sin(µθ) ·∆t+
1√
2
(σs · σθ · cos(µθ) ·∆t)

4.3 ERROR BOUND OF LINEAR APPROXIMATION.

We analytically derive the error bound for the linear approximation for f(x) = cos(x) and f(x) =
sin(x) functions at µθ. Since the Taylor series expansion of both functions are alternating, the error
is bounded by the term representing the second order derivative:

Rcos
2 (µθ + σθ · ϵθ) ≤

∣∣∣∣− cos(µθ)

2!

∣∣∣∣ (µθ + σθ · ϵθ − µθ)
2 =

∣∣∣∣− cos(µθ)

2

∣∣∣∣σ2
θ · ϵ2θ ≤ σ2

θ

2
· ϵ2θ

Rsin
2 (µθ + σθ · ϵθ) ≤

∣∣∣∣− sin(µθ)

2!

∣∣∣∣ (µθ + σθ · ϵθ − µθ)
2 =

∣∣∣∣− sin(µθ)

2

∣∣∣∣σ2
θ · ϵ2θ ≤ σ2

θ

2
· ϵ2θ

For both functions, the Lagrange error R(x) = f(x)− T (x) is bounded by R(x) ≤ σ2
θ

2 · ϵ2θ ≤ σ2
θ

2 .

5 RESULTS

In this section, we show experiments which highlight the effect of kinematic priors on performance.
We implement kinematic priors on state-of-the-art method Motion Transformer (MTR) Shi et al.
(2022), which serves as our baseline method.
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We train all experiments on eight RTX A5000 GPUs, with 64 GB of memory and 32 CPU cores.
Experiments on the full dataset are trained for 30 epochs, while experiments with the smaller dataset
are trained for 50 epochs. Additionally, we downscale the model from its original size of 65 million
parameters to 2 million parameters and reproduce baseline results in our experiments. More details
on training hyperparameters can be found in Table 8 of the appendix.

5.1 PERFORMANCE ON WAYMO MOTION PREDICTION DATASET

We evaluate the baseline model and all kinematic formulations on the Waymo Motion Prediction
Dataset (Ettinger et al., 2021). The Waymo dataset consists of over 100,000 segments of traffic,
where each scenario contains multiple agents of three classes: vehicles, pedestrians, and cyclists.
The data is collected from high-quality, high-resolution sensors which sample traffic states at 10hz.
The objective is, given 1 second of trajectory history for each vehicle, predict trajectories for the
next 8 seconds. For simplicity, we use the bicycle kinematic model for all three classes and leave
discerning between the three, especially for pedestrians, to future work.

We evaluate our model’s performance on Mean Average Precision (mAP), Minimum Average Dis-
placement Error (minADE), minimum final displacement error (minFDE), and Miss Rate, similarly
to (Ettinger et al., 2021). We reiterate their definitions below for convenience.

• Mean Average Precision (mAP): mAP is computed across all classes of trajectories. The
classes include straight, straight-left, straight-right, left, right, left u-turn, right u-turn, and
stationary. For each prediction, one true positive is chosen based on the highest confi-
dence trajectory within a defined threshold of the ground truth trajectory, while all other
predictions are assigned a false positive. Intuitively, the mAP metric describes prediction
precision while accounting for all trajectory class types. This is beneficial especially when
there is an imbalance of classes in the dataset (e.g., there may be many more straight-line
trajectories in the dataset than there are right u-turns).

• Minimum Average Displacement Error (minADE): The average L2 norm between the
ground truth and the closest prediction; minADE(G) = mini

1
T

∑T
t=1 ∥ŝtG − sitG∥2.

• Minimum final displacement error (minFDE): The L2 norm between only the positions at
the final timestep, T ; minFDE(G) = mini ∥ŝTG − siTG ∥2.

• Miss Rate: The number of predictions lying outside a reasonable threshold from the ground
truth. The miss rate first describes the ratio of object predictions lying outside a threshold
from the ground truth to the total number of agents predicted.

We show results for the Waymo Motion dataset in Table 1, where we compared the % difference
in performance compared to the baseline for each formulation. From these results, we observe
improvement over the baseline with Formulation 1, which involves the velocity components. Inter-
estingly, there were less noticeable differences with other formulations when models were trained on
the full dataset, though Formulation 1 achieving a 2% increase in performance on the mAP metric.

We also consider the effects of suboptimal settings for trajectory prediction, as we hypothesize that
learning first or second-order terms provide information when data cannot. This is also motivated
by problems in the real world, where sensors may not be as high-quality or specific traffic scenarios
may not be so abundantly represented in data.
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Table 1: % difference in performance for vehicles on each kinematic formulation versus SOTA
baseline on Waymo Motion Dataset, Marginal Trajectory Prediction. We compare our model
against the state-of-the-art architecture, Motion Transformer Shi et al. (2022). In our experiments,
we downscale the backbone model size from 65 million parameters to 2 million parameters. From
the results, we find that Formulation 1 (velocity components) provides the greatest and most
consistent boost in performance across most metrics over the baseline that does not include
kinematic priors.

Method (∆%) mAP↑ (∆%) minADE↓ (∆%) minFDE↓ (∆%) MissRate↓
Baseline 0 0 0 0

Ours + Formulation 1 2.376 -0.3444 -0.9102 -0.3853
Ours + Formulation 2 -0.2066 1.1069 0.1138 -0.1651
Ours + Formulation 3 -1.7045 0.246 1.0838 3.1921

Ours + Formulation 1 + Interpolation 0.9039 2.226 -0.7365 -0.4403

5.2 PERFORMANCE ON A SMALLER DATASET SETTING

We examine the effects of kinematic priors on a smaller dataset size. This is motivated by the fact
driving datasets naturally have an imbalance of scenarios, where many samples are representative
of longitudinal straight-line driving or stationary movement, and much less are representative of
extreme lateral movements such as U-turns. Thus, large and robust benchmarks like the Waymo,
Nuscenes, and Argoverse datasets are necessary for learning good models.

However, large datasets are not always accessible depending on the setting. For example, traffic
laws, road design, and natural dynamics vary by region. It would be infeasible to expect the same
scale and robustness of data from every scenario in the world, and thus trajectory forecasting will
run into settings with less data available.

We train the baseline model and all formulations on only 1% of the original Waymo dataset and
benchmark their performance on 100% of the evaluation set in Table 2. All experiments were trained
over 50 epochs. In the small dataset setting, we observe that providing a kinematic prior in any form
improves performance for minimum final displacement error (minFDE). Additionally, we observe
better performance across all metrics for formulations 1, 2, and 1 with interpolation. Overall, formu-
lation 1 provides the greatest boost in performance, with a nearly 12% improvement in mAP,
12.5% improvement in minADE, 27.8% improvement in minFDE, and 8.3% improvement in
Miss Rate.

Compared to the results from Table 1, the effects of kinematic priors in learning are much more
pronounced. Since kinematic priors naturally relate the position at one timestep to the position
at the next, we believe that the performance boost can be attributed to this natural relationship.
In backpropagation, optimization of one position further into the time horizon directly influences
predicted positions at earlier timesteps via the kinematic model. Without the kinematic prior, the
relation between timesteps may be implicitly related through neural network parameters. When the
model lacks data to form a good model of how an agent moves through space, the kinematic model
can compensate to model such simple relationships.

Table 2: % difference in performance on vehicles for each kinematic formulation versus SOTA
in a small dataset setting. Additionally, we run experiments to examine the effect of kinematic
priors on settings with less data available. We train models on 1% of the original Waymo Motion
Dataset and use the same full evaluation set as that in Table 1. From these results, we see more
pronounced improvements in performance metrics in settings with significantly less data available,
with a nearly 12% performance gain on the main benchmark metric (mAP) over the baseline.

Method (∆%) mAP↑ (∆%) minADE↓ (∆%) minFDE↓ (∆%) MissRate↓
Baseline 0 0 0 0

Ours + Formulation 1 11.8444 -12.528 -27.1767 -8.3266
Ours + Formulation 2 6.7767 -5.8432 -27.7645 -7.2791
Ours + Formulation 3 -5.3035 30.6413 -20.5494 -0.8327

Ours + Formulation 1 + Interpolation 4.1839 -7.3498 -23.8817 -4.808
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5.3 EFFECT ON ROBUSTNESS

We also show how kinematic priors can influence performance in the presence of noise. This is in-
spired by the scenario where sensors may have a small degree of noise associated with measurements
dependent on various factors, such as weather, quality, interference, etc.

We evaluate the models from Table 3 when input trajectories are perturbed by standard normal noise
nϵ ∼ N (0, 1); results for performance degradation are shown in Table 3.

We compute the entries of Table 3 by measuring the % of degradation of the perturbed evaluation
from the corresponding original clean evaluation. Interestingly, we find that Formulation 2 from
Section 4.2.2 with acceleration components preserves the most performance. This may be due to
that second-order terms like acceleration are less influenced by perturbations on position. Addition-
ally, distributions of acceleration are typically centered around zero regardless of how position is
distributed (Albaba & Yildiz, 2022).

Table 3: Degradation of performance in the presence of noise. We also compare the robustness
of each method by measuring the impact on performance in the presence of noise. In the table, we
compute the % change in performance between perturbed evaluation and clean evaluation, relative
to each method. Additionally, we omit results for Formulation 1 with interpolation, as the noise
added would not be proportional to the others for fair comparison. We observe that Formulation
2, with acceleration components, offers the greatest relative boost in robustness over other
formulations.

Method (∆%) mAP↑ (∆%) minADE↓ (∆%) minFDE↓ (∆%) MissRate↓
Baseline -4.9587 4.7965 1.6527 3.5223

Ours + Formulation 1 -4.9445 3.5542 1.4322 2.7072
Ours + Formulation 2 -3.9596 2.4693 1.2800 2.7012
Ours + Formulation 3 -4.7294 3.3984 1.3447 2.5600

6 DISCUSSION AND CONCLUSION

In this paper, we present a simple and easy-to-implement method for including kinematic priors
in probabilistic trajectory forecasting methods. Kinematic priors can also be trivially implemented
for deterministic methods where linear approximations are not necessary. With no additional over-
head, kinematic priors not only show improvement in models trained on robust datasets but also
in suboptimal settings with small datasets and noisy trajectories, with up to 12% improvement in
smaller datasets and 1% less performance degradation in the presence of noise for the full Waymo
dataset. For overall performance improvement, we find Formulation 1 in Section 4.2.1 with velocity
components to be the most beneficial and well-rounded to prediction performance.

We also observe that when there is large-scale data to learn a good model of how vehicles move,
the effects of kinematic priors are less pronounced. This can be observed from the less obvious
improvements over the baseline in Table 1 compared to Table 2. We conjecture that model com-
plexity and dataset size will eventually out-scale the effects of the kinematic prior. With enough
resources and high-quality data, trajectory forecasting models will learn to “reinvent the steering
wheel”, or implicitly learn how vehicles move via the complexity of the neural network. For practi-
cal autonomous systems, portability and adaptability are important problems to consider aside into
the future. We hope that kinematic priors can be considered in trajectory forecasting and simulation
as deployment ventures past well-represented urban scenarios to suboptimal settings, whether it is
with noisy sensors, smaller datasets to adapt from, or downscaled models for inference speed and
portability.

For future work, we would like to further explore how kinematic priors can be used for transfer
learning between domains, such as transfer from right-handed traffic to left-handed traffic. While
distributions of trajectories may change in distribution and scale depending on the environment,
kinematic parameters, especially on the second order, will remain more constant between domains.
For example, while the magnitude of trajectory data may scale based on the speed of the vehicle
and road scenario, acceleration may have nicer properties by being centered around zero and only
varying in scale between scenarios.
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