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Abstract

CLIP yielded impressive results on zero-shot transfer learning tasks and is con-
sidered as a foundation model like BERT or GPT3. CLIP vision models that
have a rich representation are pre-trained using the InfoNCE objective and natural
language supervision before they are fine-tuned on particular tasks. Though CLIP
excels at zero-shot transfer learning, it suffers from an explaining away problem,
that is, it focuses on one or few features, while neglecting other relevant features.
This problem is caused by insufficiently extracting the covariance structure in the
original multi-modal data. We suggest to use modern Hopfield networks to tackle
the problem of explaining away. Their retrieved embeddings have an enriched
covariance structure derived from co-occurrences of features in the stored embed-
dings. However, modern Hopfield networks increase the saturation effect of the
InfoNCE objective which hampers learning. We propose to use the InfoLOOB
objective to mitigate this saturation effect. We introduce the novel “Contrastive
Leave One Out Boost” (CLOOB), which uses modern Hopfield networks for co-
variance enrichment together with the InfoLOOB objective. In experiments we
compare CLOOB to CLIP after pre-training on the Conceptual Captions and the
YFCC dataset with respect to their zero-shot transfer learning performance on other
datasets. CLOOB consistently outperforms CLIP at zero-shot transfer learning
across all considered architectures and datasets.

1 Introduction

Contrastive Language-Image Pre-training (CLIP) showed spectacular performance at zero-shot
transfer learning (Radford et al., 2021). CLIP learns expressive image embeddings directly from
raw text, thereby leverages a much richer source of supervision than just labels. The CLIP model
is considered as an important foundation model (Bommasani et al., 2021), therefore a plethora of
follow-up work has been published (see Appendix Section A.4). CLIP as a contrastive learning
method has two simultaneous goals, namely (i) increasing the similarity of matched language-image
pairs and (ii) decreasing the similarity of unmatched language-image pairs. Though CLIP yielded
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striking zero-shot transfer learning results, it still suffers from “explaining away”. Explaining away is
known in reasoning as the concept that the confirmation of one cause of an observed event dismisses
alternative causes (Pearl, 1988; Wellman & Henrion, 1993). CLIP’s explaining away problem is
its focus on one or few features while neglecting other relevant features. This problem is caused
by insufficiently extracting feature co-occurrences and covariance structures in the original multi-
modal data. Humans extract co-occurrences and covariances by associating current perceptions with
memories (Bonner & Epstein, 2021; Potter, 2012). In analogy to these human cognitive processes,
we suggest to use modern Hopfield networks to amplify co-occurrences and covariance structures of
the original data.

Hopfield networks are energy-based, binary associative memories, which popularized artificial neural
networks in the 1980s (Amari, 1972; Hopfield, 1982, 1984). Associative memory networks have
been designed to store and retrieve samples. Their storage capacity can be considerably increased by
polynomial terms in the energy function (Chen et al., 1986; Psaltis & Cheol, 1986; Baldi & Venkatesh,
1987; Gardner, 1987; Abbott & Arian, 1987; Horn & Usher, 1988; Caputo & Niemann, 2002; Krotov
& Hopfield, 2016). In contrast to these binary memory networks, we use continuous associative
memory networks with very high storage capacity. These modern Hopfield networks for deep learning
architectures have an energy function with continuous states and can retrieve samples with only one
update (Ramsauer et al., 2021). Modern Hopfield networks have already been successfully applied
to immune repertoire classification (Widrich et al., 2020), chemical reaction prediction (Seidl et al.,
2022) and reinforcement learning (Widrich et al., 2021; Paischer et al., 2022). Modern Hopfield
networks are a novel concept for contrastive learning to extract more covariance structure.

However, modern Hopfield networks lead to a higher similarity of retrieved samples. The increased
similarity exacerbates the saturation of CLIP’s InfoNCE objective (van den Oord et al., 2018).
InfoNCE saturates because it contains terms of the form a/(a + b). In analogy to Wang & Isola
(2020), a is called the “alignment score” that measures the similarity of matched pairs and b is called
the “uniformity penalty” that measures the similarity of unmatched pairs. The saturation problem
becomes more severe for retrieved samples of the modern Hopfield network since the alignment score
a increases. Saturation of InfoNCE hampers the decrease of the uniformity penalty b (see also Yeh
et al. (2021)). Contrary to InfoNCE, the “InfoLOOB” (LOOB for “Leave One Out Bound”) objective
(Poole et al., 2019) contains only terms of the form a/b which do not saturate. Thus, even for a large
alignment score a, learning still decreases the uniformity penalty b by distributing samples more
uniformly.

We introduce “Contrastive Leave One Out Boost” (CLOOB) which combines modern Hopfield
networks with the “InfoLOOB” objective. Our contributions are:

(a) we propose CLOOB, a new contrastive learning method,
(b) we propose modern Hopfield networks to reinforce covariance structures,
(c) we propose InfoLOOB as an objective to avoid saturation as observed with InfoNCE, and

provide theoretical justifications for optimizing InfoLOOB.

2 CLOOB: Modern Hopfield Networks with InfoLOOB

Our novel contrastive learning method CLOOB can be seen as a replacement of CLIP and therefore
be used in any method which builds upon CLIP. Figure 1 sketches the CLOOB architecture for
image-text pairs. The training set consists of N pairs of embeddings {(x1,y1), . . . , (xN ,yN )}
with X = (x1, . . . ,xN ) and Y = (y1, . . . ,yN ), M stored embeddings U = (u1, . . . ,uM ),
and K stored embeddings V = (v1, . . . ,vK). The state or query embeddings xi and yi retrieve
Uxi and Uyi , respectively, from U — analog for retrievals from V . The samples are normalized:
kxik = kyik = kuik = kvik = 1. Uxi denotes an image-retrieved image embedding, Uyi a
text-retrieved image embedding, Vxi an image-retrieved text embedding and Vyi a text-retrieved text
embedding. These retrievals from modern Hopfield networks are computed as follows (Ramsauer
et al., 2021):

Uxi = U softmax(� UTxi) , (1)

Uyi = U softmax(� UTyi) , (2)

Vxi = V softmax(� V Txi) , (3)

Vyi = V softmax(� V Tyi) . (4)

The hyperparameter � corresponds to the inverse temperature: � = 0 retrieves the average of the
stored pattern, while large � retrieves the stored pattern that is most similar to the state pattern (query).
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Figure 1: The CLOOB architecture for image-text pairs. The image embedding xi and the text em-
bedding yi retrieve the embeddings Uxi and Uyi , respectively, from a modern Hopfield network that
stores image embeddings U = (u1, . . . ,uM ) (green boxes at the left). The image-retrieved image
embedding Uxi serves as anchor in order to contrast the positive text-retrieved image embedding
Uyi with the negative text-retrieved image embedding Uyj for j 6= i. Analogously, for the second
modern Hopfield network that stores text embeddings V = (v1, . . . ,vK) (green boxes at the right).

In the InfoLOOB loss Eq. (8), CLOOB substitutes the embedded samples xi and yi by the normalized
retrieved embedded samples. In the first term, xi and yi are substituted by Uxi and Uyi , respectively,
while in the second term they are substituted by Vxi and Vyi . After retrieval, the samples are
re-normalized to ensure kUxik = kUyik = kVxik = kVyik = 1.

We obtain the CLOOB loss function:

LInfoLOOB = �
1

N

NX

i=1

ln
exp(⌧�1 UT

xi
Uyi)PN

j 6=i exp(⌧
�1 UT

xi
Uyj )

�
1

N

NX

i=1

ln
exp(⌧�1 V T

xi
Vyi)PN

j 6=i exp(⌧
�1 V T

xj
Vyi)

.

(5)

By default, we store the minibatch in the modern Hopfield networks, that is, U = X and V = Y .
Thus, in Eq. (1) xi can retrieve itself from U = X , but in Eq. (3) it can not retrieve itself from
V = Y . Analogously, in Eq. (4) yi can retrieve itself from V = Y , but in Eq. (2) it can not retrieve
itself from U = X . By storing the embeddings of the mini-batch examples in the Hopfield memory,
we do not require to compute the embeddings of additional samples via text and image encoders.
However, the modern Hopfield networks can also store prototypes, templates, or proprietary samples
to amplify particular embedding features via the stored samples. Either the original embeddings x
and y or the retrieved embeddings Ux, Uy , Vx, and Vy may serve for the downstream tasks, e.g. for
zero-shot transfer learning.

Pseudocode 1 shows CLOOB in a PyTorch-like style. CLOOB has two major components: (i) modern
Hopfield networks that alleviate CLIP’s problem of insufficiently exploiting the covariance structure
in the data and (ii) the InfoLOOB objective that does not suffer from InfoNCE’s saturation problem.
The next two sections analyze CLOOB’s major components.

3 Modern Hopfield Networks for Enriching the Covariance Structure

We use modern Hopfield networks to amplify co-occurrences and the covariance structure. Replacing
the original embeddings by retrieved embeddings reinforces features that frequently occur together in
stored embeddings. Additionally, spurious co-occurrences that are peculiar to a sample are averaged
out. By this means, the covariance structure is reinforced by the retrieved embeddings UT

xi
Uyi

and V T
xi
Vyi . The Jacobian J of the softmax p = softmax(�a) is J(�a) = �

�
diag(p)� ppT

�
.

We define the weighted covariance Cov(U), where sample ui is drawn with probability pi, as
[Cov(U)]kl =

⇥
UJ(�a)UT

⇤
kl

= �(
PM

i=1 piuikuil�
PM

i=1 piuik
PM

i=1 piuil). The formula of the

3



Pseudocode 1 CLOOB in a PyTorch-like style.

1 # image_encoder - ResNet
2 # text_encoder - Text Transformer
3 # I[n, h, w, c] - minibatch of images
4 # T[n, l] - minibatch of texts
5 # W_i[d_i, d_e] - image projection
6 # W_t[d_t, d_e] - text projection
7 # beta - inverse temperature Hopfield retrieval
8 # tau - temperature InfoLOOB
9

10 # extract feature representations
11 I_f = image_encoder(I) #[n, d_i]
12 T_f = text_encoder(T) #[n, d_t]
13
14 # joint multimodal embedding
15 x = l2_normalize(I_f @ W_i) #[n, d_e]
16 y = l2_normalize(T_f @ W_t) #[n, d_e]
17
18 # Hopfield retrieval H with batch stored

19 # H(beta, A, B) = B.T @ softmax(beta * A @ B.T)
20 U_x = H(beta, x, x).T #[n, d_e]
21 U_y = H(beta, y, x).T #[n, d_e]
22 V_x = H(beta, x, y).T #[n, d_e]
23 V_y = H(beta, y, y).T #[n, d_e]
24
25 # normalize retrievals
26 U_x = l2_normalize(U_x) #[n, d_e]
27 U_y = l2_normalize(U_y) #[n, d_e]
28 V_x = l2_normalize(V_x) #[n, d_e]
29 V_y = l2_normalize(V_y) #[n, d_e]
30
31 # loss: info_loob(tau, anchors, samples)
32 # samples contain pos. and neg. embeddings
33 loss_i = info_loob(tau, U_x, U_y)
34 loss_t = info_loob(tau, V_y, V_x)
35 loss = (loss_i + loss_t) * tau

weighted covariance differs from the standard empirical covariance, since the factor 1/M is replaced
by pi. Thus, ui is sampled with probability pi instead with probability 1/M (uniformly).

We apply the mean value theorem to the softmax function with mean Jacobian matrix Jm(�a) =R 1
0 J(��a) d�. The mean Jacobian Jm(�a) is a symmetric, diagonally dominant, positive semi-

definite matrix with one eigenvalue of zero for eigenvector 1 and spectral norm bounded by kJmk2 6
0.5� (see Appendix Lemma A1). According to Appendix Theorem A3, we can express UT

xi
Uyi as:

(ū + Cov(U ,xi) xi)
T (ū + Cov(U ,yi) yi) , (6)

where the mean is ū = 1/MU1 and the weighted covariances are Cov(U ,xi) = UJm(�UTxi)UT

and Cov(U ,yi) = UJm(�UTyi)UT . The weighted covariance Cov(U , .) is the covariance if the
stored pattern ui is drawn according to an averaged pi given by Jm(.). Maximizing the dot product
UT

xi
Uyi forces the normalized vectors xi and yi to agree on drawing the patterns ui with the same

probability pi in order to generate similar weighted covariance matrices Cov(U , .). If subsets of U
have a strong covariance structure, then it can be exploited to produce large weighted covariances
and, in turn, large dot products of UT

xi
Uyi . Furthermore, for a large dot product UT

xi
Uyi , xi and yi

have to be similar to each other to extract the same direction from the covariance matrices. The above
considerations for UT

xi
Uyi analogously apply to V T

xi
Vyi .

We did not use a loss function that contains dot products like UT
xi
Vyi , because they have higher

variance than the ones we have used. The dot product UT
xi
Vyi has higher variance, since it uses

M +K stored patterns, whereas UT
xi
Uyi and V T

xi
Vyi use M and K stored patterns, respectively.

Modern Hopfield networks enable to extract more covariance structure. To demonstrate the
effect of modern Hopfield networks, we computed the eigenvalues of the covariance matrix of the
image and text embeddings. We counted the number of effective eigenvalues, that is, the number
of eigenvalues needed to obtain 99% of the total sum of eigenvalues. Figure 2 shows the relative
change of the number of effective eigenvalues compared to the respective reference epoch (the epoch
before the first learning rate restart). Modern Hopfield networks consistently increase the number of
effective eigenvalues during learning. Consequently, modern Hopfield networks enable to extract
more covariance structure during learning, i.e. enrich the embeddings by covariances that are already
in the raw multi-modal data. This enrichment of embeddings mitigates explaining away. Further
details can be found in Appendix Section A.2.7.

4 InfoLOOB for Contrastive Learning

Modern Hopfield networks lead to a higher similarity of retrieved samples. The increased similarity
exacerbates the saturation of the InfoNCE objective. To avoid the saturation of InfoNCE, CLOOB
uses the “InfoLOOB” objective. The “InfoLOOB” objective is called “Leave one out upper bound” in
Poole et al. (2019) and “L1Out” in Cheng et al. (2020). InfoLOOB is not established as a contrastive
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Figure 2: Relative change in the number of the effective eigenvalues of the embedding covariance
matrices, which were obtained from image and text encoders at two different training points. Models
with modern Hopfield networks steadily extract more covariance structure during learning.

objective, although it is a known bound. Recently, InfoLOOB was independently introduced as
objective for image-to-image contrastive learning (Yeh et al., 2021).

InfoNCE and InfoLOOB loss functions. N samples are drawn iid from p(x,y) giving the training
set {(x1,y1), . . . , (xN ,yN )}. For the sample y1, InfoNCE uses for the matrix of negative samples
X = (x1, . . . ,xN ), while InfoLOOB uses X̃ = (x2, . . . ,xN ). The matrices differ by the positive
sample x1. For the score function f(x,y), we use f(x,y) = exp(⌧�1sim(x,y)) with the similarity
sim(x,y) = yTx and ⌧ as the temperature. We have the InfoNCE and InfoLOOB loss functions:

LInfoNCE = �
1

N

NX

i=1

ln
exp(⌧�1 xT

i yi)PN
j=1 exp(⌧

�1 xT
i yj)

�
1

N

NX

i=1

ln
exp(⌧�1 xT

i yi)PN
j=1 exp(⌧

�1 xT
j yi)

, (7)

LInfoLOOB = �
1

N

NX

i=1

ln
exp(⌧�1 xT

i yi)PN
j 6=i exp(⌧

�1 xT
i yj)

�
1

N

NX

i=1

ln
exp(⌧�1 xT

i yi)PN
j 6=i exp(⌧

�1 xT
j yi)

. (8)

We abbreviate y = y1 leading to the pair (x1,y) and the negatives X̃ = (x2, . . . ,xN ). In the
second sum of the losses in Eq. 7 and Eq. 8, we consider only the first term, respectively:

LInfoNCE(y) = � ln

az }| {
exp(⌧�1 xT

1 y)

exp(⌧�1 xT
1 y)| {z }

a

+
PN

j=2 exp(⌧
�1 xT

j y)| {z }
b

, (9)

LInfoLOOB(y) = � ln

az }| {
exp(⌧�1 xT

1 y)PN
j=2 exp(⌧

�1 xT
j y)| {z }

b

. (10)

In analogy to Wang & Isola (2020), a is called the “alignment score” that measures the similarity of
matched pairs and b the “uniformity penalty” that measures the similarity of unmatched pairs.

Gradients of InfoNCE and InfoLOOB loss functions. Eq. (9) and Eq. (10) are equal to

�⌧�1yTx1 + ⌧�1lse(⌧�1,XTy) , �⌧�1yTx1 + ⌧�1lse(⌧�1, X̃Ty) ,

where lse is the log-sum-exp function (see Eq. (A73) in the Appendix).

The gradients of Eq. (9) and Eq. (10) with respect to y are

�⌧�1x1 + ⌧�1Xsoftmax(⌧�1XTy) , �⌧�1x1 + ⌧�1X̃softmax(⌧�1X̃Ty) .

Using p = (p1, . . . , pN )T = softmax(⌧�1XTy), the gradient of InfoNCE with respect to y is

@LInfoNCE(y)

@y
= �⌧�1(1� p1)(x1 � X̃softmax(⌧�1X̃Ty)) = (1� p1)

@LInfoLOOB(y)

@y
.
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Figure 3: Ajne uniformity test statistics for image and text embeddings for two different epochs
during training. A high test statistic indicates low uniformity of an embedding. Models trained with
the InfoLOOB objective develop more uniform image and text embeddings on the hypersphere.

By and large, the gradient of InfoNCE is scaled by (1� p1) compared to the gradient of InfoLOOB,
where p1 is the softmax similarity between the anchor y and the positive sample x1. Consequently,
InfoNCE is saturating with increasing similarity between the anchor and the positive sample. For
more details we refer to Appendix Section A.1.4.

This saturation of InfoNCE motivated the use of the InfoLOOB objective in order to decrease the
uniformity penalty even for large alignment scores. The uniformity penalty decreases since learning
does not stall and the most prominent features become down-scaled which makes negative examples
less similar to the anchor sample. The InfoNCE objective Eq. 9 has the form a/(a+ b), while the
InfoLOOB objective Eq. 10 has the form a/b. InfoLOOB does not saturate and keeps decreasing
the uniformity penalty b. Figure 3 shows how InfoLOOB leads to an increase in the uniformity of
image and text embeddings on the sphere, which is described by the statistics of the uniformity test
of Ajne that was extended by Prentice (Ajne, 1968; Prentice, 1978). Higher uniformity on the sphere
correlates with a lower uniformity penalty b. For more details we refer to Appendix Section A.2.7.

Theoretical justification for optimizing InfoLOOB. The InfoNCE information is a lower bound
on the mutual information, which was proven by Poole et al. (2019). In the Appendix Section A.1,
we elaborate more on theoretical properties of the bounds and properties of the objective functions.
Specifically, we show that InfoLOOB with neural networks is not an upper bound on the mutual
information. Thus, unlike hitherto approaches to contrastive learning we use InfoLOOB as an
objective, since it does not suffer from saturation effects as InfoNCE.

5 Experiments

CLOOB is compared to CLIP with respect to zero-shot transfer learning performance on two pre-
training datasets. The first dataset, Conceptual Captions (CC) (Sharma et al., 2018), has a very rich
textual description of images but only three million image-text pairs. The second dataset, a subset of
YFCC100M (Thomee et al., 2016), has 15 million image-text pairs but the textual description is less
rich than for CC and often vacuous. For both pre-training datasets, the downstream zero-shot transfer
learning performance is tested on seven image classification datasets.

5.1 Conceptual Captions Pre-training

Pre-training dataset. The Conceptual Captions (CC) (Sharma et al., 2018) dataset contains 2.9
million images with high-quality captions. Images and their captions have been gathered from the
web via an automated process and have a wide variety of content. Raw descriptions of images are
from the alt-text HTML attribute.

Methods. The CLOOB implementation is based on OpenCLIP (Ilharco et al., 2021), which achieves
results equivalent to CLIP on the YFCC dataset (see Section 5.2). OpenCLIP also reports results on
the CC dataset. As CLIP does not train models on CC, we report results from this reimplementation
as baseline. Analogously to Radford et al. (2021, Section 2.4), we used the modified ResNet (He
et al., 2016) and BERT (Devlin et al., 2018, 2019) architectures to encode image and text input. We
used the ResNet encoder ResNet-50 for experiments on CC.
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Table 1: Zero-shot results for models trained on CC with ResNet-50 vision encoders for two different
checkpoints. Results are given as mean accuracy over 5 runs. Statistically significant results are
shown in bold. CLIP and CLOOB were trained for 31 epochs while CLIP* and CLOOB* were
trained for 128 epochs. In the majority of tasks CLOOB significantly outperforms CLIP.

Dataset CLIP RN-50 CLOOB RN-50 CLIP* RN-50 CLOOB* RN-50

Birdsnap 2.26 ± 0.20 3.06 ± 0.30 2.8 ± 0.16 3.24 ± 0.31
Country211 0.67 ± 0.11 0.67 ± 0.05 0.7 ± 0.04 0.73 ± 0.05
Flowers102 12.56 ± 0.38 13.45 ± 1.19 13.32 ± 0.43 14.36 ± 1.17
GTSRB 7.66 ± 1.07 6.38 ± 2.11 8.96 ± 1.70 7.03 ± 1.22
UCF101 20.98 ± 1.55 22.26 ± 0.72 21.63 ± 0.65 23.03 ± 0.85
Stanford Cars 0.91 ± 0.10 1.23 ± 0.10 0.99 ± 0.16 1.41 ± 0.32
ImageNet 20.33 ± 0.28 23.97 ± 0.15 21.3 ± 0.42 25.67 ± 0.22
ImageNet V2 20.24 ± 0.50 23.59 ± 0.15 21.24 ± 0.22 25.49 ± 0.11

Hyperparameter selection and learning schedule. The hyperparameter values of OpenCLIP were
used as default, concretely, a learning rate of 1 ⇥ 10�3 and a weight decay of 0.1 for the Adam
optimizer (Kingma et al., 2014) with decoupled weight decay regularization (Loshchilov & Hutter,
2019). Deviating from OpenCLIP, we used a batch size of 512 due to computational restraints, which
did not change the performance. The learning rate scheduler for all experiments was cosine annealing
with warmup and hard restarts (Loshchilov & Hutter, 2017). We report the hyperparameter ⌧ (default
0.07) from CLIP as ⌧�1 of 14.3 to be in the same regime as the hyperparameter � for the modern
Hopfield networks. The main hyperparameter search for CLOOB (also for YFCC pre-training in the
next section) was done with ResNet-50 as the vision encoder. Learnable ⌧�1 in combination with the
InfoLOOB loss results in undesired learning behavior (see Appendix Section A.1.4). Therefore, we
set ⌧�1 to a fixed value of 30, which was determined via a hyperparameter search (see Appendix
Section A.2.2). For modern Hopfield networks, the hyperparameter � was set to 8. Further we scaled
the loss LInfoLOOB with ⌧ to remove the factor ⌧�1 from the gradients (see Appendix Section A.1.4)
resulting in the loss function ⌧LInfoLOOB.

Evaluation metrics: Zero-shot transfer learning. We evaluated and compared both CLIP and
CLOOB on their zero-shot transfer learning capabilities on the following downstream image classi-
fication tasks. Birdsnap (Berg et al., 2014) contains images of 500 different North American bird
species. The Country211 (Radford et al., 2021) dataset consists of photos across 211 countries and
is designed to test the geolocalization capability of visual representations. Flowers102 (Nilsback &
Zisserman, 2008) is a dataset containing images of 102 flower species. GTSRB (Stallkamp et al.,
2011) contains images for classification of German traffic signs. UCF101 (Soomro et al., 2012) is a
video dataset with short clips for action recognition. For UCF101 we followed the procedure reported
in CLIP and extract the middle frame of every video to assemble the dataset. Stanford Cars (Krause
et al., 2013) contains images of 196 types of cars. ImageNet (Deng et al., 2009) is a large scale image
classification dataset with images across 1,000 classes. ImageNetv2 (Recht et al., 2019) consists of
three new test sets with 10,000 images each for the ImageNet benchmark. For further details see
Appendix Section A.2.3.

Results. We employed the same evaluation strategy and used the prompts as published in CLIP (see
Appendix Section A.2.3). We report zero-shot results from two checkpoints in Table 1. CLIP and
CLOOB were trained for a comparable number of epochs used in CLIP (see Appendix Section A.2.2)
while CLIP* and CLOOB* were trained until evaluation performance plateaued (epoch 128). In both
cases CLOOB significantly outperforms CLIP on the majority of tasks or matches its performance.
Statistical significance of these results was assessed by an unpaired Wilcoxon test on a 5% level.

5.2 YFCC Pre-training

Pre-training dataset. To be comparable to the CLIP results, we used the same subset of 15 million
samples from the YFCC100M dataset (Thomee et al., 2016) as in Radford et al. (2021), which we
refer to as YFCC. YFCC was created by filtering YFCC100M for images which contain natural
language descriptions and/or titles in English. It was not filtered by quality of the captions, therefore
the textual descriptions are less rich and contain superfluous information. The dataset with 400
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million samples used to train the CLIP models in Radford et al. (2021) has not been released and,
thus, is not available for comparison. Due to limited computational resources we were unable to
compare CLOOB to CLIP on other datasets of this size.

Methods. Besides experiments with a ResNet-50 image encoder, we additionally conducted experi-
ments with the larger ResNet variants ResNet-101 and ResNet-50x4. In addition to the comparison
of CLOOB and CLIP based on the OpenCLIP reimplementation (Ilharco et al., 2021), we include the
original CLIP results (Radford et al., 2021, Table 12).

Hyperparameter selection. Hyperparameters were the same as for the Conceptual Captions dataset,
except learning rate, batch size, and �. For modern Hopfield networks, the hyperparameter � was set
to 14.3, which is default for ⌧�1 in Radford et al. (2021). Furthermore, the learning rate was set to
5⇥ 10�4 and the batch size to 1024 as used in OpenCLIP of Ilharco et al. (2021). All models were
trained for 28 epochs. For further details see Appendix Section A.2.2.

Evaluation metrics. As in the previous experiment, methods were again evaluated at their zero-shot
transfer learning capabilities on downstream tasks.

Table 2: Results of CLIP and CLOOB trained on YFCC with ResNet-50 encoder. Except for one
linear probing dataset, CLOOB consistently outperforms CLIP at all tasks.

Linear Probing Zero-Shot

Dataset
CLIP

(OpenAI)
CLOOB

(ours)
CLIP

(OpenAI)
CLOOB

(ours)

Birdsnap 47.4 56.2 19.9 28.9
Country211 23.1 20.6 5.2 7.9
Flowers102 94.4 96.1 48.6 55.1
GTSRB 66.8 78.9 6.9 8.1
UCF101 69.2 72.3 22.9 25.3
Stanford Cars 31.4 37.7 3.8 4.1
ImageNet 62.0 65.7 31.3 35.7
ImageNet V2 - 58.7 - 34.6

Table 3: Zero-shot results for the CLIP reimplementation and CLOOB using different ResNet
architectures trained on YFCC. CLOOB outperforms CLIP in 7 out of 8 tasks using ResNet-50
encoders. With larger ResNet encoders CLOOB outperforms CLIP on all tasks. The performance of
CLOOB scales with increased encoder size.

RN-50 RN-101 RN-50x4
Dataset CLIP CLOOB CLIP CLOOB CLIP CLOOB

Birdsnap 21.8 28.9 22.6 30.3 20.8 32.0
Country211 6.9 7.9 7.8 8.5 8.1 9.3
Flowers102 48.0 55.1 48.0 55.3 50.1 54.3
GTSRB 7.9 8.1 7.4 11.6 9.4 11.8
UCF101 27.2 25.3 28.6 28.8 31.0 31.9
Stanford Cars 3.7 4.1 3.8 5.5 3.5 6.1
ImageNet 34.6 35.7 35.3 37.1 37.7 39.0
ImageNet V2 33.4 34.6 34.1 35.6 35.9 37.3

Results. Table 2 provides results of the original CLIP and CLOOB trained on YFCC. Results on
zero-shot downstream tasks show that CLOOB outperforms CLIP on all 7 tasks (ImageNet V2 results
have not been reported in Radford et al. (2021)). Similarly, CLOOB outperforms CLIP on 6 out of 7
tasks for linear probing. Results of CLOOB and the CLIP reimplementation of OpenCLIP are given
in Table 3. CLOOB exceeds the CLIP reimplementation in 7 out of 8 tasks for zero-shot classification
using ResNet-50 encoders. With larger ResNet encoders, CLOOB outperforms CLIP on all tasks.
Furthermore, the experiments with larger vision encoder networks show that CLOOB performance
increases with network size. Results of CLOOB zero-shot classification on all datasets are shown in
Appendix Section A.2.4.
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5.3 Ablation studies

CLOOB has two new major components compared to CLIP: (1) modern Hopfield networks and
(2) the InfoLOOB objective instead of the InfoNCE objective. To assess effects of the new major
components of CLOOB, we performed ablation studies.

Modern Hopfield networks. Modern Hopfield networks amplify the covariance structure in the
data via the retrievals. Ablation studies confirm this amplification as modern Hopfield networks
consistently increase the number of effective eigenvalues of the embedding covariance matrices
during learning. Figure 2 shows the relative change of the number of effective eigenvalues compared
to the respective reference epoch, which is the epoch before the first learning rate restart. These
results indicate that modern Hopfield networks steadily extract more covariance structure during
learning. Modern Hopfield networks induce higher similarity of retrieved samples, which in turn
leads to stronger saturation of the InfoNCE objective. As a result, we observe low uniformity (see
Figure 3) and a small number of effective eigenvalues (see Appendix Figure A1).

Modern Hopfield networks with InfoLOOB. CLOOB counters the saturation of InfoNCE by using
the InfoLOOB objective. The effectiveness of InfoLOOB manifests in an increased uniformity
measure of image and text embeddings on the sphere, as shown in Figure 3. The ablation study
verifies that modern Hopfield networks together with InfoLOOB have a strong synergistic effect.

InfoLOOB. However, using solely InfoLOOB results in overfitting of the alignment score. This
overfitting occasionally leads to high similarities of unmatched pairs (see Figure 4), which may
decreases the zero-shot downstream performance. The reason for this is that the top-1 evaluation
metric is very sensitive to occasionally high similarities of prompts of the incorrect class. Yeh et al.
(2021) and Zhang et al. (2022) reported similar observations of overfitting.

Figure 4: Distribution of the cosine similarity of matched pairs and the cosine similarity of the 10
unmatched pairs that have the highest similarity score with the anchor. Modern Hopfield networks
lead to higher values of both matched and unmatched pairs. InfoLOOB without Hopfield has high
similarity scores of the matched pairs which correlate with high similarity scores of the top-10
unmatched pairs. In contrast, InfoLOOB with Hopfield does not suffer from this overfitting problem.

CLOOB balances the overfitting of InfoLOOB with the underfitting of modern Hopfield networks
and remains in effective learning regimes. For more details and further ablation studies see Appendix
Section A.2.1.

6 Conclusion

We have introduced “Contrastive Leave One Out Boost” (CLOOB), which combines modern Hopfield
networks with the InfoLOOB objective. Modern Hopfield networks enable CLOOB to extract
additional covariance structure in the data. This allows for building more relevant features in the
embedding space, mitigating the explaining away problem. We show that InfoLOOB avoids the
saturation problem of InfoNCE. Additionally, we theoretically justify the use of the InfoLOOB
objective for contrastive learning and suggest it as an alternative to InfoNCE. At seven zero-shot
transfer learning tasks, the novel CLOOB was compared to CLIP after pre-training on the Conceptual
Captions and the YFCC dataset. CLOOB consistently outperforms CLIP at zero-shot transfer learning
across all considered architectures and datasets.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Our method is currently limited
to natural images and short text prompts as inputs, and, thus its use for other types of
images, such as medical or biological images, is unexplored. While we hypothesize
that our approach could also be useful for similar data in other domains, this has not
been assessed.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] One
potential danger arises from users that overly rely on systems built on our method. For
example in the domain of self-driving cars, users might start paying less attention to
the traffic because of the AI-based driving system. Finally, our method might also be
used to automate various simple tasks, which might lead to reduced need for particular
jobs in production systems. As for almost all machine learning methods, our proposed
method relies on human-annotated training data and thereby human decisions, which
are usually strongly biased. Therefore, the responsible use of our method requires the
careful selection of the training data and awareness of potential biases within those.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We provide the
URL to a GitHub repository that contains the code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1, Section 5.2 and Appendix Section A.2.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We added error bars for all experiments for which this
was computationally feasible (see Table 1).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We used several different servers
equipped with GPUs of different types, such as V100 and A100. The total amount of
compute is roughly 11, 000 GPU hours (with A100).

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] For the model

implementations we used PyTorch (Paszke et al., 2017, BSD license) and for monitoring
the runs we used Weights & Biases (Biewald, 2020, MIT license).

(b) Did you mention the license of the assets? [Yes] See above.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide the code as supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] We only use public datasets that can be used for research
purposes, such as the YFCC dataset which was published under the Creative Commons
licence.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] As almost all computer vision and natural
language datasets, the data suffers from many biases including social biases. We refer
to Yang et al. (2020) for a detailed analysis of biases in such datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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