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ABSTRACT

Causal representation learning seeks to uncover latent causal variables and their
relationships from observed, unstructured data, a task complicated by identifiability
challenges. While distribution shifts, viewed as natural interventions on latent
causal variables, often present difficulties in traditional machine learning tasks, they
also create valuable opportunities for identifiability by introducing variability in
latent variables. In this paper, we study a non-parametric condition characterizing
the types of distribution shifts that contribute to identifiability within the context of
latent additive noise models. We also present partial identifiability results when
only a portion of distribution shifts meets the condition. Furthermore, we extend
our findings to latent post-nonlinear causal models. Building on our theoretical
results, we propose a practical algorithm facilitating the acquisition of reliable
latent causal representations. Our algorithm, guided by our underlying theory, has
demonstrated outstanding performance across a diverse range of synthetic and
real-world datasets. The empirical observations closely align with the theoretical
findings, affirming the robustness and effectiveness of our proposed approach.

1 INTRODUCTION

Causal representation learning holds the promise of identifying pivotal latent causal variables that
govern a system’s behavior, as well as the intricate causal relationships among them (Schölkopf et al.,
2021). By uncovering the underlying causal structure, this field not only enhances the interpretability
of models but also improves their ability to generalize to new, unseen data arising from intervention
(Peters et al., 2017; Pearl, 2000; Spirtes et al., 2001). Despite these advantages, the foundational
theories, particularly concerning identifiability, e.g., the uniqueness of causal representations, present
a complex and nuanced challenge.

From a causal representation perspective, distribution shifts can be interpreted as natural interventions
acting on latent causal variables rather than on observed variables. This is because causal representa-
tion learning typically focuses on causal relationships arising from interactions among latent variables.
Such shifts frequently occur across diverse fields, including medical imaging (Chandrasekaran et al.,
2021), biogeography (Pinsky et al., 2020), and finance (Gibbs & Candes, 2021). While these dis-
tribution shifts often pose challenges in machine learning tasks, e.g., domain generalization and
adaptation, they also offer valuable opportunities for identifiability analysis. By comparing different
distributions, we may gain insights into which latent variables change and which remain unchanged.
This asymmetric information about the variability of latent variables helps in identifying both the
latent variables and the associated graph structures. Ultimately, comparative analysis sheds light on
the underlying causal mechanisms governing the relationships between latent variables, making the
investigation of distribution shifts a promising approach for identifiability.

A critical question arises when leveraging distribution shifts for the identifiability of causal rep-
resentations: What types of distribution shifts contribute to identifiability? Broadly, two primary
categories exist for modeling these shifts: those arising from hard interventions (von Kügelgen et al.,
2023; Brehmer et al., 2022; Ahuja et al., 2023; Seigal et al., 2022; Buchholz et al., 2023; Varici
et al., 2023) and those from soft interventions (Liu et al., 2022; Zhang et al., 2023; Liu et al., 2024)
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1. To understand the distinction between these two approaches, it is important to recognize that
distribution shifts can be viewed as consequences of interventions initiated by nature (Rosenzweig
& Wolpin, 2000; Huang et al., 2019; Huang* et al., 2020). In other words, distribution shifts often
arise from self-initiated behaviors within a causal system. This perspective is particularly relevant in
latent spaces, where latent causal variables are unobservable. Hard interventions, however, require
that these self-initiated behaviors follow specific patterns, such as assigning fixed values to a latent
variable. This constraint can be limiting, as these behaviors are typically arbitrary and uncontrollable.
In contrast, soft interventions offer more flexibility by accommodating a wider range of self-initiated
behaviors, such as applying functional transformations to a latent variable, making them a more
adaptable framework for modeling self-initiated behaviors (Rosenzweig & Wolpin, 2000). However,
prior work has been limited to parametric models, focusing primarily on linear or polynomial (Liu
et al., 2022; 2024). Given space constraints, See Section 2 for additional discussions.

This work investigates the distribution shifts induced by soft interventions for achieving identifiability
in general latent additive noise models. Additive noise models are particularly valuable in modern
deep learning due to their simplicity and compatibility with flexible network architectures, especially
when compared to polynomial models. For example, the nonlinear component of additive noise
models can be effectively implemented using architectures such as Multilayer Perceptrons (MLPs)
and transformers (Vaswani, 2017), enabling more robust and adaptable modeling of causal dynamics
across diverse scenarios. By introducing a non-parametric condition that characterizes the types
of distribution shifts, and building on assumptions from nonlinear ICA (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020), we demonstrate that
latent additive noise causal models can be identified up to trivial permutation transformations with
scaling. Furthermore, we extend our analysis to practical scenarios where only a subset of the data
with distribution shifts meets the specified condition, resulting in partial identifiability. Crucially,
this partial identifiability implies that the proposed condition for characterizing distribution shifts
is sufficient and necessary for identifiability, without requiring additional assumptions, under the
framework of nonlinear ICA. We further generalize our identifiability results from latent additive
noise causal models to latent post-nonlinear causal models, which are more flexible and encompass
additive noise models as a special case. To validate our findings, we have developed a novel method
for learning latent additive noise causal models. Empirical experiments on synthetic data, image
datasets, and real fMRI data demonstrate the robustness and effectiveness of our proposed approach,
aligning closely with the theoretical identifiability results.

2 RELATED WORK

Given the challenges associated with identifiability in causal representation learning, numerous
existing works tackle this issue by introducing specific assumptions. We categorize these related
works into three primary parts based on the nature of these assumptions.

Special graph structure Some progress in achieving identifiability centers around the imposition of
specific graphical structure constraints (Silva et al., 2006; Shimizu et al., 2009; Anandkumar et al.,
2013; Frot et al., 2019; Cai et al., 2019; Xie et al., 2020; 2022a; Lachapelle et al., 2021). Essentially,
these graph structure assumptions reduce the space of possible latent causal representations or
structures, by imposing specific rules for how variables are connected in the graph. One popular
special graph structure assumption is the presence of two pure children nodes for each causal variable
(Xie et al., 2020; 2022a; Huang et al., 2022). Very recently, the work in (Adams et al., 2021)
provides a viewpoint of sparsity to understand previous various graph structure constraints.However,
any complex causal graph structures may appear in real-world scenarios, beyond the pure sparsity
assumption. In contrast, our approach adopts a model-based representation for latent variables,
allowing arbitrary underlying graph structures.

Temporal Information The temporal constraint that the effect cannot precede the cause has been
applied in causal representation learning (Yao et al., 2021; Lippe et al., 2022b; Yao et al., 2022; Lippe
et al., 2022a). The success of utilizing temporal information to identify causal representations can
be attributed to its innate ability to establish causal direction through time delay. By tracking the

1A hard intervention fixes a variable’s value or removes its parent edges, while a soft intervention modifies its
distribution, usually retaining parent edges but encompassing hard interventions as a special case. See Appendix
K for further details.
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sequence of events over time, we gain the capacity to infer latent causal variables. In contrast to these
approaches, our focus lies on discovering instantaneous causal relations among latent variables.

Interventional Data Exploring distribution shifts for identifying causal representations has been
significantly developed recently (Von Kügelgen et al., 2021; Liu et al., 2022; Brehmer et al., 2022;
Ahuja et al., 2023; Seigal et al., 2022; Buchholz et al., 2023; Varici et al., 2023; von Kügelgen et al.,
2023). The key question is how to model the types of distribution shifts contributing to identifiability.
The majority of works focus on using hard interventions to capture the types of distribution shifts, with
some specifically considering single-node hard interventions (Ahuja et al., 2023; Seigal et al., 2022;
Buchholz et al., 2023; Varici et al., 2023). However, hard interventions may only capture the specific
types of distribution shifts. In contrast, soft interventions offer the potential to model a wider array of
distribution shifts (Liu et al., 2022; 2024). Unfortunately, the work in Liu et al. (2022) assumes the
underlying causal relations among latent causal variables to be linear models, the work in Liu et al.
(2024) explores distribution shifts in the context of latent polynomial models, which are susceptible
to issues such as numerical instability and exponential growth in terms (Press, 2007; Hastie et al.,
2009; Bishop & Nasrabadi, 2006). In this work, we explores distribution shifts in general latent
additive noise models, and extend it to more powerful latent post-nonlinear models. This marks a
significant advancement over the polynomial models in Liu et al. (2024). It not only avoids issues like
numerical instability and the exponential growth associated with polynomial models but also enables
the use of non-parametric models, such as MLPs and transformers. This is particularly important,
as the success of modern machine learning heavily relies on such complex network architectures.
This work also differs from the recent study by Zhang et al. (2023) in several ways. While the
latter assumes the mixing function from latent causal variables to observational data is a full row
rank polynomial—a constraint that may be limiting in real-world applications—we impose no such
restriction. Furthermore, Zhang et al. (2023) requires single-node interventions, where an intervention
on each latent node is available. This requirement may be particularly limiting, especially when
considering the distribution shifts resulting from self-initiated behaviors within a causal system. In
contrast, our approach does not necessitate single-node interventions.

3 IDENTIFIABLE LATENT ADDITIVE NOISE MODELS

In this section, we show that by leveraging distribution shifts, latent additive noise models with
noise sampled from two-parameter exponential causal representations are identifiable, which also
implies that the corresponding latent causal structures can be recovered. We begin by introducing
our defined latent additive noise causal models in Section 3.1, aiming to facilitate comprehension of
the problem setting and highlight our contributions. Following this, in Section 3.2, we present our
identifiability result by establishing a sufficient and necessary condition that characterizes the types of
distribution shifts, under common assumptions used in nonlinear ICA. We, additionally, show partial
identifiability results, addressing scenarios where only a portion of distribution shifts is available in
Section 3.3. This exploration narrows the gap between our findings and practical applications.

3.1 LATENT ADDITIVE NOISE MODELS WITH DISTRIBUTION SHIFTS

In our investigation, we explore the following latent causal generative models that elucidate the
underlying processes. Within these models, the observed data, represented as x, is generated through
latent causal variables denoted as z (where z 2 R`). Furthermore, these latent causal variables z
are generated by combining latent noise variables n 2 R`, known as exogenous variables in causal
systems, and the causal graph structure among latent causal variables. Unlike previous works that
necessitate specific graph structures, we do not impose any restrictions on the graph structures among
latent causal variables z other than acyclicity. In addition, we introduce a surrogate variable u to
characterize distribution shifts by modeling the changes in the distribution of n, as well as the causal
influences among latent causal variables z. Here u could be thought of as environment index. More
specifically, we parameterize the causal generative models by assuming n follows an exponential
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family given u, and assuming z and x are generated as follows:

p(T,⌘)(n|u) :=
Y

i

1

Zi(u)
exp[

X

j

(Ti,j(ni)⌘i,j(u))], (1)

zi := gui (pai) + ni, (2)
x := f(z, "), (3)

where

• in Eq. 1, Zi(u) denotes the normalizing constant, and Ti,j(ni) denotes the sufficient statistic
for ni, whose natural parameter ⌘i,j(u) depends on u. Here we focus on two-parameter
(e.g., j 2 {1, 2}) exponential family members, e.g., Gaussian, inverse Gaussian, Gamma,
inverse Gamma, and beta distributions as special cases.

• In Eq. 2, the term pai represents the set of parents of zi. gui signifies a mapping, which can
take on various forms, including both linear and nonlinear mappings, and is dependent on u.
In addition, there exist common Directed Acyclic Graphs (DAG) constraints among latent
causal variables z.

• In Eq. 3, f denote a nonlinear mapping from z to x, x 2 Rd and " is independent noise with
probability density function p"("), " 2 Rd�`.

The surrogate variable u plays a crucial role in capturing the distribution shifts in the observed data x.
Depending on the task, u can represent different aspects: environmental indices in domain adaptation
or generalization, time indices in time series forecasting Mudelsee (2019), geographic locations (e.g.,
longitude and latitude) in remote sensing Rußwurm et al. (2020), modality indices in multi-modality
datasets, or labels in natural images. With u, distribution shifts could be originated from two main
sources: (1) changes in the distributions of the exogenous variables n, modulated by u as described
in Eq. 1, and (2) the causal influences from the parent nodes on each latent causal variable, e.g.,
gui (pai,u), also modulated by u as outlined in Eq. 2. By explicitly modeling these factors, we gain a
deeper understanding of how variations in the environment (e.g., u) generate different observed data
distributions, which will be further explored in the following sections.

3.2 COMPLETE IDENTIFIABILITY RESULTS

Intuitively, distribution shifts—whether caused by environmental changes, system disruptions, or
dynamic processes—can be seen as natural interventions on hidden causal variables. These shifts
show how these hidden variables influence the observed data in different situations, giving us useful
information, such as what changes and what stays the same. When these changes are ’sufficient,’
meaning they provide enough information to break symmetries and dependencies that might otherwise
obscure causal relationships, we may achieve identifiability. As a result, distribution shifts become a
powerful tool for identifying latent causal models, particularly in complex, real-world applications.
Specifically, we demonstrate the following results.
Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1 - 3. Assume the following holds:

(i) The noise probability density function p"(") must not depend on u and is always finite,

(ii) The function f in Eq. 3 is smooth and invertible,

(iii) There exist 2`+ 1 values of u, i.e., u0,u1, ...,u2`, such that the matrix

L = (⌘(u = u1)� ⌘(u = u0), ...,⌘(u = u2`)� ⌘(u = u0)) (4)

of size 2`⇥ 2` is invertible. Here ⌘(u) = [⌘i,j(u)]i,j ,

(iv) The function class of gui satisfies the following condition: for each parent node zi0 of zi,

there exist constants ui0 , such that @g
u=ui0
i (pai)

@zi0
= 0,

then the true latent causal variables z are related to the estimated latent causal variables ẑ, which
are learned by matching the true marginal data distribution p(x|u), by the following relationship:
z = Pẑ+ c, where P denotes the permutation matrix with scaling, c denotes a constant vector.
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Proof sketch The proof can be done according to the following intuition. With the support of
assumptions (i)-(iii), we can identify the latent noise variables n up to permutation and scaling, e.g.,
n = Pn̂ + c where n̂ denotes the recovered latent noise variables obtained by matching the true
marginal data distribution. This outcome, in conjunction with the definition in Eq. 2, facilitates the
establishment of a mapping between the the true latent causal variables z and the recovered ones ẑ,
e.g., z = �(ẑ). Finally, by showing that the Jacobian matrix of � is equivalent to P if condition (iv)
is satisfied, we can conclude the proof. Details can be found in Appendix B.

Assumptions (i)-(iii) are orignally deveoloped by nonlinear ICA (Hyvarinen & Morioka, 2016;
Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson et al., 2020). We here consider unitize
these assumptions considering the following two main reasons. 1) These assumptions have been
verified to be practicable in diverse real-world application scenarios (Kong et al., 2022; Xie et al.,
2022b; Wang et al., 2022). 2) Our result eliminates the need to make assumptions about the
dimensionality of latent causal or noise variables, which is in contrast to existing methods that
require prior knowledge of the dimensionality, due to imposing the two-parameter exponential
family members on latent noise variables (Sorrenson et al., 2020)2.

Assumption (iv), originally introduced by this work, is to offer the condition, which characterizes the
types of distribution shifts within the context of general latent additive noise models, contributing to
identifiability. Assumption (iv), for instance, could arise in the analysis of cell imaging data (e.g., x),
where various batches of cells are exposed to different small-molecule compounds (e.g., u). each
latent variable (e.g., zi) represents the concentration level of a distinct group of proteins, with protein-
protein interactions (e.g., causal relations among zi) playing a significant role (Chandrasekaran et al.,
2021). Research has revealed that the mechanisms of action of small molecules exhibit variations in
selectivity (Forbes & Krueger, 2019)(Scott et al., 2016), which can profoundly affect protein-protein
interactions, e.g., gi. The assumption (iv) requires the existence of a specific u = ui0 , such that
the original causal relationship can be disconnected. This parallels cases where small molecule
compounds disrupt or inhibit protein-protein interactions (PPIs), effectively causing these interactions
to cease (Arkin & Wells, 2004). Such molecules are commonly referred to as inhibitors of PPIs.
Developing small molecule inhibitors for PPIs is a key focus in drug discovery (Lu et al., 2020;
Bojadzic et al., 2021).
Remark 3.2 (The Types of Distribution Shifts Contributing to Identifiability). Assumption (iv)
is designed to specify the types of distribution shifts that contribute to identifiability, as not all
distribution shifts facilitate identifiability. For example, z2 := (�0(u) + b)z1 + n2 is unidentifiable,
despite the distribution of of z2 changing across u, whereas z2 := (�0(u))z1+n2 could be identifiable.
To illustrate this concept, consider the following simple example: we can parameterize Eq. 2 as
follows: z2 := �(u)z1 + n2, where �(u) = �0(u) + b. As a consequence, while the distribution
of z2 shifts across u, there always exists a team bz1 that remains unchanged across u. As a result,
the unchanged term bz1 across u can be absorbed into f (the mapping from z to x), resulting in a
possible solution z02 := �0(u)z1 + n2, not the groundturthgroundtruth z2 := (�0(u) + b)z1 + n2,
which leads to an unidentifiable outcome. MoreoverOn the other hand, assumption (iv) implies that
we require �(u = ui0) = 0 and �0(u = ui0) = 0 (since both �0� and �0 must belong to the same
function class), which results in that �(u) can not be replaced by �0(u) + b with b 6= 0 3.
Remark 3.3 (Assumption (iv) does not necessitate the availability of observed data corresponding to
the specific ui0 ). Revisiting the aforementioned example, assumption (iv) is just to limit the function
class of �, and once samples are drawn from this function class, the assumption is met, allowing
observed data corresponding to these samples to be used to infer latent causal variables and their
relationships. Therefore, it is not necessary for the sampled data to include the specific point ui0 so
that �(u = ui0) = 0, to generate the corresponding observed data for inference. Importantly, this
also highlights the distinction between this work and existing works (Von Kügelgen et al., 2021; Liu
et al., 2022; Brehmer et al., 2022; Ahuja et al., 2023; Seigal et al., 2022; Buchholz et al., 2023; Varici
et al., 2023), for identifying causal representations. Specifically, existing works typically require
that distribution shifts arise from hard interventions to identify causal representations. In contrast,
this work proposes that distribution shifts resulting from a function class constrained by Assumption
(iv) can also be leveraged for identifiability, which is related to soft interventions. Interestingly,

2Note that this work employs a special (but not overly restrictive) exponential family to ensure identifiability;
for details, refer to Sorrenson et al. (2020)

3The statement in this remark holds when ni are identified up to permutation. A more complicated example
can be found in Appendix I.
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Assumption (iv) actually requires that the limited function class covers a special point ui0 enabling
the removal of incoming edges from parent nodes, which is related to hard intervention and may
thus connect to the existing works. Further investigation of Assumption (iv) may provide a bridge
between this work and existing works, offering an intriguing direction for future work.
Remark 3.4 (Latent Causal Graph Structure). Our identifiability result, as established in Theorem
3.1, establishes the identifiability of latent causal variables, thereby implying a unique recovery of the
corresponding latent causal graph. This stems from the inherent identifiability of nonlinear additive
noise models, as demonstrated in prior research (Hoyer et al., 2008; Peters et al., 2014), irrespective
of the scaling applied to z. In addition, linear Gaussian models across multiple environments (e.g.,
u) are generally identifiable, which is supported by independent causal mechanisms (Huang* et al.,
2020; Ghassami et al., 2018; Liu et al., 2022).

3.3 PARTIAL IDENTIFIABILITY RESULTS

Condition (iv) in Theorem 3.1, which involves the partial derivatives with respect to each parent
node of the variable zi, highlights the requirement for distribution shifts for identifiability. In
practice, achieving such distribution shifts for every causal influence from a parent node to zi may be
challenging. In case it is violated, we can still provide partial identifiability results, as follows:
Theorem 3.5. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1 - 3, and the assumptions (i)-(iii) are satisfied, for each zi,

(a) if it is a root node or condition (iv) is satisfied, then the true zi is related to the recovered
one ẑj , obtained by matching the true marginal data distribution p(x|u), by the following
relationship: zi = sẑj + c, where s denotes scaling, c denotes a constant,

(b) if condition (iv) is not satisfied, then zi is unidentifiable.
Proof sketch The proof can be constructed as follows: as mentioned in the proof sketch for
Theorem 3.1, with the support of assumptions (i)-(iii), we can establish a mapping between the
true latent causal variables z and the recovered latent causal variables ẑ, denoted as z = �(ẑ). By
demonstrating that the i-th row of the Jacobian matrix of � (corresponding to zi) has one and only
one nonzero element when the condition in (a) is met, we can prove (a). Conversely, by showing that
if condition (iv) is not satisfied, the i-th row of the Jacobian matrix of � (corresponding to zi) has
more than one nonzero element, which implies that the true zi is a composition of more than one
recovered variable, we can establish the proof of (b). Details can be found in Appendix C.
Remark 3.6 (Sufficiency and Necessity of condition (iv)). The contrapositive of Theorem 3.5 (b),
which asserts that if zi is identifiable, then condition (iv) is satisfied, serves to establish the necessity
of condition (iv) for achieving complete identifiability. This insight, coupled with Theorem 3.1,
underscores that condition (iv) is not only sufficient but also necessary for the identifiability result,
under assumptions (i)-(iii), without additional assumptions.
Remark 3.7 (Parent nodes do not impact children). The implications of Theorem 3.5 ((a) and (b))
suggest that zi remains identifiable, even when its parent nodes are unidentifiable. This is primarily
because regardless of whether assumption (iv) is met, assumptions (i)-(iii) ensure that latent noise
variables n can be identified. In the context of additive noise models (or post-nonlinear models
discussed in the next section), the mapping from n to z is invertible. Therefore, with identifiable noise
variables, all necessary information for recovering z is contained within n. Furthermore, assumption
(iv) is actually transformed into relations between each node and the noise of its parent node, as stated
in Lemma A.3. As a result, zi could be identifiable, even when its parent nodes are unidentifiable.
Notably, this partial identifiability property also emphasizes how this work differs from some existing
works (Ahuja et al., 2023; Seigal et al., 2022; Buchholz et al., 2023; Varici et al., 2023), which do
not provide similar partial identifiability results.
Remark 3.8 (Subspace identifiability). The implications of Theorem 3.5 suggest the theoretical
possibility of partitioning the entire latent space into two distinct subspaces: latent invariant space
containing invariant latent causal variables and latent variant space comprising variant latent causal
variables. This insight could be particularly valuable for applications that prioritize learning invariant
latent variables to adapt to changing environments, such as domain adaptation or generalization (Kong
et al., 2022). While similar findings have been explored in latent polynomial models in (Liu et al.,
2024), this work demonstrates that such results also apply to more flexible additive noise models.
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Summary Unlike traditional tasks that emphasize modeling data distributions, causal representation
learning seeks to uncover the underlying latent causal mechanisms that generate the observed data.
We formalize distribution shifts using the surrogate variable u within the framework of latent additive
noise models, splitting the latent causal mechanisms into two components: one associated with
exogenous variables and the other representing causal influences from parent nodes on each latent
causal variable. By examining distribution shifts driven by exogenous variables, e.g., assumption (iii)
in theorem 3.1, we can identify these latent exogenous variables n 4. However, identifying n does
not guarantee component-wise identifiability of z, as demonstrated by Theorem 3.5 (b). By further
examining distribution shifts arising from causal influences, e.g., gi in Eq. 2, assumption (iv) has been
proven to be a condition that characterizes the types of distribution shifts for the identifiability of z,
supported by Theorem 3.1 and Theorem 3.5 (b). Moreover, we can still achieve partial identifiability
when only a subset of z satisfies assumption (iv), as demonstrated by Theorem 3.5 (a), which may be
more practical in real-world applications.

4 EXTENSION TO LATENT POST-NONLINEAR CAUSAL MODELS

While latent additive noise models, as defined in Eq. 2, are general, their capacities are still limited,
e.g., requiring additive noise. In this section, we generalize latent additive noise models to latent
post-nonlinear models (Zhang & Hyvärinen, 2009), which generally offer more powerful expressive
capabilities than latent additive noise models. To this end, we replace Eq. 2 by the following:

z̄i := ḡi(zi) = ḡi(g
u
i (pai) + ni), (5)

where ḡi denotes a invertible post-nonlinear mapping. It includes the latent additive noise models Eq.
2 as a special case in which the nonlinear distortion ḡi does not exist. Based on this, we can identify
z̄ up to component-wise invertible nonlinear transformation as follows:
Corollary 4.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Assume that conditions (i) - (iv) in Theorem 3.1 hold,
then the true latent causal variables z̄ are related to the estimated latent causal variables ˆ̄z, which
are learned by matching the true marginal data distribution p(x|u), by the following relationship:
z̄ = Mc(ˆ̄z)+c, where Mc denotes a component-wise invertible nonlinear mapping with permutation,
c denotes a constant vector.

Proof sketch The proof can be done intuitively as follows: In Theorem 3.1, the only constraint
imposed on the function f is its injectivity, as mentioned in condition (ii). Therefore, since the
function ḡi is defined as invertible as Eq. 5, we can construct a new injective function ef by composing
f with the function ḡ, with each component defined by the function ḡi. This allows us to retain the
result derived from Theorem 3.1 and thus conclude the proof. Details can be found in Appendix D.

[Latent Causal Graph Structure] Similarly, the identifiability result as established in Corollary
4.1 implies a unique recovery of the corresponding latent causal graph. This stems from the
inherent identifiability of nonlinear additive noise models, as demonstrated in prior research
(Zhang & Hyvärinen, 2009), irrespective of the component-wise nonlinear scaling applied to z̄. In
general, the latent causal graph related to z̄ is the same as one related to z.

Intuition Due to the assumption that the mapping f , from z to x, is invertible in latent additive noise
models in Eq. 2, the invertible mapping ḡi in latent post-nonlinear models in Eq. 5 can effectively be
incorporated into f . Consequently, the identifiability of latent post-nonlinear models depends on the
identifiability of latent additive noise models. This implies that methods specifically designed for
latent additive noise models can be directly applied to the recovery of latent post-nonlinear models
in the latent space. Furthermore, experimental results obtained from latent additive noise models
can also serve as a means to align closely with the identifiability of latent post-nonlinear models, we
will discuss in more detail in the experiments.

Model Capacity Corollary 4.1 generalizes identifiability of latent additive noise models in Eq.
2 to more complex latent post-nonlinear models. Due to the inherent property of post-nonlinear

4Note that this is not a straightforward implementation of existing nonlinear ICA. Technically, we must
address a gap arising from Eq. 2, to ensure that 1) the mapping from n to x is invertible, and 2) the variable u in
Eq. 2 does not compromise the identifiability of n.
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models, e.g., invertible component-wise nonlinear mapping ḡi, Corollary 4.1 enables latent additive
noise models to uncover causal relationships even when data is generated by latent post-nonlinear
models as described in Eq. 5. For example, in cases where data is generated from z1 = n3

1 and
z2 = (gu1 (z1) + n2)3, despite the presence of multiplicative noise g1(z1)2n2, Corollary 3.1 supports
the effectiveness of latent additive noise models in Eq. 2. Furthermore, in cases where data is
generated from z1 = n3

1 and z2 = (�(u)(z1)+n2)3, although nonlinear relationships are introduced,
Corollary 4.1 continues to affirm the applicability of latent linear models in this context.

Similar to Theorem 3.5, we have partial identifiability result as follows:
Corollary 4.2. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Under the condition that the assumptions (i)-(iii) are
satisfied, for each z̄i, (a) if it is a root node or condition (iv) is satisfied, then the true z̄i is related
to the recovered one ˆ̄zj , obtained by matching the true marginal data distribution p(x|u), by the
following relationship: z̄i = Mc,i(ˆ̄zj) + c, where Mc,i denotes a invertible mapping, c denotes a
constant, (b) if condition (iv) is not satisfied, then z̄i is unidentifiable.

Proof sketch The proof can be done intuitively as follows: Again, since the function ḡi is invertible
defined in Eq. 5 and the only constraint imposed the function f is that f is invertible in theorem 3.5,
we can directly use the result of theorem 3.5 (b) to conclude the proof. Refer to Appendix E.
Remark 4.3 (Sharing Properties). Corollary 4.2 establishes that the properties outlined in Theorem
3.5, including remark 3.6 to 3.8, remain applicable in latent post-nonlinear causal models.

5 LEARNING LATENT ADDITIVE NOISE MODELS

In this section, we translate our theoretical findings into a novel method for learning latent causal
models. Our primary focus is on learning additive noise models, as extending the method to latent
post-nonlinear models is straightforward, simply involving the utilization of invertible nonlinear
mappings as mentioned in Intuition for Corollary 4.1. Following previous works in (Liu et al., 2022;
2024), due to permutation indeterminacy in latent space, we can naturally enforce a causal order
z1 � z2 � ...,� z` without specific semantic information. With guarantee from Theorem 3.1, each
variable zi can be imposed to learn the corresponding latent variables in the correct causal order. As
a result, we formulate a prior model as follows:

p(z|u) =
Ỳ

i=1

p(zi|z<i �mi,u) =
Ỳ

i=1

N (µzi(z<i �mi,u), �
2
zi(z<i �mi,u)), (6)

where we focus on latent Gaussian noise variables, considering the re-parametric trick, and we
introduce additional vectors mi, by enforcing sparsity on mi and the component-wise product �, to
attentively learn latent causal graph structure. In our implementation, we simply impose L1 norm,
other methods may also be flexibleWe impose the L1 norm, though other methods may also be
flexible, e.g., sparsity priors (Carvalho et al., 2009; Liu et al., 2019). We employ the following
variational posterior to approximate the true posterior of p(z|x,u):

q(z|u,x) =
Ỳ

i=1

q(zi|z<i �mi,u,x),=
Ỳ

i=1

N (µzi(z<i �mi,u,x), �
2
zi(z<i �mi,u,x)), (7)

where the variational posterior shares the same parameter mi to limit both the prior and the variational
posterior, maintaining the same latent causal graph structure. Finally, we arrive at the objective:

maxEq(z|x,u)(p(x|z,u))�DKL(q(z|x,u)||p(z|u))� �
X

i

kmik1, (8)

where DKL denotes the KL divergence, � denotes a hyperparameters to control the sparsity of latent
causal structure. Implementation details can be found in Appendix G.

6 EXPERIMENTS

Synthetic Data We first conduct experiments on synthetic data, generated by the following
process: we divide latent noise variables into M segments, where each segment corresponds
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to one value of u as the segment label. Within each segment, the location and scale param-
eters are respectively sampled from uniform priors. After generating latent noise variables,
we generate latent causal variables, and finally obtain the observed data samples by an invert-
ible nonlinear mapping on the causal variables. More details can be found in Appendix F.

MPC SHD

Figure 1: In evaluating different methods on la-
tent additive Gaussian noise, we observe distinct
performance differences. Notably, the proposed
method (MLPs) outperforms others in terms of
the MPC, affirming our theoretical results. The
right shows the SHD obtained by the proposed
method and Polynimals (Liu et al., 2024). Here
the estimated graphs of iVAE is obtained by
Huang* et al. (2020).

We evaluate our proposed method (MLPs), imple-
mented by MLPs to model the causal relations among
latent causal variables, against established models:
vanilla VAE (Kingma & Welling, 2013), �-VAE (Hig-
gins et al., 2017), identifiable VAE (iVAE) (Khe-
makhem et al., 2020), and latent polynomial models
(Polynomials) (Liu et al., 2024). Notably, the iVAE
demonstrates the capability to identify true indepen-
dent noise variables, subject to certain conditions, with
permutation and scaling. Polynomials, while sharing
similar assumptions with our proposed method, are
prone to certain limitations. Specifically, they may
suffer from numerical instability and face challenges
due to the exponential growth in the number of terms.
While the �-VAE is popular in disentanglement tasks
due to its emphasis on independence among recovered
variables, it lacks robust theoretical backing. Our evalu-
ation focuses on two metrics: the Mean of the Pearson
Correlation Coefficient (MPC) to assess performance, and the Structural Hamming Distance (SHD)
to gauge the accuracy of the latent causal graphs.

Figure 1 illustrates the comparative performances of various methods, e.g., VAE and iVAE, across
different models, e.g., models with different dimensions of latent variables. Based on MPC, the
proposed method demonstrates satisfactory results, thereby supporting our identifiability claims.
Additionally, Figure 2 presents how the proposed method performs when condition (iv) is not
met. It is evident that condition (iv) is a sufficient and necessary condition characterizing the
types of distribution shifts for identifiability in the context of latent additive noise models. These
empirical findings align with the partial identifiability conclusions discussed in Theorem 3.5.

z1 ! z2 z2 ! z3 z3 ! z4

Figure 2: Performance of the proposed method under scenarios
where condition (iv) is not satisfied regarding the causal influence
of z1 ! z2 (consequently, z2 ! z3, and z3 ! z4). The results
are in agreement with partial identifiability in Theorem 3.5.

Post-Nonlinear Models In the above
experiments, we obtain the observed data
samples as derived from a random invert-
ible nonlinear mapping applied to the la-
tent causal variables. The nonlinear map-
ping can be conceptualized as a combina-
tion of an invertible transformation and
the specific invertible mapping, ḡi, as
mentioned in Discussion 1 for Corollary
4.1. From this perspective, the results
depicted in Figures 1 and 2 also demon-
strate the effectiveness of the proposed method in recovering the variables zi in latent post-nonlinear
models Eq. 5, as well as the associated latent causal structures. Consequently, these results also serve
to corroborate the assertions in Corollary 4.1 and 4.2, particularly given that ḡi are invertible.

Figure 3: Samples generated by us-
ing a modified version of the chem-
istry dataset originally presented in Ke
et al. (2021). In this adaptation, the
objects’ colors (representing different
states) change in accordance with a
specified causal graph, e.g., ‘diamond’
causes ‘triangle’, and ‘triangle’ causes
’square’.

Image Data We further validate our proposed identifiabil-
ity results and methodology using images from the chemistry
dataset introduced by Ke et al. (2021). This dataset is repre-
sentative of chemical reactions where the state of one element
can influence the state of another. The images feature multi-
ple objects with fixed positions, but their colors, representing
different states, change according to a predefined causal graph.
To align with our theoretical framework, we employ a nonlin-
ear model with additive Gaussian noise for generating latent
variables that correspond to the colors of these objects. The
established latent causal graph within this context indicates
that the ‘diamond’ object (denoted as z1) influences the ‘tri-
angle’ (z2), which in turn affects the ‘square’ (z3). Figure 3

9
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provides a visual representation of these observational images,
illustrating the causal relationships in a tangible format.

Figure 4 presents MPC outcomes as derived from various meth-
ods. Among these, the proposed method demonstrates superior
performance. In addition, both the proposed method (MLPs) and Polynomials can accurately learn
the causal graph with guarantee. However, Polynomial encounters issues such as numerical instability
and exponential growth in terms, which compromises its performance in MPC, as seen in Figure
4. This superiority of MLPs is further evidenced in the intervention results, as depicted in Figure 5.
Owing to space constraints, additional traversal results concerning the learned latent variables from
other methodologies are detailed in Appendix H. For these methods without identifiability, traversing
any learned variable results in a change in color across all objects.

Figure 4: MPC obtained by different methods on the image dataset. From top to bottom and left to right: VAE,
�-VAE, iVAE, Polynomials, and the proposed method (MLPs). The proposed method performs better than
others, which is not only in line with our identifiability claims but also highlights the flexibility of MLPs.

Figure 6: MPC obtained by different methods.
Notably, MLPs secure an outstanding average
MPC score of 0.981. In comparison, polynomi-
als yield an average MPC score of 0.977, while
linear models achieve a slightly lower average
MPC score of 0.965.

fMRI Data Building on the works in (Liu et al.,
2022; 2024), we extended the application of the pro-
posed method to the fMRI hippocampus dataset (Lau-
mann & Poldrack, 2015). This dataset comprises sig-
nals from six distinct brain regions: perirhinal cortex
(PRC), parahippocampal cortex (PHC), entorhinal cor-
tex (ERC), subiculum (Sub), CA1, and CA3/Dentate
Gyrus (DG). These signals, recorded during resting
states, span 84 consecutive days from a single individ-
ual. Each day’s data contributes to an 84-dimensional
vector, e.g., u. Our focus centers on uncovering la-
tent causal variables, and thus we consider these six
brain signals as such, i.e., these signals undergo a ran-
dom nonlinear mapping to transform them into observ-
able data, then methods can be employed on this trans-
formed data to recover the latent variables.

Linear Polynomials MLPs

Figure 7: Recovered latent causal structures
were analyzed using three distinct approaches:
latent linear models, latent polynomials, and la-
tent MLPs. The findings related to latent linear
models and latent polynomials are sourced from
Liu et al. (2024). Blue edges are feasible given
anatomical connectivity, red edges are not, and
green edges are reversed.

Figure 6 presents the comparative results yielded by
the proposed method alongside various other methods.
Notably, the VAE, �-VAE, and iVAE models presume
the independence of latent variables, rendering them
incapable of discerning the underlying latent causal
structure. Conversely, other methods, including latent
linear models, latent polynomials, and latent MLPs, are
able to accurately recover the latent causal structure
with guarantees. Among these, the MLP models out-
perform the others in terms of MPC. In the study by
Liu et al. (2024), it is noted that linear relationships
among the examined signals tend to be more prominent
than nonlinear ones. This observation might lead to
the presumption that linear models would be effective.
However, this is not necessarily the case, as these models can still yield suboptimal outcomes. In
contrast, MLPs demonstrate superior performance in term of MPC, particularly when compared to
polynomial models, which are prone to instability and exponential growth issues. The effectiveness
of MLPs is further underscored by their impressive average MPC score of 0.981. This advantage is
visually represented in Figure 7, which illustrates the enhanced capability of MLPs.
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Figure 5: From left to right, the interventions are applied to the causal representations z1, z2, and z3 learned by
the proposed method (MLPs), respectively. The vertical axis represents different samples, while the horizontal
axis represents the enforcement of various values on the learned causal representation.

7 CONCLUSION

This study offers a pivotal contribution by establishing a condition that precisely characterizes
the types of distribution shifts for the identifiability of latent additive noise models. Additionally,
we present partial identifiability in scenarios where only a subset of distribution shifts fulfills this
condition. We then generalize identifiability results to latent post-nonlinear causal models, broadening
the scope of its theoretical implications. We translate these theoretical concepts into a practical
method, extensive empirical testing was conducted on a diverse array of datasets.
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Appendices

A LEMMAS FOR THE PROPOSED LATENT CAUSAL MODELS

For ease of proof in the following sections, we first introduce the following lemmas.
Lemma A.1. The mapping between the latent causal variables z and the recovered latent causal ẑ is
independent of u.

The proof proceeds as follows: According to Eq. 3 and the assumption that the function f is smooth
and invertible (Assumption (ii)), we assume an alternative solution exists such that x = f̂(ẑ), where
f̂ is also invertible. By matching the likelihoods, we obtain ẑ = f̂�1(f(z, ")). Since " is independent
of u (as per Assumption (i)), the proof follows.
Lemma A.2. Denote the mapping from n to z as h. This mapping, h, is invertible, and its Jacobian
determinant is equal to 1, i.e., | detJh| = 1.

The proof unfolds straightforwardly as follows: Acknowledging that zi depends contingent on its
parents and ni, as delineated in Eq. 2, allows us to iteratively represent zi in terms of the latent noise
variables associated with its parents alongside ni. More explicitly, without loss of the generality, by
assuming the true causal order to be z1 � z2 � ... � z`, we can deduce:

z1 = n1|{z}
h1(n1)

,

z2 = gu2 (z1) + n2 = gu2 (n1) + n2| {z }
hu
2 (n1,n2)

,

z3 = gu3 (n1, g
u
2 (n1,u) + n2,u) + n3| {z }
hu
3 (n1,n2,n3)

, (9)

......,

where hu(n) = [hu
1 (n1), hu

2 (n1, n2), hu
3 (n1, n2, n3)...]. Furthermore, according to the additive

noise models and DAG constraints, it can be shown that the Jacobi determinant of hu equals 1, and
thus the mapping hu is invertible.
Lemma A.3. Given the assumption (iv) in Theorem 3.1, the partial derivative of hu

i (n1, ..., ni) in

Eq. 9 with respect to ni0 , where i0 < i, equals 0 when ui0 , i.e., @h
u=ui0
i (n1,...,ni)

@ni0
= 0.

The proof can be constructed as follows: Given that the partial derivative of the mapping hu
i (n1, ..., ni)

corresponds to the partial derivative of gui , and leveraging Assumption (iv) in conjunction with the
chain rule, we are able to deduce the desired result.
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B THE PROOF OF THEOREM 3.1

Theorem 3.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1 - 3. Assume the following holds:

(i) The noise probability density function p"(") must not depend on u and is always finite,

(ii) The function f in Eq. 3 is smooth and invertible,

(iii) There exist 2`+ 1 values of u, i.e., u0,u1, ...,u2`, such that the matrix

L = (⌘(u = u1)� ⌘(u = u0), ...,⌘(u = u2`)� ⌘(u = u0)) (10)

of size 2`⇥ 2` is invertible. Here ⌘(u) = [⌘i,j(u)]i,j ,

(iv) The function class of gui satisfies the following condition: for each parent node zi0 of zi,

there exist constants ui0 , such that @g
u=ui0
i (pai)

@zi0
= 0,

then the true latent causal variables z are related to the estimated latent causal variables ẑ, which
are learned by matching the true marginal data distribution p(x|u), by the following relationship:
z = Pẑ+ c, where P denotes the permutation matrix with scaling, c denotes a constant vector.

The proof of Theorem 3.1 unfolds in three distinct steps. Initially, Step I establishes that the
identifiability criterion from (Sorrenson et al., 2020) is applicable in our context. Specifically, it
confirms that the latent noise variables n are identifiable, subject only to component-wise scaling and
permutation, expressed as n = Pn̂+ c. Building on this, Step II demonstrates a linkage between the
recovered latent causal variables ẑ and the true z, formulated as z = �(ẑ). Finally, Step III utilizes
Lemma A.3 to illustrate that the transformation �, introduced in Step II, essentially simplifies to a
combination of permutation and scaling, articulated as z = Pẑ+ c.

Step I: Suppose we have two sets of parameters ✓ = (f ,T,h,⌘) and ✓̂ = (f̂ , T̂, ĥ, ⌘̂) corresponding
to the same conditional probabilities, i.e., p(f ,T,h,⌘)(x|u) = p(f̂ ,T̂,ĥ,⌘̂)(x|u) for all pairs (x,u),
where T denote the sufficient statistic of latent noise variables n, and h is defined in Eq. A.2. Due
to the assumption (i), the assumption (ii), and the fact that h is invertible (e.g., Lemma A.2), by
expanding the conditional probabilities via the change of variables formula and taking the logarithm,
we have:

log | detJf�1(x)|+ log p"(") + log | detJh�1(z)|+ log p(T,⌘)(n|u)
= log | detJ(f̂�ĥ)�1(x)|+ log p(T̂,⌘̂)(n̂|u), (11)

where we assume an alternative solution exists such that x = f̂(ẑ) = f̂(ĥ(n̂,u)). By using the
exponential family as defined in Eq. 1, we have:

log | detJf�1(x)|+ log p"(") + log | detJh�1(z)|+TT (n)⌘(u)� log
Y

i

Zi(u) = (12)

log | detJ(f̂�ĥ)�1(x)|+ T̂T (n̂)⌘̂(u)� log
Y

i

Ẑi(u), (13)

By using Lemma A.2, e.g., | detJh| = 1, we have: | detJh�1 | = 1. Further, since both h and ĥ
must to be the same function class, we also have: | detJĥ�1 | = 1. Given the above, Eqs. 12-13 can
be reduced to:

log | detJf�1(x)|+ log p"(") +TT (n)⌘(u)� log
Y

i

Zi(u) =

log | detJf̂�1(x)|+ T̂T (n̂)⌘̂(u)� log
Y

i

Ẑi(u). (14)

Then by expanding the above at points ul and u0, then using Eq. 14 at point ul subtract Eq. 14 at
point u0, we find:

hT(n), ⌘̄(u)i+
X

i

log
Zi(u0)

Zi(ul)
= hT̂(n̂), ¯̂⌘(u)i+

X

i

log
Ẑi(u0)

Ẑi(ul)
. (15)
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Here ⌘̄(ul) = ⌘(ul)� ⌘(u0). By assumption (iii), and combining the 2` expressions into a single
matrix equation, we can write this in terms of L from assumption (iii),

LTT(n) = L̂T T̂(n̂) + b. (16)

Since LT is invertible, we can multiply this expression by its inverse from the left to get:

T(n) = AT̂(n̂) + c, (17)

Where A = (LT )�1L̂T . According to lemma 3 in (Khemakhem et al., 2020) that there exist k
distinct values n1

i to nk
i such that the derivative T 0(n1

i ), ..., T
0(nk

i ) are linearly independent, and the
fact that each component of Ti,j is univariate, we can show that A is invertible.

Since we assume the noise to be two-parameter exponential family members as defined in Eq. 1, Eq.
17 can be re-expressed as: ✓

T1(n)
T2(n)

◆
= A

✓
T̂1(n̂)
T̂2(n̂)

◆
+ c, (18)

Then, we re-express T2 in term of T1, e.g., T2(ni) = t(T1(ni)) where t is a nonlinear mapping. As
a result, we have from Eq. 18 that: (a) T1(ni) can be linear combination of T̂1(n̂) and T̂2(n̂), and
(b) t(T1(ni)) can also be linear combination of T̂1(n̂) and T̂2(n̂). This implies the contradiction
that both T1(ni) and its nonlinear transformation t(T1(ni)) can be expressed by linear combination
of T̂1(n̂) and T̂2(n̂). This contradiction leads to that A can be reduced to permutation matrix P
(See APPENDIX C in (Sorrenson et al., 2020) for more details):

n = Pn̂+ c, (19)

where P denote the permutation matrix with scaling, c denote a constant vector. Note that this result
holds for not only Gaussian, but also inverse Gaussian, Beta, Gamma, and Inverse Gamma (See Table
1 in (Sorrenson et al., 2020)).

Step II:By Lemma A.2, we can denote z and ẑ by:

z = hu(n), (20)

ẑ = ĥu(n̂), (21)

where h is defined in A.2. Replacing n and n̂ in Eq. 19 by Eq. 20 and Eq. 21, respectively, we have:

(hu)�1(z) = P(ĥu)�1(ẑ,u) + c, (22)

where h (as well as ĥ) are invertible supported by Lemma A.2. We can rewrite Eq. 22 as:

z = hu(P(ĥu)�1(ẑ) + c). (23)

Denote the composition by �, we have:

z = �(ẑ). (24)

Note that � must also satisfy the condition of being independent of u, as demonstrated by Lemma
A.1. Therefore, Consequently, we can remove the dependence on u in � in Eq. 24.

Step III Next, Replacing z and ẑ in Eq. 24 by Eqs. 19, 20, and 21:

hu(Pn̂+ c) = �(ĥu(n̂)) (25)

By differentiating Eq. 25 with respect to n̂

JhuP = J�Jĥu . (26)

Without loss of generality, let us consider the correct causal order z1 � z2 � ...,� z` so that Jhu and
Jĥu are lower triangular matrices whose the diagonal are 1, and P is a diagonal matrix with elements
s1,1, s2,2, s3,3, ....

17
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Elements above the diagonal of matrix J� Since Jĥu is a lower triangular matrix, and P is a
diagonal matrix, J� must be a lower triangular matrix.

Then by expanding the left side of Eq. 26, we have:

JhuP =

0

BB@

s1,1 0 0 ...

s1,1
@hu

2 (n1,n2)
@n1

s2,2 0 ...

s1,1
@hu

3 (n1,n2,n3)
@n1

s2,2
@hu

3 (n1,n2,n3)
@n2

s3,3 ...
. . . ...

1

CCA , (27)

by expanding the right side of Eq. 26, we have:

J�Jĥu =

0

BBB@

J�1,1 0 0 ...

J�2,1 + J�2,2

@ĥu
2 (n1,n2)
@n1

J�2,2 0 ...

J�3,1 +
P3

i=2 J�3,i

@ĥu
i (n1,...,ni)

@n1
J�3,2 + J�3,3

@ĥu
3 (n1,...,n3)

@n2
J�3,3 ...

. . . ...

1

CCCA
.

(28)

The diagonal of matrix J� By comparison between Eq. 27 and Eq. 28, we have J�i,i = si,i

Elements below the diagonal of matrix J� By comparison between Eq. 27 and Eq. 28, and
Lemma A.3, for all i > j we have J�i,j = 0. For example, Ggiven the fact that the equality of
two matrices implies element-wise equality, by comparing the corresponding elements of the two
matrices Eq. 27 and Eq. 28, e.g., we have s2,2

@hu
3 (n1,n2,n3)

@n2
= J�3,2 + J�3,3

@ĥu
3 (n1,...,n3)

@n2
. Then by

Lemma A.3, we have a point ui0 , so that @h
u=ui0
3 (n1,n2,n3)

@n2
= 0. Further, since both hu and ĥu must

to belong the same function class, we also have: @ĥ
u=ui0
3 (n1,...,n3)

@n2
= 0. Note that � is independent

of u as mentioned later in Eq. 24, demonstrated by Lemma A.1. As a result, we can use the specific
point ui0 to infer J�3,2 . That is, J�3,2 must be 0 across u. Clearly, this result can be extended to the
remaining elements J�i,j where i > j.

As a result, the matrix J� in Eq. 26 equals to the permutation matrix P, which implies that the
transformation Eq. 24 reduces to a permutation transformation,

z = Pẑ+ c0. (29)

In the preceding proof, it becomes evident that assumption (iv) (or Lemma A.3) is sufficient to
constrain the elements below the diagonal of the matrix J� to zero. Therefore, our primary objective
now shifts to the verification of what happens when assumption (iv) is not met – specifically, whether
the claim that the elements below the diagonal of J� are zero still holds or not. We will proof that in
next section.
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C THE PROOF OF THEOREM 3.5

Theorem 3.5. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1 - 3, under the condition that the assumptions (i)-(iii) are satisfied,
for each zi,

(a) if it is a root node or condition (iv) is satisfied, then the true zi is related to the recovered
one ẑj , obtained by matching the true marginal data distribution p(x|u), by the following
relationship: zi = sẑj + c, where s denotes scaling, c denotes a constant,

(b) if condition (iv) is not satisfied, then zi is unidentifiable.

Since the proof process in Steps I and II in Appendix B do not depend on the assumption (iv), the
results in both Eq. 27 and Eq. 28 hold. Then consider the following two cases.

• In cases where zi represents a root node or assumption (iv) holds true for zi, by using
Lemma A.3, i.e., @h

u=ui0
i (n1,...,ni)

@ni0
= 0 and @ĥ

u=ui0
i (n1,...,ni)

@ni0
= 0 for all i0 < i, and by

comparison between Eq. 27 and Eq. 28, we have: for all i > j we have J�i,j = 0, which
implies that we can obtain that zi = Ai,iẑi + c0i.

• In cases where assumption (iv) does not hold for zi, such as when we compare Eq. 27 with
Eq. 28, we are unable to conclude that the i-th row of the Jacobian matrix J� contains only
one element. For example, consider i = 2, and by comparing Eq. 27 with Eq. 28, we can
derive the following equation: s1,1

@hu
2 (n1,n2)
@n1

= J�2,1 + J�2,2

@ĥu
2 (n1,n2)
@n1

. In this case, if
assumption (iv) does not hold for z2, i.e., there does not exist a point or value ui0 for u that
@hu

2 (n1,n2)
@n1

= 0 and @hu
2 (n1,n2)
@n1

= 0, then when J�2,1 = s1,1
@hu

2 (n1,n2)
@n1

� J�2,2

@ĥu
2 (n1,n2)
@n1

holds true, we can match the true marginal data distribution p(x|u). This implies that J�2,1

can have a non-zero value. Consequently, z2 can be represented as a combination of ẑ1 and
ẑ2, resulting in unidentifiability. Note that this unidentifiability result also show that the
necessity of condition (iv) for achieving complete identifiability, by the contrapositive, i.e.,
if zi is identifiable, then condition (iv) is satisfied.

D THE PROOF OF COROLLARY 4.1

Corollary 4.1. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Assume that conditions (i) - (iv) in Theorem 3.1 hold,
then the true latent causal variables z̄ are related to the estimated latent causal variables ˆ̄z, which
are learned by matching the true marginal data distribution p(x|u), by the following relationship:
z̄ = Mc(ˆ̄z)+c, where Mc denotes a component-wise invertible nonlinear mapping with permutation,
c denotes a constant vector.

The proof can be done from the following: since in Theorem 3.1, the only constraint imposed on the
function f is that the function f is invertible , as mentioned in condition (ii). Consequently, we can
create a new function ef by composing f with function ḡ, in which each component is defined by the
function ḡi. Since ḡi in invertible as defined in Eq. 5, ef remains invertible. As a result, we can utilize
the proof from Appendix B to obtain that z can be identified up to permutation and scaling, i.e., Eq.
29 holds. Finally, given the existence of a component-wise invertible nonlinear mapping between z̄
and z as defined in Eq. 5, i.e.,

z̄ = ḡ(z). (30)

we can also obtain estimated ˆ̄z by enforcing a component-wise invertible nonlinear mapping on the
recovered ẑ

ˆ̄z = ˆ̄g(ẑ). (31)
Replacing z and ẑ in Eq. 29 by Eq. 30 and Eq. 31, respectively, we have

ḡ�1(z̄) = Pˆ̄g
�1

(ˆ̄z) + c0. (32)
As a result, we conclude the proof.
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E THE PROOF OF COROLLARY 4.2

Corollary 4.3. Suppose latent causal variables z and the observed variable x follow the causal
generative models defined in Eqs. 1, 5 and 3. Under the condition that the assumptions (i)-(iii) are
satisfied, for each z̄i, (a) if it is a root node or condition (iv) is satisfied, then the true z̄i is related
to the recovered one ˆ̄zj , obtained by matching the true marginal data distribution p(x|u), by the
following relationship: z̄i = Mc,i(ˆ̄zj) + c, where Mc,i denotes a invertible mapping, c denotes a
constant, (b) if condition (iv) is not satisfied, then z̄i is unidentifiable.

Again, since in Theorem 3.1, the only constraint imposed on the function f is that the function f is
invertible, as mentioned in condition (ii). Consequently, we can create a new function ef by composing
f with function ḡ, in which each component is defined by the function ḡi. Since ḡi is invertible as
defined in Eq. 5, ef remains invertible. Given the above, the results in both Eq. 27 and Eq. 28 hold.
Then consider the following two cases.

• In cases where zi represents a root node or assumption (iv) holds true for zi, using the
proof in Appendix E we can obtain that zi = Ai,iẑi + c0i. Then, given the existence of a
component-wise invertible nonlinear mapping between z̄i and zi as defined in Eq. 5, we can
proof that there is a invertible mapping between the recovered ˆ̄zi and the true z̄i.

• In cases where assumption (iv) does not hold for zi, using the proof in Appendix E zi is
unidentifiable, we can directly conclude that z̄i is also unidentifiable.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F DATA DETAILS

Synthetic Data In our experimental results using synthetic data, we utilize 50 segments, with each
segment containing a sample size of 1000. Furthermore, we explore latent causal or noise variables
with dimensions of 2, 3, 4, and 5, respectively. Specifically, our analysis centers around the following
structural causal model:

ni :⇠ N (↵,�), (33)
z1 := n1, (34)
z2 := �1,2(u) sin(z1) + n2, (35)
z3 := �2,3(u) cos(z2) + n3, (36)

z4 := �3,4(u) log(z
2
3) + n4, (37)

z5 := �3,5(u) exp(sin(z
2
3)) + n5. (38)

(39)

In this context, both ↵ and � for Gaussian noise are drawn from uniform distributions within the
ranges of [�2.0, 2.0] and [0.1, 3.0], respectively. The values of �i,j(u) are sampled from a uniform
distribution spanning [�2.0,�0.1] [ [0.1, 2.0]. After sampling the latent variables, we use a random
three-layer feedforward neural network as the mixing function, as described in (Hyvarinen & Morioka,
2016; Hyvarinen et al., 2019; Khemakhem et al., 2020).

Synthetic Data for Partial Identifiability In our experimental results, which utilized synthetic
data to explore partial identifiability, we modified the Eqs 33-33 by

żi := zi + zi�1. (40)

In this formulation, żi replaces zi. Consequently, for each i, there exists a zi�1 that remains unaffected
by u, thereby violating condition (iv).

Image Data In our experimental results using image data, we consider the following latent structural
causal model:

ni :⇠ N (↵,�), (41)
z1 := n1 (42)
z2 := �1,2(u)(sin(z1) + z1) + n2, (43)
z3 := �2,3(u+ y)(cos(z2) + z2) + n3, (44)

(45)

where both ↵ and � for Gaussian noise are drawn from uniform distributions within the ranges of
[�2.0, 2.0] and [0.1, 3.0], respectively. The values of �i,j(u) are sampled from a uniform distribution
spanning [�2.0,�0.1] [ [0.1, 2.0].

G IMPLEMENTATION FRAMEWORK

We perform all experiments using the GPU RTX 4090, equipped with 32 GB of memory. Figure 8
illustrates our proposed method for learning latent nonlinear models with additive Gaussian noise.
In our experiments with synthetic and fMRI data, we implemented the encoder, decoder, and MLPs
using three-layer fully connected networks, complemented by Leaky-ReLU activation functions.
For optimization, the Adam optimizer was employed with a learning rate of 0.001. In the case of
image data experiments, the prior model also utilized a three-layer fully connected network with
Leaky-ReLU activation functions. The encoder and decoder designs were adopted from Liu et al.
(2024) and are detailed in Table 1 and Table 2, respectively.
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Input
Leaky-ReLU(Conv2d(3, 32, 4, stride=2, padding=1))
Leaky-ReLU(Conv2d(32, 32, 4, stride=2, padding=1))
Leaky-ReLU(Conv2d(32, 32, 4, stride=2, padding=1))
Leaky-ReLU(Conv2d(32, 32, 4, stride=2, padding=1))

Leaky-ReLU(Linear(32⇥32⇥4 + size(u), 30))
Leaky-ReLU(Linear(30, 30))

Linear(30, 3*2)

Table 1: Encoder for the image data.

Imput
Leaky-ReLU(Linear(3, 30))

Leaky-ReLU(Linear(30, 30))
Leaky-ReLU(Linear(30, 32 ⇥ 32 ⇥4))

Leaky-ReLU(ConvTranspose2d(32, 32, 4, stride=2, padding=1))
Leaky-ReLU(ConvTranspose2d(32, 32, 4, stride=2, padding=1))
Leaky-ReLU(ConvTranspose2d(32, 32, 4, stride=2, padding=1))

ConvTranspose2d(32, 3, 4, stride=2, padding=1)

Table 2: Decoder for the image data.

Figure 8: Implementation Framework to learn latnt nonlinear models with non-Gaussian noise. In this example,
we demonstrate the method using 3 latent variables, however, our approach is versatile and can be effectively
generalized to accommodate much larger graphs.
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Traversals on z1 Traversals on z2 Traversals on z3

Figure 9: The traversal results achieved using VAE on image datasets are depicted. On this represen-
tation, the vertical axis corresponds to different data samples, while the horizontal axis illustrates
the impact of varying values on the identified causal representation. According to the latent causal
graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable (z2),
which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned variables
lead to observable changes in the color of all depicted objects.

Traversals on z1 Traversals on z2 Traversals on z3

Figure 10: The traversal results achieved using �-VAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable
(z2), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.

H TRAVERSALS ON THE LEARNED VARIABLES BY VAE, �-VAE, IVAE AND
LATENT POLYNOMIALS

I COMPARISON OF CONDITION (IV) IN LIU ET AL. (2024) AND THIS WORK
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Traversals on z1 Traversals on z2 Traversals on z3

Figure 11: The traversal results achieved using iVAE on image datasets are depicted. On this
representation, the vertical axis corresponds to different data samples, while the horizontal axis
illustrates the impact of varying values on the identified causal representation. According to the latent
causal graph’s ground truth, the ’diamond’ variable (denoted as z1) influences the ‘triangle’ variable
(z2), which in turn affects the ’square’ variable (z3). Notably, modifications in each of the learned
variables lead to observable changes in the color of all depicted objects.

Figure 12: From left to right, the interventions are applied to the causal representations z1, z2, and
z3 learned by Polynomials, respectively. The vertical axis represents different samples, while the
horizontal axis represents the enforcement of various values on the learned causal representation.

In Remark 3.2, we provide a simple example to illustrate condition (iv) in this work. However,
this example can also be explained by condition (iv) in the polynomial framework of (Liu et al.,
2024), potentially leading to ambiguity in understanding the distinction between condition (iv) in
(Liu et al., 2024) and in this work. To clarify these differences and enhance understanding, we present
a new example that cannot be captured by the polynomial framework. This example highlights the
broader range of distribution shifts contributing to identifiability in our approach. Consider the model
z2 = gu2,1(z1,u) + gu2,2(z1) + n2, where gu2,2(z1) is not a constant term. In this context, although
gu2,1(z1,u) changes across u, leading to shifts in the distribution of z2, the component gu2,2(z1)
remains unchanged across different u. This unchanged part, gu2,2(z1) can potentially be absorbed
into, resulting in a possible solution z02 = gu2,1(z1,u) + n2, which leads to an unidentifiable outcome.
Condition (iv) requires that for the generative model gu2 (z1,u) = gu2,1(z1,u) + gu2,2(z1) + n2, so

that we have @gu
2,1(z1,u=ui0 )

@z1
+

@gu
2,2(z1)

@z1
= 0 (a). For the estimated model z02 = gu2,1(z1,u) + n2 to

be consistent with the generative model, it must also satisfy condition (iv), @gu
2,1(z1,u=ui0 )

@z1
= 0 (b).

Comparing (a) and (b), we derive that: @gu
2,2(z1)

@z1
= 0implying that gu2,2(z1) must be a constant term.

Consequently, we can exclude the unidentifiable case where z2 = gu2,1(z1,u) + gu2,2(z1) +n2, where
gu2,2(z1) is not a constant term.
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Figure 13: Performances of the proposed method on a large number of latent variables.

J MORE RESULTS AND DISCUSSION

In this section, we present additional experimental results on synthetic data to evaluate the effective-
ness of the proposed method in scenarios with a large number of latent variables. The performance in
these cases is shown in Figure 13. Compared to the polynomial-based approach in Liu et al. (2024),
the proposed method, such as MLP, achieves significantly better MCC scores, demonstrating its
advantages over polynomials. This superiority becomes particularly evident as the number of latent
variables increases. MLPs, being highly flexible, can effectively adapt to the growing complexity.
In contrast, when the number of latent variables increases, the number of parent nodes also tends
to grow, requiring polynomial-based approaches to incorporate additional nonlinear components to
capture the complex relationships among latent variables, which becomes increasingly challenging.

While much of the current work on causal representation learning focuses on foundational identifia-
bility theory, optimization challenges in the latent space remain underexplored. We hope this work
not only provides a general theoretical result but also inspires further research on inference methods
in the latent space.

K HARD INTERVENTION V.S. SOFT INTERVENTION

In general, a hard intervention sets a random variable to a fixed value, effectively removing all
incoming edges from its parent nodes in the causal graph and breaking its dependency on original
causes. In contrast, a soft intervention modifies or replaces the variable’s distribution, typically
preserving its incoming edges while altering the distribution. Unlike hard interventions, which
completely override a variable’s behavior, soft interventions enable more nuanced and flexible
modifications to the causal system. More formally, the definition of hard intervention and soft
intervention can be found in Massidda et al. (2023). Throughout this paper, references to hard or soft
interventions specifically pertain to their application on latent causal variables, such as zi in Figure
14. To formulate soft intervention, we introduce a surrogate variable u, which acts on the latent
causal variables zi in a causal system as depicted in 14. We use the "red" lines in 14 to represent
changes in causal influences among latent causal variables. This differs from the standard definition
of edges in causal graphs, which typically indicate causal directions.

L COMPARISON WITH MODELS AND METHODS IN LIU ET AL. (2022) AND
LIU ET AL. (2024)

Comparison with Generative Models: One key difference between this work and the generative models
in Liu et al. (2022) and Liu et al. (2024) is that this work considers additive noise models among
latent causal variables, while Liu et al. (2022) assumes linear models and Liu et al. (2024) assumes
polynomial models. Additive noise models, as compared to linear models, represent a significant
advancement, as they generalize linear models to nonlinear ones. In contrast to polynomials, which
have well-known issues such as numerical instability and exponential growth, additive noise models
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Figure 14: Illustration of a causal system that changes across environments, with a surrogate variable u is
introduced into the causal system to characterize the changing causal mechanisms.

avoid these pitfalls and also facilitate the use of non-parametric models. For instance, the nonlinear
component in additive noise can be implemented using flexible network architectures such as MLPs
and transformers. This is particularly important, as the success of modern machine learning relies
heavily on such complex network architectures.

Comparison with Inference Models: Both this work and previous works in Liu et al. (2022) and Liu
et al. (2024) rely on identifiability results from nonlinear ICA. Specifically, nonlinear ICA is used to
first identify latent noise variables. As a result, all three methods in the inference process use iVAE,
a successful method in nonlinear ICA, to recover latent noise variables. The key difference among
these methods lies in how they model the causal influence among latent causal variables, which is
due to the differing assumptions on generative models. Specifically, the method in Liu et al. (2022)
uses simple linear transformations to infer linear causal influences, while this work uses an MLP to
infer causal influence. Compared to the polynomial models in Liu et al. (2024), which are limited by
fixed terms for modeling nonlinear relations among latent causal variables e.g., zni , additive noise
models allow MLPs to model nonlinear relations, offering greater flexibility.
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