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Abstract

We introduce Korean Language Understanding Evaluation (KLUE) benchmark.
KLUE is a collection of eight Korean natural language understanding (NLU) tasks,
including Topic Classification, Semantic Textual Similarity, Natural Language
Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing,
Machine Reading Comprehension, and Dialogue State Tracking. We create all
of the datasets from scratch in a principled way. We design the tasks to have di-
verse formats and each task to be built upon various source corpora that respect
copyrights. Also, we propose suitable evaluation metrics and organize annota-
tion protocols in a way to ensure quality. To prevent ethical risks in KLUE, we
proactively remove examples reflecting social biases, containing toxic content or
personally identifiable information (PII). Along with the benchmark datasets, we
release pretrained language models (PLM) for Korean, KLUE-BERT and KLUE-
RoBERTa, and find KLUE-RoBERTaLARGE outperforms other baselines including
multilingual PLMs and existing open-source Korean PLMs. The fine-tuning recipes
are publicly open for anyone to reproduce our baseline result. We believe our work
will facilitate future research on cross-lingual as well as Korean language models
and the creation of similar resources for other languages. KLUE is available at
https://klue-benchmark.com/.

1 Introduction

A major factor behind the recent success of pretrained language models, such as BERT [30] and its
variants [84, 22, 49] as well as GPT-3 [112] and its variants [113, 78, 9], has been the availability of
well-designed benchmark suites for evaluating their effectiveness in natural language understanding
(NLU). GLUE [135] and SuperGLUE [134] are representative examples of such suites and were
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designed to evaluate diverse aspects of NLU, including syntax, semantics and pragmatics. The
research community has embraced GLUE and SuperGLUE and has made rapid progress in developing
better model architectures as well as learning algorithms for NLU.

The success of GLUE and SuperGLUE has sparked interests in building standardized benchmark
suites for other languages. Such efforts have been pursued along two directions. First, various groups
in the world have independently created language-specific benchmark suites; a Chinese version of
GLUE (CLUE [144]), a French version of GLUE (FLUE [74]), an Indonesian variant [139], an Indic
version [57] and a Russian variant of SuperGLUE [127]. On the other hand, some have relied on both
machine and human translation of existing benchmark suites for building multilingual versions of the
benchmark suites that were created initially in English. These include XGLUE [80] and XTREME
[54]. Although the latter approach scales much better than the former, the latter often fails to capture
the sociocultural aspects of NLU and also introduces various artifacts arising from translation.

Hence, we build a new benchmark suite, Korean Language Understanding Evaluation (KLUE), for
Korean which is the 13-th most used language in the world according to [34] but lacks a unified
benchmark suite for NLU. Instead of starting from existing benchmark tasks or corpora, we build
this benchmark suite from ground up by determining and collecting the base corpora, identifying
a set of benchmark tasks, designing appropriate annotation protocols, and finally validating the
collected annotations. This allows us to preemptively address and avoid properties that may have
undesirable consequences, such as copyright infringement, annotation artifacts, social biases and
privacy violations.

In summary, our contributions are:

• We build a new benchmark suite, Korean Language Understanding Evaluation (KLUE), consisting
of eight NLU tasks constructed from scratch in a principled way

• We build and publicly release pretrained language models for Korean with introducing Korean-
aware tokenization method.

2 KLUE Benchmark

2.1 Design Principles

We design KLUE with the following principles:

• Covering diverse tasks and corpora: To cover diverse aspects of language understanding, we
choose eight tasks that address various task formats and domains of source corpora, including news,
encyclopedia, user reviews, smart home queries and task-oriented dialogue. As Korean has distinct
styles of formal and colloquial language, we explicitly include both.

• Accessible to everyone without any restriction: It is important for a benchmark suite to be available
to everyone, such that the benchmark serves as a standard for evaluating and improving NLU
systems. We thus ensure any corpora and resources in KLUE can be freely copied, redistributed,
remixed and transformed for the purpose of benchmarking NLU systems.

• Obtaining accurate and unambiguous annotations: Ambiguity in benchmark tasks leads to less
reliable evaluation, which often results in the discrepancy between the quality of an NLU system
measured by the benchmark and its true quality. In order to minimize such discrepancy, we
carefully design annotation guidelines of all tasks and improve them over multiple iterations, to
assure accurate annotations.

• Mitigating ethical issues in PLMs: It has been repeatedly observed that large-scale language models
often amplify the social biases in the training data [97]. We proactively remove examples from
both unlabeled and labeled corpora that reflect social biases, contain toxic content or personally
identifiable information (PII), both manually and automatically. Social biases are defined as
overgeneralized judgment on certain individuals or groups based on social attributes (e.g., gender,
ethnicity, religion). Toxic contents include insults, sexual harassment, and offensive expressions.
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Table 1: Source corpora chosen for building KLUE. The top section, News Headlines is not protected
by copyright act since they are not classified as a work due to their lack of creativity. The middle
section is a collection of corpora under the permissive licenses. The bottom section, KED and
Acrofan, is originally prohibited from creating derivative works, however, we release such condition
by exclusive contract. For the column, Volume, we denote Small as corpus size under 1k, Medium as
in between 1k and 50k, and Large as over 50k. All source corpora we collected, selection processes,
and details on selected corpora are described in Appendix B.

Dataset License Domain Style Ethical
Risks Volume Contemporary

Korean

News Headlines N/A News (Headline) Formal Low Large o

Wikipedia CC BY-SA 3.0 Wikipedia Formal Low Large o

Wikinews CC BY 2.5 News Formal Low Small o

Wikitree CC BY-SA 2.0 News Formal Medium Large o

Policy News KOGL Type 1 News Formal Low Medium o

ParaKQC CC BY-SA 4.0 Smart Home
Utterances Colloquial Low Medium o

Airbnb Reviews CC0 1.0 Review Colloquial Medium Large o

NAVER Sentiment
Movie Corpus (NSMC) CC0 1.0 Review Colloquial Medium Large o

Acrofan News CC BY-SA 4.0
for KLUE-MRC by Contract News Formal Low Large o

The Korea Economics
Daily News

CC BY-SA 4.0
for KLUE-MRC by Contract News Formal Low Large o

2.2 Source Corpora

We have actively sought corpora that are accessible, cover diverse domains and topics, and are written
in modern Korean. This active search has resulted in ten sources from which we derive task-specific
corpora in Table 1. These base corpora are released under CC BY(-SA) license or not considered
as copyrighted work, permitting 1) derivative work, 2) redistribution, and 3) commercial use. Then
we carefully preprocess them because the collected corpora came from various sources with varying
levels of quality and curation. We remove noise, toxic or socially biased content, and PII, using
predefined rules and machine learning models.

2.3 Considerations in Annotation

For all tasks in KLUE, we annotate a subset from the source corpora. We take into account three
major considerations below:

• Better reflection of linguistic characteristics of Korean: Many existing Korean datasets were
constructed as a part of multilingually aligned benchmarks, and they do not fully reflect linguistic
characteristics of Korean such as agglutinative nature in named entity recognition (NER) [102], or
tagset in part-of-speech (POS) tagging and dependency parsing (DP) [88, 46]. We write and revise
annotation guidelines more appropriate for the linguistic properties of Korean.

• Obtaining accurate annotations: We provide crowdworkers or selected participants with a carefully
designed annotation guideline and improve it over multiple iterations, in order to reduce the
ambiguity in the annotation process as well as to mitigate the known artifact issues. In particular,
we often filter out examples for which annotators cannot easily agree on.

• Mitigating harmful social bias and removing PII: To not incentivize socially biased NLU systems
[7], we explicitly instruct both annotators and inspectors to manually mark and/or exclude examples
that are unacceptable according to our principle of ethics. Our definitions of bias and hate speech
follow Moon et al. [94]. We denote bias as an overgeneralized prejudice on certain groups or
individuals based on the following traits: gender, race, background, nationality, ethnic group,
political stance, skin color, religion, disability, age, appearance, (socio-)economic status, and
occupations. In the case of hate speech, we include offensive, aggressive, insulting, or sarcastic
contents. To deal with privacy risks, we identify a list of personally identifiable information (PII)
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Table 2: Task Overview

Name Type Format Eval.
Metric

#
Class

{|Train|,
|Dev|,
|Test|}

Source Style

KLUE-TC
(YNAT)

Topic
Classification

Single Sentence
Classification Macro F1 7

45k,
9k,
9k

News
(Headline) Formal

KLUE-STS
Semantic
Textual
Similarity

Sentence
Pair
Regression

Pearson’s r,
F1

[0, 5]
2

11k,
0.5k,

1k

News,
Review,
Query

Colloquial,
Formal

KLUE-NLI
Natural
Language
Inference

Sentence
Pair
Classification

Accuracy 3
25k,

3k,
3k

News,
Wikipedia,
Review

Colloquial,
Formal

KLUE-NER
Named
Entity
Recognition

Sequence
Tagging

Entity-level Macro F1
Character-level Macro F1

6,
13

21k,
5k,
5k

News,
Review

Colloquial,
Formal

KLUE-RE Relation
Extraction

Single Sentence
Classification
(+2 Entity Spans)

Micro F1 (without no_relation),
AUPRC 30

32k,
8k,
8k

Wikipedia,
News Formal

KLUE-DP Dependency
Parsing

Sequence
Tagging
(+ POS Tags)

Unlabeled Attachment Score,
Labeled Attachment Score

# Words,
38

10k,
2k,

2.5k

News,
Review

Colloquial,
Formal

KLUE-MRC
Machine
Reading
Comprehension

Span Prediction Exact Match,
ROUGE-W (LCCS-based F1) 2

12k,
8k,
9k

Wikipedia,
News Formal

KLUE-DST
(WoS)

Dialogue
State
Tracking

Slot-Value
Prediction

Joint Goal Accuracy
Slot Micro F1 (45)

8k,
1k,
1k

Task
Oriented
Dialogue

Colloquial

following KISA (Korea Internet and Security Agency) guideline,1 whose information is related
to a living individual based on personal information protection act of Korea.2 We do not consider
public figure’s name as personal information.3

2.4 Tasks

We carefully choose the following eight tasks to cover diverse aspects of NLU in Korean while
minimizing redundancy among the tasks. In Table 2, we illustrate important properties of the tasks,
such as type, format, evaluation metrics, and annotated data characteristics.

Here, we list the tasks and describe why we include the task in KLUE, how we manage the con-
struction process, and how/why we choose the evaluation metrics. For all tasks, we guide annotators
to report examples that contain hate speech, biased expressions, or PII, to remove them from our
benchmark4.

KLUE-TC Topic classification (TC) is a single sentence classification task to predict the topic of a
given text snippet. We include TC in our KLUE benchmark, as inferring the topic of a text is a key
capability that should be possessed by a language understanding system. As a typical single sentence
classification task, other NLU benchmarks such as CLUE [144] and IndicGLUE [57] also contain
TNEWS and News Category Classification. For Korean, no dataset has been proposed for the task,
which motivates us to construct the first Korean topic classification benchmark.

In KLUE-TC, given a news headline, a text classifier must predict a topic which is one of {politics,
economy, society, culture, world, IT/science, sports}. We formulate TC as a single sentence classifi-
cation task following previous works. The evaluation metric of KLUE-TC is a macro-F1 score to
give the same importance to each class.

1https://www.kisa.or.kr/public/laws/laws2_View.jsp?cPage=1&mode=view&p_No=282&b_
No=282&d_No=3

2https://www.law.go.kr/LSW//lsInfoP.do?lsiSeq=213857&chrClsCd=010203&urlMode=
engLsInfoR&viewCls=engLsInfoR#0000

3See the precedent set by the Supreme Court in Korea: 대법원 2011. 9. 2. 선고 2008다42430 전원합의
체판결 available at https://glaw.scourt.go.kr/wsjo/panre/sjo100.do?contId=2060159&q=2008%
EB%8B%A442430.

4All the workers were guaranteed to be paid minimum wage in Korea (about $7.5 per hour).
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We collect news headlines from online articles distributed by Yonhap News Agency (YNA) and
manually annotate the topics of the headlines, which is to address the gap between the headline and
the predefined category. 13 selected workers labeled topics for 70,000 headlines. For each headline, 3
workers annotated topics. We filter invalid headlines and keep headlines whose topic is agreed by at
least two annotators out of three, leaving 63,892 examples. For more information, see Appendix C.

KLUE-STS Semantic textual similarity (STS) is a regression task to measure the degree of semantic
equivalence between two sentences. We include STS in our benchmark because it is essential to other
NLP tasks such as machine translation, summarization, and question answering. Like STS [13] in
GLUE [135], many NLU benchmarks include comparing semantic similarity of text snippets such as
semantic similarity [144], paraphrase detection [135, 57], or word sense disambiguation [127, 74].

We formulate STS as a sentence pair regression task which predicts the semantic similarity of two
input sentences as a real value. A model performance is measured by Pearson’s correlation coefficient
following the evaluation scheme of STS-b [13]. We additionally binarize the real numbers into two
classes (paraphrased or not) with a threshold score, and use F1 score to evaluate the model.

We carefully sample and generate sentence pairs to cover all range of the similarities. For unlabeled
corpora AIRBNB (colloquial review), POLICY (formal news), round-trip translation (RTT) is used
to generate similar sentence pairs and greedy sentence matching (GSM) to sample less similar pairs.
For labeled dataset, PARAKQC [18] (smart home utterances), we leverage the labeled intents of the
commands to pair both similar and dissimilar sentences. 19 workers are employed and annotated the
similarity between two sentences in integers from 0 (no meaning overlap) to 5 (meaning equivalence).
We remove outlier annotations and then take average from the remaining labels for the final labels.
The total number of KLUE-STS is 13,224 sentence pairs. Details are described in Appendix D.

KLUE-NLI The goal of natural language inference (NLI) is to train a model to infer the relationship
between the hypothesis sentence and the premise sentence. Given a premise, an NLI model determines
if hypothesis is true (entailment), false (contradiction), or undetermined (neutral). The task is also
known as recognizing textual entailment (RTE) [27]. NLI datasets are also included in several NLU
benchmarks such as GLUE [135] and superGLUE [134], and they are valuable as training data for
other NLU tasks [24, 109, 117], which leads us to include NLI task in KLUE.

We formulate NLI as a classification task where an NLI model reads each pair of premise and
hypothesis sentences and predicts whether the relationship is entailment, contradiction, or neutral.
We use the classification accuracy to measure the model performance.

We construct KLUE-NLI by using a collection method similar to that of SNLI [8] and MNLI [140],
while avoiding known annotation artifacts. We select premise sentences from multi-source corpora
which allows to generate hypotheses. Then for each premise sentence, we ask one annotator to
generate three hypothesis sentences that correspond to the three relationship classes, each. The
writer is trained enough to aware of the annotation artifacts. To validate the generated pairs, we ask
four additional annotators to label the relationship. The final output label is the majority of the five
annotations - one original label and four additional ones. KLUE-NLI consists of 30,998 sentence
pairs. In Appendix E, we compare ours against SNLI and MNLI dataset, and provide the details of
the construction process and analysis.

KLUE-NER Named entity recognition (NER) is a sequence tagging task to detect the boundaries
of named entities in unstructured text and identify the entity type. An entity can be a sequence of
words that refers to a person, location, organization, time expression, quantity, or monetary value.
Since NER is important for application fields like syntactic analysis, goal-oriented dialog systems,
question and answering, and information extraction, many NLU benchmarks contain NER datasets
[139, 57, 80, 54]. Despite the rise of necessity of NER datasets of various domains and styles, there
are few existing Korean NER datasets to cover such needs.

In KLUE-NER, a model should detect the spans and classify the types of entities included in an input
sentence. The six entity types used in KLUE-NER are person, location, organization, date, time, and
quantity. We tag entity types with character-level BIO (Begin-Inside-Outside) scheme, as Korean
word is mostly a combination of named entity and particle. To respect such characteristics, we evaluate
a model performance using traditional entity-level F1 score and newly proposed character-level F1
score.
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We choose WIKITREE (news articles) and NSMC (reviews) as the source corpora and sample
sentences from them to mix the styles of written and spoken languages. Our six tag sets adapt Korean
tag sets defined in Korean Telecommunications Technology Association (TTA) NER guidelines
and colloquial tag sets defined MUC-7 [16]. 51 crowdworkers did the annotation first, and then
two linguists validate the results. To correct erroneous annotations even after validation, six NLP
researchers manually correct the annotation errors, resulting 31,008 sentences. Annotation scheme
and statistics are attached in Appendix F.

KLUE-RE Relation extraction (RE) is a task to identify semantic relations between entity pairs.
The relation is defined between an entity pair consisting of subject entity (esubj) and object entity
(eobj). For example, in a sentence ‘Kierkegaard was born to an affluent family in Copenhagen’, the
subject entity is ‘Kierkegaard’ and the object entity is ‘Copenhagen’. The goal is then to pick an
appropriate relationship between these two entities; ‘place_of_birth’. To ensure KLUE-RE captures
this aspect of language understanding, we include a large-scale RE benchmark. Because there is no
large-scale RE benchmark publicly available in Korean, we collect and annotate our own dataset.

We formulate RE as a single sentence classification task. A model picks one of predefined relation
classes describing the relation between two entities within a given sentence. In other words, an RE
model predicts an appropriate relation r of entity pair (esubj, eobj) in a sentence s, where esubj is the
subject entity and eobj is the object entity. We refer to (esubj, r, eobj) as a relation triplet. The entities
are marked as corresponding spans in each sentence s. There are 30 relation classes that consist of 18
person-related relations, 11 organization-related relations, and no_relation. Detailed explanation of
these classes are presented in Table 13. We evaluate a model using micro F1 score, computed after
excluding no_relation, and area under the precision-recall curve (AUPRC) including all 30 classes.

We draw sentences from WIKIPEDIA and news articles (WIKITREE and POLICY) to cover various
sets of named entities and relational facts. Then we apply existing NER models to leave examples
having at least two named entities, marking esubj and eobj, and sample sentences from those in two
distinct ways. First is random sampling, which is similar to a real world scenario where the pair is
highly likely to be irrelevant (no_relation). Second is distant supervision, which leverages Korean
KB to have more chance to include relation-existing pairs. Our 30 relation classes are based on
Text Analysis Conference Knowledge Base Population (TAC-KBP) [89]. We employ 163 qualified
workers and assign three workers to each sentence to label the relation, taking majority-vote labels as
gold labels. KLUE-RE consists of 48,001 annotated sentences. More details are in Appendix G.

KLUE-DP Dependency parsing (DP) aims to find the relations among words in a sentence. It is an
important component in many NLP systems because it captures the syntactic structure of a sentence.
We include DP in KLUE to evaluate the representational power of language models in terms of
syntactic features.

Formally, a dependency parser predicts a graph structure of an input sentence based on the dependency
grammar [29, 28]. In general, a parse tree consists of dependency arcs, connecting dependents to their
heads, and the dependency labels attached to the arcs that represent the relations between dependents
(DEPREL) and their heads (HEAD). Since each word in a sentence has a pair of dependency
information (HEAD, DEPREL), we formulate DP as a word-level sequence tagging task. We evaluate
a model’s performance using unlabeled attachment score (UAS) and labeled attachment score (LAS).

For the source, we sample sentences from both WIKITREE (formal) and AIRBNB (informal). We
annotate part-of-speech on the corpus in advance and use them when annotating the dependency
relations. Both POS and DP are annotated and cross-validated by ten Korean PhD students who are
majoring in linguistics. The final KLUE-DP consists of 14,500 sentences. The comprehensive process
is demonstrated in Appendix H with dataset statistics.

KLUE-MRC Machine reading comprehension (MRC) is a task designed to evaluate a model’s
ability to read a given passage and then answer a question about the passage. Most existing MRC
benchmarks are in English [21, 56, 60, 114, 115, 147, 152], and they are widely used in evaluating
pre-trained language models for text comprehension. In Korean, however, an appropriate MRC
benchmark is not available because existing Korean MRC datasets are less challenging, limited in
access, or simply machine-translated from an English dataset [81, 1, 76]. We therefore include MRC
in KLUE and create a new challenging Korean MRC benchmark. When building KLUE-MRC, we
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consider providing multiple question types, preventing reasoning shortcuts when answering to a
multi-hop question, and using passage from several domains without any copyright violation.

We formulate MRC as a task of predicting an answer span of a question from a given text passage. A
model input is a concatenated sequence of a question and a passage separated with a delimiter. A
model output is start and end positions of a predicted answer span within a passage. If the question
is unanswerable within the given passage, the model should predict the empty answer string. We
evaluate a model with two metrics: 1) exact match (EM) and 2) character-level ROUGE-W. Note that
character-level ROUGE-W is newly proposed character-level metric instead of character-level F1
score which have commonly used in other Korean MRC datasets. We find character-level F1 score
could overestimate a model’s performance as it gives score to any character overlap regardless of a
sequential order.

We collect passages from Korean WIKIPEDIA and news articles provided by The Korea Economy
Daily and ACROFAN. On each paragraph, annotators create questions 1) by paraphrasing a sentence
in the passage, 2) requiring multi-sentence reasoning, and 3) that are unanswerable. Answers are
annotated at the same time. To make question and answer pairs without having known artifacts, we
prepare the guideline with specific do’s and don’ts and train employed workers thoroughly. KLUE-
MRC consists of 12,207 paraphrasing-based questions, 7,895 multi-sentence reasoning questions,
and 9,211 unanswerable questions, for a total of 29,313 from 22,343 documents and 23,717 passages.
We provide further information on each question type, statistics, and in-depth analyses in Appendix I.

KLUE-DST Dialogue State Tracking (DST) is about predicting dialogue states from a given
task-oriented dialogue. Several recent papers have considered task-oriented dialogue (TOD) as an
important problem of natural language understanding. For instance, DecaNLP [87] includes a DST,
which is a key component of TOD, into one of their benchmark tasks, while DialoGLUE [90] releases
the first task-oriented dialogue benchmark containing various sub-tasks including DST.

Specifically, DST is a task to predict slot (e.g. hotel type) and value (e.g. guest house, hotel, motel)
pairs after each user utterance. The potential pairs are predefined by a task schema and knowledge
base (KB), tied to the choice of a scenario. For evaluation, we use joint goal accuracy (JGA) and
slot micro F1 score. JGA checks if all of the predicted slot-value pairs are exactly matched with
the ground-truth for every turn, while the slot micro F1 computes F1 score for each slot-value pair
independently. We also name this task as Wizard of Seoul (WoS).

We define a task schema and create a knowledge base, and then design an annotation system
based on the schema. Then, we collect task-oriented dialogues with dialogue state annotations by
following ‘Self-dialog’ scheme which requests a single worker to play both user and system roles [11].
Crowdworkers generate dialogues and the corresponding states by using the system. WoS contains
overall 10,000 dialogues with 146,692 turns across 5 domains. Further information on the process is
provided in Appendix J.

3 Experiments

In order to facilitate further research using KLUE, we provide strong baselines for all the benchmark
tasks within it. As a part of this effort, we pretrain and release large-scale language models for Korean,
which will reduce the burden of retraining these models from individual researchers. We also compare
our models with existing multilingual pretrained language models and open-sourced Korean-specific
models on the proposed KLUE benchmark.

3.1 Pretrained Language Models

Pretraining Corpora We collect publicly available data from diverse sources to cover a broad set
of topics and many different styles. Having noticed quite a bit of PII and undesirable social biases in
these large corpora, we pseudonymize PII while do not filter out socially biased contents nor hate
speech for three reasons. First, manual inspection is infeasible. Second, it is a challenging problem
on its own to automatically detect socially biased contents or hate space. Lastly, being blind to such
harmful contents prevents the future use of a language model for detecting and correcting these
harmful contents. Details of our choices are described in Appendix K.1.
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Pretraining Korean Language Models We pretrain language models, namely KLUE-BERT and
KLUE-RoBERTa, following the similar recipes of BERT [30] and RoBERTa [84], respectively. The
models are trained on sequences of at most 512 tokens long with a static or dynamic masking strategy
following the original training procedure. We use whole word masking (WWM) which masks all of
the tokens that form a single word. We set the batch size to 256 for BERT and 2048 for RoBERTa and
fix the learning rate to 10−4 for both. For the pretraining corpus, we gather publicly available Korean
corpora of size approximately 62GB from diverse sources to cover a broad set of topics and many
different styles. The most distinct part is tokenization. We use morpheme-based subword tokenization
instead of BPE, considering the aggulutinative nature of Korean. The details of our pretraining are in
Appendix K.

Comparison Models In addition to our own language models, we evaluate two existing multilingual
language models and two Korean monolingual language models on our benchmark. For multilingual
models, we employ mBERT [30] and XLM-R [26]. For the Korean models, we compare KR-BERT
[77] and KoELECTRA [104]. You can find further information on each model in Appendix K.

3.2 Fine-tuning Language Models

Single Sentence Classification For KLUE-TC, we follow single sentence classification architec-
ture in [30]. KLUE-RE on the other hand requires a special procedure to indicate entities within the
input sentence. We use <subj>, </subj>, <obj>, and </obj> to mark the beginnings and the ends
of subject and object entities, respectively, following Baldini Soares et al. [5].

Sentence Pair Classification and Regression For KLUE-NLI, a sentence pair classification task,
we adopt the same approach to sentence pair classification framework suggested by Devlin et al. [30].
While for KLUE-STS, only the final layer is different, as KLUE-STS is a a regression task.

Multiple-Sentence Slot-Value Prediction WoS is a slot-value prediction task for a given dialogue
context, where the prediction should be considered across multiple turns instead of a single utterance.
We employ an encoder-decoder model following the architecture of TRADE [142], which consists of
an utterance encoder, a state generator, and a slot gate classifier. In our implementation, we change the
utterance encoder from GRU [17] to pretrained language model to get better representations. We also
modify the slot gate classifier to predict additional two slot gate labels (yes, no), since WoS contains
relatively more Boolean type slots than MultiWOZ [10]. We jointly minimize the cross-entropy loss
of the state generator and slot gate classifier.

Sequence Tagging KLUE-NER is a subword-level tagging task and KLUE-MRC is a span pre-
diction task, and in both tasks, each token is linearly mapped to a predefined label. We employ the
same architecture provided in [30] and only use the given dataset for finetuning. We frame KLUE-DP
as a sequence tagging problem. Our baseline architecture follows the model proposed in [39]. In
our implementation, we use a pretrained language model to extract subword representations and
concatenate the first and last subword token representations of each word, to form word vector
representations, since the annotation is done at the word level. For the attention layers, we use biaffine
attention [33] to predict the head, and bilinear attention [66] to predict the arc type for each word.
Cross-entropy loss is minimized to tune all the parameters.

Results We present all results in Table 3 and summarize few observations. First, Korean mono-
lingual models generally outperform multilingual models. Second, for sequence tagging tasks like
KLUE-NER and KLUE-MRC, the tokenization matters. Although XLM-RLARGE is on par with
KLUE-BERTBASE on KLUE-MRC based on character-level score ROUGE, the performance gap is
wider on entity-level score EM. Similar results are shown in KLUE-NER, and this demonstrates
the effect of out tokenization method. Third, different models perform best on different tasks when
controlled for their sizes; KLUE-BERT performs best for YNAT, KLUE-RoBERTa for KLUE-RE,
KLUE-DP, KLUE-MRC and WoS, and KoELECTRABASE for KLUE-STS, KLUE-NLI, and KLUE-
NER. Lastly, as we increase the model size, KLUE-RoBERTaLARGE outperforms the other models in
all tasks except for YNAT and KLUE-NER. More details of our experiments and further analyses are
in Appendix L.
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Table 3: Evaluation results of our pretrained LMs and other baselines on KLUE benchmark test
set. The F1 refers to a macro-F1 score. The F1E and F1C of KLUE-NER indicates entity-level and
character-level macro-F1 score, respectively. The F1mic of KLUE-RE is micro-averaged F1 score
ignoring the no_relation. The F1S of WoS is an average of slot-value pair level micro-F1 scores. The
RP of KLUE-STS denotes Pearson correlation. Bold shows the best performance across the models,
and underline indicates the best performance among BASE models.

YNAT KLUE-STS KLUE-NLI KLUE-NER KLUE-RE KLUE-DP KLUE-MRC WoS

Model F1 RP F1 ACC F1E F1C F1mic AUC UAS LAS EM ROUGE JGA F1S

mBERTBASE 81.55 84.66 76.00 73.20 76.50 89.23 57.88 53.82 90.30 86.66 44.66 55.92 35.46 88.63
XLM-RBASE 83.52 89.16 82.01 77.33 80.37 92.12 57.46 54.98 89.20 87.69 27.48 53.93 39.82 89.61
XLM-RLARGE 86.06 92.97 85.86 85.93 82.27 93.22 58.39 61.15 92.71 88.70 35.99 66.77 41.20 89.80

KR-BERTBASE 84.58 88.61 81.07 77.17 74.58 90.13 62.74 60.94 89.92 87.48 48.28 58.54 45.33 90.70
KoELECTRABASE 84.59 92.46 84.84 85.63 86.11 92.56 62.85 58.94 92.90 87.77 59.82 66.05 41.58 89.60

KLUE-BERTBASE 85.73 90.85 82.84 81.63 83.97 91.39 66.44 66.17 89.96 88.05 62.32 68.51 46.64 91.61
KLUE-RoBERTaSMALL 84.98 91.54 85.16 79.33 83.65 91.14 60.89 58.96 90.04 88.14 57.32 62.70 46.62 91.44
KLUE-RoBERTaBASE 85.07 92.50 85.40 84.83 84.60 91.44 67.65 68.55 93.04 88.32 68.67 73.98 47.49 91.64
KLUE-RoBERTaLARGE 85.69 93.35 86.63 89.17 85.00 91.86 71.13 72.98 93.48 88.36 75.58 80.59 50.22 92.23

4 Discussion

We develop KLUE with the aim of facilitating Korean NLP research, in response to the recent active
development efforts of large Korean language models [63]. The entire NLP community has seen BERT
[30] and its variants outperforming the previous NLU models for GLUE [135] and SuperGLUE [134],
as well as the more recent GPT3 [9] with outstanding performance without fine-tuning (and with
in-context learning) in natural language understanding and generation. Motivated by these models,
many Korean researchers at various institutions rushed to pretrain large-scale Transformer-based
Korean language models. Consequently, a number of nearly identical pretrained language models
have been released to open-source communities. However, we could not systematically understand the
behaviors and characteristics of these models because of the lack of well-designed general-purpose
benchmarks like GLUE for Korean. KLUE will allow researchers to conduct controlled experiments
to understand how and why various Korean LMs perform on certain tasks and thus obtain detailed
insights into those models. Furthermore, since KLUE includes many representative NLU tasks that are
also conducted in other languages, KLUE will function as a fundamental resource to NLP researchers
who aim to conduct multilingual research with Korean and other languages.

From Scratch vs. Translation Translation has been the most straightforward approach for ex-
panding English dataset to other languages. However, we insist to build KLUE from scratch to
assure quality, considering its impact and role as the first Korean benchmark. To examine the quality
difference quantitatively, we compare the correctness of sentence pairs and the corresponding labels
of KLUE-NLI test set against that of KorNLI [45], a post-edited XNLI [25]. The results are shown in
Table 4.

Table 4: Statistics of re-annotation results on randomly sampled 100 sentences from KorNLI and
KLUE-NLI. Annotators are four native Korean undergraduates who are majoring in Korean linguistics
and did not participate in the KLUE-NLI construction process. We compute the agreements of the
additional labels to the gold labels for each dataset.

Statistics (n = 100) KorNLI KLUE-NLI
Unanimous Gold Label (4 Agree) 38.00% 71.00%
3 Agree with Gold Label 18.00% 24.00%
2 Agree with Gold Label 18.00% 3.00%
1 Agrees with Gold Label 16.00% 2.00%
0 Agrees with Gold Label 10.00% 0.00%

Individual Label = Gold Label 64.50% 91.00%
No Gold Label (No 3 Labels Match) 4.00% 0.00%
Majority Vote 6= Gold Label 26.00% 0.00%

These numbers suggest that even human translation does not guarantee the quality. For KorNLI,
annotators often report that they do not quite understand at least one of the two sentences or choose
NEUTRAL because it is difficult to distinguish the semantic relationships of the sentences. On
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the other hand, for KLUE-NLI, there is no case where the annotators struggle to grasp the logical
semantic relationship. Given that 83% of French XNLI recovers the original English consesus label
[25], KorNLI seems to lost relatively more semantic meanings/relationships during the translation.
This results imply that the difference in characteristics between the source and target language might
have affected.

Overall Evaluation We do not average all scores gained from each task in KLUE. The performance
of all tasks are measured by different evaluation metrics. This is because we carefully choose the
metric for each task with considering its own characteristics. Their granularity differs by tasks,
for example, KLUE-MRC and KLUE-NER employ character-level metrics because an entity can
exist within a word in Korean whereas KLUE-STS and KLUE-NLI use sentence-level metrics.
Furthermore, we use various metrics across tasks, such as F1 score, accuracy, AUPRC, UAS, LAS,
ROUGE-W, joint goal accuracy, and Pearson’s correlation. In this situation, simply computing the
average of all tasks as in GLUE [135] results in misleading overall performance measure. The
average will lose its interpretability as well as giving higher weights to a certain task in unintended
ways. Accordingly, an alternative way to estimate a model’s NLU capability is necessary. Recently,
analyzing correctness of a model’s prediction by using Item Response Theory (IRT) framework to
estimate such capability is proposed [72], however, we find that it is not clear how it should be applied
precisely in our benchmark. As of now, we thus decide to evaluate a model for each task separately
without summarizing overall performance measure. This is our limitation, and we leave this problem
for the future.

Ethical Consideration To secure and maximize the continued availability and usefulness of the
benchmark, we include only source corpora for which we know we can release under a license
that permits both redistribution and re-mix without any restriction on the use. Furthermore, we first
automatically detect hate speech and gender-biased sentences using toxicity classifiers and remove
those. Annotators are clearly instructed to mark any instance that exhibits social biases and/or is toxic.
Finally, we manually examine these marked sentences to exclude them from the final dataset. For
PII, we rely on manual inspection during annotation. We discard any sentences that was reported to
contain PII after manual inspection. See Appendix M for our full statement of ethical considerations.

Broader Impact We distribute KLUE under CC BY-SA. The license allows everyone to freely
copy and redistribute our benchmarks in any medium or format. In addition, one can improve our
benchmark to build more challenging datasets after performance saturation. To function as a NLU
benchmark, open access is a must. To set a good precedent for open access of data, we allow using
our datasets for 1) any purpose, 2) derivative work, and 3) redistribution, as long as the existing
copyrights in our benchmark datasets are respected. We also open our pretrained Korean language
models and the implementation of pretraining and fine-tuning pipelines. This enhances reproducibility
of our work, and allows anyone to fix and improve our data and models. We hope to contribute to the
Korean NLP research community as well the wider NLP community.

5 Conclusion

We present KLUE, a suite of Korean NLU benchmarks that includes eight diverse tasks. KLUE is
available for everyone, along with Korean language models trained to outperform multilingual models
and other existing open-sourced Korean language models. We set high standards from the outset, as
building the benchmark and training the models from scratch. We designed the benchmark datasets
and trained the annotators rigorously to consider potential ethical issues including private information
and hate speech. We documented in detail all of the benchmark construction and testing processes.
We also discussed broader impacts and limitations of KLUE and our models. Despite the limitations,
KLUE and the accompanying language models will facilitate future Korean NLP research by setting
a valuable precedent describing how datasets and language models should be created and spread to a
wider community.
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