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Abstract
Text-rich Graph Knowledge Bases (TG-KBs)001
have become increasingly crucial for answer-002
ing queries by providing textual and structural003
knowledge. However, current retrieval methods004
often retrieve these two types of knowledge in005
isolation without considering their mutual rein-006
forcement and some hybrid methods even by-007
pass structural retrieval entirely after neighbor-008
ing aggregation. To fill in this gap, we propose009
a Mixture of Structural-and-Textual Retrieval010
(MoR) to retrieve these two types of knowledge011
via a Planning-Reasoning-Organizing frame-012
work. In the Planning stage, MoR generates013
textual planning graphs delineating the logic for014
answering queries. Following planning graphs,015
in the Reasoning stage, MoR interweaves struc-016
tural traversal and textual matching to obtain017
candidates from TG-KBs. In the Organizing018
stage, MoR further reranks fetched candidates019
based on their structural trajectory. Exten-020
sive experiments demonstrate the superiority021
of MoR in harmonizing structural and textual022
retrieval with insights, including uneven retriev-023
ing performance across different query logics024
and the benefits of integrating structural trajec-025
tories for candidate reranking. Our code will026
be publically available upon acceptance.027

1 Introduction028

Text-rich Graph Knowledge Bases (TG-KBs), due029

to their structured representation of textual doc-030

uments, are ubiquitously used for storing textual031

and structural knowledge (Chen et al., 2024). For032

example, scholars retrieve relevant research to033

advance scientific discoveries in academic paper034

management systems where nodes represent pa-035

pers and edges denote references. With large lan-036

guage models (LLMs)-powered generators gradu-037

ally approaching human intelligence in language038

comprehension and generation, retrieving support-039

ing knowledge from TG-KBs to contextualize and040

ground generation has become increasingly crucial041

for correctly answering queries (Gao et al., 2023b).042
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Figure 1: (a) Textual retrieval and structural retrieval.
(b) The effectiveness of retrieval methods varies across
different TG-KBs. (c) Within the same TG-KB, queries
addressed by textual (i.e., QText) and structural retrieval
(i.e., QStruct) exhibit both overlaps and distinctiveness.

Since supporting knowledge in TG-KBs typi- 043

cally appears in both the textual and structural for- 044

mats (Jin et al., 2024b; Kolomiyets and Moens, 045

2011), retrieval methods should be designed to 046

leverage both formats effectively as Figure 1(a). 047

Textual retrieval methods retrieve textual knowl- 048

edge such as indexed documents (Mitra and Chaud- 049

huri, 2000) based on its similarity to the given 050

query and can be broadly categorized into lexical 051

methods (e.g., BM25) and semantic methods (e.g., 052

Contriever) (Karpukhin et al., 2020; Izacard et al., 053

2022). Structural retrieval methods retrieve struc- 054

tural knowledge such as neighboring entities (Edge 055

et al., 2024; Jiang et al., 2023; Wang et al., 2024) by 056

conducting graph traversal and applying graph ma- 057

chine learning models (Tian et al., 2024; Yasunaga 058

et al., 2021a). Despite the advancements in both 059

textual and structural retrieval, they are often ap- 060

plied independently and fail to mutually reinforce 061

each other. As shown by Figure 1(b), neither struc- 062

tural retrieval by following the logical structure of 063

the query nor textual retrieval by conducting Top-K 064

BM25 matching can achieve better performance on 065

both Amazon and MAG datasets simultaneously. 066
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To retrieve hybrid knowledge from TG-KBs, re-067

cent works (Xia et al., 2024; Li et al., 2024) ag-068

gregate neighboring documents to fuse structural069

knowledge into textual narratives followed by tex-070

tual retrieval, with Xia et al. (2024) filtering irrele-071

vant neighbors by their relations and Li et al. (2024)072

weighted aggregating neighbors based on their073

fields. However, three challenges remain. First, re-074

wording aggregated neighbors requires frequently075

invoking LLMs, resulting in prohibitive resources076

when facing long documents with exponentially077

growing neighbors. Second, structural signals that078

humans use to form logical plans are completely079

discarded after neighbor aggregation. Third, the080

rigid neighbor aggregation overlooks the varying081

desire for structural and textual knowledge across082

different queries and TG-KBs. In Figure 1(c), even083

within MAG, queries answered by textual retrieval084

(i.e., QText) are not the same as queries answered085

by structural retrieval (i.e., QStruct).086

To address the above three challenges, we in-087

fuse the mixture-of-expert philosophy into retrieval088

design and propose a Mixture of Structural-and-089

Textual Retrieval (MoR) in Figure 2. MoR be-090

gins with a planning module that generates plan-091

ning graphs outlining query logics that preserve092

structural signals without rewording aggregated093

neighbors, overcoming the first and second chal-094

lenges. Next, MoR interleaves structural traver-095

sal and textual matching in the reasoning mod-096

ule, enabling these two retrieval to reinforce each097

other. Finally, MoR devises a structure-aware098

Reranker in the organization module that adap-099

tively adjusts the retrieved textual/structural knowl-100

edge, addressing the third challenge. Via Plan-101

ning–Reasoning–Organizing, MoR intelligently re-102

trieves structural and textual knowledge based on103

query patterns. Our key contributions are:104

• Planning via Textual Graph Generation: We105

define retrieval planning as generating textual106

graphs that outline the logical structure, i.e., the107

plan, for identifying entities relevant to the query.108

• Reasoning via Mixture of Structural-and-109

Textual Traversal: We devise a mixed traver-110

sal by interweaving textual matching and struc-111

tural traversal to retrieve knowledge following112

the query logic depicted by the generated plan.113

• Organizing via Structure-aware Rerank: With114

candidates obtained from mixed traversal, we115

propose a Structure-aware Rerank to select Top-116

K candidates via their traversal trajectory.117

2 Preliminary 118

Notations: A Text-rich Graph Knowledge Base 119

(TG-KB) B generally consists of a set of connected 120

nodes V in the graph with each node v ∈ V associ- 121

ated with its corresponding document Dv ∈ D and 122

category Ev ∈ E . When retrieving nodes with sup- 123

porting documents from B for answering a given 124

query Q ∈ Q, we typically follow certain ratio- 125

nale encapsulating the underlying logic of that 126

query (Xu et al., 2024; Xue et al., 2024), which 127

can be characterized by a text-attributed planning 128

graph G. As utilized in many existing works (Jin 129

et al., 2024a; Wu et al., 2024b), this planning graph 130

can usually be decomposed into multiple reason- 131

ing paths G = {Pi}|G|
i=1 where the ith reasoning 132

path Pi = (pi1 → pi2 →, ...,→ piLi) is a dis- 133

tinctive reasoning chain of length Li encoding a 134

unique logic and the jth node pij corresponds to 135

an entity in B with its own category Epij and tex- 136

tual restriction Tpij extracted from the query. For 137

example, in Figure 1(a), the query Publications by 138

Point... has a planning graph with two paths, i.e., 139

P1 = (Institution → Author → Paper) and P2 = 140

(Field-of-Study→ Paper), where the category and 141

textual retriection of the first node onP1 are Ep11 = 142

Institution and Tp11 =< Point Park Univerisity >, 143

respectively. Comprehensive notations are summa- 144

rized in Table 4 in Appendix A. 145

Problem Setup: With the above notations, the 146

investigated problem here is to retrieve entities C ⊆ 147

V supporting answering a given query Q. 148

Textual Retrieval retrieves candidates based on 149

the textual signals of both the query and documents. 150

One common strategy is to retrieve candidates C̃ 151

from the whole documents D that have Top-K tex- 152

tual similarity to query Q measured by lexical or se- 153

mantic similarity (Vijaymeena and Kavitha, 2016). 154

The textual retrieval used in MoR retrieves docu- 155

ments for a given query by matching them with 156

textual descriptions in the query, e.g., matching 157

stellar populations in tidal tails shown in Figure 1. 158

Structural Retrieval retrieves candidates by ap- 159

plying prescribed rules to structured databases such 160

as knowledge graphs and SQL (Guo et al., 2023). 161

Common strategies include graph-based traversal 162

(e.g., BFS, DFS) and rule fetching (Jiang et al., 163

2023). Specifically, MoR conducts structural re- 164

trieval by traversing neighbors of certain categories 165

from the generated planning graph. For example, 166

in Figure 1(a), only "Paper" typed neighbors of the 167

Author can be traversed by our structural retrieval. 168
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Figure 2: Our MoR framework consists of a planning module to generate a planning graph, a reasoning module to
conduct mixed traversal, and an organizing module to rerank the retrieved candidates.

3 Framework169

In a nutshell, we formulate our MoR as the condi-170

tional distribution PΘ(C|Q,B) of retrieved candi-171

dates C given the user input query Q over TG-KB172

B, which is further factorized into three distribu-173

tions corresponding to our proposed three modules:174

planning via generating the text-attributed plan-175

ning graph G, reasoning via conducting mixture of176

structural-and-textual traversal to obtain intermedi-177

ate candidates C̃ following the generated planning178

graph G, and organizing via applying structure-179

aware reranking to the obtained candidates C̃, ob-180

taining final candidates C:181

PΘ(C|Q,B) =
∑
G∈G

[∑
C̃∈C

PΘ3(C|C̃, G,Q,B)︸ ︷︷ ︸
Organizing

× PΘ2(C̃|G,Q,B)︸ ︷︷ ︸
Reasoning

]
× PΘ1(G|Q,B)︸ ︷︷ ︸

Planning

182

where PΘ1(G|Q,B) is the probability distribu-183

tion of generating the text-attributed planning184

graph G given the input query Q and TG-KB B;185

PΘ2(C̃|G,Q,B) is the probability distribution of186

retrieving intermediate candidates C̃ given the plan-187

ning graph G and the query Q via our mixed traver-188

sal; PΘ3(C|C̃, G,Q,B) is the probability distribu-189

tion of reranking the intermediate candidates so190

that Top-K positions form the ground-truth enti-191

ties C. G/C denotes the collection of all possible192

planning graphs and all possible configurations of193

size-K candidate nodes from all nodes V of TG-KB194

B. The overall objective is to maximize the like-195

lihood of retrieving ground-truth candidates C for196

each input query Q ∈ Q:197

Θ∗ = argmax
Θ

∏
Q∈Q

PΘ(C|Q,B) (1)198

Following the above paradigm, we next intro-199

duce the three components: Planning via textual200

graph generation in Section 3.1, Reasoning via201

mixed traversal in Section 3.2, and Organizing via202

structure-aware reranking in Section 3.3.203

3.1 Planning via Textual Graph Generation 204

To effectively reason over the underlying logic of 205

queries and answer them, we propose a planning 206

module that constructs a planning graph to capture 207

their underlying logical structures. Unlike conven- 208

tional approaches relying on rigid heuristics, e.g., 209

shortest-path retrieval in knowledge graphs (Luo 210

et al., 2023; Delile et al., 2024), or step-by-step 211

prompting of LLMs, which incurs high computa- 212

tional costs (Sun et al., 2023a; Wang et al., 2024), 213

our method generates the entire planning graph in 214

one shot, eliminating repeated LLM calls. More 215

importantly, as planning graphs integrate entity re- 216

strictions encoding query-specific constraints and 217

entity categories capturing broader logical struc- 218

ture, our MoR can generalize learned patterns and 219

efficiently adapt to new queries with the same un- 220

derlying logic. For example, any query with the 221

form Papers associated with <institution> and are 222

in the field of <field> shares the same patterns with 223

the query in Figure 2. Below, we first formalize the 224

planning graph and then optimize its generation. 225

3.1.1 Planning Graph Formulation 226

A planning graph G is a structured representation 227

where nodes represent entities and edges denote 228

their logical relations. Each entity is associated 229

with both a category and query-specific restriction. 230

For example, given the query Can you give me 231

publications by Point Park University authors on 232

stellar populations in tidal tails, the generated plan- 233

ning graph is: G = (Institution<Point Park Univer- 234

sity>→Author→ Paper← Field-of-Study<Stellar 235

Population>) with Institution, Author, Paper, Field- 236

of-Study as categories and <Point Park University>, 237

<Stellar Populations> as restrictions. Note that 238

edges in our planning graph can also possess dif- 239

ferent categories. For example, in the biomedical 240

TG-KBs, the relation between Disease and Drug en- 241

tities could be Indication or Contra-indication (Wu 242

et al., 2024b), adding a finer level of semantic dis- 243

tinction to the relation. 244
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3.1.2 Planning Graph Optimization245

To ensure that our generated planning graph cap-246

tures the query logic, we train a textual graph gen-247

erator to maximize the likelihood of generating248

ground-truth planning graphs given their queries.249

Formally, given the joint distribution of the training250

pairs between queries and planning graphs P Train
Q×G,251

we optimize the planning module PΘ1 by solving:252

argmax
Θ1

E(Q,G)∼P Train
Q×G

logPΘ1(G|Q,B) (2)253

To avoid the combinatorial explosion of exponen-254

tially growing planning graph candidates (You255

et al., 2018), we decompose each planning graph256

into multiple reasoning paths G = {Pi}|G|
i=1. Each257

pathPi = (pi1 →, ...,→ piLi) represents a distinct258

reasoning chain, where node pij denotes an entity259

in TG-KB sharing the same textual category Epij260

and satisfying the restriction Tpij from the query.261

Given the sequential nature and textual formats of262

these decomposed reasoning paths, LLMs can be263

naturally employed here as the planning graph gen-264

erator, which conducts next-token prediction by265

predicting jth token tj conditioned on preceding266

tokens t<j , the query Q and the TG-KB B:267

PΘ1(G|Q) =
n∏

j=1

PΘ1(tj |t<j , Q,B). (3)268

Note that our proposed planning graph generator is269

not limited to LLMs. Any graph generative model270

preserving both structural dependencies and textual271

associations can be employed (Zhu et al., 2022).272

3.2 Reasoning via Mixed Traversal273

Following the reasoning paths of the above plan-274

ning graph G = {Pi}|G|
i=1, the reasoning module275

conducts a mixed traversal by interweaving neigh-276

bor fetching and textual matching to form interme-277

diate candidates C̃, which are introduced next.278

3.2.1 Structural Traversal279

Following the definition in Section 2 that structural280

retrieval follows prescribed rules for knowledge re-281

trieval, here we set these prescribed rules to be iter-282

atively performing layer-wise breadth-first-search283

that traverses neighboring entities with categories284

aligning with those in the reasoning paths. Con-285

cretely, reasoning at the lth-step of the planning286

path Pi, we check for each node v in candidates287

set of last layer ∀v ∈ C̃l−1
i and fetch its neighbors288

∀u ∈ Nv with the same category as the correspond- 289

ing node pil (i.e., Eu = Epil) in the reasoning path, 290

which can be mathematically formulated as: 291

C̃l,Struct
i = ∪

v∈C̃l−1
i
{u|u ∈ Nv, Eu = Epil} (4) 292

where C̃l,Struct
i denotes the set of structurally re- 293

trieved entities at the lth reasoning step according 294

to the path Pi and Eu = Epil ensures that the cate- 295

gory of the traversed neighbor u matches the cor- 296

responding entity category routine by the planning 297

graph, resonating the nature of rule-based struc- 298

tural retrieval. Note that the seeding candidates 299

C̃1,Struct
i at the very first layer are initialized by re- 300

trieving Top-K entities through textual matching, 301

i.e., C̃1,Struct
i = C̃1,Text

i , which is introduced next. 302

3.2.2 Textual Matching 303

In addition to retrieving structural knowledge, our 304

MoR also retrieves textual knowledge via Tex- 305

tual Matching, which retrieves candidates based 306

on their textual similarity to queries. For each 307

reasoning node pil at lth reasoning step along the 308

reasoning path Pi, we concatenate the query and 309

the textual restriction of pil, i.e., Q′ = [Q : Tpil ], 310

then compute its textual similarity to documents 311

of nodes in TG-KB, i.e., ϕ(Q′,Dv),∀v ∈ V , and 312

finally retrieve the Top-K scored candidates: 313

C̃l,Text
i = TopK({v | v ∈ V, Ev = Epil}, ϕ(Q′,Dv)) (5) 314

Integrating candidates from structural traversal 315

and textual matching together, the final candidates 316

at lth-step of Pi are formed as: 317

C̃li = C̃
l,Struct
i ∪ C̃l,Text

i ,∀l ∈ {1, 2, ..., Li} (6) 318

The integrated candidates C̃li serve as seeding 319

nodes initializing the next round of planning graph- 320

guided structural traversal and textual matching, 321

which creates a mutual reinforcement between 322

structural and textual knowledge since previously 323

retrieved two knowledge can both inform next 324

round of structural/textual knowledge retrieval. 325

We iteratively conduct mixed traversal for ev- 326

ery reasoning path Pi ∈ G and integrate re- 327

trieved entities together by taking their intersec- 328

tion, i.e., C̃ = ∩Pi∈GC̃
Li
i , adhering to the fact 329

that candidates should simultaneously satisfy the 330

logic routine by all reasoning paths. Note that 331

no training is involved in the mixed graph traver- 332

sal, i.e., PΘ2(C̃|G,Q,B) = P (C̃|G,Q,B). Fu- 333

ture works could explore optimizing graph traver- 334

sal by rewards from agent-environment interac- 335

tions (Nguyen et al., 2024). 336
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3.3 Organizing via Structure-aware Rerank337

Although the retrieved candidates from Section 3.2338

strictly adhere to the prescribed rule given by the339

planning graph, the sheer volume of candidates340

misaligns with realistic constraints (e.g., Top-20341

retrieval budget (Zeng et al., 2024)) and may even342

cause difficulty to downstream executors such as343

long-context challenges for LLMs. To better em-344

ulate human reasoning, where multiple clues are345

gathered, analyzed in relation to the query, and346

synthesized into a coherent answer, we propose a347

structure-aware reranker to organize and rerank the348

candidates C̃, and select Top-K ones as the final349

retrieved answers C. Instead of relying only on350

textual features (Hu et al., 2019), our reranker as-351

signs a ranking score based on features of structural352

trajectories obtained from the mixed traversal in353

Section 3.2, innovatively leveraging both structural354

and textual knowledge in reranking.355

Previously, C̃ is defined as intermediate retrieved356

entities. To consider structural features in rerank-357

ing, we pair each retrieved candidate in C̃ with its358

corresponding traversal trajectory obtained from359

the reasoning module. Specifically, each trajectory360

Pi of length Li is featuring three types of attributes:361

• Textual Fingerprint (TF): Concatenation of sim-362

ilarity scores between the expanded query and363

each node on the path:
∥∥Li

l=1
ϕ(Q′,Dpil).364

• Structural Fingerprint (SF): Concatenation of365

node categories at each step on the path:
∥∥Li

l=1
Epil366

• Traversal Identifier (TI): Concatenation of the367

indicator specifying whether each step uses a368

structural or textual retrieval:
∥∥Li

l=1
Ipil .369

We then train a reranker on these trajectories using370

the cross-entropy loss. For a training query Q and371

its associated candidate trajectory Pi, the loss is372

computed as follows:373

LΘ3 = −
∑

(Pi,Q)∈C̃

2∑
j=1

yij log(σ(f(
∥∥Li

l=1
ϕ(Q′,Dpil)︸ ︷︷ ︸

Textual Fingerprint

:
∥∥Li

l=1
Epil︸ ︷︷ ︸

Structural Fingerprint

:
∥∥Li

l=1
Ipil︸ ︷︷ ︸

Traversal Identifier

))j).

(7)374

where f(·) is the reranker producing a score for375

each (Q,Pi) pair, σ(·) denotes the softmax func-376

tion, and yij ∈ {0, 1} indicates whether the j-th377

candidate is a correct (positive) or incorrect (neg-378

ative) match for Q. This formulation encourages379

the reranker to assign higher scores to positive tra-380

jectories, thereby improving ranking performance.381

4 Experiment 382

4.1 Experimental Setup 383

We briefly introduce experimental settings to verify 384

our proposed MoR, including Datasets & Baselines, 385

Implementation Details, and Evaluation Metrics. 386

More details are in Appendix B. 387

Datasets & Baselines: We use three TG-KBs 388

from STaRK (Wu et al., 2024b) covering three 389

different domains of knowledge, including E- 390

commerce Products (Amazon), Academic Papers 391

(MAG), and Biomedicine (Prime). We compare 392

our MoR with baselines established by Wu et al. 393

(2024b) and more recent state-of-the-art models 394

such as KAR (Xia et al., 2024) and MFAR (Li 395

et al., 2024), which are two most advanced hybrid 396

knowledge retrieval approaches for TG-KBs. 397

Implementation Details: To enhance the plan- 398

ning capability of our planning module, we fine- 399

tune the Llama 3.2 (3B) on 1000 sampled queries 400

with their corresponding ground-truth planning 401

graphs, serving as the textual graph generator. In 402

the absence of ground-truths, we synthesize them 403

using LLMs. For the Prime dataset, we empirically 404

find that directly prompting LLMs can hardly gen- 405

erate accurate planning graphs due to the lack of 406

biomedical domain knowledge (Shen et al., 2024). 407

Therefore, we adopt an alternative approach. First, 408

we instruct LLMs to extract triplets from each 409

query and then construct the planning graphs by 410

merging triplets with shared entities. During mixed 411

traversal, textual matching can be implemented us- 412

ing any lexical or semantic methods. For this study, 413

we employ BM25 for Amazon and MAG and fine- 414

tune a contriever to complement the biomedical 415

knowledge for Prime. To initialize the structural 416

traversal, we employ textual matching to locate the 417

top 5 nodes most relevant to the query as seeds. 418

Additionally, at each layer, we incorporate the top 419

10 nodes retrieved via textual matching and append 420

them to the current candidate set for the next round 421

of traversal. Notably, due to the uncertainty of 422

LLMs, the generated planning graphs can be in- 423

valid. In this case, we will directly conduct textual 424

matching to retrieve candidates. For our ablations 425

without reranker, we employ Ada-002 (Wu et al., 426

2024b) with cosine similarity as the scorer to rank 427

candidates for evaluating performance. 428

Evaluation Metrics: We follow Wu et al. 429

(2024b) for evaluation by reporting Hit@1 (H@1), 430

Hit@5 (H@5), Recall@20 (R@20), and mean re- 431

ciprocal rank MRR. 432
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Category Retrieval Baseline
AMAZON MAG PRIME AVERAGE

H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

Textual

BM25 (Wu et al., 2024b) 44.94 67.42 53.77 55.30 25.85 45.25 45.69 34.91 12.75 27.92 31.25 19.84 27.85 46.86 43.57 36.68
Ada-002 (Wu et al., 2024b) 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41 26.96 47.94 45.88 36.79
Multi-ada-002 (Wu et al., 2024b) 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49 27.03 49.66 47.99 37.33
DPR (Karpukhin et al., 2020) 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38 10.09 35.00 38.91 21.31

Structural
(KG)

QAGNN (Yasunaga et al., 2021b) 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73 16.10 36.79 42.88 27.20
ToG (Sun et al., 2023b) - - - - 13.16 16.17 11.30 14.18 6.07 15.71 13.07 10.17 9.62 15.94 12.18 12.18

Hybrid

AvaTaR (Wu et al., 2024a) 49.87 69.16 60.57 58.70 44.36 59.66 50.63 51.15 18.44 36.73 39.31 26.73 37.56 55.18 50.17 45.53
KAR (Xia et al., 2024) 54.20 68.70 57.24 61.29 50.47 69.57 60.28 58.65 30.35 49.30 50.81 39.22 45.01 62.52 56.11 53.05
MFAR∗ (Li et al., 2024) 41.20 70.00 58.50 54.20 49.00 69.60 71.70 58.20 40.90 62.80 68.30 51.20 43.70 67.47 66.17 54.53
MoR 52.19 74.65 59.92 62.24 58.19 78.34 75.01 67.14 36.41 60.01 63.48 46.92 48.93 71.00 66.14 58.77

Ablation
MoRw/o R 44.21 68.87 56.50 55.28 34.33 62.55 67.55 47.40 31.59 53.48 60.74 41.81 31.07 57.04 57.73 43.03
MoRw/o RT 34.04 53.41 45.16 42.85 51.81 73.54 74.17 61.68 28.95 46.12 49.54 36.56 36.39 56.73 55.73 45.53
MoRw/o RS 43.05 69.36 57.38 54.69 31.05 51.84 50.56 40.64 22.27 38.45 39.21 29.41 28.95 51.28 48.02 38.98

Table 1: Comparing different retrieval methods with our proposed MoR and its ablations on Amazon, MAG,
and Prime datasets. The best and runner-up results are in bold and underlined. Overall, MoR achieves the best
performance. Note that MFAR∗ denotes the best model variant proposed in (Li et al., 2024)

4.2 Overall Retrieval Performance433

We compare MoR with other baselines on three434

TG-KBs in Table 1. Generally, hybrid methods,435

AvaTAR, KAR, MFAR, and our MoR, achieve bet-436

ter performance than purely textual or structural437

methods owing to their ability to integrate both438

structural and textual knowledge. Among all base-439

lines, our proposed MoR achieves the overall best440

performance with a substantial margin on average,441

with the first ranking on MAG and the second rank-442

ing on Amazon/Prime datasets. This demonstrates443

the effectiveness of our proposed mixture of struc-444

tural and textual knowledge retrieval. Textual re-445

trieval performs better on Amazon than on MAG,446

suggesting that Amazon queries rely more on tex-447

tual knowledge. In contrast, its weaker perfor-448

mance on MAG is due to MAG’s lower textual rich-449

ness and stronger structural signals. This disparity450

aligns with the distribution analysis in (Wu et al.,451

2024b) and supports our hypothesis that queries in452

different TG-KB datasets require varying desires453

of textual and structural knowledge. Meanwhile,454

structural retrieval methods such as conventional455

knowledge graph-based ones perform poorly be-456

cause they are designed for graphs with minimal457

textual information compared to TG-KBs. Differ-458

ent from Amazon and MAG, all existing methods459

without supervised tuning (e.g., Ada-002) exhibit460

significantly lower performance on Prime. This461

is due to the extreme domain expertise required462

in biology, where word-count-based, pre-trained463

textual similarity-based, and even more powerful464

LLMs are all not directly applicable here. Through465

fine-tuning, MFAR and our proposed MoR gen-466

erally achieve better performance, demonstrating467

the necessity of domain-specific knowledge for an-468

swering queries in knowledge-intensive domains.469

4.3 Ablation Study 470

After verifying the superiority of MoR, we conduct 471

ablation studies to assess its different components, 472

including module and feature ablation. 473

4.3.1 Module Ablation 474

To assess the contribution of each module in 475

MoR, namely, Text Matching-based Retrieval, 476

Neighborhood-Fetching-based Structural Retrieval, 477

and Reranker, we conduct a series of ablation ex- 478

periments. First, we remove the Reranker, resulting 479

in the variant MoRw/o R. On top of that, we further 480

separately eliminate Text Retrieval and Structural 481

Retrieval, yielding MoRw/o RT and MoRw/o RS, re- 482

spectively. As shown in Table 1, the complete MoR 483

framework consistently achieves the highest perfor- 484

mance across all datasets, demonstrating the syn- 485

ergistic effect of the Textual Retriever, Structural 486

Retriever, and Reranker. After removing Reranker, 487

MoRw/o R exhibits a consistent performance drop 488

across all datasets and evaluation metrics. This 489

underscores the importance of the Reranker in re- 490

fining retrieval by suppressing noisy candidates 491

from the intermediate reasoning stage. Eliminat- 492

ing Text Retrieval, i.e., MoRw/o RT, leads to a no- 493

table performance drop on Amazon but an unex- 494

pected improvement on MAG. This suggests that 495

while textual knowledge benefits Amazon, it intro- 496

duces misleading hard negatives that compromise 497

the ranking method (e.g., Ada-002) for MAG. Con- 498

versely, removing Structural Retrieval, MoRw/o RS, 499

results in a slight performance decrease on MAG , 500

reinforcing the importance of structural knowledge 501

in MAG-related queries. These results underscore 502

the Reranker’s crucial role in adaptively harmoniz- 503

ing, balancing, and selecting knowledge from both 504

structural and textual retrieval experts. 505
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Dataset TF SF TI H@1 H@5 R@20 MRR

MAG

✔ ✘ ✘ 48.96 73.02 72.44 59.79
✘ ✔ ✘ 18.79 41.91 52.85 29.84
✘ ✘ ✔ 18.16 41.53 52.78 29.31
✔ ✔ ✘ 58.04 77.14 74.42 66.75
✔ ✘ ✔ 58.16 77.59 74.96 66.85
✘ ✔ ✔ 17.93 38.01 46.79 27.48
✔ ✔ ✔ 58.19 78.34 75.01 67.14

Amazon

✔ ✘ ✘ 51.21 74.05 59.79 61.27
✘ ✔ ✘ 8.09 24.48 25.62 16.94
✘ ✘ ✔ 5.84 16.62 12.94 11.57
✔ ✔ ✘ 50.91 73.38 59.58 61.15
✔ ✘ ✔ 51.09 73.56 59.61 61.14
✘ ✔ ✔ 8.09 24.48 25.62 16.94
✔ ✔ ✔ 52.19 74.65 59.92 62.24

Table 2: Ablation study investigating the importance of
three features, Textual Fingerprint (TF), Structural Fin-
gerprint (SF), and Traversal Identifier (TI), of the traver-
sal trajectories used in our Structure-aware Reranker.

4.3.2 Feature Ablation506

The above ablation study highlights the crucial role507

of Structure-aware Reranker in adaptively integrat-508

ing structural and textual knowledge. To further509

analyze the contributions of its three key features,510

Textual Fingerprint (TF), Structural Finger-511

print (SF), and Traversal Identifier (TI) defined512

in Section 3.3, we conduct a feature ablation analy-513

sis and report retrieval performance across different514

feature configurations in Table 2. Overall, using515

three features together yields the best performance516

on both MAG and Amazon, highlighting their syn-517

ergistic effect. Individually, TF contributes the518

most and outperforms SF and TI on both datasets.519

The reason is that based on the definition in Sec-520

tion 3.3, TF directly captures the relevance between521

the query and the retrieved nodes along the trajec-522

tory, whereas SF and TI primarily characterize the523

structural patterns and retrieval types, serving more524

as complementary factors. Therefore, equipping525

TF with these complementary factors (i.e., SF or526

TI) yields around 10% additional gains on MAG.527

This is because SF and TI help the reranker selec-528

tively emphasize the relevance scores given by TF529

for certain nodes along the path. However, this530

boost is not observed on Amazon. We hypothesize531

that the textual knowledge needed there is predom-532

inantly derived from the final node on each path,533

making the structural cues provided by SF and TI534

less beneficial and even prone to overfitting. A535

deeper analysis to further justify this hypothesis536

is in Section 4.4. Overall, these findings under-537

score the varying importance of structural features538

in ranking across datasets.539

Feature MAG Amazon
H@1 R@20 MRR H@1 R@20 MRR

Last Node 49.91 73.49 59.92 50.36 59.62 61.05
Trajectory 58.19 75.01 67.14 52.19 59.92 62.24

Table 3: Comparing reranking performance using last
node in the retrieved trajectory and the whole trajectory.

Figure 3: Imbalance number of queries and performance
of different retrievers across different logic patterns.

4.4 Further Analysis 540

This section understands MoR’s behavior by exam- 541

ining three questions, each of which enriches our 542

insight into MoR’s functionality and offers novel 543

perspectives inspiring future research. 544

Does structure signals affect reranking? To 545

assess the impact of trajectory information on the 546

Reranker’s decision-making, we introduce a node- 547

based Reranker that constructs trajectory features 548

using only TF/SF/TI of the last node. In Table 3, 549

the path-based Reranker outperforms the node- 550

based variant, especially on MAG. This highlights 551

the critical role of trajectory features and structural 552

knowledge in enhancing reranking accuracy. 553

How does MoR perform on different query 554

structures? Figure 3 shows the average perfor- 555

mance of MoR on each query group categorized by 556

their logical structures (Wu et al., 2024b). "Others" 557

refer to queries with unfounded logical structures. 558

MoR consistently outperforms both structural and 559

textual retrievers across different logical structures. 560

Among all queries, MoR performs the worst on 561

"P → P" queries due to the ambiguity of the re- 562

peated product entities. While such entity ambi- 563

guity is a well-known challenge, it uniquely arises 564

from the multi-step reasoning desired for retrieving 565

structural knowledge. The "Others" group includes 566

reasoning paths not covered in (Wu et al., 2024b), 567

and their high performance highlights the utility 568

of diverse planning strategies for the same query. 569

Lastly, the skewed query distribution and retrieval 570

performance across planning patterns reflect the 571

varying nature of real-world planning needs. We 572

hope these insights inspire research on data-centric 573

reasoning designs and error control of planning. 574
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(a)

(b)

Question

Recommend an NFL Seattle Seahawks 

twin sheet set that matches my 

Northwest Company NFL Seahawks 

Curtain Panel Pair?

Planning 

Graph

<Northwest Company NFL 

Seahawks Curtain Panel Pair> → 

<NFL Seattle Seahawks twin sheet set>

Question

Are there studies from the University of 
Lausanne on frameless stereotactic 
technology in Ionization chambers?

Planning 

Graph

<University of Lausanne>→       →

      <frameless stereotactic technology 

in Ionization chambers >

Product

Product

Institution Author

Paper

Figure 4: Saliency map visualization of query attention
over three entities along the retrieved paths

Does MoR indeed adaptively leverage the tra-575

jectory knowledge? To understand how our pro-576

posed reranker prioritizes candidates in the Top-K577

results, we visualize the saliency map by comput-578

ing the gradient of ranking scores with respect to579

the textual fingerprint (TF) of three nodes along the580

retrieved path, which quantifies their importance581

for answering a given query. Figure 4 illustrates582

this by analyzing trajectories for 100 ground-truth583

candidates across 100 queries on the Amazon and584

MAG datasets. Each dimension corresponds to a585

traversed node, with the final one representing the586

candidate itself. While the saliency score is con-587

centrated in the last dimension for Amazon, MAG588

exhibits a more evenly distributed saliency pattern,589

where multiple nodes along the path contribute sig-590

nificantly to ranking score computation. This sug-591

gests that structural knowledge is more critical for592

answering queries in MAG, aligning with the previ-593

ously observed lower performance of purely textual594

retrieval on MAG (Table 1). Further case studies595

explain why the reranker attends different nodes596

for different queries. In Figure 4(a), the reranker597

favors the last two dimensions as the rich textual598

restriction (i.e., "Northwest Company..." and "NFL599

Seattle...") aids in identifying the correct node at600

the corresponding reasoning step, as discussed in601

Section 3.2. The correct nodes, having higher simi-602

larity scores with the query, help guide the retrieval603

process toward the ground truth. Conversely, in604

Figure 4(b), since the first node ("University of605

Lausanne") helps narrow the search space and the606

last node ("frameless...") further filter candidates,607

both nodes have high saliency scores. Overall, our608

findings demonstrate that the reranker dynamically609

adapts its reliance on structural and textual knowl-610

edge depending on the dataset and query.611

5 Related Work 612

Retrieval-augmented Generation (RAG): RAG 613

enhances generative tasks by retrieving relevant 614

information from external knowledge sources (He 615

et al., 2024; Gao et al., 2023c) and has been widely 616

used to improve question-answering (Liu et al., 617

2023). With LLMs, RAG has been used for miti- 618

gating hallucinations (Yao et al., 2023), enhancing 619

interpretability (Gao et al., 2023a), and enabling 620

dynamic knowledge updates (Wang et al., 2024). 621

This work essentially leverages the idea of RAG to 622

retrieve supporting entities from TG-KBs to contex- 623

tualize answer generation. Depending on concrete 624

types of knowledge being retrieved, existing retriev- 625

ers can be categorized into structural and textual 626

retrieval, which are reviewed next. 627

Textual and Structural Retrieval: Early tex- 628

tual retrieval models, such as TF-IDF and 629

BM25 (Robertson et al., 2009), rely on lexical 630

similarity and keyword matching (Chen et al., 631

2017; Yang et al., 2019; Mao et al., 2021). Mod- 632

ern approaches address this limitation by learn- 633

ing dense representations (Karpukhin et al., 2020). 634

Beyond textual retrieval, structural retrieval lever- 635

ages graph-based techniques to extract structured 636

knowledge. Methods such as graph traversal (Wang 637

et al., 2024; Jiang et al., 2023), community detec- 638

tion (Edge et al., 2024), and graph machine learn- 639

ing models, including graph neural networks (Ya- 640

sunaga et al., 2021a; Mavromatis and Karypis, 641

2024), play a crucial role in structural retrieval. 642

Our approach integrates the strengths of both tex- 643

tual and structural retrieval by infusing the mixture- 644

of-expert philosophy into retrieval design. 645

Due to page limitation, a comprehensive version 646

of the related work is attached in Appendix D. 647

6 Conclusion 648

In this work, we propose a mixture of structural 649

and textual retrieval (MoR) to adaptively retrieve 650

structural and textual knowledge based on query 651

desire, which first utilizes a textual graph gener- 652

ator to generate the planning graph. Following 653

the planning graph, we perform a mixed traver- 654

sal and conduct organizing via a structure-aware 655

reranker to obtain final candidates. Experiments 656

demonstrate the advantages of our MoR in harmo- 657

nizing the retrieval of both textual and structural 658

knowledge with insightful discoveries, including 659

balancing retrieval performance across queries with 660

different patterns and query-adaptive knowledge 661

desire for structural/textual knowledge. 662
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7 Limitations663

In this paper, we integrate a mixture of expert phi-664

losophy into retrieval design and propose a Mix-665

ture of structural-and-textual Retrieval (MoR) to666

adaptively retrieve textual and structural knowl-667

edge. The limitations of MoR can be categorized668

into two main areas:669

Lack of Domain-Specific Knowledge: Our pro-670

posed MoR, similar to other baselines, does not ex-671

hibit significantly higher performance on PRIME672

than AMAZON and MAG. The reason is the lack673

of biomedical knowledge required to comprehend674

biomedical questions, extract key information, nav-675

igate relevant entities and relations, and rerank676

retrieved candidates. This suggests that current677

state-of-the-art retrieval models, even paired with678

LLMs’ intelligence, still struggle to handle domain-679

specific knowledge effectively. Such limitations680

may extend to other specialized domains, such as681

finance and law. Future research could integrate682

domain-specific knowledge into retrieval.683

Reranking at Every Traversal Layer: Our cur-684

rent MoR adaptively routes retrieved candidates685

into the Top-K positions at the final layer via rerank-686

ing, effectively implementing a conventional Mix-687

ture of Experts (MoE) routing mechanism. Despite688

the state-of-the-art performance we have achieved689

in Table 1, this routing mechanism could also be690

applied to intermediate layers, where after each691

retrieval step, candidates are reranked, and only692

Top-K proceeds to the next round of traversal and693

retrieval. This enables every layer of mixed traver-694

sal to emulate the router design of the MoE.695
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A Summary of Notations 934

Table 4: Notations and the corresponding descriptions.

Notations Definitions or Descriptions

B Text-rich Graph Knowledge Base (TG-KB)
V, E,D Set of Nodes, Categories and Documents of TG-KB
Dv, Ev Document and Category of Node v
Q ∈ Q Query Q from Query set Q

QStruct,QText Query targeted by structural and textual retrieval

G = {Pi}
|G|
i=1 Planning Graph consisting of multiple reasoning paths

Pi = (pi1 → ... → piLi
) Reasoning path consisting of Li sequential entities

Epij
,Tpij

Textual category and restriction of path entity pij

C̃ Retrieved candidates after reasoning module.

C̃l
i = C̃l,Struct

i ∪ C̃l,Text
i

Retrieved candidates at lth layer for ith path including
structurally retrieved one and textually retrieved one.

C Final retrieved candidates after organizing module.
PQ×G Joint distribution of query and planning graph.
Nv Neighborhood of entity v
Ipil

Traversal Identifier of Structural and Textual Retrieval
PΘ1

Planning module with its parameters Θ1

PΘ2
Reasoning module with its parameters Θ2

PΘ3
Organizing module with its parameters Θ3

Dataset # Entities # Text Tokens # Relations Avg. Degree

AMAZON 1,035,542 592,067,882 9,443,802 18.2
MAG 1,872,968 212,602,571 39,802,116 43.5
PRIME 129,375 31,844,769 8,100,498 125.2

Table 5: Statistics of text-rich graph knowledge bases
in STaRK benchmark (Wu et al., 2024b).

B Experimental Details 935

B.1 Datasets 936

To evaluate the effectiveness of our proposed 937

framework, we conduct experiments using three 938

Text-rich Graph Knowledge Bases (TG-KBs) from 939

STaRK (Wu et al., 2024b). These TG-KBs cover a 940

wide range of domains, including product reviews 941

(Amazon), academic papers (MAG), and biomed- 942

ical knowledge (Prime). Each TG-KB comprises 943

a textual graph and an associated corpus, with the 944

corpus containing documents linked to the nodes 945

in the graph. Queries are meticulously crafted for 946

each TG-KB and encompass varying levels of com- 947

plexity, which desire different levels of textual and 948

structural knowledge to answer. 949

Amazon: a dataset provides a realistic simula- 950

tion of product search and recommendation. Its 951

textual graph consists of four categories of nodes: 952

product, category, color, and brand. Nodes are in- 953

terconnected through relations such as has_brand 954

and has_category. Textual documents encapsulate 955

properties of corresponding nodes, such as product 956

descriptions and customer reviews. 957

MAG: a comprehensive resource for academic 958

paper retrieval. In the textual graph, papers can be 959

connected to other nodes, such as field_of_study 960
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via the paper_has_topic_field_of_study relation961

and institution through a combination of rela-962

tions like author_affiliated_with_institution and au-963

thor_writes_paper. Each paper document includes964

the title, abstract, and metadata, such as the pub-965

lication date and venue, providing rich contextual966

knowledge for retrieval and analysis.967

Prime: a highly domain-specific dataset. It fo-968

cuses on medical inquiries and is sourced from the969

PrimeKG knowledge graph (Chandak et al., 2023),970

which comprises ten entity types and eighteen rela-971

tion types, offering multiple target node categories,972

such as disease, gene/protein, and drug. The as-973

sociated documents are aggregated from various974

databases, providing a rich and diverse source of975

medical knowledge.976

Detailed dataset statistics are in Table 5.977

B.2 Implementation Details978

Prompt for Planning Graph Generation: For979

planning graph generation in Section 3.1, we fol-980

low previous works (Luo et al., 2023; Wu et al.,981

2024b) to linearize the planning process by decom-982

posing the planning graph into sequential reasoning983

paths, which can be generated by LLMs via next984

token prediction. Given the lack of ground-truth985

planning graphs for training, we prompt LLMs to986

synthesize these ground-truth planning graphs due987

to their superior reasoning capability. The prompt988

for generating the ground-truth planning graph is:989

Prompt 1: Planning Graph Generation
System Message: You are a planning graph finder agent.
Your role is to:
1. Identify the underlying **meta-path** from a given
question, which consists of the **entity types** at each
reasoning step.
2. Extract the **content restriction** for each **entity
type** based on the question. If there is no restriction for
an entity type, leave its value empty.
You will be provided with a predefined **Entity Type
List**. Only use the entity types from this list when
constructing the meta-path and restrictions. Your response
must be concise and strictly adhere to the specified
**output format**.

Entity Type List: Provide the entity type list.
Demonstrations: Examples for in-context learning.
Output Fromat: Metapath: "", Restriction: {}.

Trajectory Collection: As mentioned in Sec-990

tion 3.3, our reranker reorders the intermediate re-991

trieved candidates based on their trajectory. To992

achieve this, we collect three key features: Textual993

Fingerprint (TF), Structural Fingerprint (SF),994

and Traversal Identifier (TI).995

Textual Fingerprint (TF): We record the BM25 996

similarity scores between the query and the tra- 997

versed nodes computed. Since empirical observa- 998

tions indicate that the length of reasoning paths is 999

typically less than three, we fix the textual finger- 1000

print to the length of three by padding additional 0 1001

similarity scores for those reasoning paths whose 1002

length is less than three, allowing for batch-wise 1003

training. Additionally, we append the initial seman- 1004

tic ranking score of the candidate computed using 1005

cosine similarity coupled with Ada-002 embedding 1006

to the end of three BM25-based similarity scores to 1007

complement the lexical perspective. This vector is 1008

then passed through a linear layer to be transformed 1009

into an embedding of size 128. Note that this initial 1010

ranking score is also used to select the intermediate 1011

retrieved candidates used for reranking. 1012

Structural Fingerprint (SF): We concatenate 1013

the categories of all nodes in the corresponding 1014

reasoning path as a text sequence. If the reasoning 1015

path is shorter than three nodes, we prepend the 1016

sequence with "padding" tokens to ensure a fixed 1017

length. The structural fingerprint is then processed 1018

using a transformer model, which converts the se- 1019

quence into an embedding of size 768, followed by 1020

a linear layer that projects it down to size 128. 1021

Traversal Identifier (TI): We track whether 1022

each node is retrieved via textual matching or struc- 1023

tural traversal and encoding them with distinct val- 1024

ues by initializing a learnable embedding matrix 1025

mapping each traversal identifier encoding to a 1026

3x128-dimensional embedding vector. 1027

After obtaining all the above three trajectory fea- 1028

tures, we concatenate their obtained vectors into 1029

a unified vector (128 + 128 + 128x3 = 640) and 1030

apply a fully connected layer to transform the com- 1031

bined representation into a reranking score for each 1032

candidate. This score determines the final ranking. 1033

C Additional Results 1034

C.1 Query Pattern Analysis 1035

Figure 5 illustrates the analysis of query patterns in 1036

the MAG dataset. With richer relational informa- 1037

tion, queries in this dataset form a wider variety of 1038

patterns, including longer and more diverse struc- 1039

tures. Similar to the Amazon dataset, we observe 1040

a general trend where the performance of MoR de- 1041

clines as the query count decreases across different 1042

patterns. Beyond this overall trend, certain query 1043

patterns in the MAG dataset stand out, such as 1044

"P → A → P" (Product-to-Author-to-Product) and 1045
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Figure 5: Imbalance number of queries and performance
of different retrievers across different logic patterns.

"P → P" (Paper-to-Paper). Despite their relatively1046

high occurrence, MoR still performs worse on these1047

patterns. This is similar to low performance on the1048

"Product → Product" pattern observed in the Ama-1049

zon dataset, where repeated entity types appear1050

within a single query. Such repetition causes the1051

textual retriever to shift focus from the target to the1052

repeated entities, leading to lower performance.1053

D Comprehensive Related Work1054

D.1 Retrieval-augmented Generation (RAG)1055

With the unprecedented success of recent LLMs in1056

approaching human-level intelligence, retrieving1057

relevant knowledge to support downstream gener-1058

ation has become increasingly crucial. Retrieval-1059

augmented generation enhances generative tasks1060

by integrating relevant information from external1061

knowledge sources (He et al., 2024; Gao et al.,1062

2023c; Han et al., 2024) and has been widely1063

adopted to improve question-answering (Liu et al.,1064

2023). In the context of LLMs, RAG has been uti-1065

lized to mitigate hallucinations (Yao et al., 2023),1066

enhance interpretability (Gao et al., 2023a), and1067

enable dynamic knowledge updates (Wang et al.,1068

2024). This work leverages RAG to retrieve sup-1069

porting entities from TG-KBs, providing contex-1070

tual grounding for answer generation. Depending1071

on the type of knowledge retrieved, existing re-1072

trievers can be classified into structural and textual1073

retrieval approaches, which are reviewed next.1074

D.2 Textual and Structural Retrieval1075

Since real-world knowledge is commonly stored in1076

both textual and structural formats (Kolomiyets and1077

Moens, 2011), such as indexed texts and knowledge 1078

graphs, each requires a retrieval method tailored 1079

to its unique representation. Textual retriever re- 1080

trieves knowledge based on its similarity to the 1081

given query and can be categorized into: lexi- 1082

cal methods (e.g., TF-IDF and BM25 (Robertson 1083

et al., 2009)) and semantic methods (e.g., DPR and 1084

Contriever (Karpukhin et al., 2020; Izacard et al., 1085

2022)). Despite their broad applicability, the prede- 1086

fined linguistic rules and embedding-based seman- 1087

tics may struggle to capture the structural knowl- 1088

edge stored in graph-structured knowledge bases 1089

such as knowledge graphs and text-rich networks. 1090

To address this challenge, structural retrieval has 1091

been proposed by using graph analysis techniques 1092

(e.g., graph traversal (Wang et al., 2024; Jiang et al., 1093

2023; Zhang et al., 2022; Edge et al., 2024)) and 1094

graph machine learning models (e.g., graph neural 1095

networks (Yasunaga et al., 2021a; Mavromatis and 1096

Karypis, 2024)). Early methods extract local sub- 1097

graphs of seeding nodes (Yasunaga et al., 2021a; 1098

Taunk et al., 2023) or pre-define paths approach- 1099

ing answers (e.g., shortest paths (Luo et al., 2023; 1100

Delile et al., 2024)). To avoid exponentially ex- 1101

panding neighbors in the local subgraphs and break 1102

the rigid logic routined by pre-defined paths, recent 1103

advancements integrated LLMs to dynamically ad- 1104

just graph traversal (Sun et al., 2023a; Wang et al., 1105

2024; Jin et al., 2024a). While promising, fre- 1106

quently invoking LLMs introduces prohibitive re- 1107

source overhead. Despite the above advancements 1108

in both textual and structural retrieval, they are 1109

often applied independently and fail to mutually 1110

reinforce each other. This motivates the recent re- 1111

search trend of developing hybrid retrieval, which 1112

is reviewed next. 1113

D.3 Hybrid Retrieval 1114

Recently, several works have explored hybrid 1115

knowledge retrieval from TG-KBs. One ap- 1116

proach (Xia et al., 2024; Li et al., 2024) aggre- 1117

gate documents from neighboring nodes, with Xia 1118

et al. (2024) applying relational filtering to remove 1119

irrelevant neighbors and Li et al. (2024) weight- 1120

ing neighbors based on field importance. Another 1121

approach (Lee et al., 2024) uses LLMs to choose 1122

either structural or textual retrieval. In contrast, our 1123

proposed MoR fully leverages the graph structure 1124

and rich texts by integrating textual matching and 1125

graph traversal into a unified framework, enabling 1126

a more seamless and interpretable interaction be- 1127

tween structural and textual knowledge 1128
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