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Abstract

Transformer-based algorithms, such as LoRAT, have significantly enhanced object-
tracking performance. However, these approaches rely on a standard attention
mechanism, which incurs quadratic token complexity, making real-time infer-
ence computationally expensive. In this paper, we introduce LoORATV2, a novel
tracking framework that addresses these limitations with three main contributions.
First, LORATV2 integrates frame-wise causal attention, which ensures full self-
attention within each frame while enabling causal dependencies across frames,
significantly reducing computational overhead. Moreover, key-value (KV) caching
is employed to efficiently reuse past embeddings for further speedup. Second,
building on LoRAT’s parameter-efficient fine-tuning, we propose Stream-Specific
LoRA Adapters (SSLA). As frame-wise causal attention introduces asymmetry in
how streams access temporal information, SSLA assigns dedicated LoORA modules
to the template and each search stream, with the main ViT backbone remaining
frozen. This allows specialized adaptation for each stream’s role in temporal track-
ing. Third, we introduce a two-phase progressive training strategy, which first
trains a single-search-frame tracker and then gradually extends it to multi-search-
frame inputs by introducing additional LoORA modules. This curriculum-based
learning paradigm improves long-term tracking while maintaining training effi-
ciency. In extensive experiments on multiple benchmarks, LoRATv2 achieves
state-of-the-art performance, substantially improved efficiency, and a superior
performance-to-FLOPs ratio over state-of-the-art trackers. The code is available at
https://github.com/Litinglin/LoRATv2.

1 Introduction

Visual object tracking is a fundamental task in computer vision with broad applications in surveillance,
autonomous driving, robotics, augmented reality, and human-computer interaction. Accurate and
continuous object localization across frames is crucial for the reliability of these applications.
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Figure 1: Comparison of our tracker (LoRATV2) with other Transformer trackers on computational
complexity (MACs) and performance (SUC scores) on the LaSOT dataset.

Recent advances in Vision Transformers (ViT) [14] have substantially improved tracking performance,
primarily due to the powerful representation capabilities of self-attention. In particular, one-stream
trackers, such as MixFormer[9], OSTrack [43]], ARTrack [33], SeqTrack [7], and LoRAT [24]], unify
feature extraction and relation modeling within a single Transformer backbone. Although this design
has demonstrated excellent accuracy and efficiency, these methods rely on standard self-attention,
which has a quadratic complexity with respect to the number of tokens. Consequently, inference can
become prohibitively expensive when dealing with high-resolution input frames or extended temporal
sequences, constraining real-time deployment on resource-limited systems.

LoRAT [24]], a recently proposed state-of-the-art tracker, employs Parameter-Efficient Fine-Tuning
(PEFT) via Low-Rank Adaptation (LoRA) [19] to significantly reduce the training overhead for large-
scale Transformer trackers. However, it retains the standard self-attention mechanism at inference
time, leading to substantial computational costs as input resolution or frame count increases.

Furthermore, while one-stream trackers [43} 24] excel with single template-search pairs, simply
extending them to multi-frame inputs using standard bidirectional attention often yields only marginal
performance gains in our preliminary experiments. We hypothesize this may be partly due to potential
rank collapse issues in deep Transformers with bidirectional attention, which can limit their expressive
power for complex temporal sequences [13]].

To overcome these limitations and better model the sequential nature of tracking, we propose
LoRATYVY2. Visual object tracking can naturally be framed as an autoregressive sequence prediction
task, where the target’s state in the current frame depends on its history. This perspective aligns well
with causal attention mechanisms. Therefore, LORATV2 introduces the frame-wise causal attention
mechanism within the ViT backbone. In this design, tokens within the current frame maintain
full self-attention for rich intra-frame representation, while attending causally only to tokens from
previous frames, enforcing an autoregressive structure. This approach, coupled with key-value (KV)
caching 33, (11} 31]] to reuse past embeddings, not only significantly enhances inference efficiency
by reducing MACs and improving FPS, but as our experiments demonstrate (shown in Fig.[I), also
leads to improved tracking performance by effectively modeling temporal dependencies.

The adoption of frame-wise causal attention, while beneficial for temporal modeling and efficiency,
introduces an inherent asymmetry in how different input streams (e.g., the static template, the first
search frame, subsequent search frames) process information. Unlike traditional Siamese trackers
or one-stream trackers with full attention where all tokens potentially interact symmetrically, in our



causal setup each stream has a distinct view of historical context, as it can only attend to itself and
preceding information. To manage this asymmetry effectively, while preserving LORAT’s parameter-
efficient fine-tuning paradigm, we propose Stream-Specific LoRA Adapters (SSLA). SSLA allocates
dedicated LoRA [19] adapters to each input stream, and the main ViT backbone is kept frozen and
shared. This allows each stream to develop specialized adaptations. For instance, the template’s LORA
can focus on robust initial feature extraction, the first search frame’s LoRA might learn to enhance
target features while identifying distractors, and LoRAs for subsequent search frames can specialize
in precise localization based on the evolving temporal context. This modification maintains the
benefits of a shared backbone yet allows minimal, stream-dependent adaptation critical for effective
multi-frame tracking.

Finally, we present a two-phase progressive training strategy to incrementally expand from single-
search-frame to multi-search-frame tracking. This approach significantly reduces the computational
resources required for training, as at any given time, only the LoRA modules associated with one
or two input streams are trainable, while previously trained LORA modules and the main backbone
remain frozen. This easy-to-hard, curriculum learning-style [2] training paradigm, as demonstrated
in our experiments, leads to better tracking performance compared to training all LoORA modules
from scratch. Furthermore, this strategy naturally yields a family of trackers capable of processing
different numbers of input frames (e.g., a single-search-frame tracker from the initial stage and a
multi-search-frame tracker from the extension stage), providing additional flexibility for deployment
scenarios with varying computational budgets or accuracy requirements.

Our contributions can be summarized as follows:

1. Frame-wise Causal Attention: We integrate frame-wise causal attention into one-stream
visual tracking, where tokens attend fully within their frame and causally to past frames.
Combined with KV caching to reuse past embeddings and prevent re-encoding, this mech-
anism enables computationally efficient long-term temporal modeling for trackers and
improves tracking accuracy by robustly capturing temporal context.

2. Stream-Specific LoORA Adapters (SSLA): To handle the asymmetry introduced by causal
connections, we equip each input stream (template or search) with its own low-rank LoRA
modules. This preserves a shared backbone for all streams while allowing minimal, stream-
specific adaptation for improved tracking accuracy, with zero additional inference cost.

3. Two-Phase Progressive Training: We first train a single-frame tracker (template — one
search frame) and then incrementally extend it to multi-frame inputs by adding new LoRA
adapters only for the additional search frames. This curriculum-like approach improves
long-term performance while greatly reducing memory and training time compared to direct
multi-frame training from scratch.

4. Extensive experimental evaluations across multiple benchmark datasets demonstrate that
our proposed approach delivers superior tracking performance and significantly improves
performance-to-FLOPs ratio compared to existing state-of-the-art self-attention-based meth-
ods.

2 Related Work

Temporal modeling in tracking. Temporal modeling in visual tracking typically involves leverag-
ing historical information and explicit temporal dependencies to enhance robustness and accuracy.
Some methods employ historical prompts to improve tracking stability, such as AQATrack [40]
and HipTrack [3]. Approaches like STARK [41] and TATrack [18]] dynamically update tracking
templates based on prior tracking outcomes to maintain effectiveness over time. Furthermore, au-
toregressive prediction strategies have been explored extensively in methods such as ARTrack [35],
ARTrackV?2 [1]], and SeqTrack [7], which explicitly model temporal dependencies across frames.
Recent advancements also include multi-frame modeling methods. For example, TCTrack [S] in-
corporates video-level contextual information through adaptive convolutional techniques, whereas
VideoTrack [37] uses transformer-based architectures to integrate broader temporal context. Ad-
ditionally, ODTrack [45] explicitly propagates token sequences between frames to maintain dense
contextual associations.
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Figure 2: Overall architecture of LoORATV2. We tokenize the template and search regions, append
them into a single token sequence with shared positional and stream-specific token type embeddings,
and feed them to a frozen ViT encoder. Frame-wise causal attention ensures that each frame only
attends to itself and preceding frames. Meanwhile, KV caching reuses previously computed key/value
embeddings to avoid redundant computation across frames. We attach lightweight LoORA modules
(one per stream) to each linear projection layer and keep the main ViT weights frozen. The final
embeddings are passed through an MLP head for target classification and bounding-box regression,
yielding an efficient and scalable solution for multi-frame visual tracking.

Causal attention in vision. Causal attention in vision addresses spurious correlations by explicitly
modeling causal relationships. Methods like CATT [42] introduce causal interventions within
attention modules to mitigate contextual bias, enforcing object-context separation through sample-
wise masking. Building upon these foundations, subsequent approaches extend causal attention to
autoregressive frameworks. Vision-RWKYV [15], for example, adapts causal attention mechanisms for
bidirectional global interactions within vision transformers. To enhance scalability and efficiency,
some models incorporate hierarchical or sequential structures. VAR [32] employs causal masking
strategies for efficient coarse-to-fine image generation. Similarly, Causal Vision Transformers [22]]
apply sequential causal attention to efficiently handle large-scale images. Moreover, Show-O [39]
unifies multimodal generation tasks under a single causal transformer framework. Collectively, these
advancements underscore the versatility and efficacy of causal attention methods across diverse visual
tasks, spanning recognition to generation, while enabling scalable and controllable visual modeling.

3 Method

Our proposed LoRATV2 builds upon LoRAT [24] and introduces additional components for efficient
multi-frame, temporal-aware visual object tracking. First, we revisit LORAT to recap its core design
principles (Sec. . Next, we present our Frame-Wise Causal Attention (Sec.[3.2) and Key-Value
Caching (Sec. , which jointly enable efficient multi-frame modeling without re-encoding past
frames. To address the asymmetric dependency introduced by causal attention, we propose Stream-
Specific LoRA Adapters (Sec.[3.4), which preserve a unified embedding space while enabling minimal,
per-stream adaptation. Finally, Sec. [3.3] details our Two-Phase Progressive Training pipeline for
scaling from single-frame to multi-frame scenarios with minimal overhead. Unless otherwise noted,
all other design and training settings (e.g., shared positional embeddings, token-type embeddings,
anchor-free MLP heads) follow LoRAT [24].
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Figure 3: Visualization of three attention masks. (a) Full self-attention, where each query position
can attend to all key positions. (b) Causal attention, where each token can only attend to itself and
tokens to its left. (¢) Frame-wise causal attention, where each token can only attend to the tokens
within current frame and tokens in the past frames. Dark squares indicate valid (unmasked) attention,
while white squares indicate invalid (masked) attention.

3.1 Revisiting LoORAT

One-Stream Transformer Tracker. LoRAT [24] follows the one-stream Transformer tracker
paradigm, where the template and the search region are processed together by a single ViT backbone.
First, the images are divided into non-overlapping patches. These patches are then flattened and
mapped to patch embeddings via a linear projection, yielding the template tokens {z;}7”; and
search region tokens {x; }_,. To distinguish these tokens after concatenation, LoRAT incorporates
learnable token type embeddings that are added to the patch embeddings of each stream (template or
search). Additionally, it uses shared positional embeddings for both streams. The final input sequence
is formed by concatenating the enriched tokens:

X =[21,- yZm, X1y---,Xn]- )

A Transformer encoder then applies multi-head self-attention and feed-forward layers over X,
capturing intra-frame and inter-frame relationships. Finally, the output embeddings corresponding to
the search region are fed into an MLP-based head network for target classification and bounding box
regression, producing the tracker’s output.

Self-Attention Complexity. LoRAT employs standard full self-attention in its ViT backbone. Let
X € R(m+7)%d denote the token embeddings. The standard attention mechanism first computes:
Q=XW% K=XW¥f v=Xxw", @

and then:
T

K
Attention(Q,K,V) = softmax( Q ) V. 3)
Vd
This incurs O((m + n)?) operations. Although LoRAT uses Low-Rank Adaptation (LoRA) [19] to
reduce training overhead, the inference cost remains governed by full self-attention.

3.2 Frame-Wise Causal Attention

Standard full self-attention (Eq. [3) grows quadratically with the number of tokens and does not
incorporate temporal order. To efficiently model longer sequences in tracking, we introduce a causal
mask that enforces an autoregressive dependency across frames while preserving full attention within
each frame.

Assume we have T' frames, each producing n; tokens {x¢, ... 7xflt} fort =1,...,T. Concatenate
them into a single sequence:
1 1 2 2 T T
X = [Xl,. Xy XD Xy ey X e ,an}. 4
frame 1 frame 2 frame T



In frame-wise causal attention, queries from frame ¢ can attend to tokens in frames 1, . . ., ¢ but not to
frames > ¢. We implement this via a causal mask M € RN*N, where N = Y"1, n;, defined by
0, if frame(q) < frame(p),

Mp,q) = {—oo, otherwise. ©

Let Q = XW@, K = XWX, and V = XWV be the usual linear projections. Our frame-wise
causal attention modifies Eq. [3|by adding M inside the softmaX'

Attention(Q, K, V) = softmax< T M) V. (6)

Within each frame, M, ,y = 0 since frame(p) = frame(q), thus preserving full (unmasked) attention.
Across frames, any future-to-past connection is disallowed by setting M, q) =~ if frame(p) <

frame( ), enforcing auto-regressive structure. The visualization of frame-wise causal attention mask
is shown in Fig.[3d

3.3 Key-Value Caching

When performing online tracking or processing long sequences, naively recomputing key/value
embeddings for past frames is computationally expensive. Key-Value (KV) caching 33} [11} [31]]
provides a simple yet powerful mechanism to amortize this cost over time.

At frame ¢, we first compute queries for the current frame:

Q' =X'W¢«. M
Here, X* € R™* denotes the tokens of frame ¢. The key/value pairs for frame ¢ are
K' =X'WE  vi=X'WV". (8)
We then cache all past keys and values (frames 1 through ¢ — 1):
K=K K, VT v v ©)
For the frame-wise causal attention at step ¢, we form
K'=[K"" K] V=[V"" V] (10)
Hence, the attention computation at frame ¢ becomes
A‘ctention(Qt7 I~(t, {/'t), (11)

where the mask M (Eq. |5) ensures that Q! can only attend to Kl:t_l (past frames) and K* (the
current frame), but not beyond. Crucially, we never re-encode past frames; we simply reuse their
cached K, V¢,

3.4 Stream-Specific LoORA Adapters (SSLA)

While frame-wise causal attention preserves within-frame symmetry, the Siamese template and search
region streams across frames might still diverge in how they attend to historical context. Specifically,
the template in frame ¢ remains mostly static (or slowly updated if multiple templates are used),
whereas the search region tokens in frame ¢ accumulate knowledge from frames {1,...,¢ — 1}. This
discrepancy can degrade matching accuracy if not handled carefully.

We therefore introduce Stream-Specific LoORA Adapters. Each input stream s—template, search;,
searchy, and so forth—is assigned its own LoRA offset:

s € {template, search;, searchs, ...}. (12)
Concretely, for the query projection,
Q, = XS(WQ + AW?), (13)

where X is the set of tokens from stream s, W is the frozen backbone weight, and AWg2 is the
learnable low-rank offset for that stream. Analogous offsets AWX AWV attach to WX WV,

Such design brings the following benefits:
* It preserves a shared representation space via the unmodified backbone.

* It applies minimal, stream-dependent adaptations for each set of tokens.
* It allows easy extension by adding new LoRA modules for additional frames.



Table 1: Benchmarking our tracker on four large-scale challenging datasets. For GOT-10k evaluation,
all the methods follow the one-shot protocol, training only on the train split of GOT-10k. Bold
indicates the best results and underline indicates the second-best.

Track LaSOT [16] TNL2K [34] GOT-10k [20] VastTrack [30]
racker
SUC  Pnorm P SucC P AO SRops SRo7s SUC P
TransTas6 [8]  64.9 73.8 69.0 507 517 67.1 76.8 60.9 29.9 254
AutoMatchoss [44]  58.3 - 599 472 435 652 766 54.3 28.8 26.6
STARK320 [41]  67.1 77.0 - - - 68.8  78.1 64.1 334 30.8
KeepTrackaso [27] 67.1 77.2 70.2 - - - - - - -
MixFormersgq [9]  70.1 79.9 76.3 - - - - - - -
SBTa24 [38]  66.7 - 71.1 - - 704  80.8 64.7 - -
AiATrackszo [17]  69.0 79.4 73.8 - - 69.6  80.0 63.2 - -
SimTracksss [6]  70.5 79.7 - 556 557 698 788 66.0 344 30.3
OSTrackssa [43]  71.1 81.1 77.6 559 567 7377 832 70.8 33.6 31.5
SwinTracksgs [25] 71.3 - 765 559 571 724 805 67.8 33.0 30.3
DropTrackase [36]  71.8 81.8 78.1 569 579 759 868 72.0 37.0 36.5
SeqTrack-Base [7]  69.9 79.7 763 564 - 747  84.7 71.8 - -
SeqTrack-Laga [7]  72.5 81.5 79.3 578 - 74.8 819 72.2 39.6 40.2
ARTrack-Bass [35]  70.4 79.5 76.6 59.8 - 735 822 70.9 - -
ARTrack-Lasgy [35]  73.1 82.2 80.3 60.3 - 78.5 874 77.8 35.6 324
ARTrackV2-Bosg [35]  71.6 80.2 772  59.2 - 759 854 72.7 - -
ARTrackV2-Lagys [35] 73.6 82.8 81.1 61.6 - 79.5 878 79.6 - -
CiteTrackersgs [23] 69.7 78.6 757 577 596 747 843 73.0 - -
ROMTracksgy [4] 714 81.4 78.2 - - 742 843 72.4 37.0 36.1
MixViT-Lsg4 [10] 72.4 82.2 80.1 - - 7577 853 75.1 39.5 39.8
ODTrack-Lggq [45]  74.0 84.2 823 61.7 - 782 872 77.3 - -
LoRAT-Booy [24] 71.7 80.9 773 588 613 721 81.8 70.7 38.7 37.8
LoRAT-Ls7s [24] 75.1  84.1 820 623 670 775 862 78.1 439 458

LoRATV2-B22s  72.0 81.3 779 59.6 627 747 847 72.7 39.1 38.7
LoRATV2-B37gs  74.3 836 809 609 649 758 857 75.4 40.6 40.8
LoRATV2-La2y 744 838 812 618 667 769 863 76.4 42.0 433
LoRATvV2-L37g  76.1 851 831 624 67.7 782 86.8 79.1 44.2 46.7

3.5 Two-Phase Progressive Training

Inspired by curriculum learning [2]], we adopt a two-phase approach to gradually introduce multi-
frame complexity. This strategy not only reduces memory requirements compared to training on
multiple frames from scratch but also consistently yields better final accuracy in practice.

Phase 1: Single Template + Single Search Region. We follow LoRAT [24] by training only two
LoRA adapters, one for the template and one for a single search region, while keeping the ViT
backbone frozen. This phase converges quickly and requires minimal memory.

Phase 2: Extending to an Additional Search Region. Next, we fix all previously learned parameters
and attach a new LoRA adapter for the second search region. Only this newly added adapter is
updated, enabling efficient multi-frame modeling without large-scale retraining. The final model
supports both single-frame (for speed) and multi-frame inference (for improved robustness), with
additional frames accommodated via further adapters as needed.

4 Experiments

4.1 Implementation Details

All models are trained on 4xNVIDIA GeForce RTX 4090 GPUs and evaluated on an NVIDIA
GeForce RTX 5090 GPU. Basically, we follow LoRAT [24] for fundamental settings (e.g. training
datasets, optimization hyperparameters).

Model Variants. We develop four LoORATV2 variants using ViT-Base (B) and ViT-Large (L) back-
bones, trained progressively as described in Sec. The specific configurations are:



¢ LoRATVvV2-B/L-224 (Phase 1 Models):

— Backbone: ViT-Base/ViT-Large
— Template (z): 224 x 224
— Search Region (x'): 224 x 224

¢ LoRATYV2-B/L-378 (Phase 2 Models):

— Backbone: ViT-Base/ViT-Large

— Template (z): 224 x 224

— Past Search Region (x!): 224 x 224

— Current Search Region (x?): 378 x 378

Training. We use LaSOT [16], TrackingNet [28]], GOT-10k [20] (excluding 1k sequences as
in [21]]), and COCO [26] for training. For the GOT-10k evaluation, models are trained exclusively on
the GOT-10k training split.

Phase 1 (—224 variants): Models are trained for 170 epochs (131,072 iterations/epoch) on (z, x!)
pairs. The template (z) and search region x' are sampled from the same video (up to a 100-frame
gap), with strong crop jitter applied to x!. The ViT backbone (DINOV2 pre-trained [29} [12]]) is
frozen; two sets of LORA modules (rank » = 64), one for the template stream and one for the search
region stream, are trained.

Phase 2 (—378 variants): Training continues for an additional 170 epochs on (z, x!, x?) triplets.
The template z is randomly sampled from a video; x!, x? are sampled from the same video (up to a
100-frame gap) with strong crop jitter. The backbone and previously trained LoRA modules remain
frozen. A new set of extra LORA modules (rank » = 64) and a corresponding prediction head are
introduced exclusively for the x? stream.

Inference. During inference, all LORATV2 variants leverage frame-wise causal attention with KV
caching. The initial template is encoded only once, and its key/value embeddings are cached to
prevent re-computation for past frames. Subsequent search regions are cropped around the prior
bounding box (area factor 4 for x*, 5 for x2).

Phase 1 (—224 variants): Tracking is performed using only the x! stream.

Phase 2 (—378 variants): By default, predictions are derived from the high-resolution x? stream.
To maintain a temporal context on the past frames, the Key-Value (KV) caches for the x! stream
are conditionally updated. This update is triggered when a prediction’s classification score exceeds
a confidence threshold of 0.9. Upon this condition, a new, smaller search region, with dimensions
identical to the Phase 1 input, is cropped around the confident prediction and processed to refresh the
x! stream’s cached embeddings.

4.2 State-of-the-Art Comparison

We compare our LORATv2 with recent Transformer-based trackers on four challenging benchmarks,
following their official evaluation protocols. Tab. [T|reports the results.

LaSOT [16] is a large-scale benchmark containing 280 long-term test videos. From Tab.|l|and Tab.
our smallest variant, LORATv2-B-224, achieves a Success (SUC) of 72.0% at 713 fps. Meanwhile,
LoRATv2-L-378 sets a new state of the art at 76.1% SUC, outperforming the previous best LoORAT-
Lazs [24] (75.1%).

TNL2K [34] is a recently introduced tracking dataset comprising 700 test videos. Our LoRATv2-L-
378 attains 62.4% SUC, improving upon LoRAT-L-378 (62.3%) and confirming the advantage of our
temporal modeling capability.

GOT-10k [20] consists of 180 test videos and enforces a strict protocol requiring training exclusively
on its designated training split. [I|shows that LoRATv2-L-378 achieves a high AO of 78.2%, approach-
ing ARTrackV2-L (79.5%), thus demonstrating our method’s strong generalization when limited to a
single dataset.

VastTrack [30] is a large-scale benchmark featuring extensive object categories (2,115 classes) to
facilitate the development of more general and robust trackers. As shown in Tab. (1} LoRATv2-L-378



Table 2: Comparison on efficiency with state-of-the-art Transformer trackers. The values in parenthe-
ses for the # params of our trackers represent LORA and extra components (token type embedding
and head), respectively. The speed of all trackers was re-evaluated on our machine.

Tracker Speed (fps) MACs (G) #Params (M)

OSTrackssg [43] 244 21.5 -
OSTracksgy [43]] 165 48.3 -
SeqTrack-Base [7] 124 66 89
SeqTrack-Lag4 [7]] 22 524 309
ROMTracksse [4]] 224 35 92
ROMTrack384 [4] 141 78 92
LoRAT-Booy [24] 546 30 99 (11, 2)
LoRAT-Bsrs [24] 401 97 99 (11, 2)
LoRAT-Looy [24] 255 103 336 (28, 4)
LoRAT-L37g [24] 167 325 336 (28, 4)
LoRATV2-Booy 713 25 110 (22, 2)
LoRATvV2-B3g 425 81 123 (11, 2)
LoRATV2-Looy 288 85 364 (56, 4)
LoRATV2-L37g 202 268 396 (28, 4)

Table 3: Ablation study on Frame-Wise Causal Attention (FWCA) vs. Fully Self-Attention (FSA),
and Stream-Specific LORA Adapters (SSLA) vs. Shared LoRA. Performance metrics are SUC
(Success) and P (Precision) on LaSOT [16]] and VastTrack [30]. FPS and MACs denote efficiency.

LaSOT VastTrack
Variants Attention  LoRA Setup FPS MACs (G)
SUC (%) P(%) SUC (%) P (%)

Based on LoORATv2-Ba24 (Single-Search-Region):

@ Baseline FSA Shared LoRA 71.9 717.6 39.0 38.3 467 49

@ FSA SSLA 72.0 77.3 38.8 38.0 452 49

©) FWCA Shared LoRA 71.7 77.6 38.7 380 713 25

@ Our Model FWCA SSLA 72.0 77.9 39.1 38.7 713 25

Based on LoRATv2-Bsrs (Two-Search-Region):

® Baseline FSA Shared LoRA 73.7 79.9 39.7 39.6 250 137
® FSA SSLA 73.2 78.7 39.3 39.0 237 137
@ FWCA Shared LoRA - - - - 425 81

Our Model FWCA SSLA 74.3 80.9 40.6 40.8 425 81

achieves 44.2% SUC, surpassing the previous best LORAT-L37g (43.9%) and demonstrating robust
performance across diverse categories.

Efficiency Comparison. Tab. [2 compares the efficiency of LoRATv2 and leading Transformer
trackers. LoORATV2 demonstrates significant improvements in both MACs and practical inference
speed (FPS) compared to its predecessor, LORAT, and other contemporary trackers. For instance,
LoRATv2-B-224 achieves 713 fps with only 25G MACs, outperforming LoRAT-B-224 (546 fps, 30G
MAC:S) in both speed and computational load, while also achieving higher accuracy on LaSOT (Tab.
and Tab. 2). This trend holds for larger models as well; LoRATv2-L-378 runs at 202 fps with 268G
MACs, compared to LORAT-L-378 at 167 fps with 325G MACs. The improved FPS, despite the
multi-frame processing and KV cache management, highlights the effectiveness of our architectural
optimizations and frame-wise causal attention in reducing redundant computations.

4.3 Ablation Studies

We conduct comprehensive ablation studies (Tab. |3) on key components of LoRATV2 using the
ViT-Base backbone. All results are reported on LaSOT and VastTrack datasets, along with FPS and
MAC:s. For more ablation experiments, please touch the appendix.



Table 4: Ablation study on the training strategy. We compare our proposed Two-Phase Progressive
Training against a standard One-Phase (from-scratch) approach. Performance is evaluated on LaSOT
and VastTrack. Training resource consumption (Peak Memory, Time) is also reported.

Training Strategy Schedule LaSOT SUC (%) VastTrack SUC (%) Peak Mem. (GB) Time (h)

One-Phase 1x 69.7 36.1 17.5 16
One-Phase 2x 71.3 39.0 17.5 32
Two-Phase (Ours) Ix + Ix 74.3 40.6 15.6 19

Frame-Wise Causal Attention (FWCA) and SSLA. Table 3] analyzes the interplay between the
attention mechanism (FWCA vs. standard Fully Self-Attention, FSA) and the LoRA configuration
(Stream-Specific vs. Shared). The results reveal a strong synergy between FWCA and SSLA. When
paired with SSLA, FWCA delivers substantial efficiency gains without compromising—and often
improving—accuracy. For instance, our final single-frame model (®, FWCA+SSLA) nearly doubles
the speed of its FSA counterpart (@, 713 vs. 452 FPS) while halving the MACs (25 vs. 49G)
and achieving superior performance on VastTrack. This advantage becomes more critical in the
multi-frame setting, where the FWCA+SSLA model (®) surpasses its FSA equivalent (®) in both
accuracy (+1.1% SUC on LaSOT) and efficiency.

The necessity of SSLA is most evident when combined with FWCA. While a shared LoRA configura-
tion converges for a single search frame (®), it suffers from training instability and fails to converge
in the more complex two-frame setup (@). In contrast, SSLA provides the necessary adaptability to
manage the informational asymmetry introduced by the causal structure, ensuring robust training and
optimal performance. Conversely, with FSA, the benefits of SSLA are less clear and can be slightly
detrimental (® vs. ®), as the symmetric nature of full attention does not require such stream-specific
adaptation.

Two-Phase Progressive Training. To validate our curriculum-based training strategy, we compare it
against a standard "one-phase" approach where the multi-frame tracker is trained from scratch. As
detailed in Tabled] our two-phase method is superior in both effectiveness and efficiency. The model
trained progressively achieves a LaSOT SUC of 74.3 %, significantly outperforming the one-phase
model even when the latter is trained for twice as long (71.3%). This result highlights the benefit
of mastering a simpler task before progressing to a more complex one. Furthermore, our approach
is more resource-conscious, reducing training time by 40% (19 vs. 32 hours) and lowering peak
GPU memory consumption compared to the extended one-phase baseline. This analysis confirms
that progressive training is not merely a heuristic but a more effective and efficient paradigm for
developing complex temporal trackers.

5 Conclusion

LoRATV2 significantly advances multi-frame object tracking by introducing frame-wise causal at-
tention with KV caching, Stream-Specific LORA Adapters, and a progressive two-phase training
strategy. These innovations lead to state-of-the-art performance with substantially improved computa-
tional efficiency and a superior accuracy-FLOPs trade-off, as demonstrated on multiple benchmarks.
LoRATV2 offers a powerful and practical solution for real-time tracking with Transformers.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction include the claims made in the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the training and evaluation details of our method, including the
hyper-parameters. We also will release the code upon paper publication.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release the code upon paper publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and test details in the experiment section, and provide
full details in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We follow the standard evaluation protocols of visual trackers. Empirically,
the metrics like SUC of LaSOT lie in a range of £0.1 across different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of compute resources in the main paper and the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We read and follow the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work introduces a new method of visual tracking, which is a fundamental
computer vision problem, thus, the societal impact is well-known.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credited the source codes used in our code base.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will provide a README for the to be released code base.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Revisiting LoRAT
	Frame-Wise Causal Attention
	Key-Value Caching
	Stream-Specific LoRA Adapters (SSLA)
	Two-Phase Progressive Training

	Experiments
	Implementation Details
	State-of-the-Art Comparison
	Ablation Studies

	Conclusion

