
A Question Answering System for retrieving
German COVID-19 data driven and

quality-controlled by Semantic Technology

Andreas Both1, Aleksandr Perevalov1, Johannes Richard Bartsch1, Paul
Heinze1, Rostislav Iudin1, Johannes Rudolf Herkner1, Tim Schrader1, Jonas

Wunsch1, Ann Kristin Falkenhain2, and René Gürth3

1 Anhalt University of Applied Sciences, Köthen (Anhalt), Germany
2 Federal Ministry of the Interior, Building and Community, Germany

3 Informationstechnikzentrum Bund (ITZBund), Germany

Abstract. The COVID-19 pandemic is a showcase for a data-driven
society. However, making the corresponding data available is not easy
due to local characteristics and time-depending metrics. We present the
Coronabot facilitating the access to German COVID-19 data capable of
answering German and English questions. The component-based system
is capable of understanding questions relating time & (even small) places
in Germany. It is driven by RDF as all internal component interact with
each other using RDF. Therefore, we are enabled to microbenchmark the
component using SPARQL and therefore prove the quality requirements.

Keywords: Question Answering · User Interaction · COVID-19.

1 Introduction

During the Coronavirus pandemic numbers are presented to people on daily
bases and are not easily comparable due to a strong dependency on the weekday.
News portals provide them using text and maps for highlighting areas of spread-
ing infections. However, local areas are of interest for citizens as restrictions
(like curfews) depend on the metrics of the German districts. Despite other as-
pects this might lead to a misunderstanding and misinterpretation of the current
situation by politicians, decision makers, and citizens. Additionally, debunking
wide-spreading misinformation sometimes consumes precious resources if sup-
porting data is needed. Hence, among other major challenges for societies, the
pandemic is also a reference example of the need for good data accessibility
providing the potential to increase transparency and trust.

Question Answering (QA) already proved its ability to increase the accessi-
bility of data (typically encapsulated in a dialogue system, i.e., a chatbot). Using
natural-language interfaces to collect information seems to be a reasonable op-
tion to offer data access. However, due to the characteristics of the pandemic
not much data is available that can be used to train an end-to-end QA system.
Additionally, in Germany the knowledge domain is connected to the German

2 A. Both, A. Perevalov et al.

districts which is an uncommon abstraction level for regular users as they typi-
cally expect an answer for their hometown (typically several cities are grouped
together as districts). Finally, the quality of such a QA system needs to be very
high due to the official characteristics of the offered data.

To address these issues we followed the Qanary methodology for our im-
plementation [1]. The corresponding Qanary framework provides a component-
oriented approach to rapidly integrate existing NLP/NLU functionalities. It uses
RDF as internal knowledge representation. The Qanary components interact via
SPARQL with the system-internal knowledge base (Qanary KB), s.t., trace-
ability is leading to a constant quality control while using SPARQL to check
whether the users’ requests were correctly understood or not. In this paper we
describe our demonstrator that was developed in collaboration with the Federal
Ministry of the Interior, Building and Community of Germany and the Infor-
mationstechnikzentrum Bund (short: ITZBund) which is the government-owned
software development unit for the German authorities. The demonstrator uses
internally an RDF-driven approach. It encapsulates the functionality that will
be integrated in the official COVID-19 chatbot of the German government4.

2 Related Work

The architecture of data-driven dialogue systems is extended with on or more QA
components [3]. Typically, QA systems are separated into 2 main paradigms: (1)
Knowledge Base QA (KBQA) and (2) Open Domain QA (OpenQA). The KBQA
systems are designed to give precise answers to natural language questions over
structured data [2] while transforming questions into a corresponding query to
a KB and then execute it in order to get an answer.

End-to-end QA also provides precise answers to natural language questions
[5]. Such systems require large set of training data as they are based on large
neural models and consequently are data-hungry. One of the major problems of
all QA systems is that its components are being created from scratch all the
time when a new system is developed [4]. To overcome the described problem,
Qanary framework was created [1]. The core concept of the framework is not
to invest double effort into creation of QA from scratch by reusing existing QA
components.

3 Approach and Implementation

The intended QA system is demanded to provide support on place-based ques-
tions (e.g., “How many cases were reported in August in Dessau?”), where even
very small places can be mentioned. Additionally, a time component is required
leading to the possibility of fetching data for a specific time span (e.g., “How
many people died in February?”). Moreover, the system has to answer questions
that combine place and time dimensions. It is worth to mention, that the system
has to work in two languages: German and English.

4 https://chatbot.it.bund.de/

https://chatbot.it.bund.de/

A Question Answering System for retrieving German COVID-19 data 3

Time Entity Recognition (de/en)

Location Entity Recognition (de/en)
RESTful
Request

Generation

Question Intent Classification
Natural

Language
Generation

How many cases
were reported in
August in Dessau?

NPGEO API

Qanary KB stores
all annotations

created by
components

components use
SPARQL to store
and retrieve data
about question
from Qanary KB quality control via

SPARQL queries

Fig. 1: System architecture overview (the actual system contains 11 components)

Following the Qanary methodology, typical tasks of the question processing
are identified to model the components of the QA system. Each component
will execute its dedicated task, i.e., creating new information about the given
question. Finally, each component is storing the computed information in the
Qanary triplestore which is representing the global memory of the information
computed while analyzing a question. In the Qanary methodology this RDF data
is called an annotation of the given question.

As the data is stored as RDF the annotations are modeled using the Qanary
vocabulary which is a lightweight extension of the Web Annotation Data Model
(WADM)5. While retrieving the stored annotations the following components
can retrieve any information that was previously computed while analyzing the
given question. Here, an API6 needs to be requested via a RESTful request to
a Web service capable of providing the official data since the pandemic started.

According to this approach the following Qanary components were designed
and implemented (see Figure 1): Language Detection as the component detecting
whether a German or English question was asked, Question Intent Classification
recognizes one of the following 6 classes: location, time, location and time (for in-
fection or death cases), Location Entity Recognition detects location entities and
links the detected text span to entity ID7, Time Entity Recognition recognizes
time entities in the question and converts it to a normalized date representation,
RESTful Request Generation generates and executes an NPGEO API request,
Natural Language Generation provides a textual answer. The components are
controlled by the out-of-the-box Qanary pipeline8 (the reference implementation
of the Qanary methodology). Hence, while a question is processed a RDF graph
is created reflecting all information that was computed by the QA process. To
fulfill the quality demands an extensive test set of 40.000 questions were defined
that is evaluated while reusing the RDF data stored in the Qanary triplestore,
i.e., each test question is executed and thereafter several SPARQL queries are
used to check if the expected annotations were created in the virtual graph that
is corresponding the current question (so-called graph of RDF annotations).

5 W3C Recommendation, 2017-02-23 (cf. http://www.w3.org/TR/annotation-model)
6 NPGEO API of Robert Koch institute, the German federal government agency

responsible for disease control and prevention: https://npgeo-corona-npgeo-de.
hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0

7 The following Germany-specific entities are detected: federal states (16), counties
(412), cities + communities (11806) where the latter are retrieved from Wikidata.

8 cf. https://github.com/WDAqua/Qanary

http://www.w3.org/TR/annotation-model
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0
https://github.com/WDAqua/Qanary

4 A. Both, A. Perevalov et al.

Fig. 2: Coronabot screenshot and RDF graph of annotations.

4 Conclusions

In this work, we showed a Linked Data driven and component oriented ap-
proach for creating dialogue systems. The domain of the system is consul-
tation of German residents on Coronavirus pandemic statistics (Coronabot).
Additionally, the Coronabot works with two languages: German and English.
The system was developed according to Qanary methodology which demon-
strated its flexibility for developing and evaluation processes. Since the QA
system is RDF-based, it also offers the great advantage of processing trace-
ability and thus end-to-end quality control. The demonstrator is available at
http://coronabot.ins.hs-anhalt.de/.

References

1. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary–a
methodology for vocabulary-driven open question answering systems. In: European
Semantic Web Conference. pp. 625–641. Springer (2016)

2. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S.w., Wang, W.: Kbqa: learn-
ing question answering over qa corpora and knowledge bases. arXiv preprint
arXiv:1903.02419 (2019)

3. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question answer-
ing systems over knowledge bases: a survey. Knowledge and Information systems
55(3), 529–569 (2018)

4. Singh, K., Radhakrishna, A.S., Both, A., Shekarpour, S., Lytra, I., Usbeck, R.,
et al.: Why reinvent the wheel: Let’s build question answering systems together. In:
Proceedings of the 2018 World Wide Web Conference. pp. 1247–1256 (2018)

5. Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., Li, M., Lin, J.: End-to-
end open-domain question answering with bertserini. In: NAACL-HLT (Demon-
strations) (2019)

http://coronabot.ins.hs-anhalt.de/

A. Both, A. Perevalov et al. Appendix-1

Description of the Demonstration

The demo is available at http://coronabot.ins.hs-anhalt.de/. Please see the
menu item “examples” to get familiar with the support questions.

During the demo we will show the processing of questions and the quality
control. The latter follows two aspects. (1.) The explorative approach where
using RDF is the most important issue as it allows a later analysis of the
whole Question Answering process for a particular question. (2.) The
permanent quality control. For this purpose we will use the Stardog studio for
interactively executing SPARQL queries while validating the created
annotations during the QA process. Additionally we will provide a batch tool
that allows the execution of predefined questions and executes SPARQL
(ASK) queries for validating the expected behavior for

Explorative Approach: In the following a subset of the RDF graph is shown
that was created during the processing of the question “How many cases
were reported in August in Dessau?” (so-called graph of annotations). The
interactive tool will also be available for public use at the time of the
conference.

http://coronabot.ins.hs-anhalt.de/

A. Both, A. Perevalov et al. Appendix-2

Permanent quality control: We will show a tool (will be open-source at the
time of the conference) capable of analyzing a given list of questions with a
given list of SPARQL queries. The SPARQL queries are used to trace based
on the given question the processing while querying the Qanary KB (see Fig.
1). Hence, even while exchanging components the quality can be evaluated
also pointing directly to the component that is not computing the expected
quality for a particular question. In the demo we will show the overall quality of
the pipeline and also identify precisely what questions have failed and why.

A subset of the test definitions (several of these test configuration exist in a
JSON file format):
{

"qanary": {
"system_url":
"http://webengineering.ins.hs-anhalt.de:44040/startquestionansweringw
ithtextquestion",

"componentlist": [
"LD-Shuyo",
"coronabot-question-classification",
"coronabot-named-entity-recognition-english-time-ml",
"coronabot-named-entity-recognition-german-time-ml",
"coronabot-named-entity-recognition-location-spacy-eng",
"coronabot-query-generation",
"coronabot-data-acquisition"

],
"qanary_triplestore_endpoint":

"http://webengineering.ins.hs-anhalt.de:44041",
"qanary_triplestore_database": "...",
"qanary_triplestore_username": "...",
"qanary_triplestore_password": "..."

},
"validation-sparql-templates": [

"is-location-id-correct.sparql",
"is-location-type-correct.sparql",

A. Both, A. Perevalov et al. Appendix-3

"was-language-identified.sparql",
"is-language-correct.sparql"

],
"custom-validation": "query-rki-api",
"tests": [

{
"question": "Wie viele Fälle gibt es in Stdtkreis

Delmenhorst?",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "03401",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Wie viele Fälle von Covid 19 hat Cham?",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "09372",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Infektionen gosenheim",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "09163",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Wie viele Fälle von Covid 19 hat Rhein
Neckar Kreis?",

"replacements": {
"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "08226",
"LOCATION_TYPE": "Districts_of_Germany",

A. Both, A. Perevalov et al. Appendix-4

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Fälle in chwerin?",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "13004",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Fälle in LK Hochtaunuskreis?",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "06434",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
},
{

"question": "Wie viele Fälle gibt es in Heilbronn?",
"replacements": {

"QUESTION_CLASS": "infection_location",
"LANGUAGE": "de",
"NUMBER_TYPE": "qa:AnnotationOfInfectionNumber",
"LOCATION_ID": "08121",
"LOCATION_TYPE": "Districts_of_Germany",

"ANSWER_TEXT": "There are currently \\\\d+ cases
reported for \\\\w+."

}
}, ...

A. Both, A. Perevalov et al. Appendix-5

In the following you see the SPARQL queries used in the test
specification:

is-location-id-correct.sparql
verify correctness of annotated location

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX qa: <http://www.wdaqua.eu/qa#>

PREFIX dbr: <http://dbpedia.org/resource/>

ASK

FROM <GRAPHID>

WHERE {

?annotationId rdf:type qa:AnnotationOfInstanceLocation .

?annotationId oa:hasBody ?location_id .

}

HAVING(STR(?location_id) = "LOCATION_ID")

is-location-type-correct.sparql
verify correctness of annotated location

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX qa: <http://www.wdaqua.eu/qa#>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

ASK

FROM <GRAPHID>

WHERE {

?annotationId rdf:type qa:AnnotationOfInstanceLocation .

?annotationId oa:hasBody [

dbo:type ?location_type

] .

}

HAVING(STR(?location_type) = "dbr:LOCATION_TYPE")

was-language-identified.sparql
language recognition component needs to identify a language

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

https://gitlab.hs-anhalt.de/quatsch2020/coronabot/-/blob/component-testing/system-tests/quality-assuracnce/de-locations-mix/was-language-identified.sparql

A. Both, A. Perevalov et al. Appendix-6

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX qa: <http://www.wdaqua.eu/qa#>

ASK

FROM <GRAPHID>

WHERE {

?annotationId rdf:type qa:AnnotationOfQuestionLanguage .

?annotationId oa:hasBody ?body .

?annotationId oa:hasTarget ?target .

?annotationId oa:annotatedBy ?component.

}

HAVING (COUNT(distinct ?annotationId) > 0)

is-language-correct.sparql
verify correctness of annotated location

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX qa: <http://www.wdaqua.eu/qa#>

PREFIX dbr: <http://dbpedia.org/resource/>

ASK

FROM <GRAPHID>

WHERE {

?annotationId rdf:type qa:AnnotationOfQuestionLanguage .

?annotationId oa:hasBody ?language .

}

HAVING(STR(?language) = "LANGUAGE")

