

CHARACTERIZING AND OPTIMIZING THE SPATIAL KERNEL OF MULTI RESOLUTION HASH ENCODINGS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905

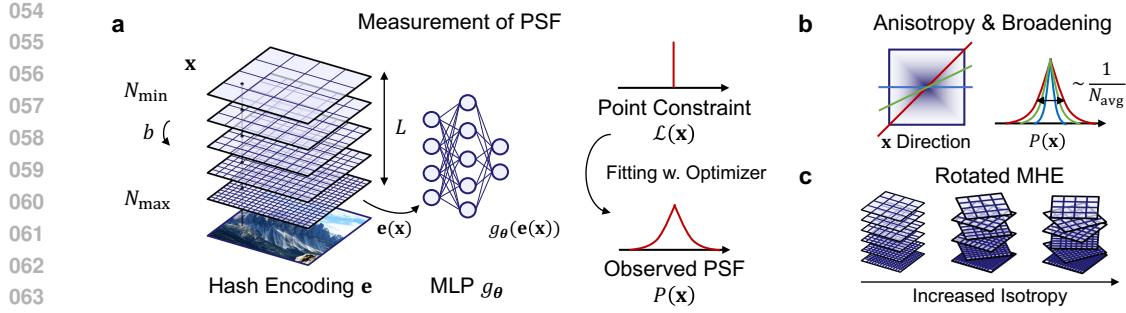


Figure 1: **Overview of MHE Characterization and Optimization.** (a) The MHE architecture utilizes L grid levels with resolutions growing by a factor b . The encoding $\mathbf{e}(\mathbf{x})$ is passed to an MLP g_θ . We characterize the system by optimizing for a point constraint and measuring the resulting Point Spread Function (PSF). (b) This analysis reveals inherent grid-induced anisotropy (narrower along axes) and optimization-induced broadening, establishing that the effective resolution (FWHM) scales with $1/N_{\text{avg}}$. (c) To mitigate anisotropy, we propose Rotated MHE (R-MHE), which applies distinct rotations at each resolution level, leading to a more isotropic PSF.

Our analysis begins with the examination of the PSF of the idealized, collision free MHE. We derive a closed form approximation demonstrating that the PSF exhibits logarithmic radial decay and significant *grid induced anisotropy*, inherited from the underlying interpolation kernels (Keys, 1981). Theoretically, the idealized Full Width at Half Maximum (FWHM) is determined by the average resolution, \bar{N}_{avg} .

We confirm these trends through numerical experiments, which reveal that optimization dynamics induce significant spatial broadening compared to the idealized minimum norm prediction. This confirms that the effective two point resolution of the model is substantially lower than N_{\max} and governed by the broadened empirical FWHM (and thus N_{avg}).

We further investigate the impact of finite hash capacity, demonstrating how collisions introduce speckle-like side lobes and degrade the Signal-to-Noise Ratio (SNR). Informed by our comprehensive PSF analysis, we demonstrate how these insights can be leveraged to improve reconstruction quality. We introduce *Rotated MHE (R-MHE)* (Figure 1c), an architecture that applies distinct rotations to the input coordinates at each resolution level. By utilizing the existing multi-resolution structure, R-MHE improves isotropy without requiring additional hash tables or parameters, maintaining the efficiency of the original MHE.

Contributions. This work establishes a new framework based on physical principles for analyzing MHE, providing several key advancements:

- We derive a closed-form approximation for the MHE Point Spread Function, rigorously characterizing its anisotropic and logarithmic spatial profile, and identifying the average resolution, \bar{N}_{avg} , as the principal determinant of the idealized FWHM.
- We reveal and characterize optimization-induced spatial broadening, demonstrating theoretically and empirically that it arises from spectral bias.
- We provide an evaluation of the impact of hash collisions on the Signal-to-Noise Ratio (SNR).
- We introduce Rotated MHE (R-MHE), a novel, parameter-free modification that improves isotropy by applying distinct rotations at each resolution level.
- We validate a principled methodology guided by the PSF analysis for hyperparameter selection that demonstrably outperforms standard heuristics.

2 BACKGROUND AND PRELIMINARIES

2.1 RELATED WORK

Our analysis draws upon and contributes to several interconnected areas of research.

108 **Neural Fields, Encodings, and Spectral Analysis.** The introduction of NeRF established
 109 coordinate-based volumetric rendering (Mildenhall et al., 2020). Positional encodings, including
 110 Fourier features (Tancik et al., 2020) and periodic activations (Sitzmann et al., 2020), are known
 111 to shape optimization dynamics and frequency bias (Rahaman et al., 2018). Adopting a Neural
 112 Tangent Kernel (NTK) viewpoint, where linearized training dynamics justify the analysis of an en-
 113 coding’s induced kernel (Jacot et al., 2018), we utilize this theoretical lens to derive an explicit PSF
 114 for MHE (Müller et al., 2022).

115
 116 **Explicit Grids and Factorized Structures.** Researchers have explored replacing or augmenting
 117 MLP decoders with explicit spatial representations, including voxel grids (Sun et al., 2022; Peng
 118 et al., 2022), tensor factorizations (Chen et al., 2022), and planar factorizations (Fridovich-Keil
 119 et al., 2023). While MHE is widely adopted, extensions such as Dictionary Fields (Chen et al.,
 120 2023) have been proposed to improve expressivity. Our work is complementary; R-MHE improves
 121 the underlying grid structure and could potentially be integrated with these extensions. We aim to
 122 elucidate *how* MHE behaves spatially and provide principles for its optimization.

123
 124 **Interpolation Kernels and Anisotropy.** The separable tent kernel underlying multilinear inter-
 125 polation (Keys, 1981; Thevenaz et al., 2000) inherently induces differences in effective blur along
 126 axes versus diagonals. We demonstrate that MHE inherits these anisotropies across multiple scales,
 127 resulting in direction-dependent FWHM and resolution limits even without hash collisions.

128
 129 **Hashing and Collisions.** Spatial hashing has a long history in computer graphics (Lefebvre &
 130 Hoppe, 2006) and real-time reconstruction (Nießner et al., 2013). Our collision analysis formalizes
 131 how finite capacity hash tables translate into PSF speckle and SNR loss within MHE.

132 **2.2 MHE ARCHITECTURE REVIEW**

133 The MHE aims to learn a function $f(\mathbf{x}) = g_{\theta}(\mathbf{e}(\mathbf{x}))$. It utilizes L resolution levels defined by
 134 $N_l = N_{\min} \cdot b^l$. At each level l , features are retrieved from a table \mathbf{F}^l of size T using a spatial
 135 hash function \mathcal{H} and multilinear interpolation. The interpolation kernel $K(\mathbf{u})$ is constructed as the
 136 product of 1D tent functions: $K(\mathbf{u}) = \prod_{d=1}^D \max(0, 1 - |u_d|)$. Consequently, the spatial kernel at
 137 level l is given by $K_l(\mathbf{x}) = K(N_l \mathbf{x})$.

138 The idealized spatial response of the encoding, averaged over all possible grid alignments, is char-
 139 acterized by the induced kernel $B_l(\mathbf{x})$, which is the auto-correlation of the interpolation kernel:
 $B_l(\mathbf{x}) = (K_l * K_l)(\mathbf{x})$. This results in a separable cubic B-spline kernel (Thevenaz et al., 2000).

140 **3 CHARACTERIZING THE MHE SPATIAL KERNEL**

141 We analyze the Point Spread Function (PSF) to characterize the intrinsic spatial behavior of the
 142 MHE architecture, examining the system’s response when optimized under sparse constraints. To
 143 isolate the properties of the encoding from the influence of the subsequent MLP decoder g_{θ} , we
 144 assume the MLP can be approximated by its linearization, $f(\mathbf{x}) \approx \mathbf{W}\mathbf{e}(\mathbf{x})$. This is justified by
 145 experiments regarding MLP depth (Appendix D.4).

146 **3.1 THE IDEALIZED, COLLISION FREE PSF**

147 We first consider the optimization process for a single point constraint $\mathcal{L} = (f(\mathbf{x}_0) - A)^2$. In
 148 this idealized analysis, we assume the absence of hash collisions (infinite T). Under the linearized
 149 framework and the minimum norm assumption, the responsibility is distributed equally across all L
 150 levels. The resulting idealized PSF $P_{\text{ideal}}(\mathbf{x})$ is the average superposition of the normalized induced
 151 kernels $\hat{B}_l(\mathbf{x})$ (the cubic B-spline, Section 2.2):

$$P_{\text{ideal}}(\mathbf{x}) = \frac{1}{L} \sum_{l=0}^{L-1} \hat{B}_l(\mathbf{x} - \mathbf{x}_0) \quad (1)$$

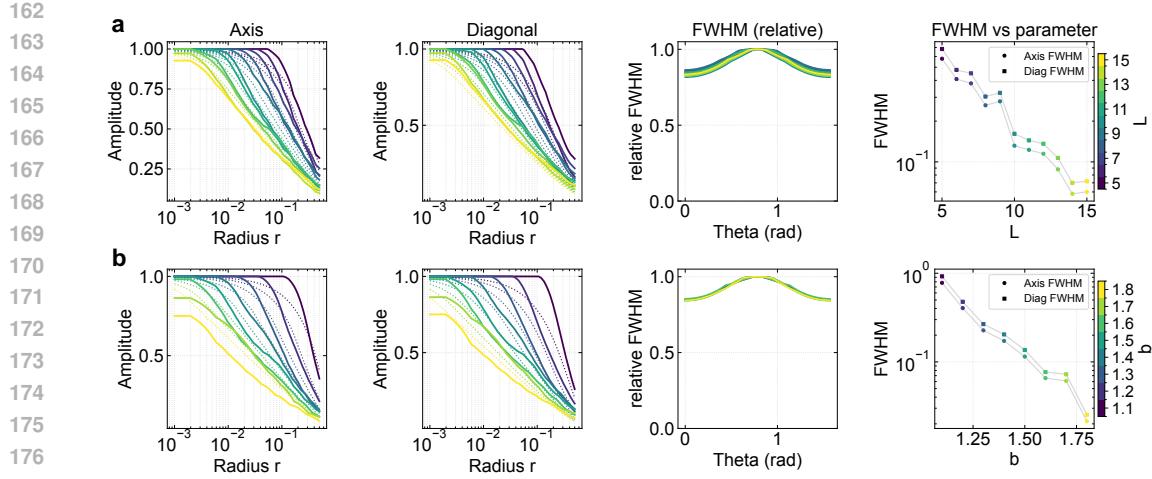


Figure 2: **Numerical Validation of the MHE PSF (2D).** We analyze the empirical PSF (solid lines) compared to the broadened theoretical prediction (dotted lines, incorporating the total empirical broadening $\beta_{\text{emp}} \approx 3.0$). **(a)** Varying L (fixed $b = 1.5$). **(b)** Varying b (fixed $L = 10$). **(Columns 1 & 2)** Cross-sections along the Axis and Diagonal show characteristic anisotropy (broader on diagonal). The broadened theory accurately matches the empirical decay. **(Column 3)** Relative FWHM vs. angle confirms the B-spline anisotropy (narrower along axes, $\theta = 0$). **(Column 4)** The empirical FWHM aligns well with the theoretical trends dictated by N_{avg} . Colors indicate the varied parameter (L or b).

Generalized Closed-Form Approximation and Anisotropy. The induced kernel $\hat{B}(\mathbf{x})$ (cubic B-spline) is separable but inherently anisotropic. We derive a generalized closed-form approximation by approximating the summation with an integral, utilizing the Taylor expansion of the B-spline kernel near the center (Appendix A.3).

Let $\mathbf{v} = N_{\text{min}}\mathbf{x}$ be the normalized position. The closed-form approximation near the center can be expressed as:

$$P_{\text{ideal}}(\mathbf{v}) \approx \frac{1}{L \ln(b)} \left[-\ln(\|\mathbf{v}\|) + C_D - A_D(\mathbf{v}) + O(\mathbf{v}^2) \right] \quad (2)$$

This expression reveals a dominant **logarithmic decay profile** ($-\ln(\|\mathbf{v}\|)$) modulated by an anisotropy factor $A_D(\mathbf{v})$ specific to the B-spline kernel. As proven in Appendix A.3, the B-spline kernel is narrower along the axes.

FWHM and Average Resolution. The Full Width at Half Maximum (FWHM) is direction-dependent. We define the inherent broadening factor of the idealized induced kernel as β_{ideal} . The FWHM of the 1D cubic B-spline kernel is numerically calculated to be $\beta_{\text{ideal}} \approx 1.18$. The FWHM of the composite PSF along the axes scales proportionally to the average resolution N_{avg} (Appendix A.3):

$$\Delta_{\text{Axis, Ideal}} \approx \beta_{\text{ideal}}/N_{\text{avg}} \approx 1.18/N_{\text{avg}} \quad (3)$$

The idealized spatial bandwidth is dictated by N_{avg} , while the FWHM along the diagonals is comparatively wider.

3.2 EMPIRICAL VALIDATION AND OPTIMIZATION-INDUCED BROADENING

We validate these theoretical results using a customized 2D implementation based on the Instant-NGP framework. We configure MHE networks (varying L and b) with a sufficiently large T to minimize collisions, and optimize for a single point objective $\mathcal{L} = (f(\mathbf{0}) - 1)^2$.

Empirically, we observe that the realized PSF, $P_{\text{Empirical}}(\mathbf{x})$, is significantly broader than the idealized minimum-norm prediction $P_{\text{ideal}}(\mathbf{x})$. We characterize this additional broadening by introducing an optimization-induced spatial broadening factor β_{opt} , such that $P_{\text{Empirical}}(\mathbf{x}) \approx P_{\text{ideal}}(\mathbf{x}/\beta_{\text{opt}})$. Be-

cause the idealized B-spline model already accounts for the inherent anisotropy, the optimization-induced broadening β_{opt} can be accurately modeled as isotropic.

We define the total empirical broadening factor β_{emp} such that the empirical FWHM along the axis is $\Delta_{\text{Axis, Emp}} = \beta_{\text{emp}}/N_{\text{avg}}$. This combines the idealized broadening and the optimization-induced broadening:

$$\beta_{\text{emp}} = \beta_{\text{ideal}} \cdot \beta_{\text{opt}} \quad (4)$$

Spectral Bias. This optimization-induced broadening ($\beta_{\text{opt}} > 1$) occurs because the optimization process (e.g., using Adam) does not converge to the minimum-norm solution. Gradient-based optimization exhibits implicit biases, often referred to as spectral bias (Rahaman et al., 2018), where lower frequencies are learned preferentially. This leads the optimization trajectory to a solution where coarse features (low N_l) are prioritized over fine features. This effective re-weighting towards lower frequencies results in the observed spatial broadening. We provide a theoretical derivation in Appendix D, modeling the weights as $w_l \propto (N_l)^{-\gamma}$, where γ is the spectral bias exponent. We prove that β_{opt} increases monotonically with γ , and argue that γ (and thus β_{opt}) increases with the spatial dimension D .

Characterizing the Broadening Factors. We consistently observe a total empirical broadening of $\beta_{\text{emp}} \approx 3.0$ across various configurations of L and b when using the Adam optimizer (Figure 2).

To understand the sensitivity of β_{opt} , we conducted experiments varying the optimizer, MLP architecture, and training dynamics (Appendix D.4, D.5). We found that β_{opt} is primarily dependent on the optimizer choice (e.g., corresponding to $\beta_{\text{emp}} \approx 3.0$ for Adam variants in 2D and 3D, Fig. 10), but is remarkably stable across hyperparameters and insensitive to the MLP depth. This stability confirms that β_{opt} is a robust characteristic of the optimization dynamics for a given setup.

Figure 2 compares the empirical PSF with the theoretical predictions. We observe excellent agreement between the empirical results (solid lines) and the broadened theory (dotted lines, incorporating $\beta_{\text{emp}} \approx 3.0$). The characteristic anisotropy (broader on diagonals) predicted by the B-spline model is clearly visible (Columns 1-3). Furthermore, the empirical decay confirms the logarithmic profile predicted by the closed-form approximation (Eq. 2), and the scaling of the FWHM with respect to L and b aligns with the theoretical trends (Column 4).

3.3 RESOLUTION LIMITS AND TWO POINT INTERACTIONS

We analyze the system’s behavior when optimized for two closely spaced point constraints, \mathbf{x}_A and \mathbf{x}_B , separated by distance d . Under the linearized assumption, the reconstruction $R(\mathbf{x})$ is the superposition of the individual PSFs.

Constructive Interference: Idealized vs. Empirical Resolution. The resolution limit d_{crit} (Rayleigh criterion) is the minimum distance such that a dip exists between two peaks. In the idealized minimum-norm configuration (Appendix A.5), the smoothness of the B-spline kernel implies the theoretical resolution limit is infinitesimal. However, our empirical analysis reveals that the practical resolution limit is dictated by the broadened empirical PSF (Section 3.2). The ability to resolve two points is therefore governed by the empirical FWHM, which scales with $1/N_{\text{avg}}$.

Destructive Interference and the Dipole Response. For a spatial dipole, $R(\mathbf{x}) \approx P(\mathbf{x} - \mathbf{x}_A) - P(\mathbf{x} - \mathbf{x}_B)$. When d is small, $R(\mathbf{x}) \approx d \cdot \nabla P(\mathbf{x})$. We find that the spatial behavior and extent of the dipole response are characterized by the empirical FWHM of the underlying PSF, due to the optimization induced broadening. When the separation is smaller than FWHM, the maximum values no longer appear at the points and artifacts appear.

Numerical Validation: Two-Point Interactions. We extend the 2D experimental setup, optimizing for two point constraints while varying MHE parameters and separation d . For constructive interference (Figure 3(a)), a significant dip emerges when the separation is approximately equal to the empirical FWHM. We empirically determine the critical distance d_{crit} across various configurations and find a direct linear relationship with the FWHM (Figure 3(b)). This confirms that the practical two-point resolution limit is determined by the empirical FWHM (scaling with $1/N_{\text{avg}}$),

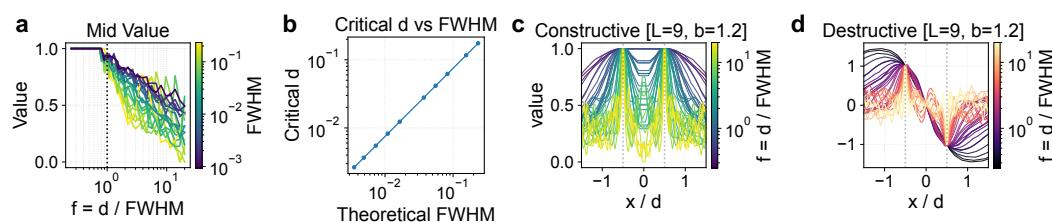


Figure 3: **Empirical Analysis of Two-Point Interactions (2D).** We analyze resolution by optimizing for two nearby points, normalizing separation by $f = d / \text{FWHM}$. **(a)** The midpoint value between two constructive peaks drops significantly when $d \approx \text{FWHM}$. **(b)** The empirically measured critical distance d_{crit} scales linearly with the FWHM across various MHE configurations, confirming that FWHM (N_{avg}) dictates the practical resolution limit. **(c, d)** Constructive and destructive (dipole) interference profiles. The consistent shape confirms that the FWHM characterizes the spatial response.

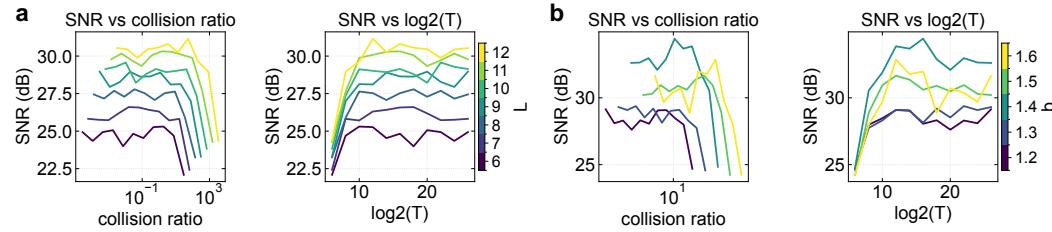


Figure 4: **Quantitative Analysis of Collision Effects on SNR (2D).** We analyze the SNR of the empirical PSF as a function of collision ratio and hash table size T . **(a)** Impact of varying the number of levels L (fixed $b = 1.5$). **(b)** Impact of varying the growth factor b (fixed $L = 10$). In all cases, SNR degrades rapidly at high collision ratios (low T). Higher L or b generally improves the achievable SNR for a fixed T . Colors indicate the varied parameter.

not N_{max} . For the dipole configuration (Figure 3(d)), the profiles exhibit a consistent shape characterized by the FWHM, illustrating that the spatial extent of the dipole response is also governed by N_{avg} .

4 THE IMPACT OF FINITE HASH CAPACITY

Having characterized the inherent spatial properties of the MHE kernel, we now analyze the effects of practical memory constraints. In real implementations, the hash table capacity T is finite, leading to collisions where different spatial vertices map to the same entry in the feature table \mathbf{F}^l .

4.1 MODELING HASH COLLISIONS AND SPECKLE

When vertices collide, they share the same feature vector. For a single point objective at \mathbf{x}_0 , the optimized feature vector \mathbf{F}_i^l becomes proportional to the sum of the interpolation weights of all colliding vertices C_i^l evaluated at the target point:

$$\mathbf{F}_i^l \propto \sum_{\mathbf{v} \in C_i^l} K_l(\mathbf{v} - \mathbf{x}_0) \quad (5)$$

A vertex \mathbf{v} near \mathbf{x}_0 might collide with a spatially distant vertex \mathbf{v}' . The optimized feature is now inadvertently activated when querying \mathbf{v}' . This mechanism causes unintended "ghost" responses far from the center of the PSF, resulting in spurious side lobes or speckle patterns in the spatial response. We model the resulting PSF as $P_{\text{Collision}}(\mathbf{x}) = P_{\text{Ideal}}(\mathbf{x}) + n(\mathbf{x})$. The severity of the noise $n(\mathbf{x})$ depends strongly on the *collision ratio* (load factor). As the collision ratio increases, the variance of $n(\mathbf{x})$ increases, and the Signal to Noise Ratio (SNR) decreases.

324 4.2 NUMERICAL VALIDATION OF COLLISION EFFECTS
325

326 We investigate the impact of collisions experimentally by training a 2D MHE network with a single
327 point objective while systematically varying T , L , and b . Figure 4 summarizes the impact of these
328 parameters on the SNR. Across all configurations, increasing the collision ratio eventually leads to a
329 significant degradation in SNR. We observe that increasing L (Panel a) or b (Panel b) generally im-
330 proves the achievable SNR for a fixed capacity T . This suggests that distributing the representation
331 across more levels or with greater separation enhances robustness, provided that T is sufficient.

332 5 ROTATED MHE (R-MHE)
333

334 Our analysis identified that the reliance on axis-aligned grids in standard MHE leads to inherent
335 anisotropy (Section 3.1). This is undesirable in applications like NeRF where viewing angles vary
336 continuously, or in image regression where features may not align with the axes. To address this
337 limitation, we propose the Rotated MHE (R-MHE) architecture.

338 5.1 MOTIVATION AND ARCHITECTURE
339

340 R-MHE leverages the existing multi-resolution structure of MHE. Instead of using a single rotation
341 for the entire encoding or requiring multiple independent hash tables, R-MHE applies a distinct
342 rotation matrix \mathbf{R}_l to the input coordinates \mathbf{x} specifically at each resolution level l . The encoding
343 process at level l is modified as follows:

$$344 \mathbf{e}_l(\mathbf{x}) = \text{Interpolate}(\mathbf{F}^l, \mathcal{H}(\lfloor N_l \mathbf{R}_l \mathbf{x} \rfloor)) \quad (6)$$

345 This model utilizes the same hash function \mathcal{H} and feature tables \mathbf{F}^l as standard MHE, maintaining
346 the exact memory footprint, parameter count, and computational efficiency of the original MHE
347 architecture.

348 5.2 ROTATION STRATEGIES
349

350 The key to R-MHE is selecting a set of rotations $\{\mathbf{R}_l\}$ that maximizes the diversity of grid orienta-
351 tions across the levels.

352 **2D Rotation Strategy.** In 2D, we employ a progressive rotation strategy. We define a base rotation
353 angle θ , and set the rotation at level l to be $\mathbf{R}_l = \text{Rot}(l \cdot \theta)$. This ensures that subsequent levels are
354 oriented differently, maximizing the angular coverage over the L levels. We analyze the impact of
355 the choice of θ in Section 5.4.

356 **3D Rotation Strategy.** In 3D, we aim for uniform sampling of the rotation space $\text{SO}(3)$. We
357 utilize the vertex orientations of regular polyhedra (tetrahedron, cube, octahedron, icosahedron) to
358 define a set of canonical directions. The rotations $\{\mathbf{R}_l\}$ are chosen to align the grid axes with these
359 directions, cycle through the vertices of one chosen polyhedron type across the levels L (Details in
360 Appendix A.6).

361 5.3 THEORETICAL BENEFITS: IMPROVED ISOTROPY
362

363 The R-MHE architecture offers significant advantage of improved isotropy derived directly from our
364 PSF analysis.

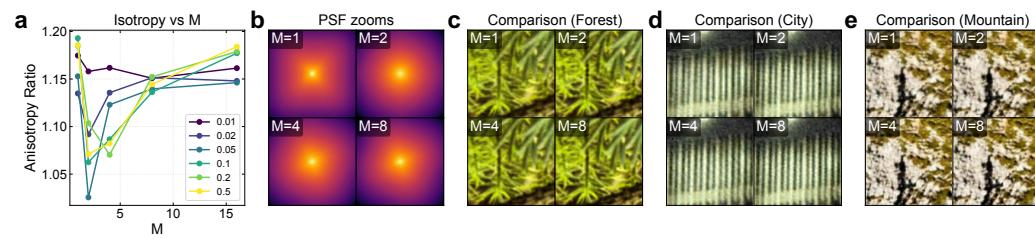
365 The resulting idealized PSF of R-MHE is the superposition of the rotated induced kernels:

$$366 P_{\text{R-MHE}}(\mathbf{x}) = \sum_{l=0}^{L-1} \frac{1}{L} \hat{B}_l(\mathbf{R}_l(\mathbf{x} - \mathbf{x}_0)) \quad (7)$$

367 where the rotations are applied at each level. This averaging process across differently oriented
368 levels effectively mitigates the angular dependencies inherent in the standard MHE, leading to a
369 more uniform spatial resolution across different orientations.

378
379380 5.4 EXPERIMENTAL VALIDATION OF R-MHE
381382 We validate the benefits of the R-MHE architecture using the established numerical framework
383 and a practical 2D application. We analyze the impact of the base rotation angle θ . We define the
384 strategy by the parameter M , such that $\theta = 90 \text{ deg} / M$. M represents the effective number of unique
385 orientations sampled within the first quadrant.

386

387 **Quantifying Isotropy.** We conducted experiments to measure the PSF for standard MHE ($M = 1$)
388 and R-MHE with increasing M (up to 16). The objective was to quantify the improvement in
389 isotropy (measured by the Anisotropy Ratio, the ratio of the maximum to minimum distance to
390 center across directions at different levels). Analysis of this ratio and the kernels in 5 (a) and (b)
391 reveals that for this averaging contributes to better isotropy for moderate M . This trend suggests
392 that while increasing M improves isotropy by diversifying orientations, excessively large M would
393 cause L levels to be insufficient to effectively average a very large number of unique orientations,
394 potentially reducing the effectiveness of the rotation strategy. From $M = 1$ in 5 (a) it is evident that
395 the anisotropy ratio of 1.17 proven in A.4 holds across many different levels.
396

401

402

403 **Figure 5: R-MHE Validation: Isotropy and 2D Image Regression.** We analyze the impact of
404 increasing the effective number of rotations M . (a) Isotropy vs M . The Anisotropy Ratio decreases
405 and then increases as M increases, demonstrating a more isotropic PSF for moderate M . Colors
406 indicate the amplitude level at which the anisotropy ratio is measured (e.g., 0.5 corresponds to
407 FWHM). (b) Visualization of the PSF zoom for different M . The shape becomes more circular
408 (isotropic) as M increases. (c-e) Qualitative comparison of 2D image regression results (zoomed
409 view). R-MHE improves reconstruction quality by mitigating artifacts arising from the anisotropic
410 kernel.

411

412

413 **Application: 2D Image Regression.** To demonstrate the practical advantages of R-MHE,
414 we evaluated its performance on a 2D image regression task using three high-resolution images (Details
415 in Appendix B). We follow the standard configuration: $L = 16$ levels and $F = 2$ features per level.

416

417 We employed our theoretical insight that the empirical FWHM (governed by N_{avg} and β_{emp}) dictates
418 the practical resolution limit (Section 3.3). Accordingly, we calculated the theoretical growth factor
419 b_{theory} such that the empirical FWHM along the axes direction, $\beta_{\text{emp}}/N_{\text{avg}}$, matches the spatial extent
420 of a single pixel. We used the validated total empirical broadening factor $\beta_{\text{emp}} = 3.0$ (Section 3.2).

421

422 To validate this principled approach and find the empirical optimum, we performed experiments
423 comparing b_{theory} against neighboring values ($b_{\text{theory}} \pm 0.1, \pm 0.2$). The results (Appendix B.3, Ta-
424 ble 5) show that the empirical optimum (b_{opt}) consistently occurred near, but slightly below, b_{theory}
425 (specifically $b_{\text{theory}} - 0.1$ or -0.2). This indicates the optimal effective kernel size is 2.5 pixels.
426 This is physically intuitive, as natural images possess spatial coherence and are rarely composed of
427 pixel-perfect high-frequency noise; a slightly broader kernel better matches the signal bandwidth
428 and provides beneficial regularization.

429

430

431 We compare standard MHE ($M = 1$) and R-MHE ($M \in \{2, 4, 8\}$) using the respective empirically
432 optimized b_{opt} for each configuration. All experiments were run with 5 random seeds. The results,
433 summarized in Table 1 and illustrated in Figure 5(c-e), highlight the improvement achieved by R-
434 MHE. The standard MHE baseline achieves an average PSNR of 23.88 dB. R-MHE consistently
435 improves performance, reaching a peak average PSNR of 24.82 dB at $M = 8$, an improvement of
436 +0.94 dB. This gain demonstrates that the improved isotropy provided by R-MHE effectively mi-
437 tigates artifacts caused by the anisotropic kernel, at no additional cost in parameters or computation.

432
 433 Table 1: 2D Image Regression performance (Average PSNR \pm Std Dev in dB) using the empirically
 434 optimized growth factor b . R-MHE significantly outperforms the standard MHE baseline ($M = 1$)
 435 with zero overhead. (L=16, F=2).

436 Method (Effective Rotations M)	437 Average PSNR (dB) \uparrow
438 Standard MHE (M=1)	23.88 \pm 0.02
439 R-MHE (M=2)	24.62 \pm 0.01
440 R-MHE (M=4)	24.69 \pm 0.01
	24.82 \pm 0.01

442 6 APPLICATIONS TO 3D NEURAL FIELDS AND SDFs

443 Having validated the benefits of R-MHE in 2D, we now evaluate its impact on complex 3D ap-
 444 plications: Neural Radiance Fields (NeRF) and Signed Distance Functions (SDFs). We aim to
 445 demonstrate the practical utility of our PSF analysis for hyperparameter selection and to assess the
 446 performance of R-MHE in 3D using the polyhedral rotation strategy. We utilize a customized im-
 447 plementation based on the Instant-NGP framework (Müller et al., 2022).

450 6.1 EXPERIMENTAL SETUP

452 We follow the standard Instant-NGP configuration ($L = 16, F = 2$). All models were trained for
 453 20,000 steps using the Adam optimizer (Details in Appendix C). We compare standard MHE against
 454 R-MHE using the 3D polyhedral rotation strategies (Tetrahedron, Cube, Octahedron, Icosahedron).
 455 All experiments were run with 5 random seeds.

457 **Configuration Strategies.** We evaluate two strategies for selecting the growth factor b . The Base-
 458 line Heuristic utilizes the default approach in Instant-NGP. The PSF Guided (Theory) strategy is de-
 459 rived from our analysis (Section 3); b is calculated such that the empirical FWHM (using $\beta_{\text{emp}} = 3.0$)
 460 matches the target spatial resolution.

462 6.2 RESULTS: NEURAL RADIANCE FIELDS (NERF)

464 We conduct experiments on the 8 scenes of the Synthetic NeRF dataset (Mildenhall et al., 2020).
 465 The average reconstruction quality (PSNR) is summarized in Table 2.

467 Table 2: 3D NeRF reconstruction performance (Average PSNR \pm Std Dev in dB) on the Synthetic
 468 NeRF dataset (8 scenes). We compare configuration strategies and R-MHE rotation types.

469 Configuration	470 Method	471 Average PSNR (dB) \uparrow
472 Baseline Heuristic (Optimized b)	Standard MHE	35.346 \pm 0.105
	R-MHE (Tetra)	35.472 \pm 0.114
	R-MHE (Cube)	35.445 \pm 0.134
	R-MHE (Octa)	35.449 \pm 0.115
	R-MHE (Icosa)	35.479 \pm 0.134
477 PSF Guided (Theory b)	Standard MHE	35.329 \pm 0.100
	R-MHE (Tetra)	35.396 \pm 0.128
	R-MHE (Cube)	35.404 \pm 0.121
	R-MHE (Octa)	35.409 \pm 0.139
	R-MHE (Icosa)	35.440 \pm 0.119

482 **Configuration Strategies: Heuristic vs. PSF Guided.** The Baseline Heuristic (empirically opti-
 483 mized b_{opt}) performs very similarly to the PSF Guided (Theory) configuration ($b_{\text{theory}} \approx 1.38$). For
 484 Standard MHE, the theoretical configuration achieves 35.329 dB, matching the empirical optimum
 485 of 35.346 dB (Table 2). As visualized in the detailed parameter sweeps in Appendix C.2, the theo-
 486 retical prediction ($b_{\text{theory}} \approx 1.38$) consistently falls precisely within the regime of best performance

486 across all scenes. This validates that our PSF analysis, incorporating the total empirical broadening
 487 factor $\beta_{\text{emp}} = 3.0$, successfully identifies optimal hyperparameters *a priori*, eliminating the need for
 488 costly empirical grid searches.
 489

490 **R-MHE Performance.** We observe that R-MHE consistently maintains or slightly improves the
 491 performance of standard MHE across both configuration strategies. For the Baseline configuration,
 492 the best R-MHE variant (Icosa, 35.479 dB) shows a marginal improvement compared to Standard
 493 MHE (35.346 dB). The modest nature of the gains in this 3D scenario, compared to the improve-
 494 ments observed in 2D (Section 5.3), may be attributed to the inherent view averaging in NeRF
 495 rendering, which can partially mitigate the impacts of anisotropy. Nonetheless, R-MHE provides
 496 these results at zero overhead while offering the theoretical benefit of improved isotropy.
 497

498 6.3 RESULTS: SIGNED DISTANCE FUNCTIONS (SDF)

499 We further evaluate R-MHE on the task of learning Signed Distance Functions. We utilize three
 500 standard benchmark meshes: Armadillo, Bunny, and Spot. We measure the Intersection over Union
 501 (IoU) to quantify reconstruction quality (higher is better). The results for the optimal resolution
 502 configuration ($b \approx 1.18$) are summarized in Table 3.
 503

504
 505 Table 3: 3D SDF reconstruction performance (Intersection over Union, IoU \uparrow) on benchmark
 506 meshes. All methods achieve near-perfect reconstruction (> 0.99), indicating performance sat-
 507 uration on this task.

508 Method	509 Armadillo	510 Bunny	511 Spot	512 Average IoU
513 Standard MHE	0.9994 \pm 0.0002	0.9966 \pm 0.0001	0.9998 \pm 0.0001	0.9986
514 R-MHE (Tetra)	0.9994 \pm 0.0002	0.9966 \pm 0.0001	0.9998 \pm 0.0001	0.9986
515 R-MHE (Cube)	0.9995 \pm 0.0001	0.9966 \pm 0.0001	0.9998 \pm 0.0001	0.9986
516 R-MHE (Octa)	0.9995 \pm 0.0001	0.9966 \pm 0.0001	0.9998 \pm 0.0001	0.9986
517 R-MHE (Icosa)	0.9994 \pm 0.0002	0.9966 \pm 0.0001	0.9998 \pm 0.0001	0.9986

518 **Performance Saturation.** As shown in Table 3, the results exhibit clear performance saturation.
 519 At the high spatial resolutions provided by the MHE configuration ($b \approx 1.18$), the capacity of the
 520 hash grid is sufficient to resolve the geometry with extreme precision, yielding IoU scores exceed-
 521 ing 0.996 for all meshes across all methods. In this saturated regime, the reconstruction error is
 522 dominated by the finite sampling resolution rather than the encoding’s anisotropy.
 523

524 7 CONCLUSION

525 This work addresses the deficiency of physical understanding in the study of Multi-Resolution Hash
 526 Encoding (MHE) by introducing an analysis based on the Point Spread Function (PSF). By treating
 527 the MHE model as a physical system, we provide a novel framework to identify performance limita-
 528 tions and optimize the architecture. Our analysis reveals that the idealized MHE PSF, characterized
 529 by the induced B-spline kernel, inherently possesses an anisotropic profile (broader on diagonals),
 530 with its spatial bandwidth determined by the average resolution N_{avg} . We demonstrated that optimi-
 531 zation dynamics (spectral bias) lead to significant spatial broadening (β_{opt}), resulting in the crucial
 532 finding that the effective resolution is governed by the broadened empirical FWHM (and therefore
 533 N_{avg}), not N_{max} . Leveraging these insights, we introduced Rotated MHE (R-MHE), a parameter-
 534 free modification that mitigates anisotropy by applying distinct rotations at each resolution level.
 535

536 **Future Work and Broader Impact.** The anisotropic behavior analyzed here is applicable to other
 537 grid-based encodings, such as multi-plane (TensoRF (Chen et al., 2022)) or planar factorizations (K-
 538 Planes (Fridovich-Keil et al., 2023)), as they also rely on multilinear interpolation on axis-aligned
 539 structures. The R-MHE concept of applying rotations per level or plane could be directly transferred
 540 to these settings to improve isotropy. This study establishes a methodology based on physical
 541 principles that moves beyond heuristics, offering a new pathway to characterize and improve neural field
 542 models.

540 REFERENCES
541

542 Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
543 fields, 2022. URL <https://arxiv.org/abs/2203.09517>.

544 Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger. Dictionary fields:
545 Learning a neural basis decomposition. *ACM Transactions on Graphics*, 42:1–12, 07 2023. doi:
546 10.1145/3592135.

548 Tianxiang Dai, Yixuan Shao, Chenkai Mao, Yu Wu, Sara Azzouz, You Zhou, and Jonathan A.
549 Fan. Shaping freeform nanophotonic devices with geometric neural parameterization. *npj Computational Materials*, 11(1):259, 2025. doi: 10.1038/s41524-025-01752-w. URL <https://doi.org/10.1038/s41524-025-01752-w>.

552 Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbaek Warburg, Benjamin Recht, and Angjoo
553 Kanazawa. K-Planes: Explicit Radiance Fields in Space, Time, and Appearance . In 2023
554 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12479–12488,
555 Los Alamitos, CA, USA, June 2023. IEEE Computer Society. doi: 10.1109/CVPR52729.2023.
556 01201. URL <https://doi.ieee.org/10.1109/CVPR52729.2023.01201>.

559 Hastings Greer, Roland Kwitt, Francois-Xavier Vialard, and Marc Niethammer. Icon: Learning
560 regular maps through inverse consistency. In 2021 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3376–3385. IEEE, October 2021. doi: 10.1109/iccv48922.2021.00338.
561 URL <http://dx.doi.org/10.1109/ICCV48922.2021.00338>.

563 Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash en-
564 coding. *Journal of Computational Physics*, 501:112760, 2024. ISSN 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2024.112760>. URL <https://www.sciencedirect.com/science/article/pii/S0021999124000093>.

568 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
569 eralization in neural networks, 2018. URL <https://arxiv.org/abs/1806.07572>.

570 R. Keys. Cubic convolution interpolation for digital image processing. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 29(6):1153–1160, December 1981. ISSN 0096-3518.
571 doi: 10.1109/tassp.1981.1163711. URL <http://dx.doi.org/10.1109/TASSP.1981.1163711>.

575 Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. *ACM Transactions on Graphics*,
576 25(3):579–588, July 2006. ISSN 1557-7368. doi: 10.1145/1141911.1141926. URL <http://dx.doi.org/10.1145/1141911.1141926>.

580 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
581 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
582 <https://arxiv.org/abs/2003.08934>.

588 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
589 with a multiresolution hash encoding. *ACM Transactions on Graphics*, 41(4):1–15, July 2022. ISSN 1557-7368. doi: 10.1145/3528223.3530127. URL <http://dx.doi.org/10.1145/3528223.3530127>.

595 Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time 3d recon-
596 struction at scale using voxel hashing. *ACM Transactions on Graphics*, 32(6):1–11, November
597 2013. ISSN 1557-7368. doi: 10.1145/2508363.2508374. URL <http://dx.doi.org/10.1145/2508363.2508374>.

598 Xiangyu Peng, Kai Wang, Zheng Zhu, Mang Wang, and Yang You. Crafting better contrastive
599 views for siamese representation learning. In 2022 *IEEE/CVF Conference on Computer Vision and
600 Pattern Recognition (CVPR)*, pp. 16010–16019. IEEE, June 2022. doi: 10.1109/cvpr52688.2022.01556.
601 URL <http://dx.doi.org/10.1109/CVPR52688.2022.01556>.

594 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
 595 Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks, 2018. URL
 596 <https://arxiv.org/abs/1806.08734>.
 597

598 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
 599 Wetzstein. Implicit neural representations with periodic activation functions, 2020. URL
 600 <https://arxiv.org/abs/2006.09661>.
 601

602 Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
 603 vergence for radiance fields reconstruction. In *2022 IEEE/CVF Conference on Computer Vision
 604 and Pattern Recognition (CVPR)*. IEEE, June 2022. doi: 10.1109/cvpr52688.2022.00538. URL
 605 <http://dx.doi.org/10.1109/CVPR52688.2022.00538>.
 606

607 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 608 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
 609 networks learn high frequency functions in low dimensional domains, 2020. URL <https://arxiv.org/abs/2006.10739>.
 610

611 P. Thevenaz, T. Blu, and M. Unser. Interpolation revisited [medical images application]. *IEEE
 612 Transactions on Medical Imaging*, 19(7):739–758, July 2000. ISSN 0278-0062. doi: 10.1109/42.
 613 875199. URL <http://dx.doi.org/10.1109/42.875199>.
 614

615

A EXTENDED DERIVATIONS

A.1 IMPACT OF GRID MISALIGNMENT AND THE INDUCED KERNEL

620 The analysis of the idealized PSF (Section 3.1) relies on the induced kernel framework. In the lin-
 621 earized regime, the spatial response of the encoding averaged over all possible alignments between
 622 the target point \mathbf{x}_0 and the grid structure is characterized by the auto-correlation of the interpolation
 623 kernel $K_l(\mathbf{x})$, resulting in the induced kernel $B_l(\mathbf{x}) = (K_l * K_l)(\mathbf{x})$ (the cubic B-spline). While
 624 the response for a specific alignment (e.g., perfect alignment with a vertex, which yields the tent
 625 function) differs, the B-spline kernel correctly captures the general case, and the derived properties
 626 regarding anisotropy and FWHM scaling are robust.
 627

A.2 CONTEXT: BEHAVIOR UNDER DENSE SUPERVISION

630 It is important to contrast the behavior of MHE under sparse supervision, which is the focus of our
 631 PSF analysis, with its behavior under dense supervision, such as in image regression tasks. Our
 632 analysis, however, specifically targets the behavior relevant to scenarios with sparse constraints,
 633 where the assumption of a linearized MLP decoder is most appropriate and the intrinsic spatial
 634 properties of the encoding are isolated, and by our analysis, closely links the final performance on
 635 actual tasks with this idealized results.
 636

A.3 ANALYSIS OF THE INDUCED KERNEL: PROFILE, ANISOTROPY, AND FWHM

638 We analyze the properties of the idealized PSF $P_{\text{ideal}}(\mathbf{x})$ based on the induced kernel $B(\mathbf{x})$ (the
 639 separable cubic B-spline kernel) and the multi-resolution structure.
 640

641 **The 1D Cubic B-spline Kernel and FWHM (β_{ideal}).** In 1D, the induced kernel is the normalized
 642 cubic B-spline $\hat{B}_{1D}(u)$. The piecewise definition for $0 \leq |u| \leq 1$ is:
 643

$$\hat{B}_{1D}(u) = 1 - \frac{3}{2}u^2 + \frac{3}{4}|u|^3 \quad (8)$$

644 We solve for the half-width $u_{1/2}$ such that $\hat{B}_{1D}(u_{1/2}) = 0.5$. Solving this cubic equation numeri-
 645 cally yields the relevant real root $u_{1/2} \approx 0.5904$. The FWHM is $\beta_{\text{ideal}} = 2u_{1/2} \approx 1.1808$.
 646

648 **Derivation of the Logarithmic Profile and Closed Form.** We demonstrate that the superposition
 649 of B-splines results in a dominant logarithmic profile near the center, justifying Eq. 2. We approxi-
 650 mate the summation with an integral and utilize the Taylor expansion of the B-spline near the center:
 651 $\hat{B}_{1D}(u) \approx 1 - \frac{3}{2}u^2$.
 652

653 We analyze the 1D case. Let $v = N_{\min}x$. The effective upper limit of integration L_{eff} occurs
 654 approximately when the argument reaches the scale of the kernel support, $b^{L_{\text{eff}}}v \approx 1$. Thus $L_{\text{eff}} \approx$
 655 $-\ln(v)/\ln(b)$.

$$656 P_{\text{ideal}}(v) \approx \frac{1}{L} \int_0^{L_{\text{eff}}} \hat{B}_{1D}(b^l v) dl \approx \frac{1}{L} \int_0^{L_{\text{eff}}} \left(1 - \frac{3}{2}b^{2l}v^2\right) dl \quad (9)$$

$$657 P_{\text{ideal}}(v) \approx \frac{1}{L} \left[l - \frac{3v^2}{4 \ln b} b^{2l} \right]_0^{L_{\text{eff}}} \quad (10)$$

661 Substituting L_{eff} and $b^{2L_{\text{eff}}} \approx 1/v^2$:

$$662 P_{\text{ideal}}(v) \approx \frac{1}{L \ln b} \left[-\ln(v) - \frac{3}{4} + \frac{3v^2}{4} \right] \quad (11)$$

665 This confirms the dominant $-\ln(v)$ behavior near the center. The generalization to D dimensions
 666 yields the form in Eq. 2, where the anisotropy factor $A_D(v)$ arises from the D-dimensional expan-
 667 sion and the specific properties of the B-spline kernel.

668 **FWHM Scaling.** The FWHM of the composite idealized PSF $P_{\text{ideal}}(\mathbf{x})$ along the axes scales with
 669 the average resolution N_{avg} . The idealized FWHM along the axis is approximately:

$$671 \text{FWHM}_{\text{Axis, Ideal}} \approx \beta_{\text{ideal}}/N_{\text{avg}} \approx 1.18/N_{\text{avg}} \quad (12)$$

674 A.4 GENERALIZED ANISOTROPY ANALYSIS IN D DIMENSIONS

676 We perform the anisotropy analysis of the induced kernel (cubic B-spline) on D dimensions using
 677 an analysis based on the Taylor expansion near the center. This analysis demonstrates that the kernel
 678 is inherently narrowest along the primary axes and becomes progressively broader along directions
 679 that involve multiple components (diagonals).

680 **D-Dimensional Kernel and Taylor Approximation.** The D-dimensional normalized induced ker-
 681 nel $\hat{B}_D(\mathbf{u})$ is the separable product:

$$683 \hat{B}_D(\mathbf{u}) = \prod_{i=1}^D \hat{B}_{1D}(u_i) \quad (13)$$

686 We utilize the Taylor expansion of the 1D kernel near the origin. From the definition of the normal-
 687 ized cubic B-spline (Eq. 8), the second derivative is $\hat{B}_{1D}''(0) = -3$. We define $C = -\frac{1}{2}\hat{B}_{1D}''(0) =$
 688 $3/2$.

$$689 \hat{B}_{1D}(u) \approx 1 - Cu^2 \quad (14)$$

690 This quadratic approximation accurately captures the local curvature near the peak, which deter-
 691 mines the primary anisotropy trend.

692 **Analysis of K-Sparse Directions.** We analyze the anisotropy by comparing the Euclidean distance
 693 d from the center required to reach a fixed amplitude A (e.g., $A = 0.5$ for FWHM) along different
 694 orientations. We consider a K -sparse direction, where K components of the input vector are equal
 695 ($u_i = x$ for $1 \leq i \leq K$) and the remaining $D - K$ components are zero. This spans orientations
 696 from the primary axis ($K = 1$) to the main space diagonal (if $K = D$). The Euclidean distance is
 697 $d = \sqrt{K}x$.

698 The response along this direction is:

$$700 P(\mathbf{u}) = \prod_{i=1}^K \hat{B}_{1D}(x) \cdot \prod_{i=K+1}^D \hat{B}_{1D}(0) = \left(\hat{B}_{1D}(x) \right)^K \quad (15)$$

702 Setting the response to A :

$$704 \hat{B}_{1D}(x)^K = A \implies \hat{B}_{1D}(x) = A^{1/K} \quad (16)$$

705 Using the Taylor expansion:

$$707 1 - Cx^2 \approx A^{1/K} \implies x^2 \approx \frac{1 - A^{1/K}}{C} \quad (17)$$

710 The squared Euclidean distance d^2 is:

$$711 712 d^2(K) = Kx^2 \approx \frac{K(1 - A^{1/K})}{C} \quad (18)$$

714 **Proof of Monotonicity.** To determine how the width changes as the direction involves more components (moving from axis towards the main diagonal), we analyze the monotonicity of $d^2(K)$. We 715 analyze the function $f(K) = K(1 - A^{1/K})$ for $A \in (0, 1)$.

717 We analyze the derivative $f'(K)$ (treating K as a continuous variable for analysis):

$$719 720 f'(K) = (1 - A^{1/K}) + K \left(-A^{1/K} \cdot \ln(A) \cdot \left(-\frac{1}{K^2} \right) \right) = 1 - A^{1/K} + \frac{1}{K} A^{1/K} \ln(A) \quad (19)$$

722 Let $y = A^{1/K}$. Since $A \in (0, 1)$ and $K \geq 1$, we have $y \in (0, 1)$. Also $\ln(A) = K \ln(y)$.

$$723 724 f'(K) = 1 - y + y \ln(y) \quad (20)$$

725 We examine the function $g(y) = 1 - y + y \ln(y)$. The derivative is $g'(y) = -1 + \ln(y) + 1 = \ln(y)$. 726 Since $y < 1$, $g'(y) < 0$. Thus, $g(y)$ is monotonically decreasing. The minimum occurs at the limit 727 $y \rightarrow 1$, where $g(1) = 0$. Therefore, $f'(K) > 0$ for all $A < 1$.

728 This proves that $f(K)$, and thus the distance $d(K)$, is monotonically increasing with K . The induced 729 B-spline kernel is narrowest along the primary axes ($K = 1$) and broadest along the main space 730 diagonal (where K is maximal).

732 **Anisotropy Ratio and Dimensional Scaling.** We define the Anisotropy Ratio $R_A(D)$ as the ratio 733 of the squared distances along the main diagonal ($K = D$) versus the axis ($K = 1$), using $A = 0.5$.

$$735 736 R_A(D) = \frac{d^2(D)}{d^2(1)} \approx \frac{D(1 - 0.5^{1/D})/C}{(1 - 0.5)/C} = 2D(1 - 0.5^{1/D}) \quad (21)$$

738 • **D=2:** $R_A(2) = 4(1 - 0.5^{1/2}) \approx 1.1716$.

739 • **D=3:** $R_A(3) = 6(1 - 0.5^{1/3}) \approx 1.2378$.

741 The Anisotropy Ratio $R_A(D)$ is also monotonically increasing with D (since $f(D)$ is monotonic), 742 demonstrating that the grid-induced anisotropy becomes more pronounced in higher dimensions. 743 The limit as $D \rightarrow \infty$ is $2 \ln(2) \approx 1.386$.

745 A.5 TWO-POINT RESOLUTION DERIVATION (CONSTRUCTIVE INTERFERENCE)

747 The resolution limit d_{crit} (Rayleigh criterion) is the minimum separation d such that $R(\text{midpoint}) < R(\text{peak})$. We analyze the idealized case for an axis-aligned configuration. The condition for a dip 748 at the midpoint requires the second derivative of the reconstruction $R(\mathbf{x})$ to be positive at the center. 749 Since the induced kernel $B_l(\mathbf{x})$ (cubic B-spline) is smooth (C^2 continuous) and strictly concave 750 near the peak, this condition is satisfied for any separation $d > 0$.

752 Therefore, in the idealized minimum-norm configuration using the induced kernel, the theoretical 753 resolution limit is infinitesimally small. It is crucial to emphasize that this applies specifically to the 754 idealized solution. As demonstrated by the empirical results in Section 3.3, practical optimization 755 dynamics lead to a broader empirical PSF, where the actual resolution limit is governed by the empirical FWHM (scaling with $1/N_{\text{avg}}$).

756 A.6 R-MHE 3D ROTATION STRATEGIES
757758 We detail the 3D rotation strategies utilized in Section 5.2. We use the vertex orientations of regular
759 polyhedra to define canonical directions, aiming for uniform sampling of $\text{SO}(3)$. The rotations \mathbf{R}_l
760 are constructed by aligning the standard basis vectors with these normalized directions. We cycle
761 through the following sets across the levels L .762

- **Tetrahedron (4 vertices):** $(1,1,1), (-1,-1,1), (-1,1,-1), (1,-1,-1)$.
- **Cube (8 vertices):** All sign corners $(\pm 1, \pm 1, \pm 1)$, ordered lexicographically.
- **Octahedron (6 vertices):** $(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$.
- **Icosahedron (12 vertices):** $(0, \pm 1, \pm \phi), (\pm 1, \pm \phi, 0), (\pm \phi, 0, \pm 1)$, where $\phi = (1 + \sqrt{5})/2$
767 is the golden ratio.

768769 The Icosahedral strategy provides the most uniform distribution of orientations, which correlates
770 with the superior empirical performance observed in Section 6.
771772 B EXPERIMENTAL DETAILS FOR 2D IMAGE REGRESSION
773774 B.1 DATASET AND CONFIGURATION
775776 We utilized three high-resolution images: "Mountain" (2473×3710), "City" (4000×6000), and
777 "Forest" (3193×6016). To ensure fair comparison and remove potential anisotropy introduced by
778 non-square aspect ratios during sampling, all images were center-cropped to the largest possible
779 square (e.g., 2473×2473 for Mountain).780 **Configuration.** We utilized $L = 16$ levels, $F = 2$ features per level, and a hash table capacity
781 of $T = 2^{18}$. R-MHE configurations use the progressive rotation strategy (Section 5.2), with M
782 defining the base rotation angle $\theta = 90^\circ/M$.
783784 **Training Details.** The networks were trained for 5000 steps using the Adam optimizer with a
785 learning rate of 0.001. We used a batch size of 2^{17} (131072) randomly sampled pixels per iteration.
786 All experiments were repeated across 5 random seeds.
787788 B.2 PSF GUIDED PARAMETER SELECTION
789790 We leveraged the relationship between the empirical FWHM along the axes direction and N_{avg} .
791 We determined the theoretical optimal growth factor b_{theory} by setting the target empirical FWHM
792 ($\beta_{\text{emp}}/N_{\text{avg}}$) based on the cropped image dimensions (1/shortest_side). We used the empirically
793 validated factor $\beta_{\text{emp}} = 3.0$. We fixed $L = 16$ and $N_{\text{min}} = 16$, and then solved numerically for the
794 required growth factor b . The resulting theoretical growth factors b_{theory} are detailed in Table 4.
795796 Table 4: PSF Guided Hyperparameters for 2D Gigapixel Image Regression (Cropped Images).
797

Image	Resolution (Cropped)	Target Empirical FWHM	Growth Factor (b_{theory})
Mountain	2473×2473	8.09e-04	1.4614
City	4000×4000	5.00e-04	1.5078
Forest	3193×3193	6.26e-04	1.4863

802
803 B.3 VALIDATION OF THEORETICAL GROWTH FACTOR
804805 The results (Table 5) summarize these results across the Standard MHE ($M=1$) and R-MHE
806 configurations ($M \in \{2, 4, 8\}$). The analysis demonstrates that the best performance is consistently
807 achieved near b_{theory} , specifically at $b_{\text{theory}} = 0.1$ or -0.2 . Since a lower growth factor b corresponds
808 to a lower N_{avg} and thus a wider FWHM, this finding suggests that targeting a resolution of exactly
809 one pixel is slightly too aggressive. A kernel slightly broader than one pixel yields better reconstruc-
810 tion, likely because natural images are band-limited and contain features larger than a single pixel,
811

810 whereas a 1-pixel target may encourage overfitting to aliasing or quantization artifacts. The optimal
 811 FWHM is thus roughly 2.5 pixels, from this observation.
 812

813
 814 Table 5: Validation of PSF-Guided Growth Factor (b) Selection. PSNR (dB, Mean \pm Std Dev)
 815 results comparing b_{theory} against neighboring values. Bold indicates the best performance for the
 816 configuration.

Image	M	$b_{\text{theory}} - 0.2$	$b_{\text{theory}} - 0.1$	b_{theory}	$b_{\text{theory}} + 0.1$	$b_{\text{theory}} + 0.2$
Mountain	M=1	22.98 \pm 0.02	24.19 \pm 0.03	23.07 \pm 0.04	22.44 \pm 0.09	21.76 \pm 0.07
	M=2	23.90 \pm 0.01	25.37 \pm 0.02	24.52 \pm 0.01	23.30 \pm 0.02	22.75 \pm 0.01
	M=4	24.09 \pm 0.01	25.35 \pm 0.02	24.53 \pm 0.01	23.59 \pm 0.01	23.54 \pm 0.02
	M=8	24.12 \pm 0.00	25.84 \pm 0.01	24.19 \pm 0.02	23.40 \pm 0.02	23.35 \pm 0.02
City	M=1	21.85 \pm 0.00	21.86 \pm 0.01	21.16 \pm 0.01	20.20 \pm 0.00	19.07 \pm 0.00
	M=2	22.31 \pm 0.00	22.57 \pm 0.01	21.71 \pm 0.01	20.64 \pm 0.00	19.77 \pm 0.00
	M=4	22.33 \pm 0.00	22.71 \pm 0.00	21.66 \pm 0.01	21.04 \pm 0.00	20.44 \pm 0.01
	M=8	22.82 \pm 0.00	22.43 \pm 0.00	21.62 \pm 0.01	21.06 \pm 0.01	20.46 \pm 0.01
Forest	M=1	25.11 \pm 0.01	25.59 \pm 0.01	24.76 \pm 0.02	24.46 \pm 0.03	24.12 \pm 0.01
	M=2	25.56 \pm 0.01	25.92 \pm 0.01	25.39 \pm 0.01	25.19 \pm 0.01	24.66 \pm 0.01
	M=4	25.55 \pm 0.01	26.02 \pm 0.00	25.38 \pm 0.01	25.13 \pm 0.01	24.85 \pm 0.01
	M=8	25.79 \pm 0.01	25.78 \pm 0.00	25.30 \pm 0.01	25.04 \pm 0.01	25.02 \pm 0.01

B.4 DETAILED RESULTS

834 Table 6 provides the detailed PSNR results for each individual image across the different R-MHE
 835 configurations, utilizing the empirically validated optimal b (from Table 5).
 836

837 Table 6: Detailed PSNR (dB, Mean \pm Std Dev) results for 2D Gigapixel Image Regression using
 838 the empirically optimized growth factor b . Bold indicates the best performance per row.

Image	M=1 (Baseline)	M=2	M=4	M=8
Mountain	24.19 \pm 0.03	25.37 \pm 0.02	25.35 \pm 0.02	25.84 \pm 0.01
City	21.86 \pm 0.01	22.57 \pm 0.01	22.71 \pm 0.00	22.82 \pm 0.00
Forest	25.59 \pm 0.01	25.92 \pm 0.01	26.02 \pm 0.00	25.79 \pm 0.01
Average	23.88 \pm 0.02	24.62 \pm 0.01	24.69 \pm 0.01	24.82 \pm 0.01

B.5 QUALITATIVE VISUALIZATION AND PSF ANALYSIS

846 **Qualitative Comparison.** Figure 6 provides a qualitative comparison of the reconstruction results.
 847

850 **PSF Visualization.** Figure 7 provides visualizations of the empirical PSF for R-MHE with varying
 851 M . As M increases, the PSF profile becomes noticeably more symmetric and circular. For larger
 852 M , a faint spiral pattern emerges, characteristic of the progressive rotation strategy employed in 2D
 853 R-MHE.
 854

C EXPERIMENTAL DETAILS FOR 3D NEURAL FIELDS AND SDFs

C.1 CONFIGURATION AND TRAINING

855 We utilized the standard Instant-NGP configuration ($L=16$, $F=2$, $T = 2^{19}$). Training utilized the
 856 standard Instant-NGP protocol and optimizer settings. All experiments were run with 5 random
 857 seeds.
 858

C.2 NEURAL RADIANCE FIELDS (NERF) DETAILS

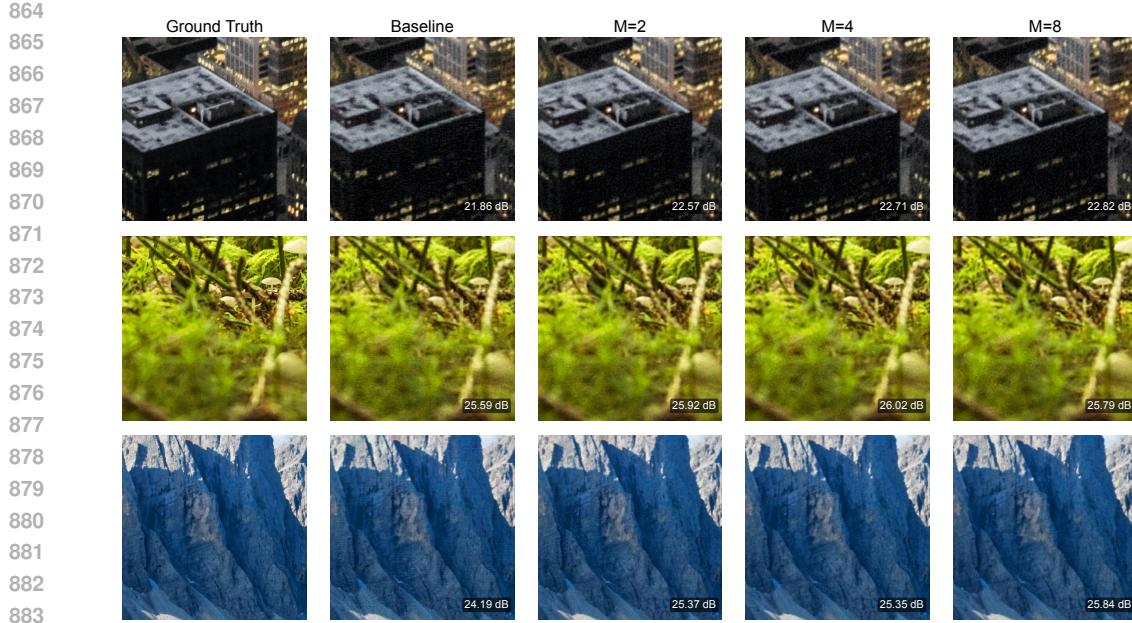


Figure 6: **Qualitative Visualization of 2D Image Regression Results.** Zoomed-in crops comparing Ground Truth, Standard MHE (Baseline), and R-MHE ($M=2, 4, 8$). R-MHE demonstrates significant improvements in reconstruction quality. PSNR values indicated are for the specific runs shown.

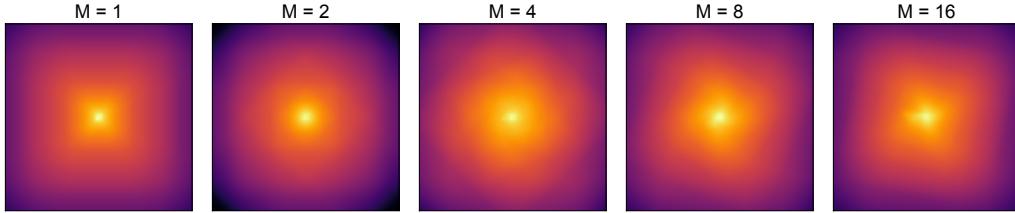


Figure 7: **Visualization of R-MHE Point Spread Function (PSF).** Empirical PSF (zoomed view) for R-MHE with $M=1$ (Standard MHE), 2, 4, 8, and 16.

We utilized all eight scenes from the Synthetic NeRF dataset. Figure 8 presents a comprehensive parameter sweep of the reconstruction quality (PSNR) as a function of the growth factor b for all eight NeRF scenes.

These plots demonstrate that the theoretical growth factors derived from our PSF analysis ($b_{\text{theory}} \approx 1.38$, as listed in Table 7) consistently fall within the regime of best performance. As observed in the figure, the empirical peaks for scenes such as *Lego*, *Mic*, and *Hotdog* align precisely with the theoretical prediction of 1.38. This confirms that our physical systems approach accurately characterizes the optimal spatial resolution settings, allowing for precise hyperparameter selection without the need for exhaustive empirical grid searches.

C.3 SIGNED DISTANCE FUNCTIONS (SDF) DETAILS

Dataset. We utilized three standard benchmark meshes: *Armadillo*, *Bunny*, *Spot*. We used the baseline parameters provided in the Instant-NGP repository for SDF tasks.

Figure 9 visualizes the IoU performance across the growth factor sweep for the SDF task.

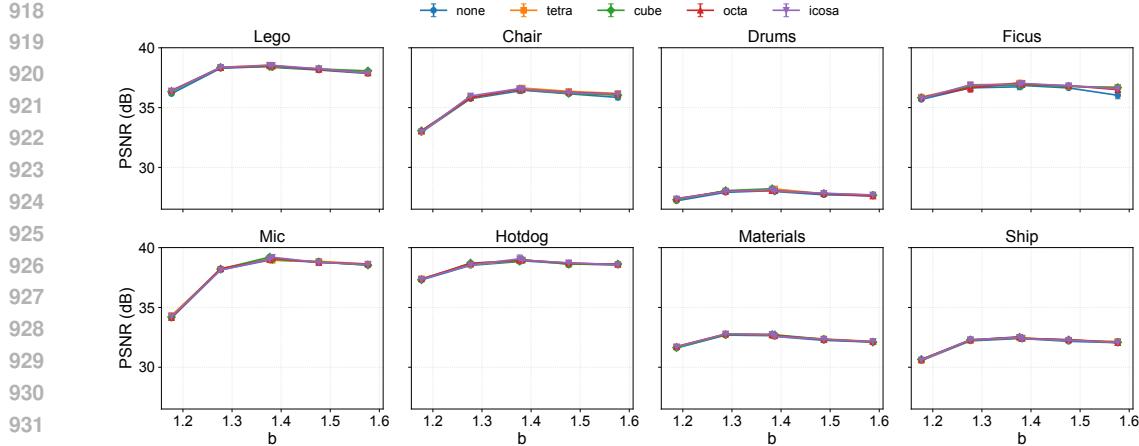


Figure 8: **Detailed PSNR Sweep for Synthetic NeRF Experiments.** We plot the Average PSNR (dB) vs. growth factor b across all 8 scenes (Error bars indicate Std Dev over 5 seeds). The theoretical optimum derived in our analysis ($b_{\text{theory}} \approx 1.38$) consistently aligns with the empirical peak performance observed in these sweeps, validating the PSF-guided strategy. The R-MHE strategies (tetra, cube, octa, icoso) consistently track or exceed the performance of the Standard MHE baseline ('none').

Table 7: Growth Factors (b) for Synthetic NeRF Experiments. b_{theory} is the value derived from the analysis framework. b_{opt} is the empirically optimized value used in the Baseline Heuristic configuration.

Scene	b_{theory}	b_{opt} (Baseline)
Chair	1.3767	1.3819
Drums	1.3872	1.3819
Ficus	1.3767	1.3819
Hotdog	1.3767	1.3819
Lego	1.3767	1.3819
Materials	1.3872	1.3819
Mic	1.3767	1.3819
Ship	1.3767	1.3819

D THEORETICAL DERIVATION AND EMPIRICAL ANALYSIS OF THE BROADENING FACTOR

D.1 MODELING OPTIMIZATION DYNAMICS VIA SPECTRAL BIAS

The idealized Point Spread Function (PSF), derived under the minimum L2-norm assumption (Eq. 1), implies uniform weighting across all L resolution levels:

$$P_{\text{ideal}}(\mathbf{x}) = \frac{1}{L} \sum_{l=0}^{L-1} \hat{B}_l(\mathbf{x}) \quad (22)$$

This leads to the idealized FWHM factor $\beta_{\text{ideal}} \approx 1.18$.

Empirical results demonstrate that gradient-based optimization methods (e.g., Adam) exhibit spectral bias, where lower frequencies are learned preferentially (Rahaman et al., 2018). In the context of MHE, this biases the optimization towards coarser grids (low N_l). We model the resulting empirical PSF as a weighted superposition with non-uniform weights w_l :

$$P_{\text{Empirical}}(\mathbf{x}) = \sum_{l=0}^{L-1} w_l \hat{B}_l(\mathbf{x}) \quad (23)$$

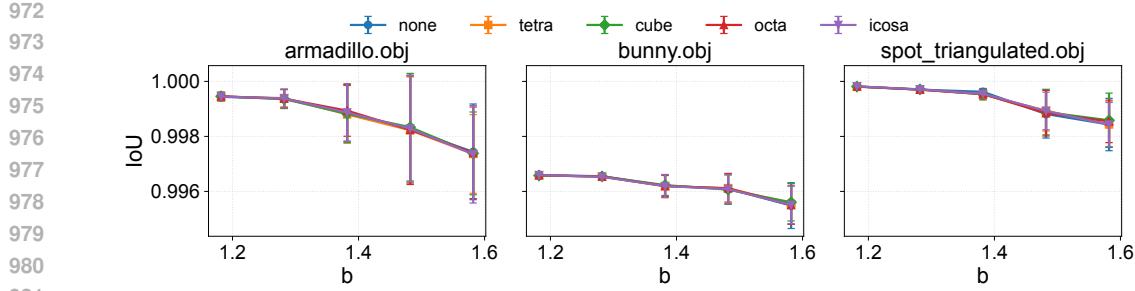


Figure 9: **Detailed IoU Sweep for 3D SDF Experiments.** We plot the Intersection over Union (IoU) as a function of the growth factor b for the Armadillo, Bunny, and Spot meshes. The heavy overlap of the curves for all methods (Standard MHE and R-MHE variants) and the consistently high IoU values (> 0.996) illustrate the performance saturation discussed in the main text.

where $\sum w_l = 1$. This leads to the total empirical FWHM factor β_{emp} .

We adopt a phenomenological model motivated by kernel methods, where the optimization-induced weights follow a power law relationship based on the resolution N_l :

$$w_l \propto (N_l)^{-\gamma} \quad (24)$$

Here, $\gamma \geq 0$ is the spectral bias exponent. $\gamma = 0$ recovers the minimum-norm solution (β_{ideal}), while $\gamma > 0$ indicates a bias towards coarser levels ($\beta_{\text{emp}} > \beta_{\text{ideal}}$).

D.2 RELATIONSHIP BETWEEN SPECTRAL BIAS AND BROADENING

We establish that the optimization-induced broadening factor $\beta_{\text{opt}}(\gamma)$ (where $\beta_{\text{emp}} = \beta_{\text{ideal}} \cdot \beta_{\text{opt}}$) is a monotonically increasing function of the spectral bias exponent γ .

Proof of Monotonicity of $\beta_{\text{opt}}(\gamma)$. We want to show that $d(\text{FWHM})/d\gamma > 0$. We analyze the empirical PSF value at a fixed spatial position $x > 0$, $P(\gamma) = P_{\text{Empirical}}(x; \gamma)$. If we show that $dP(\gamma)/d\gamma > 0$ (i.e., the tails of the PSF increase with γ), it implies the FWHM must also increase.

We express $P(\gamma)$ using normalized weights $w_l = (N_l)^{-\gamma} / \sum_k (N_k)^{-\gamma}$.

$$P(\gamma) = \frac{\sum_l (N_l)^{-\gamma} \hat{B}_l(x)}{\sum_k (N_k)^{-\gamma}} = \frac{f(\gamma)}{g(\gamma)} \quad (25)$$

We analyze the derivative $P'(\gamma) = (f'g - fg')/g^2$. We must show $f'g - fg' > 0$.

$$f'(\gamma) = - \sum_l (N_l)^{-\gamma} \ln(N_l) \hat{B}_l(x) \quad (26)$$

$$g'(\gamma) = - \sum_k (N_k)^{-\gamma} \ln(N_k) \quad (27)$$

We analyze the term $f'g - fg'$:

$$f'g - fg' = \left(- \sum_l (N_l)^{-\gamma} \ln(N_l) \hat{B}_l(x) \right) \left(\sum_k (N_k)^{-\gamma} \right) - \left(\sum_l (N_l)^{-\gamma} \hat{B}_l(x) \right) \left(- \sum_k (N_k)^{-\gamma} \ln(N_k) \right) \quad (28)$$

$$= \sum_{l,k} (N_l)^{-\gamma} (N_k)^{-\gamma} \hat{B}_l(x) (\ln(N_k) - \ln(N_l)) \quad (29)$$

We analyze this summation by grouping pairs of indices (l, k) and (k, l) where $l \neq k$:

$$\text{Pair}_{(l,k)} = (N_l)^{-\gamma} (N_k)^{-\gamma} \hat{B}_l(x) (\ln(N_k) - \ln(N_l)) + (N_k)^{-\gamma} (N_l)^{-\gamma} \hat{B}_k(x) (\ln(N_l) - \ln(N_k)) \quad (30)$$

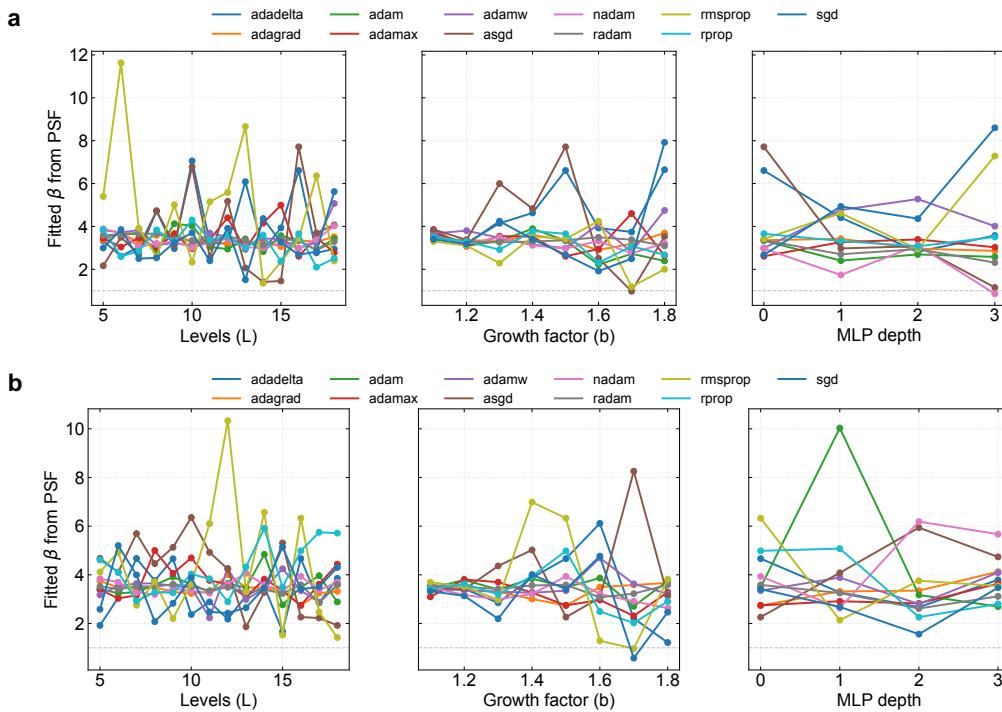
$$= (N_l)^{-\gamma} (N_k)^{-\gamma} (\ln(N_k) - \ln(N_l)) [\hat{B}_l(x) - \hat{B}_k(x)] \quad (31)$$

1026 Consider the case $N_k > N_l$. The factor $(\ln N_k - \ln N_l)$ is positive. Since $N_k > N_l$ (level k is finer),
 1027 the kernel $\hat{B}_k(x)$ is narrower than $\hat{B}_l(x)$. For $x > 0$, we have $\hat{B}_l(x) > \hat{B}_k(x)$. Thus, the second
 1028 factor is also positive.
 1029

1030 Every pair sum is positive, proving that $f'g - fg' > 0$. Consequently, $dP(\gamma)/d\gamma > 0$, which
 1031 implies $d\beta_{\text{opt}}/d\gamma > 0$. A stronger spectral bias always leads to larger broadening.
 1032

1033 D.3 EMPIRICAL ANALYSIS OF OPTIMIZER DEPENDENCE

1035 We investigated the dependency of the broadening factor on the choice of optimizer. We trained
 1036 the MHE network using various standard optimizers (Adam variants, SGD, RMSProp, etc.) and
 1037 measured the resulting total empirical broadening β_{emp} . Figure 10 summarizes the results.
 1038



1062 **Figure 10: Sensitivity of Broadening Factor to Optimizer Choice.** We measure the fitted total
 1063 empirical broadening β_{emp} across different optimizers and MHE configurations (varying L and b).
 1064 **(a)** Results for 2D. **(b)** Results for 3D. Broadening depends significantly on the optimizer (Adam
 1065 variants consistently yield $\beta_{\text{emp}} \approx 3.0$), but is robust across different MHE parameters and dimen-
 1066 sions for a given optimizer.
 1067

1068 We observe that the broadening is indeed dependent on the optimizer. Adam and its variants
 1069 (AdamW, NAdam, Adamax) consistently yield $\beta_{\text{emp}} \approx 3.0$ (corresponding to $\beta_{\text{opt}} \approx 2.54$), with
 1070 3D results almost identical to 2D. Other optimizers exhibit different degrees of broadening, as dif-
 1071 ferent optimization algorithms inherently possess different implicit regularization properties. For a
 1072 given optimizer, the resulting β_{emp} is highly robust across different MHE configurations (varying L
 1073 and b) and dimensions (2D vs 3D), as shown in Figure 10. Panels (a) and (b) show results for 2D
 1074 and 3D respectively, both yielding similar broadening values for each optimizer, confirming that the
 1075 broadening is primarily determined by the optimizer choice, rather than specific MHE parameters.
 1076 This stability means that a one-time calibration of β_{emp} for a specific optimization setup is sufficient
 1077 for principled hyperparameter selection.
 1078

1079 D.4 SENSITIVITY TO MLP ARCHITECTURE

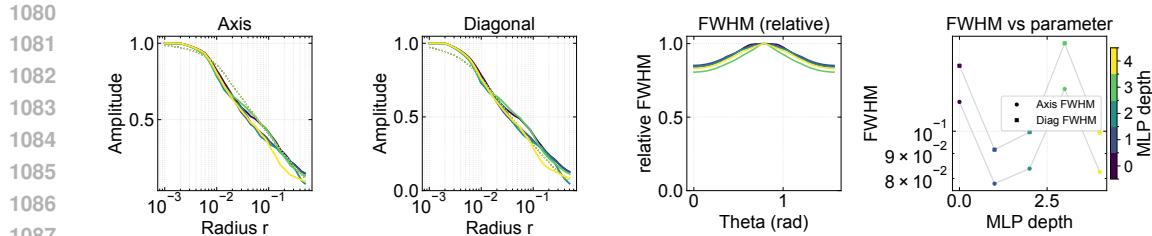


Figure 11: **Impact of MLP Depth on the Empirical PSF (2D).** We analyze the PSF while varying the MLP depth (indicated by color). The results show that the empirical PSF profile and the FWHM are largely insensitive to the MLP architecture.

We investigated the impact of the MLP decoder depth on the empirical PSF. Figure 11 shows the results of varying the MLP depth from 0 (linear) to 3 layers. The empirical PSF profiles and the resulting FWHM are consistent across different depths, supporting the conclusion that the encoding structure and the optimization dynamics (spectral bias) primarily define the spatial response.

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133