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Abstract

Although open data accelerates research by promoting reproducibility and benchmark-
ing, machine learning for healthcare has limited open clinical notes due to concerns about
patient privacy. Health Insurance Portability and Accountability Act (HIPAA) of 1996 al-
lows disclosing “de-identified health information” via Safe Harbor, which requires removing
18 types of attributes and ensuring the individual cannot be re-identified.

A conventional de-identification approach detects tokens that are deemed to be rel-
evant to HIPAA-protected attributes and removes or replaces them. Since this is time-
consuming, an automated named entity recognition (NER) approach is often employed.
Re-identification, however, is still possible because contextual identifiers (e.g., ”homeless”)
are not protected attributes.

Here we formalized the de-identification problem using causal graphs and showed how
NER-based de-identification fails to remove dependencies between de-identified notes and
protected attributes.

Empirically, we de-identified proprietary clinical notes using an NER-based de-identifier
and finetuned a public BERTmodel to predict demographic attributes from the de-identified
notes. We showed that it can recover patients’ sex, neighborhood, visit year, visit month,
income, and insurance provider with above-random chance and just 1000 training examples.

These attributes can be further used to re-identify patients. For example, a hacker can
filter people in an external database (e.g., voter registration records) using the predicted
attributes. Here, we used the original patient database as an ideal external database (due
to the legal constraints of using the voter database). We showed that the finetuned model
has better-than-random accuracy in re-identifying patients in a group. To assess individual-
level risk, or the probability of being re-identified as an individual, we assume the hacker
guesses the patient by uniformly drawing one person from the re-identified group. The risk
is around three in a thousand using the fully finetuned model and around three hundred
and eighty in a million using the model finetuned with just 1000 examples.

Sharing information as innocuous as a patient’s medical diagnosis also enables better-
than-random prediction of their neighborhood, showing that identity leaks may come from
all parts of a note. This suggests that a compromise between privacy and utility is unavoid-
able because even essential information, such as diagnoses, may be used to leak patient
identities. We discuss how to find the right compromise and encourage researchers, the
government, and the healthcare industry to participate in this dialogue.

1. Introduction

Large open datasets can accelerate machine learning research by promoting reproducibility
and benchmarking, but open clinical notes remain scarce. Although the healthcare indus-
try contributes 30% to the global data pool (Wiederrecht et al., 2020), regulations and
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concerns about patient privacy restrict the amount of openly available data. Many studies
consequently use proprietary datasets that are difficult to compare and validate.

The Health Insurance Portability and Accountability Act (HIPAA) of 1996 was created
to improve health insurance portability and to protect patient privacy. It allows disclosing
“de-identified health information” via Safe Harbor, which requires removing 18 types of
attributes (called “Patient Health Information”, or PHI) and ensuring that individuals
cannot be re-identified (Office of Civil Rights, 2022). De-identification usually focuses on
removing PHI, hypothetically protecting individuals from re-identification.

A conventional approach to de-identification is to detect tokens relevant to HIPAA-
protected attributes and remove or replace them. Since manual de-identification is time-
consuming, researchers hand-label a dataset of patient identifiers (entities) and develop
named entity recognition (NER) algorithms to detect them automatically and at scale. The
widely used MIMIC-III database, MIMIC-IV database, and the popular de-identification
software Philter (Johnson et al., 2016, 2023; Norgeot et al., 2020) all use such an NER
framework. Re-identification, however, is still possible because contextually identifying in-
formation exists separately from protected attributes. For instance, we can infer a patient’s
low socioeconomic status from “homeless”, or the patient’s minority race being associated
with negative emotional words such as “rude” (Penn and Newman-Griffis, 2022).

Our contributions are as follows:

• We formalize the de-identification problem and show how the NER-based de-identification
fails to remove dependencies between de-identified notes and protected attributes.

• We empirically demonstrate an attack that re-identifies private information from de-
identified clinical notes.

• We show that sharing minimal information, such as medical diagnosis, enable better-
than-random prediction of a patient’s neighborhood, showing that even innocuous
sections of clinical notes can jeopardize patient privacy.

Generalizable Insights about Machine Learning in the Context of Healthcare

It is difficult to de-identify a clinical notes dataset (and models trained on clinical notes
by extension) without crippling its utility for research because even innocuous information,
such as medical diagnosis, can help hackers infer private information. Sharing useful clinical
notes requires a compromise between privacy and utility. Researchers must be vigilant when
using and sharing clinical notes and clinical language models. The healthcare industry
and government must invest in research to rigorously define the right compromise between
privacy and utility before allowing the commercialization of machine learning for healthcare.

2. Formalizing De-identification

Causal Graphs. We use causal graphs to encode our assumptions on the data-generating
process. A causal graph is a type of probabilistic graphical model where each node is a
random variable, and the parents of a node are “direct causes” of that node. We say u
causes v, if changes in u result in changes in v when all other variables are held constant.
For instance, let I be a random variable representing everything about an individual and C
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represents whether or not the individual is pregnant. If we change the individual’s sex from
female to male, then we know C must be “not pregnant”. Therefore, we draw a directed
edge from I to C that encodes a causation relationship.

Note Generation. We formalize the data-generating process for clinical notes using the
causal graph in Figure 1a. Let I be everything about a patient (e.g., address, occupation,
family’s medical history). Each patient has clinically meaningful attributes C (e.g., medical
conditions), sensitive information Z (e.g., name), and other nonsensitive information Z ′

(e.g., the patient’s pet). The clinical note X is written based on the patient’s medical
information, sensitive information, and other non-sensitive information. We observe and
share the clinical note X and do not observe the other variables directly.

I

Z Z ′C

X

(a) Data generating process for a note X.

I

Z Z ′C

X ′

//

(b) Current methods removes Z → X.

I

Z Z ′C

X ′

(c) Two backdoors remain open: X ′ ←
C ← I → Z and X ′ ← Z ′ ← I → Z.

All about Ava

Ava has horsespregnant

[NAME] is pregnant and has horses

(d) Examples of backdoors: Z =“Ava”,
C =“pregnant”, Z ′ =“has horses”.

Figure 1: A graphical illustration of how a conventional deidentification strategy, often based
on named entity recognition and replacement, fails to remove all dependencies between the
protected attributes and the note.

Backdoor Paths Exist for Re-identification. As shown in Figure 1b, the current de-
identification paradigm cuts the edge from Z to X by detecting and removing/replacing
HIPAA-protected attributes. However, a correlation between X ′ and Z still remains, which
can be inferred using some extra data. Two backdoors exist specifically (see Figure 1c).
First, the orange path (X ′ ← Z ′ ← I → Z) shows that we can infer the sensitive attributes
via non-sensitive attributes Z ′. Second, the magenta path (X ′ ← C ← I → Z) shows that
we can infer the sensitive attributes from medical conditions C.
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A Toy Example. Consider the note “Ava is pregnant and has horses.” The patient’s
name “Ava” is a protected attribute, “has horses” is a non-sensitive attribute, and “preg-
nant” is a medical condition. Figure 1d shows that even without the patient’s name “Ava”,
we can still infer some of Ava’s demographic attributes: she is likely an adult female who
lives in a high-income neighborhood.

A Real Example. MIMIC-III and MIMIC-IV were de-identified by masking out HIPAA-
protected attributes (Johnson et al., 2016, 2023), and the patient’s identity could possibly
be inferred from the remaining texts (see subsection 5.3). MIMIC-III contains 7 years
of electronic health records (EHR) of the ICU of Beth Israel Hospital with 38,597 adult
patients. Regular expression filters were used to detect and mask sensitive attributes such
as name and address. MIMIC-IV (Johnson et al., 2023) contains 12 years of Emergency
Department and ICU EHR of at least 50,920 adult patients. Both regular expression filters
and a language model-based detector were used to find and replace sensitive attributes.

3. Related Work

3.1 Re-identification from Structured Data

It is possible to re-identify people from redacted or noised structured data. For example,
de-identified genomics data, movie review, prescription records, database query, and envi-
ronmental health study data are all re-identifiable via linkage attack (Malin and Sweeney,
2004; Narayanan and Shmatikov, 2008; Homer et al., 2008; Sweeney, 2011; Dwork et al.,
2017; Sweeney et al., 2017). We extend this line of work to clinical notes and quantify
re-identification risk in the era of language models.

3.2 Named Entity Recognition (NER) for De-identification

We focus on the NER framework in this paper, as opposed to other existing approaches
to de-identification such as differential privacy or adversarial training, because it is well-
defined in the context of clinical notes de-identification and has been used to de-identify
clinical notes at scale (Johnson et al., 2016, 2023).

This conventional approach detects sensitive attributes (named entities) from clinical
notes and remove or replace them. NER models are evaluated based on precision and
recall of detecting sensitive attributes at the token level. This is a popular framework to
think about de-identification because its setup follows Safe Harbor’s removal of PHI. For
instance, the 2014 I2B2 de-identification challenge (Stubbs et al., 2015) aims to identify
labeled attributes such as names and evaluate precision and recall.

Regular expression-based de-identification. A traditional approach to tackling the
NER problem is to write regular expression-based filters that match patterns in strings for
a list of labeled attributes. Both UCSF-philter (Norgeot et al., 2020) and MIT’s automated
de-identification package (Neamatullah et al., 2008) use regular expression filters and lookup
tables to mask out HIPAA-protected attributes. Philter additionally implements a whitelist
system that only retains common English words. Although these tools report high precision
and recall for detecting labeled attributes, they may fail to protect against re-identification
attacks by retaining correlations to sensitive information, as illustrated in Figure 1c.
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Language model-based de-identification. More recent NER approaches use neural
language models to tag HIPAA-protected attributes. For example, to tag PHIs, Yang et al.
(2019) trained an LSTM-CRF model and Johnson et al. (2020) finetuned a pretrained
BERT. While neural networks achieve outstanding NER performance, they suffer from the
same issues as classical NER approaches.

Sharing models trained with “synthetic data”. Peng et al. (2023) released GatortronS
publicly. GatortronS was trained on synthetic text produced by GatortronGPT, assuming
that the original de-identified data that was used to train GatortronGPT would not be
exactly produced. This is, however, not true because language models memorize private
training data (Carlini et al., 2022).

3.3 Differential Privacy

Differential privacy (DP) (Dwork et al., 2006; Dinur and Nissim, 2003) is a theoretical
framework for protecting individual privacy. The idea of DP is informally to “hide in a
crowd”: removing or adding any element (or the unit of privacy) in the database would
only slightly change the query output. For example, if a de-identified dataset remains
constant (always just “data”) regardless of whether or not a patient is present, then it does
not give any information about the patients. The constant output, however, has poor utility
since we are not able to learn the correlation between constant data and medical conditions
or treatments. To improve the utility, we need to relax the output constraint from “not
changing at all” to “almost surely just changing a little.” The relaxation is parameterized by
ϵ (specifying how “little” the change is) and δ (specifying how certain is “almost surely”).

While DP might be a solution for sharing clinical notes, not much work has been done
in this specific application and we are motivating the need for more research in this area.
Many DP works focus on aggregate queries (e.g., count and average), but in sharing clinical
notes, we need data points for precision medicine, reproducibility, explainability and fairness
analysis. Private synthetic data (Near, 2021; Li, 2022; Lin et al., 2023) is a potential way
forward, but more works need to be done to improve its efficiency.

3.4 Adversarial Framework for De-identification

This approach trains and evaluates two models simultaneously: a de-identifier that masks
private information and a re-identifier that attempts to recover it. The models compete
against one another during training, strengthening de-identification performance (Morris
et al., 2022; Friedrich et al., 2019). The problem with adversarial evaluation is that the
de-identifier could overfit to tricking the selected re-identifier instead of holistically de-
identifying data.

4. How NER Evaluation Can Fail to Protect Re-identification

We present a toy setup in which the NER framework fails to protect re-identification.

Let D be a test set consisting of identified notes and character-level locations of the
tagged attributes, (x, {(i1, j1), ..., (in, jn)}). For instance, in Table 1a, x=“Ava is pregnant
and has horses” and (i1, j1) = (0, 2).
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Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Char A v a i s p r e g n a n t a n d h a s h o r s e s

(a) Original text

Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Char A v a * * p r e g n a n t a n d h a s h o r s e s

(b) Trivial Example: “is” is the only labelled attribute and got perfectly masked out

Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Char * * * i s p r e g n a n t a n d h a s h o r s e s

(c) Nontrivial Example: “Ava” is the only labelled attribute and got perfectly masked out

Table 1: Toy examples of how successful NER-based evaluations still allow re-identification
due to its focus on just the tagged attributes.

Let f be a mask-based de-identification algorithm that achieves perfect precision and
recall on D. Let {(ĩl, j̃l)}ñl=1 be the mask indices on the deidentified note f(x). For example,
if (ĩ1, j̃1) = (0, 3), then f(x) = “*** is pregnant and has horses” and f has perfect precision
and recall because {(i1, j1)} = {(ĩ1, j̃1)}.

A trivial way for NER evaluation to fail is when names are not tagged. For example,
Table 1b shows that the tagged attributes are {(4, 5)}, then f(x) = “Ava ** pregnant and
has horses” achieves perfect precision and recall while keeping the patient’s name. This
example is trivial because the named attributes usually cover all the HIPAA-protected
attributes. A nontrivial example will be based on implicit attributes that cannot be easily
captured as a named entity.

Table 1c shows that when“Ava” is the only HIPAA protected entity, “*** is pregnant
and has horses” has perfect precision and recall. Suppose that the hacker has a database
shown in Table 2, knowing that the patient is in it. Based on “has horses”, we know the
patient probably lives in Richville, eliminating Ben and Dina. Based on “pregnant”, we
know that the patient is not a 4-year-old girl, eliminating Camille. As a result, the hacker
finds Ava based on a de-identified note that achieve perfect precision and recall.

name sex zip code year of birth month of birth day of birth

Ava female Richville 1990 December 25
Ben male Poorvile 1970 March 3

Camille female Richville 2020 June 6
Dina female Poorville 1989 September 9

Table 2: A toy database where the patient can be re-identified as an individual based on
contextual identifiers.

5. Experiment: Re-identification Is Possible

We have shown there exists a correlation between de-identified data and sensitive attributes
in section 2. We demonstrated this in a toy but realistic example in section 4. To further
substantiate our claim, we will show an experiment on real data using a real de-identifier.
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5.1 Experiment Setup and Evaluation

We hypothesize that we can re-identify patients from NER-based de-identified notes with
above random chance. To test our hypothesis, we need to show that it is possible to predict
sensitive attributes from de-identified clinical notes, and that the predicted attributes can
re-identify people with better than random chance. For prediction, the baseline is the
accuracy of a random guess assuming uniform labels, or the reciprocal of the number of
classes. For re-identification, the baseline is the performance of finding people based on the
marginal distribution of demographic attributes.

Figure 2 illustrates the data flow for our re-identification experiment: on the left, we
have an identified note of John. The regular expression filters mask out explicit HIPAA-
protected PHI, producing the de-identified note. With some extra data, a hacker could
re-identify demographic attributes using the contextual information and locate John in a
small group of people from an external database (e.g., voter registration record).

Figure 2: An example re-identification attack from de-identified clinical notes.

Data. From a large, urban, academic hospital, we collect 222,949 identified clinical notes
from 170,283 patients (3.34 times more patients than MIMIC-IV, the largest publicly avail-
able EHR dataset). Each patient has six demographic attributes: sex, year of note, month
of note, borough (or neighborhood) of the patient, wealth of the zip code of the patient, and
the insurance type (See Table 3 for more details). We choose these attributes to approxi-
mate the trio Sweeney (2000) used to uniquely identify more than 87% of Americans in the
census: sex, birthday (approximated by year of note and month of note, since age is usually
included), zip code (approximated by borough, income, and insurance). We de-identify the
clinical notes using UCSF philter (Norgeot et al., 2020). Next, we split the set of unique
patients into 80% train, 10% validation, and 10% test splits. For each split, we include all
notes of the patient in that split.
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Attribute # Classes Potential Values

Sex 2 Female, Male
Borough 6 Manhattan, Brooklyn, Bronx, Queens, Staten Island, Others

Year of Note 10 2012-2021
Month of Note 12 January - December
Area Income 2 poor (below NYC median) or rich (above NYC median)
Insurance type 2 public (medicare or medicaid) or privtae

Table 3: We finetuned a BERT model to predict six demographic attributes from de-
identified clinical notes.

Finetuning. We chose our pre-trained model as a publicly available BERTmodel that was
not trained on clinical notes in order to avoid having the underlying model see the originally
identified notes during pretraining. For each attribute, we finetune the BERT model (110
million parameters bert-base-uncased from Devlin et al. (2018)) using different quantities
of the labeled training dataset pairs. We trained each model on one compute node with
eight NVIDIA A100 GPUs (40G) for 10 epochs with early stopping and random seed set
to 0. We used the AdamW optimizer (Loshchilov and Hutter, 2017) with a learning rate
of 2e-5, no weight decay, and an effective batch size of 256. Our learning rate scheduler is
linear decay with no warmup. We evaluate and save checkpoints every half epoch and use
the model with the highest validation ROC-AUC (weighted ROC-AUC for multiclass) for
inference. Our code will be available on Anonymous Github upon acceptance.

Prediction evaluation. We evaluate the finetuned model’s performance using accuracy
and Area Under the Curve (AUC).

External Database. Although we have obtained voter registration records for free within
a month of request from the State Board of Elections, we decided not to use it as the external
database because the usage agreement forbids analysis that is unrelated to voting. Instead,
we use the original database as an ideal external database. Specifically, the database con-
tains entries of exactly the same patients in the de-identified notes. Each row stores a
patient’s name and their demographic attributes.

Re-identification. The hacker uses the finetuned model to predict demographic at-
tributes and uses the predicted attributes to match people in the database. Specifically,
we use top-k match: for the i-th attribute, we fix prediction as the ki most likely classes
and filter database for patients who fit the prediction. For each attribute with ci possible
classes, we tested all ki ∈ {1, ..., ci} to review all possible top-k combinations and observe
the trade-off between prediction accuracy and matched group size.

Reidentification evaluation. We evaluate accuracy to gauge how often the matched
set contains the note owner (higher accuracy is riskier). We also evaluate the re-identified
group size to check the quality of a correctly re-identified group (a smaller group is riskier).

Probability of being uniquely re-identified. To estimate the individual-level risk, we
assume that the hacker guesses the identity of a note owner by uniformly drawing a person
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from the re-identified group. The probability of being uniquely identified is the probability
of correctly guessing all attributes and drawing the exact owner from the re-identified group.
This likely underestimates the true risk because, given a small re-identified group, the hacker
could use an auxiliary method such as social engineering to make a more informed guess.
Nevertheless, it gives us a lower bound estimation of the individual-level risk.

5.2 Finetuning a model with just 1000 examples yields above-random-chance
prediction for all attributes and improves with data

Figure 3: Finetuned re-identifier’s accuracy v.s. random-guess accuracy for sex, borough,
year, month, income and insurance type. See Appendix A for the above-random AUCs.

Figure 3 shows six bar plots for predicting each demographic attribute from de-identified
notes, where the x-axis is the number of finetuning examples (1k, 10k, 100k, and 177k), the
y-axis is the accuracy, the blue bar is the random baseline (reciprocal of # classes), and the
red bar is the finetuned model. For all bar plots and for all finetuning examples, we see that
the red bar is above the blue bar, confirming the above-random prediction performance.
Biological sex is the easiest to predict (accuracy range from 99.72% - 99.92% across different
finetuning sizes), and month of note is the hardest to predict (accuracy range from 8.97%
to 13.7% across different finetuning sizes).

5.3 Re-identification with attribute match is above random

We used the predictions from the fully finetuned model (177,899 examples) in subsection 5.2
to filter our ground truth database and report both the accuracy (whether or not the patient
is in the filtered group) and the group size (how large is the filtered group). The most
risky situation is 100% accuracy and a group size of 1, meaning the hacker would always
successfully uniquely re-identify the patient. Since the hacker can improve accuracy at the
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cost of a larger group size (by making less precise predictions), we vary the choice of top-k
(from 1 to number of classes minus 1) prediction to get a spectrum of results.

Figure 4 is a scatter plot of the re-identification accuracy and the average size of the
re-identified group. Points closer to the upper left corner are riskier because they can
accurately locate patients in a small group. The color bar represents the product of the
top-k ratio, where a smaller ratio (closer to red) indicates keeping fewer high-probability
classes as predictions. More precise predictions (smaller k, more red) have a smaller group
size and a lower accuracy (closer to the left bottom); less precise predictions (larger k, more
blue) have a bigger group size and a higher accuracy (closer to the right top).

Figure 4: Comparison of re-identification accuracy and re-identified group size between
finetuned model and random guess.

There is a clear boundary between the finetuned model (round dots) and the random
prediction (squares). Since the round dots are in the upper left relative to the line of squares,
this confirms that re-identification with fine-tuned predictions is better than random.

The probability of being uniquely identified is nontrivial. To understand the prob-
ability of re-identifying patients as individuals, we need to make some assumptions about
how a hacker guesses the patient’s true identity given a group of candidates. To estimate
a lower bound for re-identification risk, we assume the hacker guesses the true patient by
uniformly drawing from the group. Then, the conditional probability of correctly guessing
the patient is one over the group size. This is likely an underestimation because, in reality,
a hacker could use auxiliary tools such as social engineering to inform their guess.

Mathematically, let z be the patient’s true identity, Ẑ be the set of people who fit the
predicted attributes, g be the “guessing function” that selects a member of the group, and 1
be the indicator function, we estimate the probability of being re-identified as an individual
as
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P{z = g(Ẑ)} = P{z ∈ Ẑ & z = g(Ẑ)}+ P{z ̸∈ Ẑ & z = g(Ẑ)} (total probability)

= P{z ∈ Ẑ & z = g(Ẑ)} (z ̸∈ Ẑ =⇒ z ̸∈ g(Ẑ))

= E[1{z ∈ Ẑ}/|Ẑ|]. (g(Ẑ) ∼ U [Ẑ])

We calculate the above empirical probability for all points in Figure 4, and the maxi-
mum probability is 0.3356% (predicting all six attributes as the top-1 class). This means
that for every thousand de-identified notes, around three patients could be re-identified as
individuals. If a dataset with millions of patients is released, then around three thousand
patients could be re-identified as individuals.

The risks become smaller (but remain above random) if the hacker has access to fewer
identified notes. When the number of finetuning examples decreases to 1000, the maximum
probability of being re-identified as an individual is 0.038%, or three hundred and eighty
in a million (see Appendix A for the scatter plot with the model finetuned with just 1000
examples).

5.4 Identity leak comes from all open paths

We have confirmed that a hacker can learn the correlation between de-identified notes
(X ′) and sensitive attributes (Z) with some extra data. The correlation comes from both
backdoor paths shown in Figure 1c: the non-sensitive attributes (X ′ → Z ′ ← I → Z) and
the medical information (X ′ → C ← I → Z).

We check how much leak comes from medical information (C) because it is important
for utility. If open paths between X ′ and C significantly leak a patient’s identity, then it is
difficult to preserve utility.

We expect to see some leak because the distribution of patient demographics is skewed
conditioned on particular diagnoses. For instance, the probability of a female patient is
100% conditioned on ectopic pregnancy. However, it is not clear whether the leak comes
mainly from medically relevant information C or from non-sensitive attributes Z ′. (e.g., are
we able to tell that the patient is Ava mainly based on her pregnancy, or mainly based on
her pet horses?)

To investigate this question, we use diagnosis to approximate C and finetune models to
predict the patient’s neighborhood (borough) using three types of notes:

1. Diagnosis∗ only (X ′ → C ← I → Z only)

2. De-identified notes (X ′ → C ← I → Z and X ′ → Z ′ ← I → Z )

3. Original identified notes (all open paths)

We have three observations from Table 4:

1. Diagnosis C leaks sensitive information. The first and second rows show that the
AUC of diagnosis is 8.57% better than random chance.

∗To generate diagnoses, we get the ICD codes associated with the note’s clinical encounters and use a
lookup table to convert codes to text.
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Data Path AUC

Random Guess None 50
Diagnosis only X ′ → C ← I → Z only 58.57

De-identified Note X ′ → C ← I → Z and
X ′ → Z ′ ← I → Z

78.35

Identified Note all open paths 82.78

Table 4: Comparison of AUC for predicting borough from three types of data

2. Non-sensitive attributes Z ′ leak more information than diagnosis C. The second and
third rows show that the AUC of de-identified notes is 19.78% higher than that of
diagnosis only.

3. All open paths leak information. The third and fourth rows show that the AUC of
identified notes is 4.43% higher than that of de-identified notes.

6. Discussion

In sharing clinical notes, the goal often is to infer clinical information C given the note
X ′. We have seen that perfect de-identification is difficult without crippling utility because
even keeping just diagnosis (C → X) enables better-than-random prediction of the patient’s
neighborhood. This means that to share useful clinical notes, we must make a
compromise between privacy and utility. What is the right compromise?

Expert Determination. Apart from Safe Harbor (removal of 18 types of identifying
attributes), another applicable HIPAA rule is “expert determination”, where someone ap-
plies statistical and scientific principles to verify that the risks of re-identifying patients are
small. This transfers the choice of compromise to experts, who decide on a level of risk that
is “acceptably small”.

Differential Privacy. As discussed in subsection 3.3, the ϵ and δ parameters offer a
way to quantify the trade-off between privacy and utility. Although differential privacy
is a potential path forward, more research is needed in its application to clinical notes
de-identification. This problem is challenging due to the discrete, combinatorial, high-
dimensional nature of text data and the presence of inter-patient correlations. There is also
a need to improve efficiency for generating synthetic data.

Data Encryption. One potential solution is to encrypt clinical notes, but we must con-
sider how best to study the explainability and fairness of encrypted data since many mod-
els are designed to support rather than automate clinical decision-making. For example,
fully homomorphic encryption (Gentry, 2009) enables direct computation on encrypted data
without needing decryption. In the context of clinical note de-identification, it enables shar-
ing encrypted notes and training machine learning models on the encrypted data. However,
explainability and fairness are hard to study when model features and patient information
is encrypted.
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Extremely limited identified data access. Ohm (2009) suggests codifying the rules
of verifiable trust with an additional accountability mechanism and sharing the original,
not de-identified data to the vetted researchers. An example he gave was for psychotherapy
notes: Researchers will need to pass an NSA-inspired clearance and access data in person.
For researchers who re-identify or leak, Ohm suggests sanctions or criminal punishments.
Accessing whole genome sequencing in “All of Us” (all, 2024) is similar to this model, where
researchers need to be pre-approved, complete a course, and only access data on NIH’s cloud
platform without egress.

Limited de-identified data access. We can share de-identified data with pre-vetted
researchers with regular renewal of access by trusted third-party organizations. Accessing
MIMIC is similar to this model, except that regular renewal is not required. Researchers
need to complete a course and are able to download de-identified clinical notes.

Our suggestion.

1. The healthcare industry and government should establish a rule that specifies the
degree of screening required to access data with different levels of re-identification
risks. A higher risk requires greater trust and a stricter screening process.

2. The shared data should have “digital fingerprint” so that it can be traced.

3. Data access should be renewed regularly with trusted third-party organizations.

4. Data owners (patients) should have the right of knowing whether or not their de-
identified data has been released because de-identification is never perfect.

We encourage researchers to be vigilant about sharing de-identified clinical notes because
private information could still be leaked. We call on the healthcare industry and govern-
ments to invest significantly in academic research to establish the right levels of privacy and
utility before allowing the commercialization of machine learning for healthcare.
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Appendix A. Supplemental Figures

Figure 5 shows an above-random AUC for all tasks and variable counts of finetuning exam-
ples.

Figure 5: Finetuned re-identifier’s auc v.s. random-guess auc for sex, borough, year, month,
income, and insurance type.

Figure 6 shows that when we re-identify with models finetuned with only 1000 examples,
it also has higher accuracy and smaller group size than random prediction.

Figure 6: Finetuned re-identifier’s auc v.s. random-guess auc for sex, borough, year, month,
income and insurance type.
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