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ABSTRACT

Despite the recent success of deep learning for time series forecasting, these meth-
ods are not scalable for many real-world applications where data arrives sequen-
tially. Training deep neural forecasters on the fly is notoriously challenging be-
cause of their limited ability to adapt to non-stationary environments and remem-
ber old knowledge. We argue that the fast adaptation capability of deep neural net-
works is critical and successful solutions require handling changes to both new and
recurring patterns effectively. In this work, inspired by the Complementary Learn-
ing Systems (CLS) theory, we propose Fast and Slow learning Network (FSNet)
as a novel framework to address the challenges of online forecasting. Particularly,
FSNet improves the slowly-learned backbone by dynamically balancing fast adap-
tation to recent changes and retrieving similar old knowledge. FSNet achieves this
mechanism via an interaction between two novel complementary components: (i)
a per-layer adapter to support fast learning from individual layers, and (ii) an asso-
ciative memory to support remembering, updating, and recalling repeating events.
Extensive experiments on real and synthetic datasets validate FSNet’s efficacy and
robustness to both new and recurring patterns. Our code is publicly available at:
https://github.com/salesforce/fsnet/.

1 INTRODUCTION

Time series forecasting plays an important role in both research and industries. Correctly forecast
time series can greatly benefit various business sectors such as traffic management and electricity
consumption (Hyndman & Athanasopoulos, 2018). As a result, tremendous efforts have been de-
voted to develop better forecasting models (Petropoulos et al., 2020; Bhatnagar et al., 2021; Triebe
et al., 2021), with a recent success of deep neural networks (Li et al., 2019; Xu et al., 2021; Yue
et al., 2021; Zhou et al., 2021) thanks to their impressive capabilities to discover hierarchical la-
tent representations and complex dependencies. However, such studies focus on the batch learning
setting which requires the whole training dataset to be made available a priori and implies the rela-
tionship between the input and outputs remains static throughout. This assumption is restrictive in
real-world applications, where data arrives in a stream and the input-output relationship can change
over time (Gama et al., 2014). In such cases, re-training the model from scratch could be time con-
suming. Therefore, it is desirable to train the deep forecaster online (Anava et al., 2013; Liu et al.,
2016) using only new samples to capture the changing dynamic of the environment.

Despite the ubiquitous of online learning in many real-world applications, training deep forecasters
online remains challenging for two reaons. First, naively train deep neural networks on data streams
requires many samples to converge (Sahoo et al., 2018; Aljundi et al., 2019a) because the offline
training benefits such as mini-batches or training for multiple epochs are not available. Therefore,
when a distribution shift happens (Gama et al., 2014), such cumbersome models would require
many samples to learn new concepts with satisfactory results. Overall, deep neural networks, al-
though possess strong representation learning capabilities, lack a mechanism to facilitate successful
learning on data streams. Second, time series data often exhibit recurrent patterns where one pattern
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could become inactive and re-emerge in the future. Since deep networks suffer from catastrophic
forgetting (McCloskey & Cohen, 1989), they cannot retain prior knowledge and result in inefficient
learning of recurring patterns, which further hinders the overall performance. Consequently, online
time series forecasting with deep models presents a promising yet challenging problem.

To address the above limitations, we redically formulate online time series forecasting as an on-
line, task-free continual learning problem (Aljundi et al., 2019a;b). Particularly, continual learning
requires balancing two objectives: (i) utilizing past knowledge to facilitate fast learning of current
patterns; and (ii) maintaining and updating the already acquired knowledge. These two objectives
closely match the aforementioned challenges and are usually referred to as the stability-plasticity
dilemma (Grossberg, 1982). With this connection, we develop an effective online time series fore-
casting framework motivated by the Complementary Learning Systems (CLS) theory (McClelland
et al., 1995; Kumaran et al., 2016), a neuroscience framework for human continual learning. Specif-
ically, the CLS theory suggests that humans can continually learn thanks to the interactions between
the hippocampus and the neocortex, which supports the consolidation, recall, and update such expe-
riences to form a more general representation, which supports generalization to new experiences.

This work develops FSNet (Fast-and-Slow learning Network) to enhance the sample efficiency of
deep networks when dealing with distribution shifts or recurring concepts in online time series fore-
casting. FSNet’s key idea for fast learning is its ability to always improve the learning at current
steps instead of explicitly detecting changes in the environment. To do so, FSNet employs a per-
layer adapter to model the temporal consistency in time series and adjust each intermediate layer
to learn better, which in turn improve the learning of the whole deep network. In addition, FSNet
further equip each adapter with an associative memory (Kaiser et al., 2017) to store important, re-
curring patterns observed. When encountering such events, the adapter interacts with its memory to
retrieve and update the previous actions to further facilitate fast learning. Consequently, the adapter
can model the temporal smoothness in time series to facilitate learning while its interactions with
the associative memories support remembering and improving the learning of recurring patterns.

In summary, our work makes the following contributions. First, we radically formulate learning
fast in online time series forecasting with deep models as a continual learning problem. Second,
motivated by the CLS theory, we propose a fast-and-slow learning paradigm of FSNet to handle both
the fast changing and long-term knowledge in time series. Lastly, we conduct extensive experiments
with both real and synthetic datasets to demonstrate FSNet’s efficacy and robustness.

2 PRELIMINARY AND RELATED WORK

This section provides the necessary background of time series forecasting and continual learning.

2.1 TIME SERIES FORECASTING SETTINGS

Let X = (x1, . . . ,xT ) ∈ RT×n be a time series of T observations, each has n dimensions. The
goal of time series forecasting is that given a look-back window of length e, ending at time i: Xi,e =
(xi−e+1, . . . ,xi), predict the next H steps of the time series as fω(Xi,H) = (xi+1, . . . ,xi+H),
where ω denotes the parameter of the forecasting model. We refer to a pair of look-back and forecast
windows as a sample. For multiple-step forecasting (H > 1) we follow the standard approach of
employing a linear regressor to forecast all H steps in the horizon simultaneously (Zhou et al., 2021).

Online Time Series Forecasting is ubiquitous is many real-world scenarios (Anava et al., 2013;
Liu et al., 2016; Gultekin & Paisley, 2018; Aydore et al., 2019) due to the sequential nature of
data. In this setting, there is no separation of training and evaluation. Instead, learning occurs over a
sequence of rounds. At each round, the model receives a look-back window and predicts the forecast
window. Then, the true answer is revealed to improve the model’s predictions of the incoming
rounds (Hazan, 2019). The model is commonly evaluated by its accumulated errors throughout
learning (Sahoo et al., 2018). Due to its challenging nature, online time series forecasting exhibits
several challenging sub-problems, ranging from learning under concept drifts (Gama et al., 2014), to
dealing with missing values because of the irregularly-sampled data (Li & Marlin, 2020; Gupta et al.,
2021). In this work, we focus on the problem of fast learning (in terms of sample efficiency) under
concept drifts by improving the deep network’s architecture and recalling relevant past knowledge.
There is also a rich literature of Bayesian continual learning to address regression problems (Smola
et al., 2003; Kurle et al., 2019; Gupta et al., 2021). However, such formulation follow the Bayesian
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Figure 1: An overview of FSNet. A standard TCN backbone (a) of L dilated convolution stacks (b).
Each convolution filter in FSNet is equipped with an adapter and associative memory to facilitate
fast learning by monitoring the backbone’s gradient EMA. Best viewed in colors.

framework, which allows for forgetting of past knowledge and does not have an explicit mechanism
for fast learning (Huszár, 2017; Kirkpatrick et al., 2018). Moreover, such studies did not focus on
deep neural networks and it is non-trivial to extend to the setting of our study.

2.2 CONTINUAL LEARNING

Continual learning (Kirkpatrick et al., 2017) is an emerging topic aiming to build intelligent agents
that can learn a series of tasks sequentially, with only limited access to past experiences. A contin-
ual learner must achieve a good trade-off between maintaining the acquired knowledge of previous
tasks and facilitating the learning of future tasks, which is also known as the stability-plasticity
dilemma (Grossberg, 1982; 2013). Due to its connections to humans’ learning, several neuroscience
frameworks have motivated the development of various continual learning algorithms. One popular
framework is the complementary learning systems theory for a dual learning system (McClelland
et al., 1995; Kumaran et al., 2016). Continual learning methods inspired from the CLS theory
augments the slow, deep networks with the ability to quickly learn on data streams, either via the
experience replay mechanism (Lin, 1992; Riemer et al., 2019; Rolnick et al., 2019; Aljundi et al.,
2019a; Buzzega et al., 2020) or via explicit modeling of each of the fast and slow learning compo-
nents (Pham et al., 2021a; Arani et al., 2021). Such methods have demonstrated promising results
on controlled vision or language benchmarks. In contrast, our work addresses the online time series
forecasting challenges by formulating them as a continual learning problem.

3 PROPOSED FRAMEWORK

This section formulates the online time series forecasting as a task-free online continual learning
problem and details the proposed FSNet framework.

3.1 ONLINE TIME SERIES FORECASTING AS A CONTINUAL LEARNING PROBLEM

Our formulation is motivated by the locally stationary stochastic processes observation, where a
time series can be split into a sequence of stationary segments (Vogt, 2012; Dahlhaus, 2012; Das &
Nason, 2016). Since the same underlying process generates samples from a stationary segment, we
refer to forecasting each stationary segment as a learning task for continual learning. We note that
this formulation is general and encompasses existing learning paradigms. For example, splitting
into only one segment indicates no concept drifts, and learning reduces to online learning in sta-
tionary environments (Hazan, 2019). Online continual learning (Aljundi et al., 2019a) corresponds
to the case of there are at least two segments. Moreover, we also do not assume that the points of
task switch are given to the model, which is a common setting in many continual learning stud-
ies (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017). Manually obtaining such information
in real-world data can be expensive because of the missing or irregularly sampled data (Li & Mar-
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lin, 2020; Farnoosh et al., 2021). Therefore, our formulation corresponds to the online, task-free
continual learning formulation (Aljundi et al., 2019a;b; Hu et al., 2020; Cai et al., 2021).

We now discuss the differences between our formulation with existing studies. First, most existing
task-free continual learning frameworks (Aljundi et al., 2019b; Pham et al., 2021a) are developed
for image data, which vastly differs from time series. The input and label spaces of images are
different (continuous vs discrete) while time series’ input and output share the same real-valued
space. Additionally, the image’s label changes significantly across tasks while time series data
changes gradually over time with no clear boundary. Moreover, time series exhibits strong temporal
information among consecutive samples, which does not exist in image data. Therefore, it is non-
trivial to simply apply existing continual learning methods to time series and successful solutions
requires carefully handling unique characteristics from time series data.

Second, time series evolves and old patterns may not reappear exactly in the future. Thus, we are not
interested in remembering old patterns precisely but predicting how they will evolve. For example,
we do not need to predict the electricity consumption over the last winter. But it is more important
to predict the electricity consumption this winter, assuming that it is likely to have a similar pattern
as the last one. Therefore, we do not need a separate test set for evaluation, but training follows the
online learning setting where a model is evaluated by its accumulated errors throughout learning.

3.2 FAST AND SLOW LEARNING NETWORKS (FSNET)

FSNet always leverages past knowledge to improve the learning in the future (Section 3.2.1), which
is akin to facilitating forward transfer in continual learning (Lopez-Paz & Ranzato, 2017). Addi-
tionally, FSNet remembers repeating events and continue to learn them when they reappear (Sec-
tion 3.2.2, which is akin to preventing catastrophic forgetting (Kirkpatrick et al., 2017). We consider
Temporal Convolutional Network (TCN) (Bai et al., 2018) as the backbone deep neural network
to extract a time series feature representation due to the simple forward architecture and promising
results (Yue et al., 2021). The backbone has L layer with parameters θ = {θl}Ll=1. FSNet improves
the TCN backbone with two complementary components: a per-layer adapter ϕl and a per-layer
associative memoryMl. Thus, the total trainable parameters is ω = {θl,ϕl}Ll=1 and the total asso-
ciative memory isM = {Ml}Ll=1. We also use hl and h̃l to denote the original feature and adapter
feature map of the l−layer. Figure 1 provides an illustration of FSNet.

3.2.1 FAST LEARNING MECHANISM

The key observation allowing for a fast learning is to facilitate the learning of each intermediate
layer via the following observation: the partial derivative ∇θl

ℓ characterizes the contribution of
layer θl to the forecasting loss ℓ. Traditional training schemes simply move the parameters along
this gradient direction, which results in ineffective online learning (Sahoo et al., 2018; Phuong &
Lampert, 2019). Moreover, time series data exhibits strong temporal consistency across consecutive
samples, which is not captured by existing training frameworks. Putting these observations together,
we argue that an exponential moving average (EMA) of the partial derivative can provide meaningful
information about the temporal smoothness in time series. Consequently, leveraging this knowledge
can improve the learning of each layer, which in turn improves the whole network’s performance.

To utilize the gradient EMA, we propose to treat it as a context to support fast learning via the
feature-wise transformation framework (Perez et al., 2018; Dumoulin et al., 2018; Pham et al.,
2021b; Yin et al., 2021). Particularly, we propose to equip each layer with an adapter to map the
layer’s gradient EMA to a set of smaller, more compact transformation coefficients. These coeffi-
cients are applied on the corresponding layer’s parameters and feature so that they can leverage the
temporal consistency to learn better. We first define the EMA of the l−layer’s partial derivative as:

ĝl ← γĝl + (1− γ)gt
l , (1)

where gt
l denotes the gradient of the l−th layer at time t and ĝl denotes the EMA. The adapter takes

ĝl as input and maps it to the adaptation coefficients ul. Then, an adapter for the l−th layer is a
linear layer that maps the context ĝl to a set of transformation coefficients ul = [αl;βl]. In this
work, we consider a two-stage transformations (Yin et al., 2021) which involve a weight and bias
transformation coefficients αl and a feature transformation coefficients βl.
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The adaptation process for a layer θl is summarized as:
[αl,βl] =ul, where ul = Ω(ĝl;ϕl) (2)

Weight adaptation: θ̃l =tile(αl)⊙ θl, and (3)

Feature adaptation: h̃l =tile(βl)⊙ hl, where hl = θ̃l ⊛ h̃l−1. (4)

Here, hl is a stack of I features maps with C channels and length Z, h̃l is the adapted feature, θ̃l
denotes the adapted weight,⊙ denotes the element-wise multiplication, and tile(αl) denotes that the
weight adaptor is applied per-channel on all filters via a tile function that repeats a vector along the
new axes. A naive implementation of Equation 2 directly maps the model’s gradient to the adaptation
coefficients and results in a very high dimensional mapping. Therefore, we implement the chunking
operation (Ha et al., 2016) to split the gradient into equal size chunks and then maps each chunk to
an element of the adaptation coefficients. We denote this chunking operator as Ω(·;ϕl) and provide
the detailed description in Appendix C.

3.2.2 REMEMBERING RECURRING EVENTS WITH AN ASSOCIATIVE MEMORY

In time series, old patterns may reappear and it is imperative to leverage our past actions to improve
the learning outcomes. In FSNet, an adaptation to a pattern is represented by the coefficients u,
which we argue to be useful to learn repeating events. Specifically, u represents how we adapted
to a particular pattern in the past; thus, storing and retrieving the appropriate u may facilitate learn-
ing the corresponding pattern when they reappear. Therefore, as the second key element in FSNet,
we implement an associative memory to store the adaptation coefficients of repeating events en-
countered during learning. In summary, beside the adapter, we equip each layer with an additional
associative memoryMl ∈ RN×d where d denotes the dimension of ul, and N denotes the number
of elements, which we fix as N = 32 by default.

Sparse Adapter-Memory Interactions Interacting with the memory at every step is expensive and
susceptible to noises. Thus, we propose to trigger this interaction subject to a substantial representa-
tion change. Interference between the current and past representations can be characterized in terms
of a dot product between the gradients (Lopez-Paz & Ranzato, 2017; Riemer et al., 2019). To this
end, together with the gradient EMA in Equation 2, we deploy another gradient EMA ĝ′

l with a
smaller coefficient γ′ < γ and measure their cosine similarity to trigger the memory interaction as:

Trigger if : cos(ĝl, ĝ
′
l) =

ĝl · ĝ′
l

||ĝl|| ||ĝl||
< −τ, (5)

where τ > 0 is a hyper-parameter determining the significant degree of interference. Moreover, we
want to set τ to a relatively high value (e.g. 0.75) so that the memory only remembers significant
changing patterns, which could be important and may reappear.

The Adapter-Memory Interacting Mechanism Since the current adaptation coefficients may not
capture the whole event, which could span over a few samples, we perform the memory read and
write operations using the adaptation coefficients’s EMA (with coefficient γ′) to fully capture the
current pattern. The EMA of ul is calculated in the same manner as Equation 1. When a memory
interaction is triggered, the adapter queries and retrieves the most similar transformations in the past
via an attention read operation, which is a weighted sum over the memory items:

1. Attention calculation: rl = softmax(Mlûl);

2. Top-k selection: r(k)l = TopK(rl);

3. Retrieval: ũl =
∑K

i=1 r
(k)
l [i]Ml[i],

where r(k)[i] denotes the i-th element of r(k)l and Ml[i] denotes the i-th row of Ml. Since the
memory could store conflicting patterns, we employ a sparse attention by retrieving the top-k most
relevant memory items, which we fix as k = 2. The retrieved adaptation coefficient characterizes
how the model reacted to the current pattern in the past, which can improve learning at the present
by combining with the current parameters as ul ← τul + (1− τ)ũt, where we use the same value
of τ as in Equation 5. Then we perform a write operation to update the knowledge stored inMl as:

Ml ←τMl + (1− τ)ûl ⊗ r
(k)
l andMl ←

Ml

max(1, ||Ml||2)
, (6)

5



Published as a conference paper at ICLR 2023

where ⊗ denotes the outer-product operator, which allows us to efficiently write the new knowledge
to the most relevant locations indicated by r

(k)
l (Rae et al., 2016; Kaiser et al., 2017). The memory

is then normalized to avoid its values exploding. We provide FSNet’s pseudo code in Appendix C.2.

4 EXPERIMENT

Our experiments aim at investigating the following hypotheses: (i) FSNet facilitates faster adaptation
to both new and recurring concepts compared to existing strategies with deep models; (ii) FSNet
achieves faster and better convergence than other methods; and (iii) modeling the partial derivative
is the key ingredients for fast adaptation. Due to space constraints, we provide the key information
of the experimental setting in the main paper and provide full details, including memory analyses,
additional visualizations and results in the Appendix.

4.1 EXPERIMENTAL SETTINGS

Datasets We explore a wide range of time series forecasting datasets. ETT1 (Zhou et al., 2021)
records the target value of “oil temperature” and 6 power load features over a period of two years.
We consider the ETTh2 and ETTm1 benchmarks where the observations are recorded hourly and
in 15-minutes intervals respectively. ECL (Electricty Consuming Load)2 collects the electricity
consumption of 321 clients from 2012 to 2014. Traffic3 records the road occupancy rates at San
Francisco Bay area freeways. Weather4 records 11 climate features from nearly 1,600 locations in
the U.S in an hour intervals from 2010 to 2013.

We also construct two synthetic datasets to explicitly test the model’s ability to deal with new and
recurring concept drifts. We synthesize a task by sampling 1, 000 samples from a first-order autore-
gressive process with coefficient φ: ARφ(1), where different tasks correspond to different φ values.
The first synthetic data, S-Abrupt (S-A), contains abrupt, and recurrent concepts where the sam-
ples abruptly switch from one AR process to another by the following order: AR0.1(1), AR0.4(1),
AR0.6(1), AR0.1(1), AR0.3(1), AR0.6(1). The second data, S-Gradual (S-G) contains gradual, in-
cremental shifts, where the shift starts at the last 20% of each task. In this scenario, the last 20%
samples of a task is an averaged of two AR process with the order as above. Note that we randomly
chose the values of φ so that these datasets do not give unfair advantages to any methods.

Baselines We consider a suite of baselines from continual learning, time series forecasting, and
online learning. First, the OnlineTCN strategy that simply trains continuously (Zinkevich, 2003).
Second, we consider the Experience Replay (ER) (Lin, 1992; Chaudhry et al., 2019) strategy where
a buffer is employed to store previous samples and interleave them during the learning of newer ones.
We also include three recent advanced variants of ER. First, TFCL (Aljundi et al., 2019b) introduces
a task-boundaries detection mechanism and a knowledge consolidation strategy by regularizing the
networks’ outputs (Aljundi et al., 2018). Second, MIR (Aljundi et al., 2019a) replace the random
sampling in ER by selecting samples that cause the most forgetting. Lastly, DER++ (Buzzega et al.,
2020) augments the standard ER with a knowledge distillation strategy (Hinton et al., 2015). We
emphasize that ER and and its variants are strong baselines in the online setting since they enjoy
the benefits of training on mini-batches, which greatly reduce noises from singe samples and offer
faster, better convergence (Bottou et al., 1998). While the aforementioned baselines use a TCN
backbone, we also include Informer (Zhou et al., 2021), a recent time series forecasting method
based on the transformer architecture (Vaswani et al., 2017). We remind the readers that online time
series forecasting have not been widely studied with deep models, therefore, we include general
strategies from related fields that we inspired from. Such baselines are competitive and yet general
enough to extend to our problem.

Implementation Details We split the data into warm-up and online training phases by the ratio of
25:75. We follow the optimization details in (Zhou et al., 2021) by optimizing the ℓ2 (MSE) loss
with the AdamW optimizer (Loshchilov & Hutter, 2017). In the warm-up phase, we calculate the
statistics to normalize online training samples, perform hyper-parameter cross-validation, and pre-

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://pems.dot.ca.gov/
4https://www.ncei.noaa.gov/data/local-climatological-data/
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Table 1: Final cumulative MSE and MAE of different methods, “-” indicates the model did not
converge. S-A: S-Abrupt, S-G: S-Gradual. Best results are in bold.

Method FSNet DER++ MIR ER TFCL OnlineTCN Informer

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h2 1 0.466 0.368 0.508 0.375 0.486 0.410 0.508 0.376 0.557 0.472 0.502 0.436 7.571 0.850

24 0.687 0.467 0.828 0.540 0.812 0.541 0.808 0.543 0.846 0.548 0.830 0.547 4.629 0.668
48 0.846 0.515 1.157 0.577 1.103 0.565 1.136 0.571 1.208 0.592 1.183 0.589 5.692 0.752

E
T

T
m

1 1 0.105 0.188 0.098 0.183 0.099 0.184 0.099 0.184 0.099 0.185 0.109 0.204 0.456 0.392
24 0.136 0.248 0.239 0.329 0.242 0.335 0.259 0.346 0.239 0.335 0.272 0.361 0.827 0.551
48 0.129 0.245 0.264 0.355 0.271 0.362 0.288 0.372 0.242 0.344 0.280 0.371 0.853 0.533

E
C

L 1 3.143 0.472 2.657 0.421 2.575 0.504 2.579 0.506 2.732 0.524 3.309 0.635 - -
24 6.051 0.997 8.996 1.035 9.265 1.066 9.327 1.057 12.094 1.256 11.339 1.196 - -
48 7.034 1.061 9.009 1.048 9.411 1.079 9.685 1.074 12.110 1.303 11.534 1.235 - -

Tr
af

fic 1 0.288 0.253 0.289 0.248 0.290 0.251 0.291 0.252 0.323 0.273 0.315 0.283 0.795 0.507
24 0.362 0.288 0.387 0.295 0.391 0.302 0.391 0.302 0.553 0.383 0.452 0.363 1.267 0.750

W
T

H 1 0.162 0.216 0.174 0.235 0.179 0.244 0.180 0.244 0.177 0.240 0.206 0.276 0.426 0.458
24 0.188 0.276 0.287 0.351 0.291 0.355 0.293 0.356 0.301 0.363 0.308 0.367 0.370 0.417
48 0.223 0.301 0.294 0.359 0.297 0.361 0.297 0.363 0.323 0.382 0.302 0.362 0.367 0.419

S-
A 1 1.391 0.929 2.334 1.181 2.482 1.213 2.372 1.157 2.321 1.144 2.668 1.216 3.690 1.410

24 1.299 0.904 3.598 1.439 3.662 1.450 3.375 1.360 3.415 1.366 3.904 1.491 3.657 1.426

S-
G 1 1.760 1.038 2.335 1.181 2.482 1.213 2.476 1.212 2.428 1.199 2.927 1.304 4.024 1.501

24 1.299 0.904 3.598 1.439 3.662 1.450 3.667 1.489 3.829 1.479 3.904 1.491 3.657 1.426
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Figure 2: Evolution of the cumulative MSE loss during training with forecasting window H = 24.
In Figure 2.f, each color region denotes a data generating distribution. Best viewed in color.

train the models for the few methods. During online learning, both the epoch and batch size are set
to one to follow the online learning setting. These configurations are applied to all baselines. We
implement a fair comparison by making sure that all baselines use the same total memory budget as
our FSNet, which includes three-times the network sizes: one working model and two EMA of its
gradient. Thus, we set the buffer size of ER, MIR, and DER++ to meet this budget while increasing
the backbone size of the remaining baselines. Lastly, for all benchmarks, we set the look-back
window length to be 60 and vary the forecast horizon as H ∈ {1, 24, 48}.

4.2 ONLINE FORECASTING RESULTS

Cumulative Performance Table 1 reports the cumulative mean-squared errors (MSE) and mean-
absolute errors (MAE) of deep models (TCN and Informer) at the end of training. The reported num-
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Figure 3: Visualization of the model’s prediction throughout the online learning process. We focus
on a short horizon of 200 time steps after a concept drift, which is critical for fast learning.

bers are averaged over five runs, and we provide the standard deviations in Table 3, Appendix E.1.
We observe that ER and its variants (MIR, DER++) are strong competitors and can significantly
improve over the simple TCN strategies. However, such methods still cannot work well under mul-
tiple task switches (S-Abrupt). Moreover, no clear task boundaries (S-Gradual) presents an even
more challenging problem and increases most models’ errors. In addition, previous work has ob-
served that TCN can outperform Informer in the standard time series forecasting (Woo et al., 2022).
Here we also observe similar results that Informer does not perform well in the online setting, and
is outperformed by other baselines. On the other hand, our FSNet shows promising results on all
datasets and outperforms most competing baselines across different forecasting horizons. Moreover,
the significant improvements on the synthetic datasets indicate FSNet’s ability to quickly adapt to
the non-stationary environment and recall previous knowledge, even without clear task boundaries.

Convergent behaviors of Different Learning Strategies Figure 2 reports the convergent behav-
iors on the considered methods. We omit the S-Gradual dataset for spaces because we observe the
same behavior as S-Abrupt. Interestingly, we observe that concept drifts are likely to happened in
most datasets because of the loss curves’ sharp peaks. Moreover, such drifts appear at the early stage
of learning, mostly in the first 40% of data, while the remaining half of data are quite stationary. This
result shows that the traditional batch training is often too optimistic by only testing the model on the
last data segment. The results clearly show the benefits of ER by offering faster convergence during
learning compared to OnlineTCN. However, storing the original data may not be applicable in many
applications. On S-Abrupt, most baselines demonstrate the inability to quickly recover from con-
cept drifts, indicated by the increasing trend in the error curves. We also observe promising results
of FSNet on most datasets, with significant improvements over the baselines on the ETT, WTH,
and S-Abrupt datasets. The remaining datasets are more challenging with missing values (Li et al.,
2019) and large magnitude varying within and across dimensions, which may require calculating
better data normalization statistics. While FSNet achieved encouraging results, handling the above
challenges can further improve its performance. Overall, the results shed light on the challenges of
online time series forecasting and demonstrate promising results of FSNet.

Visualization We explore the model’s prediction quality on the S-Abrupt since it is a univariate
time series. The remaining multivariate real-world datasets are more challenging to visualize. Par-
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Table 2: Final comulative MSE and MAE of different FSNet variants. Best results are in bold.

Method FSNet Variant

M=128 (large) M=32 (original) No Memory Naive

Data H MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 24 0.616 0.456 0.687 0.467 0.689 0.468 0.860 0.555
48 0.846 0.513 0.846 0.515 0.924 0.526 0.973 0.570

Traffic 1 0.285 0.251 0.288 0.253 0.294 0.252 0.330 0.282
24 0.358 0.285 0.362 0.288 0.355 0.284 0.463 0.362

S-A 1 1.388 0.928 1.391 0.929 1.734 1.024 3.318 1.416
24 1.213 0.870 1.299 0.904 1.390 0.933 3.727 1.467

S-G 1 1.758 1.040 1.760 1.038 1.734 1.024 3.318 1.414
24 1.293 0.902 1.299 0.904 1.415 0.940 3.748 1.478

ticularly, we are interested in the models’ behaviour when an old task’s reappear. Therefore, in
Figure 3, we plot the model’s forecasting at various time points after t = 3000. We can see the
difficulties of training deep neural networks online in that the model struggles to learn at the early
stages, where it only observed a few samples. We focus on the early stages of task switches (e.g.
the first 200 samples), which requires the model to quickly adapt to the distribution shifts. With
the limited samples per task and the presence of multiple concept drifts, the standard online opti-
mization collapsed to a naive solution of predicting random noises around zero. However, FSNet
can successfully capture the time series’ patterns and provide better forecasts as learning progresses.
Overall, we can clearly see FSNet can provide better quality forecasts compared to other baselines.

4.3 ABLATION STUDIES OF FSNET’S DESIGN

This experiment analyzes the contribution of each FSNet’s component. First, we explore the benefits
of using the associative memory (Section 3.2.2) by constructing a No Memory variant that only
uses an adapter, without the memory. Second, we further remove the adapter, which results in the
Naive variant that directly trains the adaptation coefficients u jointly with the backbone. The Naive
variant demonstrates the benefits of monitoring the layer’s gradients, our key idea for fast adaptation
(Section 3.2.1). Lastly, we explore FSNet’s scalability by increasing the associative memory size
from 32 items (original) to a larger scale of 128 items.

We report the results in Table 2. We first observe that FSNet achieves similar results with the No
Memory variant on the Traffic and S-Gradual datasets. One possible reason is the insignificant repre-
sentation interference in the Traffic dataset and the slowly changing representations in the S-Gradual
dataset. In such cases, the representation changes can be easily captured by the adapter alone and
may not trigger the memory interactions. In contrast, on ETTh2 and S-Abrupt, which may have
sudden drifts, we clearly observe the benefits of storing and recalling the model’s past action to fa-
cilitate learning of repeating events. Second, the Naive variant does not achieve satisfactory results,
indicating the benefits of modeling the temporal smoothness in time series via the use of gradient
EMA. Lastly, the large memory variant of FSNet provides improvements in most cases, indicating
FSNet’s scalability with more budget. Overall, these results demonstrated the complementary of
each FSNet’s components to deal with different types of concept drift in time series.

5 CONCLUSION

We have investigated the potentials and limitations of training deep neural networks for online time
series forecasting in non-stationary environments, where they lack the capability to adapt to new or
recurring patterns quickly. We then propose Fast and Slow learning Networks (FSNet) by extending
the CLS theory for continual learning to online time series forecasting. FSNet augments a neural
network backbone with two key components: (i) an adapter for fast learning; and (ii) an associative
memory to handle recurrent patterns. Moreover, the adapter sparsely interacts with its memory to
store, update, and retrieve important recurring patterns to facilitate learning of such events in the
future. Extensive experiments demonstrate the FSNet’s capability to deal with various types of
concept drifts to achieve promising results in both real-world and synthetic time series data.
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A ORGANIZATION

This Appendix is organized as follow. First, we provide a more detailed discussion on time series
forecasting and continual learning in Appendix B. Then, in Appendix C, we detail the implementa-
tion of FSNet. Appendix D discuss the experiments’ details, including the synthetic data generation,
the loss function, and baselines’ descriptions. Lastly, Appendix E provides additional experiment
results, including standard deviations, complexity analyses, additional experiments, and visualiza-
tions.
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B EXTENDED RELATED WORK

This section is an extended version of Section 2 where we discuss in more details the existing time
series forecasting and continual learning studies.

B.1 TIME SERIES FORECASTING

Time series forecasting is an important problem and has been extensive studied in the literature.
Traditional methods such as ARMA, ARIMA (Box et al., 2015), and the Holt-Winters seasonal
methods (Holt, 2004) enjoy theoretical guarantees. However, they lack the model capacity to model
more complex interactions of real-world data. As a result, they cannot handle the complex interac-
tions among different dimensions of time series, and often achieve inferior performances compared
to deep neural networks on multivariate time series data (Zhou et al., 2021; Oreshkin et al., 2019).

Recently, learning a good time series representation has shown promising results, and deep learning
models have surpassed such traditional methods on large scale benchmarks (Rubanova et al., 2019;
Zhou et al., 2021; Oreshkin et al., 2019). Early deep learning based approaches built upon a standard
MLP models (Oreshkin et al., 2019) or recurrent networks such as LSTMs (Salinas et al., 2020).
Recently, temporal convolution (Yue et al., 2021) and transformer (Li et al., 2019; Xu et al., 2021)
networks have shown promising results, achieving promising on a wide range of real-world time
series. However, such methods assume a static world and information to forecast the future is fully
provided in the look-back window. As a result, they lack the ability to remember events beyond
the look-back window and adapt to the changing environments on the fly. In contrast, our FSNet
framework addresses these limitation by a novel adapter and memory components.

B.2 CONTINUAL LEARNING

Human learning has inspired the design of several strategies to enable continual learning in neural
networks. One successful framework is the Complementary Learning Systems theory (McClelland
et al., 1995; Kumaran et al., 2016) which decomposes learning into two processes of learning fast
(hippocampus) and slow (neocortex). While the hippocampus can quickly change and capture the
current information, possibly with the help of experience replay, the neocortex does not change as
fast and only accumulate general knowledge. The two learning systems interacts via a knowledge
consolidation process, where recent experiences in the hippocampus are transferred to the neocortex
to form a more general representation. In addition, the hippocampus also queries information from
the neocortex to facilitate the learning of new and recurring events. The CLS theory serves as a
motivation for several designs in continual learning such as experience replay (Chaudhry et al.,
2019), dual learning architectures (Pham et al., 2021a; Arani et al., 2021). In this work, we extend
the fast and slow learning framework of the CLS theory to the online time series forecasting problem.

B.3 COMPARISON WITH EXISTING CONTINUAL LEARNING FOR TIME SERIES
FORMULATIONS

This section provides a more comprehensive comparison between our formulation of online time
series forecasting and existing studies in (He & Sick, 2021; Jaeger, 2017; Gupta et al., 2021; Kurle
et al., 2019).

We first summarize the scope of our study. We mainly concern the online time series forecasting
problem (Liu et al., 2016) and focus on addressing the challenge of fast adaptation to distribution
shifts in this scenario. Particularly, when such distribution shifts happen, the model is required to
take less training samples to achieve low errors, either by exploiting its representation capabilities
or reusing the past knowledge. We focus on the class of deep feedforward neural network, par-
ticularly TCN, thanks to its powerful representation capabilities and ubiquitous in sequential data
applications (Bai et al., 2018).

CLeaR (He & Sick, 2021) also attempted to model time series forecasting as a continual learning
problem. However, CLeaR focuses on accumulating knowledge over a data stream without forget-
ting and does not concern about a fast adaptation under distribution shifts. Particularly, CLeaR’s
online training involves periodically calibrating the pre-trained model on new out-of-distribution
samples using a continual learning strategy. Moreover, CLeaR only calibrates the model when a
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buffer of novel samples are filled. As a result, when a distribution shifts, CLeaR could suffer from
arbitrary high errors until it accumulates enough samples for calibrating. Therefore, CLeaR is not
applicable to the online time series forecasting problem considered in our study.

GR-IG (Gupta et al., 2021) also formulates time series forecasting as a continual learning problem.
However, they address the challenging of variable input dimensions through time, which could arise
from the introduction of new sensors, or sensor failures. Therefore, by motivating from continual
learning, GR-IG can facilitate the learning of new tasks (sensors) for better forecasting. However,
GR-IG does not consider shifts in the observed distributions and focus on learning new distributions
that appear over time. Consequently, GR-IG is also not a direct comparison to our method.

Lastly, we also note Conceptors (Jaeger, 2017) as a potential approach to address the time series
forecasting problem. Conceptors are a class of neural memory that supports storing and retrieving
patterns learned by a recurrent network. In this work, we choose to use the associative memory
to maintain long-term patterns, which is more common for deep feed-forward architectures used in
our work. We believe that with necessary adaptation, it is possible to integrate Conceptors as the
memory mechanism in FSNet, which is beyond the scope of this work.

C FSNET DETAILS

C.1 CHUNKING OPERATION

In this section, we describe the chunking adapter’s chunking operation to efficiently compute the
adaptation coefficients. For convenient, we denote vec(·) as a vectorizing operation that flattens a
tensor into a vector; we use split(e, B) to denote splitting a vector e into B segments, each has
size dim(e)/B. An adapter maps its backbone’s layer EMA gradient to an adaptation coefficient
u ∈ Rd via the chunking process as:

ĝl ←vec(ĝl)

[b1, b2, . . . bd]←reshape(ĝl; d)

[h1,h2, . . . ,hd]←[W
(1)
ϕ b1,W

(1)
ϕ b2, . . . ,W

(1)
ϕ bd]

[u1,u2, . . . ,ud]←[W
(2)
ϕ h1,W

(2)
ϕ h2, . . . ,W

(2)
ϕ hd].

Where we denote W (1)
ϕ and W

(2)
ϕ as the first and second weight matrix of the adapter. In summary,

the chunking process can be summarized by the following steps: (1) flatten the gradient EMA into
a vector; (2) split the gradient vector into d chunks; (3) map each chunk to a hidden representation;
and (4) map each hidden representation to a coordinate of the target adaptation parameter u.

C.2 FSNET PSEUDO ALORITHM

Algorithm 1 provides the psedo-code for our FSNet.
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Algorithm 1 Fast and Slow learning Networks (FSNet)
Require: Two EMA coefficients γ′ < γ, memory interaction threshold τ
Init: backbone θ, adapter ϕ, associative memoryM, regressor R, trigger = False

1 for t← 1 to T do
2 Receive the t− look-back window xt

3 h0 = xt

4 for j ← 1 to L do // Forward computation over L layers
5 [αl,βl] = ul, where ul = Ω(ĝl;ϕl) // Initial adaptation parameter
6 if trigger == True then
7 ũl ← Read(ûl,Ml)
8 Ml ←Write(Ml, ûl) // Memory read and write are defined in Section 3.2.2
9 ul ← τul + (1− τ)ũl // Weighted sum the current and past adaptation parameters

10 θ̃l = tile(αl)⊙ θl // Weight adaptation
11 h̃l = tile(βl)⊙ hl, where hl = θ̃l ⊛ h̃l−1. // Feature adaptation
12 Forecast ŷt = RhT

13 Receive the ground-truth y
14 Calculate the forecast loss and backpropagate
15 Update the regressor R via SGD
16 for j ← 1 to L do // Backward to update the model and EMA
17 Update the EMA of ĝl, ĝl

′,ul

18 Update ϕl,θl via SGD
19 if cos(ĝl, ĝl) < −τ then
20 trigger← True

D EXPERIMENT DETAILS

D.1 SYNTHETIC DATA

We use the following first-order auto-regressive process model ARφ(1) defined as

Xt = φXt−1 + ϵt, (7)

where ϵt are random noises and Xt−1 are randomly generated. The S-Abrupt data is described by
the following equation:

Xt =



AR0.1 if 1 < t ≤ 1000

AR0.4 if 1000 < t ≤ 1999

AR0.6 if 2000 < t ≤ 2999

AR0.1 if 3000 < t ≤ 3999

AR0.4 if 4000 < t ≤ 4999

AR0.6 if 5000 < t ≤ 5999.

(8)

The S-Gradual data is described as

Xt =



AR0.1 if 1 < t ≤ 800

0.5× (AR0.1 +AR0.4) if 800 < t ≤ 1000

AR0.4 if 1000 < t ≤ 1600

0.5× (AR0.4 +AR0.6) if 1600 < t ≤ 1800

AR0.6 if 1800 < t < 2400

0.5× (AR0.6 +AR0.1) if 2400 < t ≤ 2600

AR0.1 if 2600 < t ≤ 3200

0.5× (AR0.1 +AR0.4) if 3200 < t ≤ 3400

AR0.4 if 3400 < t ≤ 4000

0.5× (AR0.4 +AR0.6 if 4000 < t ≤ 4200

AR0.6 if 4200 < t ≤ 5000

(9)
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D.1.1 BASELINE DETAILS

Summary We provide a brief summary of the baselines used in your experiments

• Informer (Zhou et al., 2021): a transformer-based model for time-series forecasting.
• OnlineTCN uses a standard TCN backbone (Woo et al., 2022) with 10 hidden layers, each

of which has two stacks of residual convolution filters.
• ER (Chaudhry et al., 2019) augments the OnlineTCN baseline with an episodic memory to

store previous samples, which are then interleaved when learning the newer ones.
• MIR (Aljundi et al., 2019a) replaces the random sampling strategy in ER with its MIR

sampling by selecting samples in the memory that cause the highest forgetting and perform
ER on these samples.

• DER++ (Buzzega et al., 2020) augments the standard ER (Chaudhry et al., 2019) with a ℓ2
knowledge distillation loss on the previous logits.

• TFCL (Aljundi et al., 2019b) is a method for online, task-free continual learing. TFCL
starts with as a ER procedure and also includes a MAS-styled (Aljundi et al., 2018) regu-
larization that is adapted for the task-free setting.

All ER-based strategies use a reservoir sampling buffer. We also tried with a Ring buffer and did not
observe any significant differences.

Loss function All methods in our experiments optimize the ℓ2 loss function defined as follows.
Let x and y ∈ RH be the look-back and ground-truth forecast windows, and ŷ be the model’s
prediction of the true forecast windows. The ℓ2 loss is defined as:

ℓ(ŷt,yt) = ℓ(fω(xt),yt) :=
1

H

H∑
j=1

||ŷi − yi||2 (10)

Experience Replay baselines We provide the training details of the ER and DER++ baselines
in this section. These baselines deploy an reservoir sampling buffer of 500 samples to store the
observed samples (each sample is a pair of look-back and forecast window).

LetM be the episodic memory storing previous samples, Bt be a mini-batch of samples sampled
fromM. ER minimizes the following loss function:

LER
t = ℓ(fω(xt),yt) + λER

∑
(x,y)∈Bt

ℓ(fω(x),y), (11)

where ℓ(·, ·) denotes the MSE loss and λER is the trade-off parameter of current and past examples.
DER++ further improves ER by adding a distillation loss (Hinton et al., 2015). For this purpose,
DER++ also stores the model’s forecast into the memory and minimizes the following loss:

LDER++
t = ℓ(fω(xt),yt) + λER

∑
(x,y)∈Bt

ℓ(fω(x),y) + λDER++

∑
(x,ŷ)∈Bt

ℓ(fω(x), ŷ). (12)

D.2 HYPER-PARAMETERS SETTINGS

We cross-validate the hyper-parameters on the ETTh2 dataset and use it for the remaining ones.
Particularly, we use the following configuration:

• Adapter’s EMA coefficient γ = 0.9,
• Gradient EMA for triggering the memory interaction γ′ = 0.3

• Memory triggering threshold τ = 0.75

We found that this hyper-parameter configuration matches the motivation in the development of
FSNet. In particular, the adapter’s EMA coefficient γ = 0.9 can capture medium-range information
to facilitate the current learning. Second, the gradient EMA for triggering the memory interaction
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Table 3: Standard deviations of the metrics in Table 1. “†” indicates a transformer backbone, “-”
indicates the model did not converge. S-A: S-Abrupt, S-G: S-Gradual.

Method FSNet DER++ MIR ER TFCL OnlineTCN Informer

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h2 1 0.018 0.009 0.022 0.015 0.019 0.018 0.018 0.017 0.030 0.003 0.011 0.007 1.370 0.043
24 0.014 0.005 0.024 0.004 0.017 0.005 0.007 0.006 0.005 0.003 0.017 0.002 2.254 0.102
48 0.128 0.012 0.143 0.015 0.130 0.012 0.141 0.013 0.279 0.024 0.147 0.016 2.088 0.091

E
T

T
m

1 1 0.003 0.004 0.003 0.007 0.005 0.009 0.005 0.009 0.004 0.008 0.003 0.002 0.088 0.060
24 0.002 0.002 0.002 0.002 0.005 0.004 0.003 0.002 0.006 0.005 0.002 0.002 0.035 0.023
48 0.003 0.002 0.003 0.002 0.006 0.005 0.004 0.004 0.010 0.008 0.002 0.003 0.020 0.014

E
C

L 1 0.021 0.001 0.027 0.002 0.037 0.013 0.034 0.011 0.047 0.011 0.019 0.002 - -
24 0.096 0.011 0.072 0.013 0.261 0.013 0.236 0.017 0.338 0.019 0.077 0.009 - -
48 0.105 0.011 0.146 0.014 0.143 0.012 0.320 0.014 0.253 0.008 0.122 0.011 - -

Tr
af

fic 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.003 0.001 0.001 0.009 0.008
24 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.002 0.001 0.015 0.008

W
T

H 1 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.005 0.005
24 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003
48 0.001 0.001 0.011 0.007 0.009 0.005 0.009 0.005 0.004 0.006 0.001 0.001 0.009 0.008

S-
A 1 0.112 0.037 0.171 0.041 0.176 0.040 0.159 0.033 0.283 0.061 0.009 0.002 0.149 0.059

24 0.199 0.027 0.202 0.034 0.192 0.032 0.022 0.003 0.011 0.002 0.174 0.017 0.322 0.066

S-
G 1 0.166 0.039 0.169 0.041 0.177 0.040 0.171 0.039 0.360 0.083 0.164 0.039 0.277 0.099

24 0.187 0.033 0.200 0.033 0.199 0.035 0.190 0.032 0.010 0.002 0.188 0.033 0.771 0.099

γ′ = 0.3 results in the gradients accumulated in only a few recent samples. Lastly, a relatively
high memory triggering threshold τ = 0.75 indicates our memory-triggering condition can detect
substantial representation change to store in the memory. The hyper-parameter cross-validation is
performed via grid search and the grid is provided below.

• Experience replay batch size (for ER and DER++): [2, 4, 8]

• Experience replay coefficient (for ER) λER: [0.1, 0.2, 0.5, 0.7, 1]

• DER++ coefficient (for DER++) λDER++: [0.1, 0.2, 0.5, 0.7, 1]

• EMA coefficient for FSNet γ and γ′: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

• Memory triggering threshold τ : [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]

• Number of filters per layer: 64

• Episodic memory size: 5000 (for ER, MIR, and DER++), 50 (for TFCL)

The remaining configurations such as data pre-processing and optimizer setting follow exactly
as Zhou et al. (2021).

E ADDITIONAL RESULTS

E.1 STANDARD DEVIATIONS

We report the standard deviation values of the comparison experiment in Table 1, which were av-
eraged over five runs. Overall, we observe that the standard deviation values are quite small for all
experiments.

E.2 COMPLEXITY COMPARISON

In this Section, we analyze the memory and time complexity of FSNet.
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Table 4: Summary of the model complexity on the ETTh2 data set with forecasta window H = 24.
We report the number of floating points incurred by the backbone and different types of memory.
GI = Gradient Importance (TFCL), G-EMA = Gradient Exponential Moving Average (FSNet), AM
= Associative Memory (FSNet), EM = Episodic Memory (ER).

Method Model Memory Total
Backbone Adapter GI G-EMA AM EM

FSNet 1,041,288 733,334 N/A 614,400 1,130,496 N/A 3,519,518
ER 1,041,288 N/A N/A N/A N/A 2,822,400 3,863,688
OnlineTCN 3,667,208 N/A N/A N/A N/A N/A 3,667,208
TFCL 1,041,288 N/A 2,082,576 N/A N/A 806,400 3,930,264

Table 5: Summary of the model and total memory complexity of different methods.N denotes the
number parameters of the convolutional layers, H and E denotes the look-back and forecast win-
dows length

Method OnlineTCN ER MIR DER++ FSNet

Model Complexity O(N +H)
Memory Complexity N/A O(E +H) O(N)
Total Complexity O(N +H) O(N + E +H) O(N +H)

Asymptotic analysis We consider the TCN forecaster used throughout this work and analyze the
model, total memory, and time complexities of the methods considered in our work. We let N
denotes the number of parameters of the the convolutional layers, E denotes the length of the look-
back window, and H denotes the length of the forecast window.

Model and Total complexity We analyze the model and the total memory complexity, which
arises from the model and additional memory units.

First, the standard TCN forecaster incur aO(N+H) memory complexity arising from N parameters
of the convolutional layers, and an order of H parameters from the linear regressor.

Second, we consider the replayed-based strategies, which also incur the same O(N + H) model
complexity as the OnlineTCN. For the total memory, they use an episodic memory to store the pre-
vious samples, which costsO(E+H) for both methods. Additionally, TFCL stores the importance
of previous parameters while MIR makes a copy of the model for its virtual update, both of which
costO(N+H). Therefore, the total memory complexity of the replay strategies (ER, DER++, MIR,
and TFCL) is O(N + E +H).

Third, in FSNet, both the per-layer adapters and the associative memory cost similar number of
parameters as the convolutional layers because they are matrices with number of channels as one
dimension. Therefore, asymptotically, FSNet also incurs a model and total complexity ofO(N+H)
where the constant term is small.

Table 5 summarizes the asymptotic memory complexity discussed so far. Table 4 shows the number
of parameters used of different strategies on the ETTh2 dataset with the forecast window of H = 24.
We consider the total parameters (model and memory) of FSNet as the total budget and adjust other
baselines to meet the budget. As we analyzed, for FSNet, its components, including the adapter,
associative memory, and gradient EMA, require an order of parameter as the convolutional layers
in the backbone network. For the OnlineTCN strategy, we increases the number of convolutional
filters so that it has roughly the same total parameters as FSNet. For ER and TFCL, we change the
number of samples stored in the episodic memory.

Time Complexity We report the throughput (samples/second) of different methods in Table 6.
We can see that ER and DER++ have high throughput (low running time) compared to others thanks
to their simplicity. As FSNet introduces additional mechanisms to allow the network to take less
samples to adapt to the distribution shifts, its throughput is lower than ER and DER++. Neverthe-
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Table 6: Throughput (sample/second) of different methods in our experiments with forecast window
of H = 1.

Running Time ETTh2 ETTm1 WTH ECL Traffic S-A

ER 46 46 43 42 39 46
DER++ 45 45 43 42 38 46
TFCL 29 28 27 27 26 27
MIR 22 22 21 21 30 23

FSNet 28 28 28 27 27 29

Table 7: Results of different FSNet’s hyper-parameter configurations on the ETTh2 (H = 48) and
S-A (H = 24) benchmarks.

Configuration ETTh2 S-A

γ γ′ τ MSE MAE MSE MAE

0.9 0.3 0.75 0.846 0.515 1.760 1.038
0.9 0.4 0.8 0.860 0.521 1.816 1.086
0.99 0.4 0.7 0.847 0.512 1.791 1.049
0.99 0.3 0.8 0.845 0.514 1.777 1.042

less, FSNet is more efficient than and MIR comparable to TFCL, which are two common continual
learning strategies.

E.3 ROBUSTNESS OF HYPER-PARAMETER SETTINGS

This experiment explores the robustness of FSNet to different hyper-parameter setting. Particularly,
we focus on the configuration of three hyper-parameters: (i) the gradient EMA γ; (ii) the short-term
gradient EMA γ′; and (iii) the associative memory activation threshold τ . In general, we provide
two guidelines to reduce the search space of these hyper-parameters: (i) setting γ to a high value
(e.g. 0.9) and γ′ to a small value (e.g. 0.3 or 0.4); (ii) set τ to be relatively high (e.g. 0.75). We
report the results of several hyper-parameter configurations in Table 7. We observe that there are
not significant differences among these configurations . It is also worth noting that we use the same
configuration for all experiments conducted in this work. Therefore, we can conclude that FSNet is
robust to these configurations.

E.4 FSNET AND EXPERIENCE REPLAY

This experiment explore the complementarity between FSNet and experience replay (ER). We hy-
pothesize that ER is a valuable component when learning on data streams because it introduces the
benefits of mini-batch training to online learning.

We implement a variant of FSNet with an episodic memory for experience replay and report its
performance in Table 8. We can see that FSNet+ER outperforms FSNet in all cases, indicating the
benefits of ER, even to FSNet. However, it is important that using ER will introduce additional mem-
ory complexity and that scales with the look-back window. Lastly, in many real-world applications,
storing previous data samples might be prohibited due to privacy concerns.

E.5 VISUALIZATIONS

E.5.1 VISUALIZATION OF THE SYNTHETIC DATASETS

We plot the raw data (before normalization) of the S-Abrupt and S-Gradual datasets in Figure 4.
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Table 8: Performance of FSNet with and without experience replay.

Data H FSNet FSNet+ER

MSE MAE MSE MAE

ETTh2
1 0.466 0.368 0.434 0.361
24 0.687 0.467 0.650 0.462
48 0.846 0.515 0.842 0.511

Traffic 1 0.321 0.26 0.243 0.248
24 0.421 0.312 0.350 0.275
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Figure 4: Visualization of the raw S-Abrupt and S-Gradual datasets before normalization. Colored
regions indicate the data generating distribution where we use the same color for the same distri-
bution. In S-Guadual, white color region indicates the gradual transition from one distribution to
another. Best viewed in color.

E.5.2 ACTIVATION PATTERN OF FSNET

This experiment explores the associative memory activation patterns of FSNet. For this, we consider
the S-Abrupt dataset with H = 1 and plot the activation patterns in Figure 5. Note that due to the
large number of memory slots, we only plot the memory slot with the highest attention score at each
step. We remind that in S-Abrupt, the first 3,000 samples belong to three different data distribution
and these distribution sequentially reappear in the last 3,000 samples, which are color-coded in
Figure 5. First, we observe that not all layers are equally important for the tasks. Particularly, FSNet
mostly uses the fourth and sixth layers, and rarely uses the deeper ones.

Second, we note that FSNet memory activations exhibit high specialization as we go to deeper layers.
Particularly, only a single memory slot is activated in the fourth layer (circle marker) throughout
training because shallow layers are responsible for general representations, possibly because it learns
generic representations for all patterns. On the other hand, deeper layers are activated according to
different distributions: seventh layer memory (triangle marker) is activated by the distribution in pink
while the ninth layer memory (square and star markers) is activated by the remaining distributions.
These observations are consistent with the representation learning patterns in deep networks where
shallow layers learn generic representation while deeper layers learn representations that are more
specialized to different patterns (Olah et al., 2017).

F DISCUSSION AND FUTURE WORK

We discuss two scenarios where FSNet may not work well. First, we suspect that FSNet may
struggle when concept drifts do not happen uniformly on all dimensions. This problem arises from
the irregularly sampled time series, where each dimension is sampled at a different rate. In this
scenario, a concept drift in one dimension may trigger FSNet’s memory interaction and affect the
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Figure 5: Activation frequency of the memory slot with the highest attention score for each layer in
FSNet on the S-Abrupt dataset. Same marker indicates the same memory slot. Each color region
indicates a data generating distribution. Best viewed in color.

learning of the remaining ones. Moreover, if a dimension is sampled too sparsely, it might be helpful
to leverage the relationship along both the time and spatial dimension for a better result.

Second, applications such as finance, which involve many complex repeating patterns, can be chal-
lenging for FSNet. In such cases, the number of repeating patterns may exceed the memory capacity
of FSNet, causing catastrophic forgetting. In addition, forecasting complex time series requires the
network to learn a good representation, which may not be achieved by increasing the model com-
plexity alone. In such cases, incorporating a representation learning component might be helpful.

We now discuss several aspects for further studies. We follow Informer to apply the z-normalization
per feature, which is a common strategy. This strategy works well in the batch setting because
its statistics were estimated using 80% of training data. However, after a concept drift in online
learning, it is unreliable to use previous statistics (estimated over 25% samples) to normalize samples
from a new distribution. In such cases, it could be helpful to adaptively normalize samples from new
distributions (using the new distribution’s statistics). This could be achieved via an online update of
the normalization statistics or using a sliding window technique. In addition, while FSNet presents
a general framework to forecast time series online, adopting it to a particular application requires
incorporating specific domain knowledge to ensure satisfactory performances. In summary, we
firmly believe that FSNet is an encouraging first step towards a general solutions for an important,
yet challenging problem of online time series forecasting.
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