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ABSTRACT

Multi-Resolution Hash Encoding (MHE), the foundational technique behind In-
stant Neural Graphics Primitives, provides a powerful parameterization for neural
fields. However, its spatial behavior lacks rigorous understanding from a physical
systems perspective, leading to reliance on heuristics for hyperparameter selec-
tion. This work introduces a novel analytical approach that characterizes MHE
by examining its Point Spread Function (PSF), which is analogous to the Green’s
function of the system. This methodology enables a quantification of the encod-
ing’s spatial resolution and fidelity. We derive a closed-form approximation for
the collision-free PSF, uncovering inherent grid-induced anisotropy and a loga-
rithmic spatial profile. We establish that the idealized spatial bandwidth, specif-
ically the Full Width at Half Maximum (FWHM), is determined by the average
resolution, Navg. This leads to a counterintuitive finding: the effective resolution
of the model is governed by the broadened empirical FWHM (and therefore Navg),
rather than the finest resolution Nmax, a broadening effect we demonstrate arises
from optimization dynamics. Furthermore, we analyze the impact of finite hash
capacity, demonstrating how collisions introduce speckle noise and degrade the
Signal-to-Noise Ratio (SNR). Leveraging these theoretical insights, we propose
Rotated MHE (R-MHE), an architecture that applies distinct rotations to the input
coordinates at each resolution level. R-MHE mitigates anisotropy while maintain-
ing the efficiency and parameter count of the original MHE. This study establishes
a methodology based on physical principles that moves beyond heuristics to char-
acterize and optimize MHE.

1 INTRODUCTION

Multi-Resolution Hash Encoding (MHE) (Müller et al., 2022), the central innovation underlying
Instant Neural Graphics Primitives (Instant-NGP), has catalyzed significant advancements in neu-
ral fields, enabling accelerated optimization and real-time rendering for applications such as Neural
Radiance Fields (NeRF) (Mildenhall et al., 2020) and Signed Distance Functions (SDFs). This
even extends beyond computer graphics and was applied to PINNs (Huang & Alkhalifah, 2024) and
physical designs (Dai et al., 2025). MHE offers a compact and efficient parameterization; however,
its behavior is critically dependent on hyperparameters, including the number of levels L, growth
factor b, resolutions (Nmax, Nmin), and hash table capacity T . These parameters are typically se-
lected using generalized heuristics. Despite extensive research into neural field architectures (Sun
et al., 2022; Chen et al., 2022; Fridovich-Keil et al., 2023) and anti-aliasing techniques (Greer et al.,
2021), a substantial gap persists: the study of MHE, and NeRF models more generally, currently
lacks rigorous analysis from a physical systems perspective.

In this work, we introduce a novel methodology to characterize and understand the performance of
MHE by analyzing its Point Spread Function (PSF). Analogous to measuring the Green’s function
of a physical system, the PSF characterizes the model’s response when optimized to represent an
idealized point source (Figure 1b). This approach permits the rigorous quantification of effective
spatial resolution and the identification of performance issues that often contradict intuition derived
from the architecture’s specifications. We isolate the encoding by operating in a linearized decoder
regime, a framework motivated by kernel perspectives (Jacot et al., 2018) and spectral analysis (Tan-
cik et al., 2020).
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Figure 1: Overview of MHE Characterization and Optimization. (a) The MHE architecture
utilizes L grid levels with resolutions growing by a factor b. The encoding e(x) is passed to an MLP
gθ. We characterize the system by optimizing for a point constraint and measuring the resulting
Point Spread Function (PSF). (b) This analysis reveals inherent grid-induced anisotropy (narrower
along axes) and optimization-induced broadening, establishing that the effective resolution (FWHM)
scales with 1/Navg. (c) To mitigate anisotropy, we propose Rotated MHE (R-MHE), which applies
distinct rotations at each resolution level, leading to a more isotropic PSF.

Our analysis begins with the examination of the PSF of the idealized, collision free MHE. We
derive a closed form approximation demonstrating that the PSF exhibits logarithmic radial decay
and significant grid induced anisotropy, inherited from the underlying interpolation kernels (Keys,
1981). Theoretically, the idealized Full Width at Half Maximum (FWHM) is determined by the
average resolution, Navg.

We confirm these trends through numerical experiments, which reveal that optimization dynamics
induce significant spatial broadening compared to the idealized minimum norm prediction. This
confirms that the effective two point resolution of the model is substantially lower then Nmax and
governed by the broadened empirical FWHM (and thus Navg).

We further investigate the impact of finite hash capacity, demonstrating how collisions introduce
speckle-like side lobes and degrade the Signal-to-Noise Ratio (SNR). Informed by our comprehen-
sive PSF analysis, we demonstrate how these insights can be leveraged to improve reconstruction
quality. We introduce Rotated MHE (R-MHE) (Figure 1c), an architecture that applies distinct ro-
tations to the input coordinates at each resolution level. By utilizing the existing multi-resolution
structure, R-MHE improves isotropy without requiring additional hash tables or parameters, main-
taining the efficiency of the original MHE.

Contributions. This work establishes a new framework based on physical principles for analyzing
MHE, providing several key advancements:

• We derive a closed-form approximation for the MHE Point Spread Function, rigorously character-
izing its anisotropic and logarithmic spatial profile, and identifying the average resolution, Navg,
as the principal determinant of the idealized FWHM.

• We reveal and characterize optimization-induced spatial broadening, demonstrating theoretically
and empirically that it arises from spectral bias.

• We provide an evaluation of the impact of hash collisions on the Signal-to-Noise Ratio (SNR).
• We introduce Rotated MHE (R-MHE), a novel, parameter-free modification that improves

isotropy by applying distinct rotations at each resolution level.
• We validate a principled methodology guided by the PSF analysis for hyperparameter selection

that demonstrably outperforms standard heuristics.

2 BACKGROUND AND PRELIMINARIES

2.1 RELATED WORK

Our analysis draws upon and contributes to several interconnected areas of research.

2
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Neural Fields, Encodings, and Spectral Analysis. The introduction of NeRF established
coordinate-based volumetric rendering (Mildenhall et al., 2020). Positional encodings, including
Fourier features (Tancik et al., 2020) and periodic activations (Sitzmann et al., 2020), are known
to shape optimization dynamics and frequency bias (Rahaman et al., 2018). Adopting a Neural
Tangent Kernel (NTK) viewpoint, where linearized training dynamics justify the analysis of an en-
coding’s induced kernel (Jacot et al., 2018), we utilize this theoretical lens to derive an explicit PSF
for MHE (Müller et al., 2022).

Explicit Grids and Factorized Structures. Researchers have explored replacing or augmenting
MLP decoders with explicit spatial representations, including voxel grids (Sun et al., 2022; Peng
et al., 2022), tensor factorizations (Chen et al., 2022), and planar factorizations (Fridovich-Keil
et al., 2023). While MHE is widely adopted, extensions such as Dictionary Fields (Chen et al.,
2023) have been proposed to improve expressivity. Our work is complementary; R-MHE improves
the underlying grid structure and could potentially be integrated with these extensions. We aim to
elucidate how MHE behaves spatially and provide principles for its optimization.

Interpolation Kernels and Anisotropy. The separable tent kernel underlying multilinear inter-
polation (Keys, 1981; Thevenaz et al., 2000) inherently induces differences in effective blur along
axes versus diagonals. We demonstrate that MHE inherits these anisotropies across multiple scales,
resulting in direction-dependent FWHM and resolution limits even without hash collisions.

Hashing and Collisions. Spatial hashing has a long history in computer graphics (Lefebvre &
Hoppe, 2006) and real-time reconstruction (Nießner et al., 2013). Our collision analysis formalizes
how finite capacity hash tables translate into PSF speckle and SNR loss within MHE.

2.2 MHE ARCHITECTURE REVIEW

The MHE aims to learn a function f(x) = gθ(e(x)). It utilizes L resolution levels defined by
Nl = Nmin · bl. At each level l, features are retrieved from a table Fl of size T using a spatial
hash function H and multilinear interpolation. The interpolation kernel K(u) is constructed as the
product of 1D tent functions: K(u) =

∏D
d=1 max(0, 1 − |ud|). Consequently, the spatial kernel at

level l is given by Kl(x) = K(Nlx).

The idealized spatial response of the encoding, averaged over all possible grid alignments, is char-
acterized by the induced kernel Bl(x), which is the auto-correlation of the interpolation kernel:
Bl(x) = (Kl ∗Kl)(x). This results in a separable cubic B-spline kernel (Thevenaz et al., 2000).

3 CHARACTERIZING THE MHE SPATIAL KERNEL

We analyze the Point Spread Function (PSF) to characterize the intrinsic spatial behavior of the
MHE architecture, examining the system’s response when optimized under sparse constraints. To
isolate the properties of the encoding from the influence of the subsequent MLP decoder gθ, we
assume the MLP can be approximated by its linearization, f(x) ≈ We(x). This is justified by
experiments regarding MLP depth (Appendix D.4).

3.1 THE IDEALIZED, COLLISION FREE PSF

We first consider the optimization process for a single point constraint L = (f(x0) − A)2. In
this idealized analysis, we assume the absence of hash collisions (infinite T ). Under the linearized
framework and the minimum norm assumption, the responsibility is distributed equally across all L
levels. The resulting idealized PSF PIdeal(x) is the average superposition of the normalized induced
kernels B̂l(x) (the cubic B-spline, Section 2.2):

PIdeal(x) =
1

L

L−1∑
l=0

B̂l(x− x0) (1)

3
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Figure 2: Numerical Validation of the MHE PSF (2D). We analyze the empirical PSF (solid lines)
compared to the broadened theoretical prediction (dotted lines, incorporating the total empirical
broadening βemp ≈ 3.0). (a) Varying L (fixed b = 1.5). (b) Varying b (fixed L = 10). (Columns 1 &
2) Cross-sections along the Axis and Diagonal show characteristic anisotropy (broader on diagonal).
The broadened theory accurately matches the empirical decay. (Column 3) Relative FWHM vs.
angle confirms the B-spline anisotropy (narrower along axes, θ = 0). (Column 4) The empirical
FWHM aligns well with the theoretical trends dictated by Navg. Colors indicate the varied parameter
(L or b).

Generalized Closed-Form Approximation and Anisotropy. The induced kernel B̂(x) (cubic B-
spline) is separable but inherently anisotropic. We derive a generalized closed-form approximation
by approximating the summation with an integral, utilizing the Taylor expansion of the B-spline
kernel near the center (Appendix A.3).

Let v = Nminx be the normalized position. The closed-form approximation near the center can be
expressed as:

PIdeal(v) ≈
1

L ln(b)

[
− ln(∥v∥) + CD −AD(v) +O(v2)

]
(2)

This expression reveals a dominant logarithmic decay profile (− ln(∥v∥)) modulated by an
anisotropy factor AD(v) specific to the B-spline kernel. As proven in Appendix A.3, the B-spline
kernel is narrower along the axes.

FWHM and Average Resolution. The Full Width at Half Maximum (FWHM) is direction-
dependent. We define the inherent broadening factor of the idealized induced kernel as βideal. The
FWHM of the 1D cubic B-spline kernel is numerically calculated to be βideal ≈ 1.18. The FWHM
of the composite PSF along the axes scales proportionally to the average resolution Navg (Appendix
A.3):

∆Axis, Ideal ≈ βideal/Navg ≈ 1.18/Navg (3)

The idealized spatial bandwidth is dictated by Navg, while the FWHM along the diagonals is com-
paratively wider.

3.2 EMPIRICAL VALIDATION AND OPTIMIZATION-INDUCED BROADENING

We validate these theoretical results using a customized 2D implementation based on the Instant-
NGP framework. We configure MHE networks (varying L and b) with a sufficiently large T to
minimize collisions, and optimize for a single point objective L = (f(0)− 1)2.

Empirically, we observe that the realized PSF, PEmpirical(x), is significantly broader than the ideal-
ized minimum-norm prediction PIdeal(x). We characterize this additional broadening by introducing
an optimization-induced spatial broadening factor βopt, such that PEmpirical(x) ≈ PIdeal(x/βopt). Be-

4
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cause the idealized B-spline model already accounts for the inherent anisotropy, the optimization-
induced broadening βopt can be accurately modeled as isotropic.

We define the total empirical broadening factor βemp such that the empirical FWHM along the axis
is ∆Axis, Emp = βemp/Navg. This combines the idealized broadening and the optimization-induced
broadening:

βemp = βideal · βopt (4)

Spectral Bias. This optimization-induced broadening (βopt > 1) occurs because the optimization
process (e.g., using Adam) does not converge to the minimum-norm solution. Gradient-based op-
timization exhibits implicit biases, often referred to as spectral bias (Rahaman et al., 2018), where
lower frequencies are learned preferentially. This leads the optimization trajectory to a solution
where coarse features (low Nl) are prioritized over fine features. This effective re-weighting towards
lower frequencies results in the observed spatial broadening. We provide a theoretical derivation in
Appendix D, modeling the weights as wl ∝ (Nl)

−γ , where γ is the spectral bias exponent. We
prove that βopt increases monotonically with γ, and argue that γ (and thus βopt) increases with the
spatial dimension D.

Characterizing the Broadening Factors. We consistently observe a total empirical broadening
of βemp ≈ 3.0 across various configurations of L and b when using the Adam optimizer (Figure 2).

To understand the sensitivity of βopt, we conducted experiments varying the optimizer, MLP archi-
tecture, and training dynamics (Appendix D.4, D.5). We found that βopt is primarily dependent on
the optimizer choice (e.g., corresponding to βemp ≈ 3.0 for Adam variants in 2D and 3D, Fig. 10),
but is remarkably stable across hyperparameters and insensitive to the MLP depth. This stability
confirms that βopt is a robust characteristic of the optimization dynamics for a given setup.

Figure 2 compares the empirical PSF with the theoretical predictions. We observe excellent agree-
ment between the empirical results (solid lines) and the broadened theory (dotted lines, incorporating
βemp ≈ 3.0). The characteristic anisotropy (broader on diagonals) predicted by the B-spline model
is clearly visible (Columns 1-3). Furthermore, the empirical decay confirms the logarithmic profile
predicted by the closed-form approximation (Eq. 2), and the scaling of the FWHM with respect to
L and b aligns with the theoretical trends (Column 4).

3.3 RESOLUTION LIMITS AND TWO POINT INTERACTIONS

We analyze the system’s behavior when optimized for two closely spaced point constraints, xA

and xB , separated by distance d. Under the linearized assumption, the reconstruction R(x) is the
superposition of the individual PSFs.

Constructive Interference: Idealized vs. Empirical Resolution. The resolution limit dcrit
(Rayleigh criterion) is the minimum distance such that a dip exists between two peaks. In the
idealized minimum-norm configuration (Appendix A.5), the smoothness of the B-spline kernel im-
plies the theoretical resolution limit is infinitesimal. However, our empirical analysis reveals that
the practical resolution limit is dictated by the broadened empirical PSF (Section 3.2). The ability
to resolve two points is therefore governed by the empirical FWHM, which scales with 1/Navg.

Destructive Interference and the Dipole Response. For a spatial dipole, R(x) ≈ P (x− xA)−
P (x − xB). When d is small, R(x) ≈ d · ∇P (x). We find that the spatial behavior and extent
of the dipole response are characterized by the empirical FWHM of the underlying PSF, due to the
optimization induced broadening. When the separation is smaller than FWHM, the maximum values
no longer appear at the points and artifacts appear.

Numerical Validation: Two-Point Interactions. We extend the 2D experimental setup, optimiz-
ing for two point constraints while varying MHE parameters and separation d. For constructive
interference (Figure 3(a)), a significant dip emerges when the separation is approximately equal to
the empirical FWHM. We empirically determine the critical distance dcrit across various configu-
rations and find a direct linear relationship with the FWHM (Figure 3(b)). This confirms that the
practical two-point resolution limit is determined by the empirical FWHM (scaling with 1/Navg),

5
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Figure 3: Empirical Analysis of Two-Point Interactions (2D). We analyze resolution by opti-
mizing for two nearby points, normalizing separation by f = d/FWHM. (a) The midpoint value
between two constructive peaks drops significantly when d ≈ FWHM. (b) The empirically measured
critical distance dcrit scales linearly with the FWHM across various MHE configurations, confirm-
ing that FWHM (Navg) dictates the practical resolution limit. (c, d) Constructive and destructive
(dipole) interference profiles. The consistent shape confirms that the FWHM characterizes the spa-
tial response.
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Figure 4: Quantitative Analysis of Collision Effects on SNR (2D). We analyze the SNR of the
empirical PSF as a function of collision ratio and hash table size T . (a) Impact of varying the
number of levels L (fixed b = 1.5). (b) Impact of varying the growth factor b (fixed L = 10). In all
cases, SNR degrades rapidly at high collision ratios (low T ). Higher L or b generally improves the
achievable SNR for a fixed T . Colors indicate the varied parameter.

not Nmax. For the dipole configuration (Figure 3(d)), the profiles exhibit a consistent shape charac-
terized by the FWHM, illustrating that the spatial extent of the dipole response is also governed by
Navg.

4 THE IMPACT OF FINITE HASH CAPACITY

Having characterized the inherent spatial properties of the MHE kernel, we now analyze the effects
of practical memory constraints. In real implementations, the hash table capacity T is finite, leading
to collisions where different spatial vertices map to the same entry in the feature table Fl.

4.1 MODELING HASH COLLISIONS AND SPECKLE

When vertices collide, they share the same feature vector. For a single point objective at x0, the
optimized feature vector Fl

i becomes proportional to the sum of the interpolation weights of all
colliding vertices Cl

i evaluated at the target point:

Fl
i ∝

∑
v∈Cl

i

Kl(v − x0) (5)

A vertex v near x0 might collide with a spatially distant vertex v′. The optimized feature is now
inadvertently activated when querying v′. This mechanism causes unintended ”ghost” responses
far from the center of the PSF, resulting in spurious side lobes or speckle patterns in the spatial
response. We model the resulting PSF as PCollision(x) = PIdeal(x) + n(x). The severity of the
noise n(x) depends strongly on the collision ratio (load factor). As the collision ratio increases, the
variance of n(x) increases, and the Signal to Noise Ratio (SNR) decreases.

6
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4.2 NUMERICAL VALIDATION OF COLLISION EFFECTS

We investigate the impact of collisions experimentally by training a 2D MHE network with a single
point objective while systematically varying T , L, and b. Figure 4 summarizes the impact of these
parameters on the SNR. Across all configurations, increasing the collision ratio eventually leads to a
significant degradation in SNR. We observe that increasing L (Panel a) or b (Panel b) generally im-
proves the achievable SNR for a fixed capacity T . This suggests that distributing the representation
across more levels or with greater separation enhances robustness, provided that T is sufficient.

5 ROTATED MHE (R-MHE)

Our analysis identified that the reliance on axis-aligned grids in standard MHE leads to inherent
anisotropy (Section 3.1). This is undesirable in applications like NeRF where viewing angles vary
continuously, or in image regression where features may not align with the axes. To address this
limitation, we propose the Rotated MHE (R-MHE) architecture.

5.1 MOTIVATION AND ARCHITECTURE

R-MHE leverages the existing multi-resolution structure of MHE. Instead of using a single rotation
for the entire encoding or requiring multiple independent hash tables, R-MHE applies a distinct
rotation matrix Rl to the input coordinates x specifically at each resolution level l. The encoding
process at level l is modified as follows:

el(x) = Interpolate(Fl,H(⌊NlRlx⌉)) (6)

This model utilizes the same hash function H and feature tables Fl as standard MHE, maintaining
the exact memory footprint, parameter count, and computational efficiency of the original MHE
architecture.

5.2 ROTATION STRATEGIES

The key to R-MHE is selecting a set of rotations {Rl} that maximizes the diversity of grid orienta-
tions across the levels.

2D Rotation Strategy. In 2D, we employ a progressive rotation strategy. We define a base rotation
angle θ, and set the rotation at level l to be Rl = Rot(l · θ). This ensures that subsequent levels are
oriented differently, maximizing the angular coverage over the L levels. We analyze the impact of
the choice of θ in Section 5.4.

3D Rotation Strategy. In 3D, we aim for uniform sampling of the rotation space SO(3). We
utilize the vertex orientations of regular polyhedra (tetrahedron, cube, octahedron, icosahedron) to
define a set of canonical directions. The rotations {Rl} are chosen to align the grid axes with these
directions, cycle through the vertices of one chosen polyhedron type across the levels L (Details in
Appendix A.6).

5.3 THEORETICAL BENEFITS: IMPROVED ISOTROPY

The R-MHE architecture offers significant advantage of improved isotropy derived directly from our
PSF analysis.

The resulting idealized PSF of R-MHE is the superposition of the rotated induced kernels:

PR-MHE(x) =

L−1∑
l=0

1

L
B̂l(Rl(x− x0)) (7)

where the rotations are applied at each level. This averaging process across differently oriented
levels effectively mitigates the angular dependencies inherent in the standard MHE, leading to a
more uniform spatial resolution across different orientations.
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5.4 EXPERIMENTAL VALIDATION OF R-MHE

We validate the benefits of the R-MHE architecture using the established numerical framework
and a practical 2D application. We analyze the impact of the base rotation angle θ. We define the
strategy by the parameter M, such that θ = 90deg /M . M represents the effective number of unique
orientations sampled within the first quadrant.

Quantifying Isotropy. We conducted experiments to measure the PSF for standard MHE (M = 1)
and R-MHE with increasing M (up to 16). The objective was to quantify the improvement in
isotropy (measured by the Anisotropy Ratio, the ratio of the maximum to minimum distance to
center across directions at different levels). Analysis of this ratio and the kernels in 5 (a) and (b)
reveals that for this averaging contibutes to better isotropy for moderate M . This trend suggests
that while increasing M improves isotropy by diversifying orientations, excessively large M would
cause L levels to be insufficient to effectively average a very large number of unique orientations,
potentially reducing the effectiveness of the rotation strategy. From M = 1 in 5 (a) it is evident that
the anisotropy ratio of 1.17 proven in A.4 holds across many different levels.
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Figure 5: R-MHE Validation: Isotropy and 2D Image Regression. We analyze the impact of
increasing the effective number of rotations M . (a) Isotropy vs M. The Anisotropy Ratio decreases
and then increases as M increases, demonstrating a more isotropic PSF for moderate M . Colors
indicate the amplitude level at which the anisotropy ratio is measured (e.g., 0.5 corresponds to
FWHM). (b) Visualization of the PSF zoom for different M . The shape becomes more circular
(isotropic) as M increases. (c-e) Qualitative comparison of 2D image regression results (zoomed
view). R-MHE improves reconstruction quality by mitigating artifacts arising from the anisotropic
kernel.

Application: 2D Image Regression. To demonstrate the practical advantages of R-MHE, we
evaluated its performance on a 2D image regression task using three high-resolution images (Details
in Appendix B). We follow the standard configuration: L = 16 levels and F = 2 features per level.

We employed our theoretical insight that the empirical FWHM (governed by Navg and βemp) dictates
the practical resolution limit (Section 3.3). Accordingly, we calculated the theoretical growth factor
btheory such that the empirical FWHM along the axes direction, βemp/Navg, matches the spatial extent
of a single pixel. We used the validated total empirical broadening factor βemp = 3.0 (Section 3.2).

To validate this principled approach and find the empirical optimum, we performed experiments
comparing btheory against neighboring values (btheory ± 0.1,±0.2). The results (Appendix B.3, Ta-
ble 5) show that the empirical optimum (bopt) consistently occurred near, but slightly below, btheory
(specifically btheory − 0.1 or −0.2). This indicates the optimal effective kernel size is 2.5 pixels.
This is physically intuitive, as natural images possess spatial coherence and are rarely composed of
pixel-perfect high-frequency noise; a slightly broader kernel better matches the signal bandwidth
and provides beneficial regularization.

We compare standard MHE (M = 1) and R-MHE (M ∈ {2, 4, 8}) using the respective empirically
optimized bopt for each configuration. All experiments were run with 5 random seeds. The results,
summarized in Table 1 and illustrated in Figure 5(c-e), highlight the improvement achieved by R-
MHE. The standard MHE baseline achieves an average PSNR of 23.88 dB. R-MHE consistently
improves performance, reaching a peak average PSNR of 24.82 dB at M = 8, an improvement of
+0.94 dB. This gain demonstrates that the improved isotropy provided by R-MHE effectively miti-
gates artifacts caused by the anisotropic kernel, at no additional cost in parameters or computation.
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Table 1: 2D Image Regression performance (Average PSNR ± Std Dev in dB) using the empirically
optimized growth factor b. R-MHE significantly outperforms the standard MHE baseline (M = 1)
with zero overhead. (L=16, F=2).

Method (Effective Rotations M) Average PSNR (dB) ↑
Standard MHE (M=1) 23.88 ± 0.02
R-MHE (M=2) 24.62 ± 0.01
R-MHE (M=4) 24.69 ± 0.01
R-MHE (M=8) 24.82 ± 0.01

6 APPLICATIONS TO 3D NEURAL FIELDS AND SDFS

Having validated the benefits of R-MHE in 2D, we now evaluate its impact on complex 3D ap-
plications: Neural Radiance Fields (NeRF) and Signed Distance Functions (SDFs). We aim to
demonstrate the practical utility of our PSF analysis for hyperparameter selection and to assess the
performance of R-MHE in 3D using the polyhedral rotation strategy. We utilize a customized im-
plementation based on the Instant-NGP framework (Müller et al., 2022).

6.1 EXPERIMENTAL SETUP

We follow the standard Instant-NGP configuration (L = 16, F = 2). All models were trained for
20,000 steps using the Adam optimizer (Details in Appendix C). We compare standard MHE against
R-MHE using the 3D polyhedral rotation strategies (Tetrahedron, Cube, Octahedron, Icosahedron).
All experiments were run with 5 random seeds.

Configuration Strategies. We evaluate two strategies for selecting the growth factor b. The Base-
line Heuristic utilizes the default approach in Instant-NGP. The PSF Guided (Theory) strategy is de-
rived from our analysis (Section 3); b is calculated such that the empirical FWHM (using βemp = 3.0)
matches the target spatial resolution.

6.2 RESULTS: NEURAL RADIANCE FIELDS (NERF)

We conduct experiments on the 8 scenes of the Synthetic NeRF dataset (Mildenhall et al., 2020).
The average reconstruction quality (PSNR) is summarized in Table 2.

Table 2: 3D NeRF reconstruction performance (Average PSNR ± Std Dev in dB) on the Synthetic
NeRF dataset (8 scenes). We compare configuration strategies and R-MHE rotation types.

Configuration Method Average PSNR (dB) ↑

Baseline Heuristic (Optimized b)

Standard MHE 35.346 ± 0.105
R-MHE (Tetra) 35.472 ± 0.114
R-MHE (Cube) 35.445 ± 0.134
R-MHE (Octa) 35.449 ± 0.115
R-MHE (Icosa) 35.479 ± 0.134

PSF Guided (Theory b)

Standard MHE 35.329 ± 0.100
R-MHE (Tetra) 35.396 ± 0.128
R-MHE (Cube) 35.404 ± 0.121
R-MHE (Octa) 35.409 ± 0.139
R-MHE (Icosa) 35.440 ± 0.119

Configuration Strategies: Heuristic vs. PSF Guided. The Baseline Heuristic (empirically opti-
mized bopt) performs very similarly to the PSF Guided (Theory) configuration (btheory ≈ 1.38). For
Standard MHE, the theoretical configuration achieves 35.329 dB, matching the empirical optimum
of 35.346 dB (Table 2). As visualized in the detailed parameter sweeps in Appendix C.2, the theo-
retical prediction (btheory ≈ 1.38) consistently falls precisely within the regime of best performance
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across all scenes. This validates that our PSF analysis, incorporating the total empirical broadening
factor βemp = 3.0, successfully identifies optimal hyperparameters a priori, eliminating the need for
costly empirical grid searches.

R-MHE Performance. We observe that R-MHE consistently maintains or slightly improves the
performance of standard MHE across both configuration strategies. For the Baseline configuration,
the best R-MHE variant (Icosa, 35.479 dB) shows a marginal improvement compared to Standard
MHE (35.346 dB). The modest nature of the gains in this 3D scenario, compared to the improve-
ments observed in 2D (Section 5.3), may be attributed to the inherent view averaging in NeRF
rendering, which can partially mitigate the impacts of anisotropy. Nonetheless, R-MHE provides
these results at zero overhead while offering the theoretical benefit of improved isotropy.

6.3 RESULTS: SIGNED DISTANCE FUNCTIONS (SDF)

We further evaluate R-MHE on the task of learning Signed Distance Functions. We utilize three
standard benchmark meshes: Armadillo, Bunny, and Spot. We measure the Intersection over Union
(IoU) to quantify reconstruction quality (higher is better). The results for the optimal resolution
configuration (b ≈ 1.18) are summarized in Table 3.

Table 3: 3D SDF reconstruction performance (Intersection over Union, IoU ↑) on benchmark
meshes. All methods achieve near-perfect reconstruction (> 0.99), indicating performance satu-
ration on this task.

Method Armadillo Bunny Spot Average IoU
Standard MHE 0.9994 ± 0.0002 0.9966 ± 0.0001 0.9998 ± 0.0001 0.9986
R-MHE (Tetra) 0.9994 ± 0.0002 0.9966 ± 0.0001 0.9998 ± 0.0001 0.9986
R-MHE (Cube) 0.9995 ± 0.0001 0.9966 ± 0.0001 0.9998 ± 0.0001 0.9986
R-MHE (Octa) 0.9995 ± 0.0001 0.9966 ± 0.0001 0.9998 ± 0.0001 0.9986
R-MHE (Icosa) 0.9994 ± 0.0002 0.9966 ± 0.0001 0.9998 ± 0.0001 0.9986

Performance Saturation. As shown in Table 3, the results exhibit clear performance saturation.
At the high spatial resolutions provided by the MHE configuration (b ≈ 1.18), the capacity of the
hash grid is sufficient to resolve the geometry with extreme precision, yielding IoU scores exceed-
ing 0.996 for all meshes across all methods. In this saturated regime, the reconstruction error is
dominated by the finite sampling resolution rather than the encoding’s anisotropy.

7 CONCLUSION

This work addresses the deficiency of physical understanding in the study of Multi-Resolution Hash
Encoding (MHE) by introducing an analysis based on the Point Spread Function (PSF). By treating
the MHE model as a physical system, we provide a novel framework to identify performance limita-
tions and optimize the architecture. Our analysis reveals that the idealized MHE PSF, characterized
by the induced B-spline kernel, inherently possesses an anisotropic profile (broader on diagonals),
with its spatial bandwidth determined by the average resolution Navg. We demonstrated that opti-
mization dynamics (spectral bias) lead to significant spatial broadening (βopt), resulting in the crucial
finding that the effective resolution is governed by the broadened empirical FWHM (and therefore
Navg), not Nmax. Leveraging these insights, we introduced Rotated MHE (R-MHE), a parameter-
free modification that mitigates anisotropy by applying distinct rotations at each resolution level.

Future Work and Broader Impact. The anisotropic behavior analyzed here is applicable to other
grid-based encodings, such as multi-plane (TensoRF (Chen et al., 2022)) or planar factorizations (K-
Planes (Fridovich-Keil et al., 2023)), as they also rely on multilinear interpolation on axis-aligned
structures. The R-MHE concept of applying rotations per level or plane could be directly transferred
to these settings to improve isotropy. This study establishes a methodology based on physical prin-
ciples that moves beyond heuristics, offering a new pathway to characterize and improve neural field
models.
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A EXTENDED DERIVATIONS

A.1 IMPACT OF GRID MISALIGNMENT AND THE INDUCED KERNEL

The analysis of the idealized PSF (Section 3.1) relies on the induced kernel framework. In the lin-
earized regime, the spatial response of the encoding averaged over all possible alignments between
the target point x0 and the grid structure is characterized by the auto-correlation of the interpolation
kernel Kl(x), resulting in the induced kernel Bl(x) = (Kl ∗ Kl)(x) (the cubic B-spline). While
the response for a specific alignment (e.g., perfect alignment with a vertex, which yields the tent
function) differs, the B-spline kernel correctly captures the general case, and the derived properties
regarding anisotropy and FWHM scaling are robust.

A.2 CONTEXT: BEHAVIOR UNDER DENSE SUPERVISION

It is important to contrast the behavior of MHE under sparse supervision, which is the focus of our
PSF analysis, with its behavior under dense supervision, such as in image regression tasks. Our
analysis, however, specifically targets the behavior relevant to scenarios with sparse constraints,
where the assumption of a linearized MLP decoder is most appropriate and the intrinsic spatial
properties of the encoding are isolated, and by our analysis, closely links the final performance on
actual tasks with this idealized results.

A.3 ANALYSIS OF THE INDUCED KERNEL: PROFILE, ANISOTROPY, AND FWHM

We analyze the properties of the idealized PSF PIdeal(x) based on the induced kernel B(x) (the
separable cubic B-spline kernel) and the multi-resolution structure.

The 1D Cubic B-spline Kernel and FWHM (βideal). In 1D, the induced kernel is the normalized
cubic B-spline B̂1D(u). The piecewise definition for 0 ≤ |u| ≤ 1 is:

B̂1D(u) = 1− 3

2
u2 +

3

4
|u|3 (8)

We solve for the half-width u1/2 such that B̂1D(u1/2) = 0.5. Solving this cubic equation numeri-
cally yields the relevant real root u1/2 ≈ 0.5904. The FWHM is βideal = 2u1/2 ≈ 1.1808.
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Derivation of the Logarithmic Profile and Closed Form. We demonstrate that the superposition
of B-splines results in a dominant logarithmic profile near the center, justifying Eq. 2. We approxi-
mate the summation with an integral and utilize the Taylor expansion of the B-spline near the center:
B̂1D(u) ≈ 1− 3

2u
2.

We analyze the 1D case. Let v = Nminx. The effective upper limit of integration Leff occurs
approximately when the argument reaches the scale of the kernel support, bLeff v ≈ 1. Thus Leff ≈
− ln(v)/ ln(b).

PIdeal(v) ≈
1

L

∫ Leff

0

B̂1D(blv)dl ≈ 1

L

∫ Leff

0

(
1− 3

2
b2lv2

)
dl (9)

PIdeal(v) ≈
1

L

[
l − 3v2

4 ln b
b2l
]Leff

0

(10)

Substituting Leff and b2Leff ≈ 1/v2:

PIdeal(v) ≈
1

L ln b

[
− ln(v)− 3

4
+

3v2

4

]
(11)

This confirms the dominant − ln(v) behavior near the center. The generalization to D dimensions
yields the form in Eq. 2, where the anisotropy factor AD(v) arises from the D-dimensional expan-
sion and the specific properties of the B-spline kernel.

FWHM Scaling. The FWHM of the composite idealized PSF PIdeal(x) along the axes scales with
the average resolution Navg. The idealized FWHM along the axis is approximately:

FWHMAxis, Ideal ≈ βideal/Navg ≈ 1.18/Navg (12)

A.4 GENERALIZED ANISOTROPY ANALYSIS IN D DIMENSIONS

We perform the anisotropy analysis of the induced kernel (cubic B-spline) on D dimensions using
an analysis based on the Taylor expansion near the center. This analysis demonstrates that the kernel
is inherently narrowest along the primary axes and becomes progressively broader along directions
that involve multiple components (diagonals).

D-Dimensional Kernel and Taylor Approximation. The D-dimensional normalized induced ker-
nel B̂D(u) is the separable product:

B̂D(u) =

D∏
i=1

B̂1D(ui) (13)

We utilize the Taylor expansion of the 1D kernel near the origin. From the definition of the normal-
ized cubic B-spline (Eq. 8), the second derivative is B̂′′

1D(0) = −3. We define C = − 1
2 B̂

′′
1D(0) =

3/2.
B̂1D(u) ≈ 1− Cu2 (14)

This quadratic approximation accurately captures the local curvature near the peak, which deter-
mines the primary anisotropy trend.

Analysis of K-Sparse Directions. We analyze the anisotropy by comparing the Euclidean distance
d from the center required to reach a fixed amplitude A (e.g., A = 0.5 for FWHM) along different
orientations. We consider a K-sparse direction, where K components of the input vector are equal
(ui = x for 1 ≤ i ≤ K) and the remaining D − K components are zero. This spans orientations
from the primary axis (K = 1) to the main space diagonal (if K = D). The Euclidean distance is
d =

√
Kx.

The response along this direction is:

P (u) =

K∏
i=1

B̂1D(x) ·
D∏

i=K+1

B̂1D(0) =
(
B̂1D(x)

)K
(15)
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Setting the response to A:

B̂1D(x)K = A =⇒ B̂1D(x) = A1/K (16)

Using the Taylor expansion:

1− Cx2 ≈ A1/K =⇒ x2 ≈ 1−A1/K

C
(17)

The squared Euclidean distance d2 is:

d2(K) = Kx2 ≈ K(1−A1/K)

C
(18)

Proof of Monotonicity. To determine how the width changes as the direction involves more com-
ponents (moving from axis towards the main diagonal), we analyze the monotonicity of d2(K). We
analyze the function f(K) = K(1−A1/K) for A ∈ (0, 1).

We analyze the derivative f ′(K) (treating K as a continuous variable for analysis):

f ′(K) = (1−A1/K) +K

(
−A1/K · ln(A) ·

(
− 1

K2

))
= 1−A1/K +

1

K
A1/K ln(A) (19)

Let y = A1/K . Since A ∈ (0, 1) and K ≥ 1, we have y ∈ (0, 1). Also ln(A) = K ln(y).

f ′(K) = 1− y + y ln(y) (20)

We examine the function g(y) = 1−y+y ln(y). The derivative is g′(y) = −1+ln(y)+1 = ln(y).
Since y < 1, g′(y) < 0. Thus, g(y) is monotonically decreasing. The minimum occurs at the limit
y → 1, where g(1) = 0. Therefore, f ′(K) > 0 for all A < 1.

This proves that f(K), and thus the distance d(K), is monotonically increasing with K. The induced
B-spline kernel is narrowest along the primary axes (K = 1) and broadest along the main space
diagonal (where K is maximal).

Anisotropy Ratio and Dimensional Scaling. We define the Anisotropy Ratio RA(D) as the ratio
of the squared distances along the main diagonal (K = D) versus the axis (K = 1), using A = 0.5.

RA(D) =
d2(D)

d2(1)
≈ D(1− 0.51/D)/C

(1− 0.5)/C
= 2D(1− 0.51/D) (21)

• D=2: RA(2) = 4(1− 0.51/2) ≈ 1.1716.

• D=3: RA(3) = 6(1− 0.51/3) ≈ 1.2378.

The Anisotropy Ratio RA(D) is also monotonically increasing with D (since f(D) is monotonic),
demonstrating that the grid-induced anisotropy becomes more pronounced in higher dimensions.
The limit as D → ∞ is 2 ln(2) ≈ 1.386.

A.5 TWO-POINT RESOLUTION DERIVATION (CONSTRUCTIVE INTERFERENCE)

The resolution limit dcrit (Rayleigh criterion) is the minimum separation d such that R(midpoint) <
R(peak). We analyze the idealized case for an axis-aligned configuration. The condition for a dip
at the midpoint requires the second derivative of the reconstruction R(x) to be positive at the center.
Since the induced kernel Bl(x) (cubic B-spline) is smooth (C2 continuous) and strictly concave
near the peak, this condition is satisfied for any separation d > 0.

Therefore, in the idealized minimum-norm configuration using the induced kernel, the theoretical
resolution limit is infinitesimally small. It is crucial to emphasize that this applies specifically to the
idealized solution. As demonstrated by the empirical results in Section 3.3, practical optimization
dynamics lead to a broader empirical PSF, where the actual resolution limit is governed by the
empirical FWHM (scaling with 1/Navg).
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A.6 R-MHE 3D ROTATION STRATEGIES

We detail the 3D rotation strategies utilized in Section 5.2. We use the vertex orientations of regular
polyhedra to define canonical directions, aiming for uniform sampling of SO(3). The rotations Rl

are constructed by aligning the standard basis vectors with these normalized directions. We cycle
through the following sets across the levels L.

• Tetrahedron (4 vertices): (1,1,1), (-1,-1,1), (-1,1,-1), (1,-1,-1).
• Cube (8 vertices): All sign corners (±1,±1,±1), ordered lexicographically.
• Octahedron (6 vertices): (±1, 0, 0), (0,±1, 0), (0, 0,±1).

• Icosahedron (12 vertices): (0,±1,±ϕ), (±1,±ϕ, 0), (±ϕ, 0,±1), where ϕ = (1+
√
5)/2

is the golden ratio.

The Icosahedral strategy provides the most uniform distribution of orientations, which correlates
with the superior empirical performance observed in Section 6.

B EXPERIMENTAL DETAILS FOR 2D IMAGE REGRESSION

B.1 DATASET AND CONFIGURATION

We utilized three high-resolution images: ”Mountain” (2473 × 3710), ”City” (4000 × 6000), and
”Forest” (3193 × 6016). To ensure fair comparison and remove potential anisotropy introduced by
non-square aspect ratios during sampling, all images were center-cropped to the largest possible
square (e.g., 2473× 2473 for Mountain).

Configuration. We utilized L = 16 levels, F = 2 features per level, and a hash table capacity
of T = 218. R-MHE configurations use the progressive rotation strategy (Section 5.2), with M
defining the base rotation angle θ = 90◦/M .

Training Details. The networks were trained for 5000 steps using the Adam optimizer with a
learning rate of 0.001. We used a batch size of 217 (131072) randomly sampled pixels per iteration.
All experiments were repeated across 5 random seeds.

B.2 PSF GUIDED PARAMETER SELECTION

We leveraged the relationship between the empirical FWHM along the axes direction and Navg.
We determined the theoretical optimal growth factor btheory by setting the target empirical FWHM
(βemp/Navg) based on the cropped image dimensions (1/shortest side). We used the empirically
validated factor βemp = 3.0. We fixed L = 16 and Nmin = 16, and then solved numerically for the
required growth factor b. The resulting theoretical growth factors btheory are detailed in Table 4.

Table 4: PSF Guided Hyperparameters for 2D Gigapixel Image Regression (Cropped Images).
Image Resolution (Cropped) Target Empirical FWHM Growth Factor (btheory)
Mountain 2473 × 2473 8.09e-04 1.4614
City 4000 × 4000 5.00e-04 1.5078
Forest 3193 × 3193 6.26e-04 1.4863

B.3 VALIDATION OF THEORETICAL GROWTH FACTOR

The results (Table 5) summarize these results across the Standard MHE (M=1) and R-MHE con-
figurations (M ∈ {2, 4, 8}). The analysis demonstrates that the best performance is consistently
achieved near btheory, specifically at btheory − 0.1 or −0.2. Since a lower growth factor b corresponds
to a lower Navg and thus a wider FWHM, this finding suggests that targeting a resolution of exactly
one pixel is slightly too aggressive. A kernel slightly broader than one pixel yields better reconstruc-
tion, likely because natural images are band-limited and contain features larger than a single pixel,
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whereas a 1-pixel target may encourage overfitting to aliasing or quantization artifacts. The optimal
FWHM is thus roughly 2.5 pixels, from this observation.

Table 5: Validation of PSF-Guided Growth Factor (b) Selection. PSNR (dB, Mean ± Std Dev)
results comparing btheory against neighboring values. Bold indicates the best performance for the
configuration.
Image M btheory − 0.2 btheory − 0.1 btheory btheory + 0.1 btheory + 0.2

Mountain

M=1 22.98 ± 0.02 24.19 ± 0.03 23.07 ± 0.04 22.44 ± 0.09 21.76 ± 0.07
M=2 23.90 ± 0.01 25.37 ± 0.02 24.52 ± 0.01 23.30 ± 0.02 22.75 ± 0.01
M=4 24.09 ± 0.01 25.35 ± 0.02 24.53 ± 0.01 23.59 ± 0.01 23.54 ± 0.02
M=8 24.12 ± 0.00 25.84 ± 0.01 24.19 ± 0.02 23.40 ± 0.02 23.35 ± 0.02

City

M=1 21.85 ± 0.00 21.86 ± 0.01 21.16 ± 0.01 20.20 ± 0.00 19.07 ± 0.00
M=2 22.31 ± 0.00 22.57 ± 0.01 21.71 ± 0.01 20.64 ± 0.00 19.77 ± 0.00
M=4 22.33 ± 0.00 22.71 ± 0.00 21.66 ± 0.01 21.04 ± 0.00 20.44 ± 0.01
M=8 22.82 ± 0.00 22.43 ± 0.00 21.62 ± 0.01 21.06 ± 0.01 20.46 ± 0.01

Forest

M=1 25.11 ± 0.01 25.59 ± 0.01 24.76 ± 0.02 24.46 ± 0.03 24.12 ± 0.01
M=2 25.56 ± 0.01 25.92 ± 0.01 25.39 ± 0.01 25.19 ± 0.01 24.66 ± 0.01
M=4 25.55 ± 0.01 26.02 ± 0.00 25.38 ± 0.01 25.13 ± 0.01 24.85 ± 0.01
M=8 25.79 ± 0.01 25.78 ± 0.00 25.30 ± 0.01 25.04 ± 0.01 25.02 ± 0.01

B.4 DETAILED RESULTS

Table 6 provides the detailed PSNR results for each individual image across the different R-MHE
configurations, utilizing the empirically validated optimal b (from Table 5).

Table 6: Detailed PSNR (dB, Mean ± Std Dev) results for 2D Gigapixel Image Regression using
the empirically optimized growth factor b. Bold indicates the best performance per row.

Image M=1 (Baseline) M=2 M=4 M=8
Mountain 24.19 ± 0.03 25.37 ± 0.02 25.35 ± 0.02 25.84 ± 0.01
City 21.86 ± 0.01 22.57 ± 0.01 22.71 ± 0.00 22.82 ± 0.00
Forest 25.59 ± 0.01 25.92 ± 0.01 26.02 ± 0.00 25.79 ± 0.01

Average 23.88 ± 0.02 24.62 ± 0.01 24.69 ± 0.01 24.82 ± 0.01

B.5 QUALITATIVE VISUALIZATION AND PSF ANALYSIS

Qualitative Comparison. Figure 6 provides a qualitative comparison of the reconstruction results.

PSF Visualization. Figure 7 provides visualizations of the empirical PSF for R-MHE with varying
M . As M increases, the PSF profile becomes noticeably more symmetric and circular. For larger
M , a faint spiral pattern emerges, characteristic of the progressive rotation strategy employed in 2D
R-MHE.

C EXPERIMENTAL DETAILS FOR 3D NEURAL FIELDS AND SDFS

C.1 CONFIGURATION AND TRAINING

We utilized the standard Instant-NGP configuration (L=16, F=2, T = 219). Training utilized the
standard Instant-NGP protocol and optimizer settings. All experiments were run with 5 random
seeds.

C.2 NEURAL RADIANCE FIELDS (NERF) DETAILS
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Ground Truth

21.86 dB

Baseline

22.57 dB

M=2

22.71 dB

M=4

22.82 dB

M=8

25.59 dB 25.92 dB 26.02 dB 25.79 dB

24.19 dB 25.37 dB 25.35 dB 25.84 dB

Figure 6: Qualitative Visualization of 2D Image Regression Results. Zoomed-in crops comparing
Ground Truth, Standard MHE (Baseline), and R-MHE (M=2, 4, 8). R-MHE demonstrates signifi-
cant improvements in reconstruction quality. PSNR values indicated are for the specific runs shown.
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Figure 7: Visualization of R-MHE Point Spread Function (PSF). Empirical PSF (zoomed view)
for R-MHE with M=1 (Standard MHE), 2, 4, 8, and 16.

We utilized all eight scenes from the Synthetic NeRF dataset. Figure 8 presents a comprehensive
parameter sweep of the reconstruction quality (PSNR) as a function of the growth factor b for all
eight NeRF scenes.

These plots demonstrate that the theoretical growth factors derived from our PSF analysis (btheory ≈
1.38, as listed in Table 7) consistently fall within the regime of best performance. As observed
in the figure, the empirical peaks for scenes such as Lego, Mic, and Hotdog align precisely with
the theoretical prediction of 1.38. This confirms that our physical systems approach accurately
characterizes the optimal spatial resolution settings, allowing for precise hyperparameter selection
without the need for exhaustive empirical grid searches.

C.3 SIGNED DISTANCE FUNCTIONS (SDF) DETAILS

Dataset. We utilized three standard benchmark meshes: Armadillo, Bunny, Spot. We used the
baseline parameters provided in the Instant-NGP repository for SDF tasks.

Figure 9 visualizes the IoU performance across the growth factor sweep for the SDF task.
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Figure 8: Detailed PSNR Sweep for Synthetic NeRF Experiments. We plot the Average PSNR
(dB) vs. growth factor b across all 8 scenes (Error bars indicate Std Dev over 5 seeds). The theo-
retical optimum derived in our analysis (btheory ≈ 1.38) consistently aligns with the empirical peak
performance observed in these sweeps, validating the PSF-guided strategy. The R-MHE strategies
(tetra, cube, octa, icosa) consistently track or exceed the performance of the Standard MHE baseline
(’none’).

Table 7: Growth Factors (b) for Synthetic NeRF Experiments. btheory is the value derived from the
analysis framework. bopt is the empirically optimized value used in the Baseline Heuristic configu-
ration.

Scene btheory bopt (Baseline)
Chair 1.3767 1.3819
Drums 1.3872 1.3819
Ficus 1.3767 1.3819
Hotdog 1.3767 1.3819
Lego 1.3767 1.3819
Materials 1.3872 1.3819
Mic 1.3767 1.3819
Ship 1.3767 1.3819

D THEORETICAL DERIVATION AND EMPIRICAL ANALYSIS OF THE
BROADENING FACTOR

D.1 MODELING OPTIMIZATION DYNAMICS VIA SPECTRAL BIAS

The idealized Point Spread Function (PSF), derived under the minimum L2-norm assumption (Eq.
1), implies uniform weighting across all L resolution levels:

PIdeal(x) =
1

L

L−1∑
l=0

B̂l(x) (22)

This leads to the idealized FWHM factor βideal ≈ 1.18.

Empirical results demonstrate that gradient-based optimization methods (e.g., Adam) exhibit spec-
tral bias, where lower frequencies are learned preferentially (Rahaman et al., 2018). In the context of
MHE, this biases the optimization towards coarser grids (low Nl). We model the resulting empirical
PSF as a weighted superposition with non-uniform weights wl:

PEmpirical(x) =

L−1∑
l=0

wlB̂l(x) (23)
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Figure 9: Detailed IoU Sweep for 3D SDF Experiments. We plot the Intersection over Union
(IoU) as a function of the growth factor b for the Armadillo, Bunny, and Spot meshes. The heavy
overlap of the curves for all methods (Standard MHE and R-MHE variants) and the consistently
high IoU values (> 0.996) illustrate the performance saturation discussed in the main text.

where
∑

wl = 1. This leads to the total empirical FWHM factor βemp.

We adopt a phenomenological model motivated by kernel methods, where the optimization-induced
weights follow a power law relationship based on the resolution Nl:

wl ∝ (Nl)
−γ (24)

Here, γ ≥ 0 is the spectral bias exponent. γ = 0 recovers the minimum-norm solution (βideal), while
γ > 0 indicates a bias towards coarser levels (βemp > βideal).

D.2 RELATIONSHIP BETWEEN SPECTRAL BIAS AND BROADENING

We establish that the optimization-induced broadening factor βopt(γ) (where βemp = βideal · βopt) is
a monotonically increasing function of the spectral bias exponent γ.

Proof of Monotonicity of βopt(γ). We want to show that d(FWHM)/dγ > 0. We analyze the
empirical PSF value at a fixed spatial position x > 0, P (γ) = PEmpirical(x; γ). If we show that
dP (γ)/dγ > 0 (i.e., the tails of the PSF increase with γ), it implies the FWHM must also increase.

We express P (γ) using normalized weights wl = (Nl)
−γ/

∑
k(Nk)

−γ .

P (γ) =

∑
l(Nl)

−γB̂l(x)∑
k(Nk)−γ

=
f(γ)

g(γ)
(25)

We analyze the derivative P ′(γ) = (f ′g − fg′)/g2. We must show f ′g − fg′ > 0.

f ′(γ) = −
∑
l

(Nl)
−γ ln(Nl)B̂l(x) (26)

g′(γ) = −
∑
k

(Nk)
−γ ln(Nk) (27)

We analyze the term f ′g − fg′:

f ′g − fg′ =

(
−
∑
l

(Nl)
−γ lnNlB̂l(x)

)(∑
k

(Nk)
−γ

)
−

(∑
l

(Nl)
−γB̂l(x)

)(
−
∑
k

(Nk)
−γ lnNk

)
(28)

=
∑
l,k

(Nl)
−γ(Nk)

−γB̂l(x)(lnNk − lnNl) (29)

We analyze this summation by grouping pairs of indices (l, k) and (k, l) where l ̸= k:

Pair(l,k) = (Nl)
−γ(Nk)

−γB̂l(x)(lnNk − lnNl) + (Nk)
−γ(Nl)

−γB̂k(x)(lnNl − lnNk) (30)

= (Nl)
−γ(Nk)

−γ(lnNk − lnNl)
[
B̂l(x)− B̂k(x)

]
(31)
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Consider the case Nk > Nl. The factor (lnNk− lnNl) is positive. Since Nk > Nl (level k is finer),
the kernel B̂k(x) is narrower than B̂l(x). For x > 0, we have B̂l(x) > B̂k(x). Thus, the second
factor is also positive.

Every pair sum is positive, proving that f ′g − fg′ > 0. Consequently, dP (γ)/dγ > 0, which
implies dβopt/dγ > 0. A stronger spectral bias always leads to larger broadening.

D.3 EMPIRICAL ANALYSIS OF OPTIMIZER DEPENDENCE

We investigated the dependency of the broadening factor on the choice of optimizer. We trained
the MHE network using various standard optimizers (Adam variants, SGD, RMSProp, etc.) and
measured the resulting total empirical broadening βemp. Figure 10 summarizes the results.
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Figure 10: Sensitivity of Broadening Factor to Optimizer Choice. We measure the fitted total
empirical broadening βemp across different optimizers and MHE configurations (varying L and b).
(a) Results for 2D. (b) Results for 3D. Broadening depends significantly on the optimizer (Adam
variants consistently yield βemp ≈ 3.0), but is robust across different MHE parameters and dimen-
sions for a given optimizer.

We observe that the broadening is indeed dependent on the optimizer. Adam and its variants
(AdamW, NAdam, Adamax) consistently yield βemp ≈ 3.0 (corresponding to βopt ≈ 2.54), with
3D results almost identical to 2D. Other optimizers exhibit different degrees of broadening, as dif-
ferent optimization algorithms inherently possess different implicit regularization properties. For a
given optimizer, the resulting βemp is highly robust across different MHE configurations (varying L
and b) and dimensions (2D vs 3D), as shown in Figure 10. Panels (a) and (b) show results for 2D
and 3D respectively, both yielding similar broadening values for each optimizer, confirming that the
broadening is primarily determined by the optimizer choice, rather than specific MHE parameters.
This stability means that a one-time calibration of βemp for a specific optimization setup is sufficient
for principled hyperparameter selection.

D.4 SENSITIVITY TO MLP ARCHITECTURE

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

��
*


��
*	

��
*�

����'%�$

���

���

�
 
#
��
&'
�
�

�)�%

��
*


��
*	

��
*�

����'%�$

���

���

���

�
 
#
��
&'
�
�

����"!��

� �

���&���$���

���

���

���

$�
��
&�
(
�
��
�
�
�

������$���&�(��

��� 	��

������#&�

��
*�


 + ��
*	

� + ��
*	

�
�
�
�

�����(%�#�$� �&�$

�)�%�����

���������

�

�

	




�

�
�
�
��
�
#
&�

Figure 11: Impact of MLP Depth on the Empirical PSF (2D). We analyze the PSF while varying
the MLP depth (indicated by color). The results show that the empirical PSF profile and the FWHM
are largely insensitive to the MLP architecture.

We investigated the impact of the MLP decoder depth on the empirical PSF. Figure 11 shows the
results of varying the MLP depth from 0 (linear) to 3 layers. The empirical PSF profiles and the
resulting FWHM are consistent across different depths, supporting the conclusion that the encoding
structure and the optimization dynamics (spectral bias) primarily define the spatial response.
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