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ABSTRACT

Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation
(DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives
to online Reinforcement Learning from Human Feedback (RLHF) algorithms
such as Proximal Policy Optimisation (PPO) for aligning language models to hu-
man preferences, without the need for explicit reward modelling. These methods
generally aim to increase the likelihood of generating better (preferred) comple-
tions while discouraging worse (non-preferred) ones, while staying close to the
original model’s behaviour. In this work, we explore the relationship between
completion likelihood and model performance in state-of-the-art DAAs, and iden-
tify a critical issue of likelihood over-optimisation. Contrary to expectations, we
find that higher likelihood of better completions and larger margins between better
and worse completion likelihoods do not necessarily lead to better performance,
and may even degrade it. Our analysis reveals that while higher likelihood cor-
relates with better memorisation of factual knowledge patterns, a slightly lower
completion likelihood tends to improve output diversity, thus leading to better
generalisation to unseen scenarios. Moreover, we identify two key indicators that
signal when over-optimised output diversity begins to harm performance: De-
creasing Entropy over Top-k Tokens and Diminishing Top-k Probability Mass.
Our experimental results validate that these indicators are reliable signs of de-
clining performance under different regularisation schemes, helping prevent over-
optimisation and improve alignment with human preferences.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023;
Roziere et al., 2023; Dubey et al., 2024; Land & Bartolo, 2024) have significantly expanded their
capabilities, enabling applications such as code generation, tool use, and interactive communication.
As LLMs become increasingly powerful, the challenge of aligning them with human preferences has
grown in importance. Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation
(DPO) (Rafailov et al., 2023) and Identity Preference Optimisation (IPO) (Azar et al., 2024), have
emerged as alternatives to Reinforcement Learning from Human Feedback (RLHF) (Ziegler et al.,
2019; Bai et al., 2022) for training LMs on human preference data. These methods aim to bypass
the traditional RLHF pipeline by directly optimising the policy without explicit reward modelling.

DAAs are designed to increase the likelihood of better completions while reducing the likelihood of
worse ones, all while staying close to the original model’s behaviour. However, a known issue with
standard DAAs is that they may decrease the likelihood of better completions as long as the relative
probability between better and worse completions increases (Rafailov et al., 2023; Pal et al., 2024).
Recent research has sought to address this by focusing on maintaining a high likelihood for better
completions (Pal et al., 2024). For example, several works (Pang et al., 2024; Hong et al., 2024),
including LLAMA-3.1 (Dubey et al., 2024) and NVIDIA NEMOTRON (Adler et al., 2024), introduce
a scaled negative log-likelihood (NLL) loss on better completions, aiming to stabilise DAA training
by preserving the desired formatting and preventing a drop in log probability for better completions.
Despite these efforts, key research questions remain: Is it truly necessary to maintain a higher
likelihood of better completions, and aim for a larger likelihood margin between better and worse
completions? And if not, How can we strike a balance for completion likelihood to maximise model
performance in terms of alignment with human preferences?
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Figure 1: Mean Log Likelihood (LLH) of Better Completion vs Win Probability (Left) and
Average Number of Tokens in Model Outputs (Right). We report 7B and 35B model results on the
ULTRAFEEDBACK dataset. Our results indicate that: (1) A higher likelihood for better completions
does not necessarily translate to higher win probability; and (2) There is no obvious correlation
between the average number of tokens in model outputs and the likelihood of better completions.

In this work, we first explore the relationship between completion log-likelihood and model per-
formance in state-of-the-art DAAs (§3). Specifically, we find that neither a higher likelihood of
preferred completions nor larger margins between better and worse completion likelihoods neces-
sarily lead to better performance (measured by win probability) and may even degrade it (§4.2), as
shown in Figure 1. Furthermore, our experiments demonstrate that optimising both factors simulta-
neously also does not guarantee improvement. Our results reveal that while a higher likelihood of
better completion generally has better memorisation of factual knowledge patterns, an excessively
high likelihood can result in over-optimisation. In contrast, slightly lower completion likelihood
tends to improve output diversity, thus leading to better generalisation to unseen scenarios (§4.3).

While avoiding an overly high completion likelihood tends to improve model diversity and gener-
alisation, it is crucial to strike a balance between diversity and maintaining a high likelihood for
desired outputs preferred by humans. To this end, our study outlines two key indicators that signal
when overly generating diverse outputs begins to negatively impact model performance (§4.4): (1)
Decreasing Entropy over Top-k Tokens1: As the likelihood of better completions decreases during
training, an increasing entropy suggests that tokens within better completions still have higher prob-
abilities relative to other tokens in the Top-k, though the gap is narrowing. However, a decreasing
entropy over the Top-k tokens is a warning sign that the model is assigning disproportionately low
probabilities to tokens within better completions, allowing other tokens to rise in probability, which
may lead to outputs that are not aligned with human preferences. Notably, a reversed entropy trend is
a particularly strong indicator of over-optimised diversity; and (2) Diminishing Top-k Token Prob-
ability Mass: This occurs when the probability mass concentrated on the top k most likely tokens
declines, resulting in more random outputs and a higher likelihood of selecting tokens outside the top
k. Such a flattening of the probability distribution can lead to phenomena such as code-switching
(Doğruöz et al., 2021; Marchisio et al., 2024), making the model more prone to confusion. Our
experimental results validate that these two indicators are strong predictors of declining model per-
formance, providing critical markers to help avoid over-optimization while balancing diversity.

2 RELATED WORK

Preference learning. Recent years have seen significant progress in aligning LLMs with human
preferences (Hosking et al., 2024; Kirk et al., 2024a). RLHF, pioneered by Christiano et al. (2017);
Ziegler et al. (2019) and developed in subsequent works (Stiennon et al., 2020; Bai et al., 2022;
Ouyang et al., 2022b), typically consists of three stages: supervised fine-tuning (SFT), reward mod-
elling, and RL fine-tuning (Schulman et al., 2017; Mnih, 2016; Aryabumi et al., 2024; Ahmadian
et al., 2024). The reward model is trained to predict human preferences between pairs of model
outputs, while the RL phase optimises the model to maximise the reward (Ye et al., 2024; Lambert
et al., 2024; Zhou et al., 2024a; Liu et al., 2024b). More recently, researchers have proposed Di-
rect Alignment Algorithms (Rafailov et al., 2023; Zhao et al., 2023; Azar et al., 2024) that aim to
simplify RLHF by directly optimising the policy without a reward modelling or RL phase.

1In this work, entropy measures uncertainty in token distribution, with a uniform distribution giving the
highest entropy of 1 (maximum diversity) and a single-token distribution yielding 0 (no uncertainty).
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Over-optimisation for preference learning. Over-optimisation occurs when a model’s perfor-
mance on a proxy measure improves while its true performance declines. Gao et al. (2023) was the
first to extensively characterise this issue for RLHF, where optimisation against a learned reward
model leads to increased proxy rewards, while actual task performance plateaus or worsens, a phe-
nomenon termed “reward over-optimisation”. Subsequent studies have observed similar patterns
(Eisenstein et al., 2023; Touvron et al., 2023; Dubois et al., 2023). To mitigate this, researchers
have proposed various approaches, such as using ensembles or data smoothing for reward mod-
elling (Eisenstein et al., 2023; Zhang et al., 2024; Coste et al., 2024; Zhu et al., 2024; Yang et al.,
2024b), and leveraging uncertainty signals (Yang et al., 2023; Zhai et al., 2023; Zhou et al., 2024b;
Yang et al., 2024a). Rafailov et al. (2024) extended this analysis to DAAs, showing that even
without an explicit reward model, DAAs exhibit similar over-optimisation patterns at higher KL-
divergence budgets, where KL divergence as a primary metric. In contrast, we explore the DAAs’
over-optimisation in the context of completion likelihood, which does not directly correlate with
KL-divergence. Both increases and decreases in completion likelihood can result in higher KL di-
vergence from the reference model. KL divergence is more about how far the model should move,
while our likelihood analysis is more about which direction the model should move.

Generalisation and diversity. Generalisation and diversity in LM outputs has been a growing
concern in the field of NLP, particularly regarding the impact of fine-tuning methods (Hendrycks
et al., 2020). Several studies have explored how RLHF influences output diversity and generalisa-
tion. Khalifa et al. (2021); Perez et al. (2022) suggests that RLHF tends to produce models with
reduced output diversity. Kirk et al. (2024b) highlights a trade-off between generalisation and di-
versity in current LLM fine-tuning, with RLHF showing better out-of-distribution generalisation but
substantially decreased output diversity compared to SFT. This trade-off between alignment, perfor-
mance, and diversity relates to the broader concept of “alignment tax” in LM fine-tuning. Bai et al.
(2022); Ouyang et al. (2022a); Bai et al. (2023); Kotha et al. (2023) observed that aligning models
with human preferences, through RLHF, can sometimes degrade performance on specific tasks, es-
pecially for smaller models. Various approaches have been proposed to mitigate the alignment tax
(Noukhovitch et al., 2023; Shi & Lipani, 2024; Qi et al., 2024). For example, Ouyang et al. (2022a)
suggested incorporating pretraining data into RLHF fine-tuning to minimise performance regres-
sions on standard NLP datasets. However, these studies have not explored how the optimisation of
completion likelihood correlates with model performance, including diversity and generalisation.

3 PRELIMINARIES

3.1 DIRECT ALIGNMENT ALGORITHMS

Direct Alignment Algorithms (DAAs) are a family of methods designed to train LMs to align with
human preferences without the need for explicit reward modelling. These algorithms aim to optimise
a policy model to maximise the probability of better completions over worse ones.

Direct Preference Optimisation. Direct Preference Optimisation (DPO) (Rafailov et al., 2023) is
a foundational DAA method. The DPO loss function is defined as follows:

LDPO(πθ;πref) = −E(x,yw,yl)∼D [log σ (β∆(x, yw, yl))] , (1)

∆(x, yw, yl) = log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

, (2)

where πθ is the policy model being optimised, πref is a reference model where πθ is initialised from,
D is the dataset of preference pairs, x is the input, yw and yl are the better and worse completions re-
spectively, σ is the sigmoid function, and β is a temperature hyperparameter. The term ∆(x, yw, yl)
quantifies the difference in log probabilities between better and worse completions.

Identity Preference Optimisation. Identity Preference Optimisation (IPO) (Azar et al., 2024) is
a variant of DAA methods. Specifically, IPO uses a quadratic loss function, which is defined as:

LIPO(πθ;πref) = E(x,yw,yl)∼D

[(
τ∆(x, yw, yl)−

1

2

)2
]
, (3)
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where τ is a temperature hyperparameter. This formulation aims to push the difference in log prob-
abilities ∆(x, yw, yl), defined within the DPO framework, towards a target value of 1

2τ .

Hinge Loss. The hinge loss method (Zhao et al., 2023; Liu et al., 2024a) represents another vari-
ation within the DAA framework. Specifically, we adopt the loss function from SLIC-HF (Zhao
et al., 2023), which is defined as follows:

LHinge(πθ;πref) = E(x,yw,yl)∼D

[
max

(
0, γ − log

πθ(yw|x)
πθ(yl|x)

)]
, (4)

where γ is a hyperparameter and we set to γ = 1 for simplicity. In line with Zhao et al. (2023), we
incorporate a regularisation term into the hinge loss, defined as follows:

Lreg(πθ;πref) = E(x,yw,yl)∼D

[
log

(
1 + exp

(
1− log

(
πθ(yw|x)
πref(yw|x)

)))]
, (5)

which represents a smoothed version of hinge loss (Huber, 1992; Cristianini & Shawe-Taylor, 2000).
This term encourages the likelihood of better completions to remain higher than that of the reference
model. The total hinge loss is given by LHinge(πθ;πref) = LHinge(πθ;πref) + αLreg(πθ;πref), where
α is a scaling coefficient.

3.2 BETTER LIKELIHOOD SUPPORT

Standard DAAs do not guarantee an increase in the absolute probability of better completions. This
can lead to scenarios where the model assigns very low probabilities to both better and worse com-
pletions, as long as the better completion has a higher relative probability.

Negative Log-Likelihood Loss. To mitigate this issue, Negative Log-Likelihood (NLL) loss is
commonly employed as a regularisation term in DAA (Hong et al., 2024; Pang et al., 2024; Adler
et al., 2024; Dubey et al., 2024). It encourages the policy to maintain a high likelihood of better
completions. The NLL loss is formulated as:

LNLL(πθ) = −E(x,yw)∼D [log πθ(yw|x)] , (6)

where yw represents the better completion for a given input x. This loss term is typically combined
with the primary objective of the DAA using a scaling coefficient λ.

Several other regularisation methods have been proposed to address this issue. For example, Pal
et al. (2024) introduces an additional term, −max

(
0, log πθ(yw|x)

πθ(yl|x)

)
, to ∆(x, yw, yl) to ensure that

the log-likelihood of better examples remains high relative to that of the reference model. In this
work, we mainly discuss the impact of Negative Log-Likelihood Loss.

4 UNDERSTANDING THE IMPACT OF COMPLETION LIKELIHOOD

4.1 EXPERIMENTAL SETUP

Model and Datasets. In our experiments, we utilise two instruction-tuned models: Cohere Com-
mand R (7B) and Cohere Command R (35B) (Cohere For AI, 2024). We train and evaluate them on
two datasets: (1) A binarised version of ULTRAFEEDBACK (Tunstall et al., 2024), which is collected
based on Cui et al. (2024), containing 62,600 training examples and 647 examples for evaluation.
(2) A Binarised preference dataset BINARIZEDPREF, which comprises over 100,000 examples (see
details in Appendix §A). These include annotated conversational data across multiple languages,
synthetic code generation, and specialised tasks such as length control, safety, tool use, and natural
language-to-SQL generation.

Training and Evaluation Details. For each method (Hinge, DPO, and IPO), we test six different
values for its hyper-parameter (i.e., α, β, or τ ), respectively. We use a batch size of 32 for both
training and evaluation, with a maximum sequence length of 8192. The model is trained with a peak
learning rate of either 5× 10−6 or 1× 10−5 and an end learning rate ratio of 0.1. Following recent
studies (Ouyang et al., 2022a; Howard & Whitaker, 2023; Shi et al., 2024), we train all models
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within a single epoch. The learning rate warms up over 128 steps. We monitor the model training
every 50 steps to apply early stopping. We use the Adam optimiser (Kingma, 2014) with β1 = 0.9,
β2 = 0.95, ϵ = 1× 10−8, an additive weight decay of 0.1, and a gradient clipping norm of 1.0. The
model training is conducted on TPU v5-128 for the 7B model and TPU v5-256 for the 35B model,
utilising the flash attention (Dao et al., 2022) to improve training efficiency. For both DPO and
IPO, we use the sum of the token log-likelihoods as the completion log-likelihood during training.
For the Hinge method, we compute the average token log-likelihood instead for better performance.
During evaluation, we calculate the log-likelihood for both the better and worse completions from
the validation set. For all methods, we report the average of token log-likelihoods for better and
worse completions respectively, without normalising against the reference model. Additionally, we
monitor the difference in log-likelihood between better and worse completions.

Generalisation Evaluation. Following the previous work (Kirk et al., 2024b), we evaluate the
model in open-ended text generation tasks to assess generalisation ability. Specifically, we employ
the LLM-as-a-Judge framework (Zheng et al., 2023; Taori et al., 2023) with a reward model to
compare our models’ outputs against leading models, including GPT-3.5-Turbo, GPT-4o (Achiam
et al., 2023), Claude-3-Sonnet (Claude, 2024), Llama-3 8B and 70B Chat (Dubey et al., 2024). The
evaluation uses a closed-source reward model, which ranked the top position on REWARDBENCH
(Lambert et al., 2024), validating that the evaluation provides a reliable proxy for human preferences.
We use win probability, denoted as Pwin, as the primary evaluation metric. It is computed as:

Pwin = σ(rv − rc), (7)

where σ(·) is the sigmoid function, rv is the reward assigned to the policy model’s output, and rc is
the reward assigned to the competitor model’s output by the same reward model. We prompt models
with 433 diverse prompts, including code generation, chain-of-reasoning questions, closed QA, and
length control (see Appendix A for examples and details). During the decoding, we use a top-p
probability threshold of p = 0.75, a temperature of 0.5, and a maximum limit of 2048 tokens.

Diversity Evaluation. To assess output diversity, we also measure Per-Input Diversity, defined
as the average diversity of the output sets over inputs, and Cross-Input Diversity, which captures
the diversity of outputs across different inputs, similar to previous works (Kirk et al., 2024b; Hong
et al., 2024). However, instead of generating a set of K outputs from the model, we take a more
efficient way to measure Per-Input Diversity. Specifically, we compute the entropy over the top k
tokens with the highest probability in the model’s next token distribution (Kuhn et al., 2023). Let pk
represent the probability distribution over the top k tokens, and H(pk) represent the entropy of the
distribution. The entropy is calculated using the following formula:

H(pk) = −
n∑

i=1

pi logb(pi), (8)

where b is the logarithm base. Here we set b = 2 and k = 10. This formula quantifies the un-
certainty within the top k token predictions as a proxy for Per-Input Diversity. This entropy is
highest when the output is minimally informative: predicting the same probability for all possible
tokens, indicating more diverse outputs. To evaluate Cross-Input Diversity, we use distinct N-grams
(Li et al., 2016), which counts the unique N-grams across model outputs and averages them over
n = 1, 2, 3, 4, 5. Following Kirk et al. (2024b), we use the expectation-adjusted distinct N-grams
(EAD) formula to remove the bias towards shorter outputs.

Factuality Evaluation. We also evaluate model factuality performance on open-domain question-
answering tasks using NATURALQUESTIONSOPEN (Kwiatkowski et al., 2019) and TRIVIAQA
(Joshi et al., 2017) validation sets, with 3610 and 7993 examples respectively. Greedy decoding
is used to ensure deterministic outputs, and the word-level F1 score is reported.

4.2 EVALUATING LIKELIHOOD OVER-OPTIMISATION

In this section, we explore the relationship between model likelihood and performance. Below, we
discuss our key findings in detail.
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Figure 2: Learning curves across training steps for various metrics. Results are reported for
the 7B models using the Hinge, DPO, and IPO on the ULTRAFEEDBACK dataset. Our results
indicate that: (1) A higher likelihood for better completions does not necessarily improve model
performance. (2) Lower Completion likelihood improves the models’ Cross-Input Diversity. (3)
Decreasing in Probability Mass in Top k Tokens and Decreasing Entropy over Top-k tokens are
signals for likelihood over-optimisation.

1) Higher likelihood for better completions and larger gaps between better and worse com-
pletions do not necessarily improve model performance. As shown in Figure 1, we plot the
likelihood of better completions against the win probability (compared to GPT-3.5-Turbo) with dif-
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Figure 3: Win Probability Heatmaps Across Better and Worse Mean Log-Likelihoods. Results
are reported for both 7B and 35B models on ULTRAFEEDBACK and BINARIZEDPREF datasets. Best
performance does not always occur at the Pareto frontier of high likelihood for better completions
and low likelihood for worse completions.

ferent methods across two model sizes, with points recorded every 500 steps. Our analysis reveals
that simply increasing the likelihood of better completions does not consistently result in perfor-
mance improvements. Previous work in classical RLHF has established scaling laws for reward
model scores (Gao et al., 2023). Similarly, Figure 1 exhibits a clear scaling law behaviour. We
extend their analysis to the relationship between win probability and the log-likelihood of better
completions in DAAs. When fitting the data to a second-degree polynomial, the Root Mean Square
Error decreases by approximately 24.42% for the 7B model and 25.78% for the 35B model, com-
pared to a linear fit. We show similar results when comparing against different models, including
GPT-4o, Claude-3-Sonnet, Llama-3-8B, and Llama-3-70B-Chat, in Figure 7 of Appendix §B.

Figure 2 tracks win probability alongside the average log-likelihood difference between better and
worse completions throughout training. Notably, while larger differences in log-likelihood, such as
those represented by the pink line typically with the largest difference, are often observed, they do
not correspond to better performance. Instead, excessively larger likelihood gaps can lead to perfor-
mance degradation in win probability, especially for DPO and IPO after 1,000 steps. We observe
similar results for the 35B model on BINARIZEDPREF using Hinge, DPO, and IPO in Appendix §B.

Figure 3 presents a heatmap of win probabilities based on the better and worse completion log-
likelihoods on ULTRAFEEDBACK and BINARIZEDPREF datasets, using both 7B and 35B models.
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Figure 4: Learning curves for DPO with different weights (λ) of NLL loss. We report the
performance with different values of β and λ on the ULTRAFEEDBACK dataset. Our results indicate
that: (1) Training Negative Log-Likelihood Loss on better completions has limited influence on the
model when it cannot affect completion likelihood. (2) A reversed entropy trend trending for entropy
is a strong indicator of diversity over-optimisation.

Points are plotted every 50 steps. Our findings indicate that the best performance (highlighted by
the red star) does not occur at the Pareto frontier of maximising the likelihood of better completions
while minimising it for worse ones. Instead, optimal performance is often found in the middle range.

2) Length Correlation. We investigate the relationship between the mean log-likelihood of better
completions and the average number of tokens in completions, as shown in Figure 1. To quantify this
relationship, we calculate the Pearson correlation coefficient and perform its associated significance
test. The null hypothesis posits no linear relationship between these two variables. For the 7B model,
we find a weak negative correlation (r = −0.114, p-value = 0.266), while the 35B model shows a
weak positive correlation (r = 0.198, p-value = 0.173). In both cases, the p-values exceed the
conventional significance level of 0.05, indicating insufficient evidence to reject the null hypothesis.
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Figure 5: NATURALQUESTIONSOPEN and TRIVIAQA vs Better Mean LLH on the ULTRAFEED-
BACK dataset. A higher LLH tends to memorise the factuality knowledge better.

3) Training Negative Log-Likelihood Loss on better completions has limited influence on the
model when it cannot affect completion likelihood. As shown in Figure 4, we experiment with
DPO using three different values of β, adding NLL loss as an auxiliary loss with four λ coefficients.
Our results indicate that when there is limited impact on the likelihood (from the left column to the
right column), the NLL loss has minimal impact on model performance. This suggests that NLL
loss can be seen as a tool to regulate completion likelihood, but it remains susceptible to likelihood
over-optimisation: higher likelihood may lead to a sub-optimal performance. We observe similar
results on BINARIZEDPREF using the 35B model, as shown in Figure 11 of Appendix §B.

4.3 GENERALISATION AND DIVERSITY

In this section, we explore the impact of model likelihood on generalisation and diversity.

1) Lower Completion likelihood improves the models’ Cross-Input Diversity. Figure 2
presents Cross-Input Diversity (measured by distinct N-grams) of the model outputs throughout
training. Specifically, within each DAA, models with lower likelihood tend to produce more diverse
outputs. For example, the pink lines for DAAs indicate that models with lower completion likeli-
hood typically show the highest level of Cross-Input Diversity scores throughout training. Better
output diversity tends to improve their generalisation to unseen scenarios, as reflected in increased
win probability at the early stage of the training phase. Figure 4 further demonstrates that output
diversity follows a similar trend under the different regularisation (i.e., Negative Log-Likelihood
Loss), suggesting a strong correlation between likelihood and model diversity. However, it is worth
noting that the relationship between diversity and win probability is not linear. While some diversity
is beneficial for generalisation, excessive diversity can lead to performance degradation, similar to
our previous discussion in §4.2. We will explore this phenomenon further in §4.4.

2) Higher Likelihood tends to have better memorisation of factual patterns. Figure 5 show-
cases the relationship between model performance on NATURALQUESTIONSOPEN and TRIVIAQA
and the log-likelihood of better completions. Our findings reveal a clear trend: higher mean log-
likelihood values are associated with improved F1 scores. A higher F1 reflects better memorisation
for some specific patterns, which can come at the expense of diversity. This can create a trade-off
between the ability to recall facts and the capacity to generate diverse, adaptive outputs in more
creative or open-ended tasks. To understand the potential issue of stylistic variations in answers,
we provide a further analysis with case studies and LLM-as-a-Judge as evaluation in Appendix §C.
Specifically, instead of relying on exact string matching, which can be overly rigid, we employ an
LLM-as-a-Judge using the GPT-4o model. Our analysis reveals that while the model performance
from LLM-as-a-Judge evaluation consistently yields higher performance metrics, it demonstrates a
trend similar to the F1 score.
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4.4 SIGNALS FOR LIKELIHOOD OVER-OPTIMISATION

We have shown that completion likelihood correlates with model performance due to increased
output diversity. However, the key question remains: when should we stop reducing completion
likelihood? Here, we outline two indicators of over-optimising likelihood.

1) Decreasing Entropy over Top-k tokens (Per-Input Diversity). Figure 2 and 4 presents
Per-Input Diversity (measured by the entropy) of the model outputs throughout training. For DPO
and IPO curves, at the beginning of the training, the Per-Input Diversity increases, signifying a
broader distribution of selected tokens and a more uniform output distribution for the next token
prediction. Considering that the better completion likelihood is decreasing across the training, the
increase of entropy at the beginning phase indicates that those tokens from better completion have
a higher probability at the initial policy model over other tokens in the top k (here k = 10). The
decrease better completion likelihood gives the model a better chance to select other tokens, which
increases diversity and enhances generalisation, as reflected in the win probability. However, at
a certain point in training, this trend reverses. As Per-Input Diversity (entropy) starts decreasing,
the model begins to over-prioritise certain tokens. This suggests that those tokens in the better
completion now have an overly low likelihood, lower than other tokens in the top k. Despite this,
Cross-Input Diversity keeps increasing, which indicates that the model is still generating diverse
outputs, but now it includes tokens that are less relevant or nonsensical, i.e., tokens that humans do
not prefer. Notably, the turning points of entropy often coincide with those of win probability for
DPO and IPO, as the model’s outputs become less aligned with desirable outcomes.

2) Decreasing in Probability Mass in Top k Tokens. In another scenario, the entropy of the
top 10 tokens continues to increase, suggesting a progressively broader and more uniform output
distribution (refer to the hinge curves in Figure 2). This suggests that even as the likelihood of
better completions decreases, the model does not tend to over-prioritise any specific tokens during
training. However, this can result in degraded model performance. As depicted in the bottom row
of the figure, the probability mass of all top-10 tokens diminishes, leading to more random outputs,
with an increased likelihood of selecting tokens outside the top 10. This can introduce issues such
as code-switching, where the model becomes prone to world-level language confusion when the
number of tokens in the sampling nucleus is high and the distribution becomes too flat (Doğruöz
et al., 2021; Marchisio et al., 2024). Interestingly, hinge loss models do not exhibit the same patterns
observed with DPO and IPO. This could be attributed to the fact that DPO and IPO apply different
forms of regularisation compared to hinge loss.

To demonstrate the generalisability of our findings, we provide additional experimental on different
datasets with different model sizes in Figure 8, 9, and 10 of Appendix §B.

5 EPILOGUE

Limitations. This study primarily focuses on two models (7B and 35B), which may not fully
represent the broader spectrum of LLMs available. However, most LLMs are very standard trans-
formers (Vaswani et al., 2017), and we would not expect other LLMs to behave differently. While
we acknowledge the reviewer’s concern about testing additional methods such as KTO Ethayarajh
et al. (2024) or ORPO (Hong et al., 2024), our experiments with major DAA families (e.g., , DPO,
IPO, SLiC) provide strong evidence for the generalisability of our findings, which we leave for
future work to validate further.

Implications for Practical Applications. The findings of this study have several implications for
enhancing offline preference learning methods in practical applications: (1) Early stopping signal.
In practice, we can integrate entropy/probability mass monitoring into the training loop. Training
can employ adaptive methods like early stopping once entropy falls below a specific threshold. (2)
Adaptive regularisation for over-optimisation. Rather than using a fixed coefficient for the NLL
loss (Dubey et al., 2024), we could implement an adaptive regularisation based on the entropy and
probability mass, i.e., adding dropout or noise to prevent over-prioritisation of tokens or adding an
explicit regularisation term that maintains a certain degree of entropy and the probability mass of
the top-k tokens. While maintaining a certain degree of entropy and probability mass of the top-k
tokens is important, care should be taken not to overly constrain the model, as some tasks inherently
require a broader token distribution (e.g., give me a random number between 0 and 10).
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have taken comprehensive steps to provide detailed
information about our experimental setup. In Section 4.1, we offer full details on the models used
(7B and 35B parameter models) and the datasets (ULTRAFEEDBACK and BINARIZEDPREF), in-
cluding exact versions and sizes. While the 7B model and reward model are closed-source, and
the 433 prompts for the LLM-as-a-Judge framework are proprietary, we provide a summary of the
prompt dataset to give insight into its composition. All hyperparameters for training, including
learning rates, batch sizes, and optimizer settings, are specified. We detail the hardware used (TPU
v5-128/256) and provide comprehensive descriptions of all evaluation metrics. Statistical analyses,
including Pearson correlation coefficients and p-values, are reported in Section 4.2. The ULTRA-
FEEDBACK dataset is publicly available, and while BINARIZEDPREF is proprietary, we describe its
contents and size. Importantly, we test our findings on ULTRAFEEDBACK, which is a public dataset,
indicating that our findings are generalisable. While some aspects could not be fully open-sourced
due to the use of proprietary models or data, we have described these in as much detail as possible.
Furthermore, we posit that our findings are likely generalisable to other LLMs, as most LLMs (e.g.,
Llama, Gemini) are based on standard transformer architectures (Vaswani et al., 2017). For exam-
ple, the Llama model family has very standard features such as RoPE embeddings (Su et al., 2024).
Indeed, the designers note that they tried to avoid innovating on the model architecture (Dubey et al.,
2024). As such, we would not expect significantly different behaviours. We welcome questions from
the community and are committed to providing additional clarification.
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APPENDIX OVERVIEW

The appendix is structured as follows:

Appendix §A provides a detailed description of evaluation datasets, including examples and sta-
tistical summaries.

Appendix §B presents supplementary experimental results, including analyses of win probability,
likelihood scaling, and the effects of different regularization techniques.

Appendix §C further investigates model performance on NATURALQUESTIONSOPEN and TRIV-
IAQA.

A DATASETS

This section provides an in-depth look at the datasets used in our experiments, focusing on the BINA-
RIZEDPREF, LLM-as-a-Judge framework, NATURALQUESTIONSOPEN, and TRIVIAQA datasets.

BINARIZEDPREF Dataset. The BINARIZEDPREF collection process used a robust multi-source
approach combining professional annotators, multiple independent annotation pipelines, and var-
ious validation methods. The foundation comes from professional annotation services ( 70% of
data), with rigorous quality control through multi-annotator consensus, adversarial validation sets,
and specialized verification datasets for issues like hallucination and repetition. We’ve ensured broad
domain coverage, incorporating specialised modules for code generation, RAG interactions, STEM,
and medical domains while maintaining strong multilingual capabilities across French, Spanish,
Korean, Japanese, German, and Italian - including dedicated datasets for handling code-mixing and
language transition cases. Quality control is implemented through multiple layers: consensus-based
annotation (1-3 annotators depending on complexity), dedicated adversarial validation sets, and spe-
cific datasets targeting quality aspects like anti-repetition, length control, and format adherence. The
data is predominantly recent (2024), with carefully weighted components and explicit test sets for
key capabilities. We use strategic copy multipliers (up to 5x) for crucial capabilities, and the entire
dataset is organised into functional groups (multilingual, code, RAG) to ensure balanced training
across all target capabilities.

LLM-as-a-Judge Framework Dataset. We utilize a diverse set of prompts for the LLM-as-a-
Judge framework. Figure 1 illustrates a representative example from this dataset, showcasing dif-
ferent generations from various competitor models. To provide insight into the composition of our
LLM-as-a-Judge dataset, Figure 6 presents the distribution of prompt examples. This visualisation
helps to understand the variety and balance of the prompts used in our evaluation framework.

NATURALQUESTIONSOPEN Dataset. Table 2 presents examples from the NATURALQUES-
TIONSOPEN dataset2, showcasing the types of questions and answers used in our evaluation. The
NATURALQUESTIONSOPEN dataset, introduced by Kwiatkowski et al. (2019), is an open-domain
question-answering benchmark. It consists of English questions paired with possible answer strings,
all answerable using English Wikipedia content. Each data instance contains a question field and an
answer field with potential correct responses. We use the validation set for our evaluation. Table 2
presents representative examples from this dataset, illustrating the types of questions and answers
used in our evaluation.

TRIVIAQA Dataset. The TRIVIAQA dataset3 is a comprehensive reading comprehension bench-
mark containing over 650,000 question-answer-evidence triples Joshi et al. (2017). It includes
95,000 question-answer pairs, each accompanied by an average of six independently gathered evi-
dence documents. This structure provides high-quality distant supervision for question-answering

2https://huggingface.co/datasets/google-research-datasets/nq_open/
viewer/nq_open/validation

3https://huggingface.co/datasets/mandarjoshi/trivia_qa/viewer/rc.
wikipedia/validation
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Table 1: Examples for datasets.
Role Example

User I am looking to put a house on the market. 4 bedrooms, 3 bathrooms, 3000 sq ft. Nice neighbourhood and local school,
strong community feel. Safe for kids, lots of young families. Can you write me a general description for the house in
around 100-150 words? Make it professional sounding, emphasizing key aspects that you think would be attractive to
young families.

GPT-3.5-turbo Welcome to this spacious and inviting 4 bedroom, 3 bathroom home located in a desirable neighbourhood with a strong
sense of community. Boasting over 3000 sq ft of living space, this property is perfect for growing families looking for a
safe and welcoming environment to call home. The open-concept layout offers ample room for entertaining, while the
well-appointed bedrooms provide a peaceful retreat for all. The nearby local school and abundance of young families in
the area make this the ideal setting for children to thrive and make lasting friendships. Don’t miss out on the opportunity
to make this house your family’s forever home.

GPT-4o Welcome to your dream family home! Nestled in a vibrant, family-friendly neighborhood, this spacious 4-bedroom, 3-
bathroom residence offers 3,000 sq ft of comfortable living space. The open floor plan seamlessly connects the living,
dining, and kitchen areas, making it perfect for both everyday living and entertaining. Each bedroom is generously
sized, providing ample space for relaxation and privacy.\n\nLocated in a top-rated school district, this home ensures
your children will receive a quality education. The community boasts a strong, supportive atmosphere with plenty of
young families, making it easy to form lasting friendships. Safety is a priority here, with well-maintained streets and
parks where kids can play freely. Don’t miss the opportunity to create cherished memories in this exceptional home.
Schedule a viewing today!

Claude-3-Sonnet Nestled in the heart of a vibrant community, this spacious 3,000 square foot home offers the perfect blend of comfort and
convenience for growing families. With four generously sized bedrooms and three beautifully appointed bathrooms,
this residence provides ample space for daily living and entertaining. The neighborhood boasts a strong sense of
community, with a local school nearby and a safe, family-friendly environment where children can thrive. The area is
home to numerous parks, playgrounds, and recreational facilities, ensuring endless opportunities for outdoor activities
and quality family time. Designed with modern amenities and a welcoming ambiance, this property is an exceptional
choice for families seeking a comfortable and secure haven to call home.

Llama-3-70b-chat-hf Here is a general description for your house:\n\nẄelcome to this stunning 4 bedroom, 3 bathroom residence, perfectly
situated in a highly sought-after neighborhood that embodies the essence of community living. With its spacious 3000
square feet of living space, this beautiful home offers the perfect blend of comfort, functionality, and charm. Ideal for
young families, this property boasts a prime location within walking distance to a top-rated local school, ensuring a
safe and convenient commute for kids. The neighborhood itself is a hub of activity, with a strong sense of community
and a plethora of young families, making it the perfect environment for children to grow and thrive. With its generous
layout, abundance of natural light, and exceptional curb appeal, this property is sure to impress even the most discerning
buyers. Don’t miss out on this incredible opportunity to make this house your dream home!\̈n\nLet me know if you’d
like me to make any changes!

Llama-3-8b-chat-hf Here is a general description for your house:\n\n”Welcome to this stunning 4-bedroom, 3-bathroom residence, per-
fectly situated in a highly sought-after neighborhood. This beautiful home offers a spacious 3000 square feet of living
space, ideal for growing families. With its prime location, you’ll enjoy the convenience of being close to top-rated local
schools, making it an ideal choice for young families. The neighborhood exudes a strong sense of community, with
plenty of opportunities for kids to make friends and for parents to connect with neighbors. The home itself is a haven
of comfort and style, with ample natural light, modern fixtures, and plenty of storage. With its safe and family-friendly
atmosphere, this property is the perfect place to call home. Don’t miss this incredible opportunity to make memories
with your loved ones in this wonderful community!\̈n\nLet me know if you’d like me to make any changes!

Table 2: Examples for NATURALQUESTIONSOPEN.
Question Answer

who does the voice of mickey mouse on mickey mouse clubhouse? [’Bret Iwan’, ’Wayne Allwine’]

who wrote knock knock knocking on heavens door? [’Bob Dylan’]

Table 3: Examples for TRIVIAQA.
Question Answer

Who was the next British Prime Minister after Arthur Balfour?? [’Sir Henry Campbell-Bannerman’, ’Campbell-
Bannerman’, ’Campbell Bannerman’, ’Sir
Henry Campbell Bannerman’, ’Henry
Campbell Bannerman’, ’Henry Campbell-
Bannerman’]

Which Lloyd Webber musical premiered in the US on 10th December 1993?? [’Sunset Blvd’, ’West Sunset Boulevard’, ’Sun-
set Boulevard’, ’Sunset Bulevard’, ’Sunset
Blvd.’]

tasks. However, we do not use any evidence in our experiments. We use the validation set for our
evaluation. Table 3 presents representative examples from the TRIVIAQA dataset.

B ADDITIONAL EXPERIMENTAL RESULTS

As supplementary of the main experiment, we provide the following experiments.
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Figure 6: Distribution of LLM-as-the-judge prompt dataset.

Win Probability vs. Better Completion Likelihood. Figure 7 illustrates the relationship be-
tween win probability and better mean likelihood across different competitor models, including
GPT-4, Claude-3-Sonnet, Llama-3-8B, and Llama-3-70B-Chat. We record points every 500 steps
across varying hyperparameters for each method. Our results are consistent with our findings in
the main text (§4.2), suggesting that simply increasing the likelihood of better completions does not
consistently result in performance improvements.

6 5 4 3 2 1
Mean Log-Likelihood for Better Completion

10%

15%

20%

25%

30%

35%

40%

45%

50%

W
in

 P
ro

b 
vs

 C
la

ud
e-

3-
So

nn
et

7B - DPO
7B - IPO
7B - Hinge
35B - DPO
35B - IPO
35B - Hinge

6 5 4 3 2 1
Mean Log-Likelihood for Better Completion

10%

15%

20%

25%

30%

35%

40%

W
in

 P
ro

b 
vs

 G
PT

-4
o

7B - DPO
7B - IPO
7B - Hinge
35B - DPO
35B - IPO
35B - Hinge

6 5 4 3 2 1
Mean Log-Likelihood for Better Completion

20%

25%

30%

35%

40%

45%

50%

55%

60%

W
in

 P
ro

b 
vs

 M
et

a-
Lla

m
a-

3-
8b

-C
ha

t 7B - DPO
7B - IPO
7B - Hinge
35B - DPO
35B - IPO
35B - Hinge

6 5 4 3 2 1
Mean Log-Likelihood for Better Completion

15%

20%

25%

30%

35%

40%

45%

50%

W
in

 P
ro

b 
vs

 M
et

a-
Lla

m
a-

3-
70

b-
Ch

at 7B - DPO
7B - IPO
7B - Hinge
35B - DPO
35B - IPO
35B - Hinge

Figure 7: Win Probability vs Better Mean Likelihood Scaling Law. with different competitor
models. including GPT-4o, Claude-3-Sonnet, Llama-3-8B, and Llama-3-70B-Chat
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IPO Learning curves with 7B model on the ULTRAFEEDBACK dataset. To demonstrate the
generalisability of our findings, we experiment with the IPO using three different values of τ , adding
NLL loss as an auxiliary loss with four λ coefficients on the ULTRAFEEDBACK dataset using the
7B model. Figure 8 illustrates several key findings:

1. Likelihood and Performance Correlation: As shown in the first and second rows of the
figure, a Higher likelihood for better completions and larger gaps between better and worse
completions do not necessarily translate to improved model performance.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance
the models’ Cross-Input Diversity, as shown in the second and fourth rows, where lower
better completion likelihood generally corresponds to improved Cross-Input Diversity.

3. Entropy and Over-optimisation: Decreasing entropy over top-k tokens
(Per-Input Diversity) appears to be an indicator of over-optimisation for diversity.
The fifth row demonstrates that curves with lower entropy typically do not perform as well,
as reflected in their win probability. Particularly, this result shows that the turning points
of the entropy, which transits from the increasing diversity to the decreasing entropy is a
strong indicator of the over-optimisation for diversity.

4. Probability Mass Distribution: We do not observe a decrease in probability mass in top
k tokens in this case, as shown in the last row of the figure. This observation aligns with
our findings: in runs without decreasing entropy, we do not observe a significant decline in
win probability.

Learning curves with 7B model on the BINARIZEDPREF dataset. To demonstrate the gener-
alisability of our findings, we perform additional experiments using the 7B model on the BINA-
RIZEDPREF dataset. The results, consistent with our previous observations, underscore the broad
applicability of our insights across various datasets. Figure 9 illustrates several key findings:

1. Likelihood and Performance Correlation: Higher likelihood for better completions and
larger gaps between better and worse completions do not necessarily translate to improved
model performance. This is evident in the first and second rows of the figure, where models
with the highest better completion likelihood do not achieve the best performance.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance the
models’ Cross-Input Diversity. This trend is observable when comparing the second and
fourth rows, where lower better completion likelihood generally corresponds to improved
Cross-Input Diversity.

3. Entropy and Over-optimisation: Decreasing entropy over top-k tokens
(Per-Input Diversity) appears to be a good indicator of over-optimisation for diver-
sity. The fifth row demonstrates that curves with overly low entropy do not perform as
well (i.e., pink curves), as reflected in their win probabilities. Additionally, as the entropy
begins to rise again, an improvement in win probability is also observed.

4. Probability Mass Distribution: We do not observe a decrease in probability mass in top
k tokens in this case, as shown in the last row of the figure. This observation aligns with
our findings: in runs without decreasing entropy, we do not observe a significant decline in
win probability.

Learning curves with 35B model on the BINARIZEDPREF dataset. To demonstrate the gener-
alisability of our findings, we perform additional experiments using the 35B model on the BINA-
RIZEDPREF dataset. The results align well with our previous observations. Figure 10 illustrates
several key findings:

1. Likelihood and Performance Correlation: Similarly, results from larger model sizes sug-
gest that higher likelihoods for better completions and larger gaps between better and worse
completions do not necessarily lead to improved model performance, as shown in the first
and second rows of the figure.

2. Likelihood and Cross-Input Diversity: Lower completion likelihood tends to enhance
the models’ Cross-Input Diversity. Specifically, the curve with a lower better completion
likelihood generally tends to have a higher Cross-Input Diversity.
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3. Entropy and Over-Optimisation: A decrease in entropy over the top-k tokens
(Per-Input Diversity) appears to indicate over-optimisation for diversity. For instance, the
pink lines for DPO and IPO show a clear drop in entropy after 500 steps, accompanied by
a decline in win probability.

4. Probability Mass Distribution: Similarly, we do not observe a decrease in probability
mass in top k tokens in this case, as shown in the last row of the figure.

Training Negative Log-Likelihood Loss on better completions has limited influence on the
model when it cannot affect completion likelihood. To demonstrate the generalisability of our
findings, we perform further experiments with 35B models on the BINARIZEDPREF dataset. As
shown in Figure 11, we experiment with DPO using three different values of β, adding NLL loss as
an auxiliary loss with four distinct coefficients for each β. Similarly to our findings in the main text,
results indicate that when there is limited impact on the likelihood, the NLL loss has minimal im-
pact on model performance. Training Negative Log-Likelihood Loss on better completions remains
susceptible to over-optimisation.

Table 4: Examples for TRIVIAQA.
Question: {question}
Reference Answer: {reference answer}
Model Output: {model output}

Evaluate the correctness of the model output compared to the reference answer.
Respond with EXACTLY ONE of the following options:
- Yes
- No
- Unsure

Guidelines:
- Yes: If the model output is correct or equivalent to the reference answer.
- No: If the model output is incorrect or contradicts the reference answer.
- Unsure: If you can’t determine the correctness or if there’s insufficient information.

Do not provide any explanation or additional text. Your entire response must be a single word.

Your response:

Discussion about Relationship Between KL and Completion likelihood. We report the L2 loss
between the policy model and the reference model with respect to the likelihood. This serves as a
proxy for KL divergence, as both measure the divergence between the policy and reference models.
While we could not generate a direct KL vs. Likelihood plot due to access restrictions, this proxy
analysis allows us to provide relevant insights without requiring additional model retraining.

As shown in Figure 12, our experiments reveal that likelihood does not strictly correlate with the
L2 loss: lower likelihood (higher cross-entropy loss) does not necessarily correspond to a higher L2

loss. This result suggests that the relationship between the likelihood of preferred completions and
the divergence between the models is more nuanced than a simple monotonic association. In par-
ticular, the observed patterns reinforce the idea that likelihood and KL divergence, while connected
under specific assumptions, are not directly interchangeable.

C FURTHER INVESTIGATIONS FOR QUESTION ANSWERING TASKS

Case studies for NATURALQUESTIONSOPEN and TRIVIAQA tasks. Table 5 provides two ex-
amples for NATURALQUESTIONSOPEN and TRIVIAQA tasks, respectively.

LLM-as-a-Judge for the NATURALQUESTIONSOPEN task. We implement a more flexible eval-
uation method to understand the potential issue of stylistic variations in answers. Instead of rely-
ing on exact string matching, which can be overly rigid, we employ an LLM-as-a-Judge using the
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Table 5: Model output examples for NATURALQUESTIONSOPEN and TRIVIAQA.
Examples for NATURALQUESTIONSOPEN

Field Content F1 Word
Question Where is dakar located on the world map? –

High Likelihood Answer Senegal 100.0%

Mid Likelihood Answer Dakar is the capital of Senegal and is located in West Africa. It is situated on the
western coast of the country, on the Atlantic Ocean.

8.7%

Examples for TRIVIAQA
Field Content F1 Word
Question How many Rings of Power were there, in total? –

High Likelihood Answer 20 100.0%

Mid Likelihood Answer There were 20 Rings of Power in total, 3 of which were given to the Elves, 7 to the
Dwarves, and 9 to the Men.

8.7%

GPT4o model. As shown in Table 4, this LLM-based evaluation system is presented with the orig-
inal question, the reference answer, and the model’s output. It then assesses whether the model’s
output is correct, incorrect, or if there’s not enough information to make a determination, responding
with “Yes”, “No”, or “Unsure” respectively. We compute the model performance based on the per-
centage of “Yes”. Figure 13 shows the model performance on the ULTRAFEEDBACK dataset using
the 7B model. Our analysis reveals that while the LLM-as-a-Judge evaluation method demonstrates
a trend similar to the F1 score, it consistently yields higher performance metrics.
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Figure 8: Learning curves across training steps for various metrics. Results are reported for the
7B models using IPO on the ULTRAFEEDBACK dataset with varying values of τ and λ.
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Figure 9: Learning curves across training steps for various metrics. Results are reported for the
7B models using the Hinge, DPO, and IPO on the BINARIZEDPREF dataset.
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Figure 10: Learning curves across training steps for various metrics. Results are reported for
the 35B models using the Hinge, DPO, and IPO on the BINARIZEDPREF dataset.
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Figure 11: Control Likelihood via training on better completion on the BINARIZEDPREF dataset,
using the 35B model. When different runs have similar likelihoods, the win probability and diversity
of their model outputs tend to follow the same trend throughout training.

Figure 12: Our results indicate that completion likelihood does not strictly correlate with the L2

loss: lower likelihood (higher cross-entropy loss) does not necessarily correspond to a higher L2

loss.
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Figure 13: NATURALQUESTIONSOPEN vs Better Mean LLH on the ULTRAFEEDBACK dataset
using the 7B model. The F1 score and LLM-as-a-Judge results are reported.
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