
Graphical Resource Allocation with
Matching-Induced Utilities

Anonymous Author(s)
Affiliation
Address
email

Abstract

Motivated by real-world applications, we study the fair allocation of graphical1

resources, where the resources are the vertices in a graph. Upon receiving a set of2

resources, an agent’s utility equals the weight of the maximum matching in the3

induced subgraph. We care about maximin share (MMS) fairness and envy-freeness4

up to one item (EF1). Regarding MMS fairness, the problem does not admit a finite5

approximation ratio for heterogeneous agents. For homogeneous agents, we design6

constant-approximation polynomial-time algorithms, and also note that significant7

amount of social welfare is sacrificed inevitably in order to ensure (approximate)8

MMS fairness. We then consider EF1 allocations whose existence is guaranteed.9

We show that for homogeneous agents, there is an EF1 allocation that ensures at10

least a constant fraction of the maximum possible social welfare. However, the11

social welfare guarantee of EF1 allocations degrades to 1/n for heterogeneous12

agents, where n is the number of agents. Fortunately, for two special yet typical13

cases, namely binary-weight and two-agent, we are able to design polynomial-time14

algorithms ensuring a constant fractions of the maximum social welfare.15

1 Introduction16

Resource allocation has been actively studied due to its practical applications [Moulin, 2003; Goldman17

and Procaccia, 2014; Flanigan et al., 2021]. Traditionally, the utilities are assumed to be additive18

which means an agent’s value for a bundle of resources equals the sum of each single item’s marginal19

utility. But in many real-word problems, the resources have graph structures and thus the agents’20

utilities are not additive but depend on the structural properties of the received resources. For example,21

Peer Instruction (PI) has been shown to be an effective learning approach based on a project conducted22

at Harvard University, and one of the simplest ways to implement PI is to pair the students [Crouch23

and Mazur, 2001]. Consider the situation when we partition students to advisors, where the advisors24

will adopt PI for their assigned students. Note that the advisors may hold different perspectives on25

how to pair the students based on their own experience and expertise, and they want to maximize26

the efficiency of conducting PI in their own assigned students. How should we assign the students27

fairly to the advisors? How can we maximize the social welfare among all (approximately) fair28

assignments? In this work, we take an algorithm design perspective to solve these two questions.29

Similar pairwise joint work also appears as long-trip coach driver vs co-driver and accountant vs30

cashier, which is widely investigated in matching theory [Lovász and Plummer, 2009].31

The graphical nature of resources has been considered in the literature (see, e.g., [Bouveret et al.,32

2017; Suksompong, 2019; Bilò et al., 2019; Igarashi and Peters, 2019]). In this line of research, the33

graph is used to characterize feasible allocations (such as the resources allocated to each agent should34

be connected), but the agents still have additive utilities over allocated items. With graphical resources,35

the value of a set of resources does not solely depend on the vertices or the edge weights, but decided36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

by the combinatorial structure of the subgraph, namely, maximum matching in our problem. Graph37

structure is also considered in cooperative game theory (i.e., hedonic games) Bogomolnaia and38

Jackson [2002]; Elkind and Wooldridge [2009]; Aziz et al. [2019], but this is not a resource allocation39

problem and its major concern is how stable coalition structure can be formed.40

Our problem also aligns with the research of balanced graph partition [Miyazawa et al., 2021].41

Although there are heuristic algorithms in the literature [Kress et al., 2015; Barketau et al., 2015] that42

partition a graph when the subgraphs are evaluated by maximum matchings, these algorithms do not43

have theoretical guarantees. Our first fairness criterion is the maximin share (MMS) fairness proposed44

by Budish [2011], which generalizes the max-min objective in Santa Claus problem [Bansal and45

Sviridenko, 2006]. Informally, the MMS value of an agent is her best guarantee if she is to partition46

the graph into several subgraphs but receives the worst one. We aim at designing efficient algorithms47

with provable approximation guarantees. As will be clear later, to achieve (approximate) MMS48

fairness, a significant amount of social welfare has to be inevitably sacrificed. Our second fairness49

notion is envy-freeness (EF) [Foley, 1967]. In an EF allocation, no agent prefers the allocation of50

another agent to her own. Since the resources are indivisible, such an allocation barely exists, and51

recent research in fair division focuses on achieving its relaxations instead. One of the most widely52

accepted and studied relaxations is envy-freeness up to one item (EF1) [Budish, 2011], which requires53

the envy to be eliminated after removing one item. Lipton et al. [2004] proved that an EF1 allocation54

always exists even with combinatorial valuations.1 It is noted that an arbitrary EF1 allocation may55

have low social welfare, and our goal is to compute an EF1 allocation which preserves a large fraction56

of the maximum social welfare without fairness constraints. The social welfare loss by enforcing the57

allocations to be EF1 is quantified by price of EF1 [Bei et al., 2021].58

1.1 Our Results59

We study the fair allocation of graphical resources when the resources are indivisible and correspond60

to the vertices in the graph, and the agents’ valuations are measured by the weight of the maximum61

matchings in the induced subgraphs. The fairness of an allocation is measured by maximin share62

(MMS) and envy-free up to one item (EF1). We aim at designing efficient algorithms that compute63

fair allocations with high social welfare. Our main contributions are summarized as follows.64

We first consider homogeneous agents when their valuations are identical. For homogeneous agents,65

the MMS fairness degenerates to the max-min objective, i.e., partitioning the vertices so that the66

minimum weight of the maximum matchings in the subgraphs is maximized. It is easy to see67

that an MMS fair allocation always exists but finding it is NP-hard. We design a polynomial-time68

1/8-approximation algorithm for arbitrary number of agents, and show that when the problem only69

involves two agents, the approximation ratio can be improved to 2/3. It is noted that, to ensure any70

finite approximation of MMS fairness, significant amount of social welfare is inevitably sacrificed.71

Regarding EF1 fairness, we design a polynomial-time algorithm that computes an EF1 allocation72

whose social welfare is at least 2/3 + 2/(9n− 3) fraction of the maximum social welfare that can be73

achieved without fairness constraints, where n is the number of agents. Note that when n = 2, the74

approximation ratio is 4/5, and we conjecture that there always exists an EF1 allocation that achieves75

the maximum social welfare for any number of agents.76

We then consider the case of heterogeneous agents. Unfortunately, we show strong impossibility77

results for the general case. Particularly, for MMS fairness, no algorithm has bounded approximation78

ratio even if there are two agents with binary weights. For EF1 fairness, no EF1 allocation can ensure79

better than 1/n fraction of the maximum social welfare, but this result does not exclude the possibility80

of constant approximations for two special cases. In fact, for both two-agent case and binary-weight81

case, we design polynomial-time algorithms that guarantee 1/3 fraction of the maximum social82

welfare. Moreover, for the two-agent case, the approximation ratio is the best possible.83

1.2 Related Works84

Two separate research lines are closely related to our work, namely graph partition and fair division.85

1The algorithm in [Lipton et al., 2004] was originally published in 2004 with a different targeting property.
In 2011, Budish [2011] formally proposed the notion of EF1 fairness.

2

Graph Partition. Partitioning graphs into balanced subgraphs has been extensively studied in opera-86

tions research [Miyazawa et al., 2021] and computer science [Buluç et al., 2016]. There are several87

popular objectives for evaluating whether a partition is balanced. Among the most prominent ones are88

the max-min (or min-max) objectives, where the goal is to maximize (or minimize) the total weight89

of the minimum (or maximum) part. Particularly, the vehicle routing problem (VRP) [Koç et al.,90

2016], which generalizes the travelling salesperson problem (TSP), is closely related to our work. It91

asks for an optimal set of routes for a number of vehicles, to visit a set of customers. There are a92

number of popular variants for the VRP, e.g., the so called heterogeneous vehicle routing problem93

[Yaman, 2006; Rathinam et al., 2020]. There are many other combinatorial structures studied in graph94

partitioning problems. For example, in the min-max tree cover (a.k.a. nurse station location) problem,95

the task is to use trees to cover an edge-weighted graph such that the largest tree is minimized [Khani96

and Salavatipour, 2014]. This problem also falls under the umbrella of a more general problem, the97

graph covering problem, where a set of pairwise disjoint subgraphs (called templates) is used to98

cover a given graph, such as paths [Farbstein and Levin, 2015], cycles [Traub and Tröbst, 2020], and99

matchings [Kress et al., 2015].100

Fair Division. Allocating a set of indivisible items among multiple agents is a fundamental problem101

in the fields of multi-agent systems and computational social choice, and we refer the readers to102

recent surveys [Amanatidis et al., 2022; Aziz et al., 2022] for more detailed discussion. Envy-103

freeness (EF) and maximin share fairness (MMS) are two well accepted and extensively studied104

solution concepts. However, with indivisible items, these requirements are demanding and thus105

the state-of-the-art research mostly studies their relaxations and approximations. For example,106

EF1 allocation is studied as a relaxation of EF which always exists [Lipton et al., 2004]. Various107

constant approximation algorithms for MMS allocations are proposed in [Kurokawa et al., 2018;108

Garg and Taki, 2021] for additive valuations and in [Barman and Krishnamurthy, 2020; Ghodsi et109

al., 2018] for subadditive valuations. Our work focuses on indivisible graphical items where agents110

have combinatorial valuations (neither subadditive nor superadditive) depending on the structural111

properties. Moreover, all the existing algorithms for non-additive valuations run in polynomial time112

only if the computation of valuations is assumed to be effortless (i.e., oracles). In contrast, in this113

work, we aim at designing truly polynomial-time approximation algorithms without valuation oracles.114

2 Preliminaries115

Denote by G = (V,E) an undirected graph without reflexive edges, where V contains all vertices116

and E contains all the edges. The vertices are the items that are to be allocated to n heterogeneous117

agents, denoted by N . Each agent i has an edge weight function wi : E → R+ ∪ {0}, which118

may be different from others’. If wi(e) ∈ {0, 1} for all e ∈ E, then the weight function is called119

binary. Let w = (w1, · · · , wn). A matching M ⊆ E is a set of vertex-disjoint edges, and let120

wi(M) =
∑

e∈M wi(e). For any subgraph G′, let V (G′) and E(G′) be the sets of vertices and edges121

in G′, respectively. An allocation X = (X1, · · · , Xn) is a partition of V such that ∪i∈NXi = V122

and Xi ∩ Xj = ∅ for i ̸= j. If ∪i∈NXi ⊊ V , the allocation is called partial. Each agent i has a123

utility function ui : 2
V → R+ ∪ {0}, where ui(Xi) equals the weight of a maximum (weighted)124

matching in G[Xi]. When the agents have identical valuations (i.e., homogeneous agents), we omit125

the subscript and use w(·) and u(·) to denote all agents’ weight and utility functions. A problem126

instance is denoted by I = (G,N). When we want to highlight the weight function, w is also127

included as a parameter, i.e., I = (G,N,w).128

Next we introduce the solution concepts. Our first fairness notion is maximin share (MMS) [Budish,129

2011]. Letting Πn(V) be the set of all n-partitions of V , the maximin share of agent i is130

MMSi(I) = max
X∈Πn(V)

min
j∈N

ui(Xj).

We may write MMSi for short if I is clear from the context. Therefore agent i is satisfied regarding131

MMS fairness if her utility is no smaller than MMSi.132

Definition 2.1 (α-MMS). For any α ≥ 0, an allocation X = (X1, · · · , Xn) is called α-approximate133

maximin share (α-MMS) fair if for all agents i ∈ N ,134

ui(Xi) ≥ α ·MMSi.

The allocation is called MMS fair if α = 1.135

3

The second fairness notion is about envy-freeness (EF). An allocation X is called EF if no agent136

envies any other agent’s bundle, i.e.,137

ui(Xi) ≥ ui(Xj) for all agents i, j ∈ N .

We can observe that it is very hard to satisfy EF for an arbitrary instance. Consider a simple counter138

example, where the graph is a triangle and two agents have weight 1 for all edges. Then in every139

allocation, there is one agent who gets at most one vertex (with utility 0) and the other agent gets140

at least two vertices (which contains an edge and thus has utility 1). Accordingly, we focus on the141

envy-free up to one item instead [Budish, 2011].142

Definition 2.2 (EF1). An allocation X = (X1, · · · , Xn) is called envy-free up to 1 item (EF1) if for143

any i and j, there exists g ∈ Xj such that ui(Xi) ≥ ui(Xj \ {g}).144

Besides fairness, we also want the allocation to be efficient. Given an allocation X = (X1, · · · , Xn),145

the social welfare of X is sw(X) =
∑

i∈N ui(Xi). Note that given any instance I, the best possible146

social welfare of any allocation is the weight of a maximum matching in the graph G by setting the147

weight of each edge to maxi∈N wi(e), which is denoted by sw∗(I). If the instance I is clear from148

the context, we also denote sw∗(I) as sw∗ for short.149

3 Homogeneous Agents150

We start with the case of homogeneous agents when the agents have identical valuations.151

3.1 MMS Fair Allocations for Homogeneous Agents152

With identical valuations, the MMS fairness degenerates to the max-min objective, where the problem153

is to partition a graph into n subgraphs so that the smallest weight of the maximum matchings in154

these subgraphs is maximized. It is easy to see that finding such an allocation is NP-hard even when155

there are two agents and the graph contains a set of disjoint edges, which is essentially a Partition156

problem. Therefore, we aim at designing polynomial-time approximation algorithms to achieve the157

MMS fair objective. Without loss of generality, in this section, we assume w(e) ≥ 1 for all e ∈ E.158

Since the agents have identical valuations, we omit the subscript in MMSi and simply write MMS.159

Our main result in this section is as follows.160

Theorem 3.1. We can compute a 1/8-MMS allocation in polynomial time for homogeneous agents.161

Before proving the theorem, we explain the intuition of Algorithm 1. Given an instance I = (G,N),162

to ensure the maximum matching in every subset of vertices to be large, we first try to allocate a163

maximum matching in the original graph. Specifically, we compute a maximum matching in G164

denoted by M∗ ⊆ E, and then partition M∗ into n bundles (M1, · · · ,Mn) where w(M1) ≥ · · · ≥165

w(Mn) such that w(Mn) is as large as possible. This task is NP-hard and thus we instead use the166

following simple greedy solution, which we call greedy partition of M∗.167

Greedy Partition. Given a matching M , partition M into Γ(M) = (M1, · · · ,Mn) as follows.168

• Sort and rename the edges in M such that w(e1) ≥ · · · ≥ w(ek) where k = |M |.169

• Initially set M1 = · · · = Mn = ∅.170

• For i = 1, · · · , k, select j such that w(Mj) ≤ w(Mj′) for all j′ and set Mj = Mj ∪ {ei}.171

• Sort and rename M1, · · · ,Mn so that w(M1) ≥ · · · ≥ w(Mn).172

The greedy partition of M∗ corresponds to an allocation of vertices where unmatched vertices173

V ′ = V \∪i∈NV (Mi) can be allocated arbitrarily. The good news is that such an allocation achieves174

MMS fairness when the graph is unweighted, i.e., w(e) = w(e′) for all e, e′ ∈ E.175

Lemma 3.2. If G is unweighted, the greedy partition (M1, · · · ,Mn) of M∗ is an MMS allocation.176

The bad news is that such an allocation does not have any bounded approximation guarantee when177

the edges have distinct weights. Consider the following example with two agents and the graph is178

shown in Figure 1 where ∆ > 1 is arbitrarily large. Any allocation with bounded approximation ratio179

4

v1 v2 v3 v4

∆1 1

Figure 1: A bad example when greedy partition does not have bounded approximation guarantee of MMS.

of MMS fairness ensures that every agent has value 1, but by partitioning the maximum matching180

(which contains a single edge with weight ∆) the smaller bundle has value 0. However, if |M1| ≥ 2,181

such an allocation is 1/2-MMS.182

Lemma 3.3. If |M1| ≥ 2, Γ(M∗) corresponds to an allocation that is 1/2-MMS fair.183

The tricky case is when M1 contains a single edge e∗. To use the approach in Lemma 3.3 to derive184

1/2-MMS fair, we iteratively decrease the weight of e∗ and re-compute a maximum matching until185

|M1| ≥ 2. For simplicity, assume all edge weights are powers of 2. This is without much loss of186

generality which decreases the approximation ratio by at most 1/2.187

Lemma 3.4. Let I = (G,N,w) and I ′ = (G,N,w′) be two instances where I ′ is obtained from188

I by rounding all edge weights down to the nearest power of 2. If (X1, · · · , Xn) is an α-MMS189

allocation of I ′, then it is an α/2-MMS allocation of I.190

We prove Lemmas 3.2, 3.3, and 3.4 in the appendix. Now we are ready to describe Algorithm 1.191

We first compute a maximum matching M∗ and its greedy partition Γ(M∗) = (M1, · · · ,Mn) such192

that w(M1) ≥ · · · ≥ w(Mn). If |M1| ≥ 2, combining Lemmas 3.3 and 3.4, we are safe to output193

the corresponding partition of vertices so that the approximation ratio is at least 1/4. If |M1| = 1,194

we consider two cases. If w(Mn) ≥ 1/2 · w(M1), w(Mn) is still not too small and we can stop the195

algorithm with a constant approximation ratio. However, if w(Mn) < 1/2 · w(M1), it means the196

utility of the smallest bundle is much less than that of the largest bundle. Then we update the edge197

weights: Let H be the edges with weights no smaller than w(e1) where e1 is the edge in M1, and198

decrease their weights to 1/2 · w(e1). By repeating the above procedure, eventually we reach an199

allocation such that w(Mn) ≥ 1/2 · w(M1) or |M1| ≥ 2.

Algorithm 1: Approximately MMS Fair Allocation Algorithm for n Homogeneous Agents
Input: Instance I = (G,N) with G = (V,E;w).
Output: Allocation X = (X1, · · · , Xn).

1: For all e ∈ E, reset
w(e) = 2⌊logw(e)⌋.

2: Find a maximum matching M∗ in G. Denote by V ′ the set of unmatched vertices.
3: Find the greedy partition Γ(M∗) = (M1, · · · ,Mn) of M∗ such that w(M1) ≥ · · · ≥ w(Mn).
4: while w(M1) > 2 · w(Mn) and G has different weights do
5: Let e1 be the edge in M1 and H = {e ∈ E | w(e) ≥ w(e1)}.
6: Let w(e) = w(e1)/2 for all e ∈ H .
7: Re-compute a maximum matching M∗.
8: Re-set V ′ to be unmatched vertices by M∗.
9: Re-compute the greedy partition Γ(M∗) = (M1, · · · ,Mn) such that

w(M1) ≥ · · · ≥ w(Mn).
10: end while
11: Set Xi = V (Mi) for i = 1, · · · , n− 1.
12: Set Xn = V (Mn) ∪ V ′.
13: Return allocation (X1, · · · , Xn).

200

We are now ready to prove Theorem 3.1.201

Proof of Theorem 3.1. First, we show Algorithm 1 is well-defined and runs in polynomial time.202

Every time when the condition of the while loop holds, either the graph has different weights and an203

allocation is returned or the weights of the heaviest edges are decreased by 1/2k with some k ≥ 1.204

Thus the while loop is executed O(maxe∈E logw(e)) rounds.205

Next we prove the approximation ratio. By Lemma 3.4, we only need to consider the instance where206

the edge weights are powers of 2 and show the allocation is 1/4-approximate MMS fair. Denote by207

5

O = (O1, · · · , On) the optimal solution, where u(O1) ≥ · · · ≥ u(On) and MMS(I) = u(On). The208

first time when we reach the while loop, if w(M1) ≤ 2 · w(Mn),209

w(Mn) ≥
1

2
· w(M1) ≥

1

2
· u(On) =

1

2
·MMS(I),

where the second inequality holds because M∗ is a maximum matching in G. Thus the allocation is210

1/2-MMS. If all edges have the same weight, then by Lemma 3.2, the allocation is optimal.211

We move into the while loop if w(M1) > 2 · w(Mn) and the edge weights are not identical. Note212

that w(M1) > 2 · w(Mn) implies M1 contains a single edge denoted by e1. Otherwise consider213

the last edge added to M1 in the greedy partition, denoted by e′. Then w(M1 \ {e′}) ≤ w(Mn)214

and w(e′) ≤ w(Mn), which implies w(M1) ≤ 2 · w(Mn). After the while loop, denote by I ′ the215

instance, by w′(·) the new weights with new utility function u′(·), by O′ = (O′
1, · · · , O′

n) the new216

optimal solution and by M ′ the maximum matching with greedy partition (M ′
1, · · · ,M ′

n). Then we217

have the following claim, which is proved in the appendix.218

Claim 3.5. After each while loop, one of the following two cases holds true.219

• Case 1. w(e1) ≥ 2 ·MMS(I), then MMS(I ′) = MMS(I);220

• Case 2. w(e1) < 2 ·MMS(I), then 2 ·MMS(I ′) > MMS(I) and w′(M ′
1) ≤ 2 · w′(M ′

n).221

By Claim 3.5, the while loop will not execute Case 2 or it executes Case 1 for several times and222

then Case 2 for exactly once. If Case 2 is not executed, then the allocation is 1/2-MMS fair and the223

analysis is the same with the case when the while loop is not executed.224

If Case 2 is executed once, then by Claim 3.5,225

w′(M ′
n) ≥

1

2
· w′(M ′

1) ≥
1

2
·MMS(I ′) ≥ 1

4
·MMS(I).

Finally, by Lemma 3.4, the allocation is 1/8-MMS for any instance with arbitrary weights.226

Remark. When n = 2, we can improve Algorithm 1 and obtain a better approximation ratio of 2/3.227

Due to the space limit, we provide the refined algorithm in the appendix.228

3.2 Efficient and EF1 Allocations for Homogeneous Agents229

Recall the example shown in Figure 1. The maximum social welfare is sw∗ = ∆, but any allocation230

with bounded approximation ratio for MMS fairness has social welfare 2 ≪ ∆, which means to231

ensure MMS, we lose significant amount of efficiency. Note that the existence of EF1 allocations is232

guaranteed by the envy-cycle elimination algorithm designed by Lipton et al. [2004]. But the social233

welfare of the returned allocation does not have any guarantee. In this section, we aim at computing234

an EF1 allocation that also preserves high social welfare.235

Theorem 3.6. For any instance I = (G,N), Algorithm 2 returns an EF1 allocation with social236

welfare at least (2/3 + 2/(9n− 3)) · sw∗(I) in polynomial time.237

We prove Theorem 3.6 in the appendix, and in the following we briefly discuss the idea of Algorithm 2.238

We first introduce the EF1-graph, inspired by the envy-graph introduced in [Lipton et al., 2004].239

Given a (partial) allocation (X1, · · · , Xn), we construct the corresponding EF1-graph G = (N, E),240

where the nodes are agents (and thus are used interchangeably) and there is a directed edge from i to241

j if i envies j (or Xj) for more than one item,242

ui(Xi) < ui(Xj \ {v}) for every v ∈ Xj .

When the agents have identical utility functions, we have the following simple observation.243

Observation 3.7. The EF1-graph is acyclic; The in-degree of the agent with smallest utility is zero.244

Similar with Algorithm 1, in Algorithm 2, we first compute a maximum weighted matching M∗245

and let the corresponding unmatched vertices be V ′. If |M∗| ≤ n, by allocating each edge in M∗246

to a different agent and V ′ to one agent who has the smallest utility is EF1, since by removing a247

vertex from an edge, the remaining subgraph does not have edges any more. If |M∗| > n, we find a248

6

Algorithm 2: Computing EF1 Allocations with High Social Welfare for n Homogeneous Agents
Input: Instance I = (G,N) with G = (V,E;w).
Output: Allocation X = (X1, · · · , Xn).

1: Find a maximum matching M∗ in G. Denote by V ′ the set of unmatched vertices by M∗.
2: Find the greedy partition (M1, · · · ,Mn) of edges in M∗ such that w(M1) ≥ · · · ≥ w(Mn).
3: Set Xi = V (Mi) for i = 1, · · · , n.
4: if |M∗| ≤ n then
5: Let Xn = V (Mn) ∪ V ′.
6: Return (X1, · · · , Xn).
7: end if
8: Construct the EF1-graph G = (N, E) based on (X1, · · · , Xn).
9: Set Q be the agents with positive in-degree.

10: for i ∈ Q do
11: Let ei = (vi1, vi2) be the last edge added to Mi in the greedy-partition procedure.
12: Xi = Xi \ {vi1} and V ′ = V ′ ∪ {vi1}.
13: end for
14: for v ∈ V ′ do
15: Let i = argmini∈N u(Xi).
16: Set Xi = Xi ∪ {v}.
17: end for
18: Return (X1, · · · , Xn).

greedy-partition Γ(M∗) = (M1, · · · ,Mn) of M∗ such that w(M1) ≥ · · · ≥ w(Mn). However, by249

simply assigning Xi = V (Mi) for every i, it may not be EF1, which is illustrated in the appendix.250

To overcome this difficulty, we utilize the EF1-graph G = (N, E) on the partial allocation251

(V (M1), · · · , V (Mn)). Let Q ⊆ N be the set of agents who have positive in-degree, i.e., are252

envied by some agent for more than one item. By Observation 3.7, if G is nonempty, Q ̸= ∅ and253

n /∈ Q. Moreover, since Mn has the smallest weight in the greedy partition Γ(M∗), n has an edge254

to every agent in Q. We first consider the partial allocation after the for loop in Step 10, which is255

denoted by Y = (Y1, · · · , Yn). We can prove that Y is EF1, and moreover, it ensures the desired256

social welfare guarantee. Finally, the remaining steps preserve the EF1ness and can only increase the257

social welfare of the allocation. The formal analysis is deferred to the appendix.258

4 Heterogeneous Agents259

In this section, we discuss the general case of heterogeneous agents. We first show the negative260

results for MMS and EF1 allocations, and then focus on the special cases when we are able to obtain261

positive results. Due to space limit, all the results in this section are proved in the appendix.262

4.1 Negative Results for MMS and EF1 Allocations263

We present the main theorems below whose proofs are in the appendix.264

Theorem 4.1. No algorithm has bounded approximation guarantee for MMS fairness, even for the265

case of two agents with non-identical binary weight functions on the graph.266

Theorem 4.2. No algorithm has better than 1/n approximation of social welfare for EF1 fairness267

for heterogeneous agents.268

Theorem 4.1 is very strong in the sense that it excludes the possibility of designing algorithms with269

bounded approximation ratio for MMS even for the special cases of two-agent or binary weight270

functions. However, Theorem 4.2 retains this possibility for EF1, and we design polynomial-time271

algorithms to compute EF1 allocations that ensure constant fractions of the maximum social welfare272

for these two cases. In the appendix, we complement Theorem 4.2 with a positive result where we273

design an algorithm that has Ω(1/n2) approximation guarantee of social welfare for the general case.274

4.2 Binary Weight Functions275

7

Algorithm 3: Computing EF1 Allocations for n Heterogeneous Agents with Binary Weights
Input: Instance I = (G,N,w) with G = (V,E).
Output: Allocation X = (X1, · · · , Xn).

1: Initialize Xi ← ∅, i ∈ N . Let Mi be the maximum matching in G[Xi] for agent i. Denote by
G′ = (N, E) the envy-graph on X.

2: Let P = V \ (X1 ∪ · · · ∪Xn) be the set of unallocated items (called pool).
3: Partition agents i ∈ N into k groups A(X) = (A1, · · · , Ak) such that agents in the same group

have the same value, i.e., ui(Xi) = uj(Xj) for i, j ∈ Al and l ∈ [k]. Assume Al’s are ordered,
i.e., ui(Xi) < uj(Xj) for agents i ∈ At1 , j ∈ At2 and t1 < t2.

4: Let t← 1 and τ ← |A|.
5: while {t ≤ τ} do
6: // Case 1. Directly Allocate
7: if there exists an agent i ∈ At such that (1) there is an edge e in G[P] with wi(e) = 1 and (2)

allocating the two endpoints v1, v2 of e to agent i does not break EF1 then
8: Xi ← Xi ∪ {v1, v2}, P ← P \ {v1, v2}.
9: Update ui(Xi) for i ∈ N and the envy-graph G′.

10: Update the partition of agents in A.
11: Reset t← 1 and τ ← |A|.
12: // Case 2. Exchange and Allocate
13: else if there exists agent j ∈ N and i ∈ At such that j envies i and there exists a subset with

minimum size V ∗ ⊆ P in graph G such that ui(V
∗) = ui(Xi) then

14: Let V ∗ ⊆ P be a set with minimum size such that ui(V
∗) = ui(Xi).

15: Let V ∗
j ⊆ Xi be a set with minimum size such that uj(V

∗
j) = uj(Xj) + 1.

16: P ← (P \ V ∗) ∪Xj ∪ (Xi \ V ∗
j).

17: Xi ← V ∗, Xj ← V ∗
j .

18: Update ui(Xi) for i ∈ N and the envy-graph G′.
19: Update the partition of agents in A.
20: Reset t← 1 and τ ← |A|.
21: else
22: // Case 3. Skip the Current Agent
23: t← t+ 1.
24: end if
25: end while
26: Execute the envy-cycle elimination procedure on the remaining items P .
27: Return the allocation (X1, · · · , Xn).

We first show that if the agents have binary weight functions, we can compute an EF1 allocation whose276

social welfare is at least 1/3 fraction of the optimal social welfare. Before introducing our algorithm,277

we recall the envy-cycle elimination algorithm proposed by Lipton et al. [2004], which always returns278

an EF1 allocation. Given a (partial) allocation (X1, · · · , Xn), we construct the corresponding envy279

graph G′ = (N, E), where the nodes are agents (and thus are used interchangeably) and there is a280

directed edge from agent i to agent j if and only if ui(Xi) < ui(Xj). The envy-cycle elimination281

algorithm runs as follows. We first find an agent who is not envied by the others, and allocate a new282

item to her. If there is no such an agent, there must be a cycle in the corresponding envy graph. Then283

we resolve this cycle by reallocating the bundles: every agent gets the bundle of the agent that she284

envies in the cycle. We repeat resolving cycles until there is an unenvied agent. The above procedures285

continue until all the items are allocated. Note that in the execution of the algorithm, the agents’286

utilities can only increase, and the returned allocation is EF1.287

It is not hard to verify that the envy-cycle elimination algorithm does not have any social welfare288

guarantee. There are several reasons. First, the algorithm does not control which item should be289

allocated to the unenvied agent so that the agent may receive a set of independent vertices. Second,290

once an item is allocated it cannot be recalled so that we are not able to revise any bad decision we291

have made. To increase the social welfare, in each round of our algorithm, we try to allocate an edge292

(i.e., two items) to the agent i with the smallest value so that the social welfare can increase by 1.293

However, we need to be very careful by allocating two items which may break the EF1 requirement294

even if i is not envied by the others. If allocating an edge e to i makes some agent j envy i for more295

8

than one item, we check whether i can maintain her utility by selecting a bundle from unallocated296

items. If so, we execute exchange procedure by asking j to (properly) select a bundle from Xi and i297

to (properly) select a bundle from unallocated items so that the social welfare is increased by 1. All298

the items in Xi and the items in Xj that are not selected by i are returned to the algorithm. If not, we299

try to allocate an edge to the agent with the second smallest value by executing the above procedures,300

and so on. The description is in Algorithm 3 and we prove the following theorem in the appendix.301

Theorem 4.3. For any instance I = (G,N) where agents have binary weights, Algorithm 3 returns302

an EF1 allocation with social welfare at least 1/3 · sw∗(I) in polynomial time.303

4.3 Two Heterogeneous Agents304

We then discuss the case of two agents, and show that Algorithm 4 ensures at least 1/3 fraction of305

the optimal social welfare. Intuitively, in Algorithm 4, we first check whether there is a single edge306

e for which some agent i has value at least 1/3 · sw∗(I). If so, allocating e to i already ensures307

1/3 · sw∗(I). Moreover, this partial allocation is EF1 since the removal of one item in e results in no308

edges, and thus we can use the envy-cycle elimination algorithm to allocate the remaining vertices,309

which returns an EF1 allocation and can only increase the social welfare. Otherwise, we compute310

a social welfare maximizing allocation (M1,M2), i.e., u1(M1) + u2(M2) = sw∗(I). Without loss311

of generality, assume u1(M1) ≤ u2(M2). We temporarily allocate Mi to agent i for i = 1, 2. If the312

allocation is not EF1, since u1(M1) ≤ u2(M2), it can only be the case that agent 1 envies agent 2313

but agent 2 does not envy agent 1. Then we move items in agent 2’s bundle one by one to agent 1.314

It can be shown that there must be a time after which the allocation is EF1, and the first time when315

the allocation becomes EF1, the resulting social welfare must be at least 1/3 · sw∗(I). Formally, we316

have the following theorem. Interestingly, despite the simplicity of Algorithm 4, we can also show317

that there is no algorithm that has better than 1/3 approximation.318

Theorem 4.4. For any instance I with two heterogeneous agents, Algorithm 4 returns an EF1319

allocation with social welfare at least 1/3 · sw∗(I). Moreover, the approximation of 1/3 is optimal.320

Algorithm 4: EF1 Allocation with tight social welfare guarantee for 2 Heterogeneous Agents
Input: Instance I = (G,N,w) with G = (V,E).
Output: Allocation X = (X1, X2).

1: if there is e ∈ E such that wi(e) ≥ 1/3 · sw∗(I) for some i = 1, 2 then
2: Assign e to agent i and run envy-cycle elimination algorithm for the vertices.
3: else
4: Computing a social welfare maximizing allocation (M1,M2). Without loss of generality,

assume u1(M1) ≤ u2(M2), and assign Mi to agent i for i = 1, 2.
5: while agent 1 envies agent 2 for more than one item do
6: Reallocate some item v ∈ X2 to agent 1, i.e., X2 ← X2 \ {v} and X1 ← X1 ∪ {v}.
7: end while
8: end if
9: Return the allocation (X1, · · · , Xn).

5 Conclusion and Future Directions321

In this work, we study the fair (and efficient) allocation of graphical resources when the agents’322

utilities are determined by the weights of the maximum matchings in the obtained subgraphs. We323

provide a string of algorithmic results regarding MMS and EF1, but also leave some problems open.324

For example, for the cases of homogeneous agents and binary valuations, we believe EF1 allocations325

have better social welfare guarantee. It is also interesting to identify hard instances and study the326

efficiency limit of EF1 allocations. We can also improve the approximation ratio for the MMS327

allocation among homogeneous agents. Our work also uncovers many interesting future directions.328

Firstly, regarding MMS, although we show that there is no bounded multiplicative approximation,329

it may admit good additive or bi-factor approximations. Secondly, we only focus on the matching-330

induced utilities in this work, and it is intriguing to consider other combinatorial structures such as331

independent set, network flow and more. Thirdly, we can extend the framework to the fair allocation332

of graphical chores when agents have costs to complete the assigned items.333

9

References334

Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A. Voudouris. Fair335

division of indivisible goods: A survey. CoRR, abs/2202.07551, 2022.336

Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik Peters.337

Fractional hedonic games. ACM Trans. Economics and Comput., 7(2):6:1–6:29, 2019.338

Haris Aziz, Bo Li, Hervé Moulin, and Xiaowei Wu. Algorithmic fair allocation of indivisible items:339

A survey and new questions. CoRR, abs/2202.08713, 2022.340

Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In STOC, pages 31–40, 2006.341

Maksim Barketau, Erwin Pesch, and Yakov M. Shafransky. Minimizing maximum weight of subsets342

of a maximum matching in a bipartite graph. Discret. Appl. Math., 196:4–19, 2015.343

Siddharth Barman and Sanath Kumar Krishnamurthy. Approximation algorithms for maximin fair344

division. ACM Trans. Economics and Comput., 8(1):5:1–5:28, 2020.345

Xiaohui Bei, Xinhang Lu, Pasin Manurangsi, and Warut Suksompong. The price of fairness for346

indivisible goods. Theory Comput. Syst., 65(7):1069–1093, 2021.347

Vittorio Bilò, Ioannis Caragiannis, Michele Flammini, Ayumi Igarashi, Gianpiero Monaco, Dominik348

Peters, Cosimo Vinci, and William S. Zwicker. Almost envy-free allocations with connected349

bundles. In ITCS, volume 124 of LIPIcs, pages 14:1–14:21. Schloss Dagstuhl - Leibniz-Zentrum350

für Informatik, 2019.351

Anna Bogomolnaia and Matthew O. Jackson. The stability of hedonic coalition structures. Games352

Econ. Behav., 38(2):201–230, 2002.353

Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Dominik Peters. Fair354

division of a graph. In IJCAI, pages 135–141. ijcai.org, 2017.355

Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from356

equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.357

Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances358

in graph partitioning. In Algorithm Engineering, volume 9220 of Lecture Notes in Computer359

Science, pages 117–158. 2016.360

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing361

Wang. The unreasonable fairness of maximum nash welfare. ACM Trans. Economics and Comput.,362

7(3):12:1–12:32, 2019.363

Catherine H Crouch and Eric Mazur. Peer instruction: Ten years of experience and results. American364

journal of physics, 69(9):970–977, 2001.365

Edith Elkind and Michael J. Wooldridge. Hedonic coalition nets. In AAMAS (1), pages 417–424.366

IFAAMAS, 2009.367

Boaz Farbstein and Asaf Levin. Min-max cover of a graph with a small number of parts. Discret.368

Optim., 16:51–61, 2015.369

Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia. Fair algorithms for370

selecting citizens’ assemblies. Nature, pages 1–5, 2021.371

D. K. Foley. Resource Allocation and the Public Sector. Yale Econ. Essays, 7, 1967.372

Jugal Garg and Setareh Taki. An improved approximation algorithm for maximin shares. Artificial373

Intelligence, 300, 2021.374

Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Hadi375

Yami. Fair allocation of indivisible goods: Improvements and generalizations. In EC, pages376

539–556, 2018.377

10

Jonathan R. Goldman and Ariel D. Procaccia. Spliddit: unleashing fair division algorithms. SIGecom378

Exch., 13(2):41–46, 2014.379

Ayumi Igarashi and Dominik Peters. Pareto-optimal allocation of indivisible goods with connectivity380

constraints. In AAAI, pages 2045–2052. AAAI Press, 2019.381

M. Reza Khani and Mohammad R. Salavatipour. Improved approximation algorithms for the min-max382

tree cover and bounded tree cover problems. Algorithmica, 69(2):443–460, 2014.383

Çagri Koç, Tolga Bektas, Ola Jabali, and Gilbert Laporte. Thirty years of heterogeneous vehicle384

routing. Eur. J. Oper. Res., 249(1):1–21, 2016.385

Dominik Kress, Sebastian Meiswinkel, and Erwin Pesch. The partitioning min-max weighted386

matching problem. Eur. J. Oper. Res., 247(3):745–754, 2015.387

D. Kurokawa, A. Procaccia, and J. Wang. Fair enough: Guaranteeing approximate maximin shares.388

Journal of the ACM, 65(2):8, 2018.389

Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair390

allocations of indivisible goods. In EC, pages 125–131. ACM, 2004.391

László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical392

Soc., 2009.393

Flávio Keidi Miyazawa, Phablo F. S. Moura, Matheus J. Ota, and Yoshiko Wakabayashi. Partitioning394

a graph into balanced connected classes: Formulations, separation and experiments. Eur. J. Oper.395

Res., 293(3):826–836, 2021.396

Hervé Moulin. Fair division and collective welfare. MIT Press, 2003.397

Sivakumar Rathinam, R. Ravi, J. Bae, and Kaarthik Sundar. Primal-dual 2-approximation algorithm398

for the monotonic multiple depot heterogeneous traveling salesman problem. In SWAT, volume399

162 of LIPIcs, pages 33:1–33:13, 2020.400

Warut Suksompong. Fairly allocating contiguous blocks of indivisible items. Discret. Appl. Math.,401

260:227–236, 2019.402

Vera Traub and Thorben Tröbst. A fast (2 + 2/7)-approximation algorithm for capacitated cycle403

covering. In IPCO, pages 391–404. Springer, 2020.404

Xiaowei Wu, Bo Li, and Jiarui Gan. Budget-feasible maximum nash social welfare allocation is405

almost envy-free. In IJCAI, 2021.406

Hande Yaman. Formulations and valid inequalities for the heterogeneous vehicle routing problem.407

Math. Program., 106(2):365–390, 2006.408

11

Checklist409

1. For all authors...410

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s411

contributions and scope? [Yes]412

(b) Did you describe the limitations of your work? [Yes]413

(c) Did you discuss any potential negative societal impacts of your work? [N/A]414

(d) Have you read the ethics review guidelines and ensured that your paper conforms to415

them? [Yes]416

2. If you are including theoretical results...417

(a) Did you state the full set of assumptions of all theoretical results? [Yes]418

(b) Did you include complete proofs of all theoretical results? [Yes]419

3. If you ran experiments...420

(a) Did you include the code, data, and instructions needed to reproduce the main experi-421

mental results (either in the supplemental material or as a URL)? [N/A]422

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they423

were chosen)? [N/A]424

(c) Did you report error bars (e.g., with respect to the random seed after running experi-425

ments multiple times)? [N/A]426

(d) Did you include the total amount of compute and the type of resources used (e.g., type427

of GPUs, internal cluster, or cloud provider)? [N/A]428

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...429

(a) If your work uses existing assets, did you cite the creators? [N/A]430

(b) Did you mention the license of the assets? [N/A]431

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]432

433

(d) Did you discuss whether and how consent was obtained from people whose data you’re434

using/curating? [N/A]435

(e) Did you discuss whether the data you are using/curating contains personally identifiable436

information or offensive content? [N/A]437

5. If you used crowdsourcing or conducted research with human subjects...438

(a) Did you include the full text of instructions given to participants and screenshots, if439

applicable? [N/A]440

(b) Did you describe any potential participant risks, with links to Institutional Review441

Board (IRB) approvals, if applicable? [N/A]442

(c) Did you include the estimated hourly wage paid to participants and the total amount443

spent on participant compensation? [N/A]444

12

	Introduction
	Our Results
	Related Works

	Preliminaries
	Homogeneous Agents
	MMS Fair Allocations for Homogeneous Agents
	Efficient and EF1 Allocations for Homogeneous Agents

	Heterogeneous Agents
	Negative Results for MMS and EF1 Allocations
	Binary Weight Functions
	Two Heterogeneous Agents

	Conclusion and Future Directions
	Missing Proofs of Section 3
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Claim 3.5
	Proof of Theorem 3.6

	Missing Proofs of Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	The Proof
	Tight Example

	Proof of Theorem 4.4
	The Proof
	Tight Example

	EF1 Allocation with Bounded Social Welfare Guarantee
	Nash Social Welfare and EF1 Allocations
	An Improved MMS Allocation Algorithm for Two Homogeneous Agents
	Examples
	An Example where Envy-cycle Elimination Algorithm does not Work
	e1 May not Have the Largest Weight

