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ShiftMorph: A Fast and Robust Convolutional Neural Network for
3D Deformable Medical Image Registration

Anonymous Authors
ABSTRACT
Deformable image registration (DIR) is crucial for many medical
image applications. In recent years, learning-based methods utiliz-
ing the convolutional neural network (CNN) or the Transformer
have demonstrated their superiority in image registration, dom-
inating a new era for DIR. However, very few of these methods
can satisfy the demands of real-time applications due to the high
spatial resolution of 3D volumes and the high complexity of 3D
operators. To tackle this, we propose losslessly downsampling by
shifting the strided convolution. A grouping strategy is then used
to reduce redundant computations and support self-consistency
learning. As an inherent regularizer of the network design, self-
consistency learning improves the deformation quality and enables
halving the proposed network after training. Furthermore, the pro-
posed shifted connection converts the decoding operations into
a lower-dimensional space, significantly reducing decoding over-
head. Extensive experimental results on medical image registration
demonstrate that our method is competitive with state-of-the-art
methods in terms of registration performance, and additionally, it
achieves over 3× the speed of most of them.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Deformable image registration, Fast, Robust, Shift, Self-consistency

1 INTRODUCTION
Image registration is commonly used in various biomedical ap-
plications, such as surgical guidance, histological imaging, and
neurosurgery. This technique is often used as a preliminary step,
particularly in applications that involve multiple misplaced images.
For instance, registration is highly valued in surgical navigation
systems for its potential to reproduce high-quality intraoperative
images [4, 15, 26]. Image registration usually involves two stages,
i.e., affine image registration (AIR) and deformable image registra-
tion (DIR). AIR aligns view perspectives through scaling, translation,
and rotation in rigid scenarios [7, 11, 34, 43]. Nevertheless, DIR has
to be conducted to align anatomical structures accurately because
of continuous deformations of soft tissues and organs within the
human body.
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Figure 1: Four pipelines of learning-based DIR. The proposed
(bottom) one has both robust and high-efficiency advantages.

Mathematically, DIR can be reduced to optimizing the defor-
mation field that specifies a warping destination for each voxel.
Previous studies have devised numerous non-rigid deformation
models grounded in diverse theoretical frameworks. Thereinto,
traditional machine learning methods [3, 41, 47, 49] iteratively op-
timize deformation fields based on hand-crafted energy functions.
These techniques typically require numerous iterations to achieve
desirable registration outcomes, resulting in low computational
efficiencies.

In recent years, the boom of deep learning has opened up new
avenues for image registration. Many learning-based techniques
[2, 9, 11, 20, 33, 50] have now been introduced to enhance registra-
tion quality. However, most existing methods still can not fulfill
the requirements of real-time scenarios, especially when handling
3D medical images. Despite GPU support, the inference time often
remains impractical for time-critical applications, primarily due
to the high resolution of 3D volumes and the high computational
complexity of 3D operators. Seriously, the computational overhead
explodes significantly as the resolution scales up. The computa-
tional modules at the top resolution level occupy the most inference
time. Therefore, downsampling has to be used to reduce the image
scale for some high-complexity models [29, 44, 53]. Some works
[22, 46, 49] instead restrict the representation space of deformation
fields. However, they cost the price of reduced image information
or model capacity, as shown in Fig. 1.

Naively downsampling can cause a notable degradation in reg-
istration performance. The non-invertible downsampling process
inevitably loses partial image details. To tackle this, we introduce
the particular property of the strided convolution, i.e., the out-
come sequence varies with the convolutional starting point. Hence,
shifting the input sequence leads to distinct encoding results, thus
complementing the missing information caused by scaling down.
We then propose grouping the features according to their shift-
ing behaviors, offering a basis for self-consistency learning. When
merged within groups, the shifted encoding features can effectively

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) The network architecture of ShiftMorph.

shift

C
on

v(
4,

 2
)

group

channel
flip

(b) Shifted embedding.

average average

(c) Group merging.

C
on

v(
4,

 2
)

C

In
st

an
ce

N
or

m

(d) Shifted connection.

G M
Group 

merging C ConcatLeakyReLU

Figure 2: The overall architecture of ShiftMorph and the companion modules. The parameters within brackets indicate
the kernel size and stride. The shifted embedding outputs eight feature tensors for each volume pair. These features are
encoded through four convolutional blocks whose outputs are then merged within groups and concatenated to lower-level
deconvolutional blocks. Average pooling is used only in the first three convolutional blocks. The registration head produces
two deformation fields for the corresponding groups through two consecutive convolutional blocks and one plain convolution.
Note that the input volume pair of the second group is reversed, resulting in an inverse registration direction. The two outcomes
of the registration head are ultimately scaled up to match the original resolution.

remove redundant computations and improve robustness. Eventu-
ally, the grouping strategy and self-consistency learning allow for
the trained network to be pruned by half after training without
compromising the registration performance. Additionally, shifted
connections restrict the decoding process in lower-dimensional
spatial space, further accelerating the proposed network.

To summarize, the network proposed in this study is referred
to as ShiftMorph, and the major contributions of this paper are as
follows:

• We propose a lossless embedding module to reduce the spa-
tial resolution and preserve image information simultane-
ously. We then present the companion modules, including
feature grouping, group merging, and shifted connection,
for fast and robust 3D image registration.

• Self-consistency learning, derived from our model design, as-
sists in training the network and restricting the deformation
difference between groups. The network can then be cut in
half by discarding one group after training, thus doubling
the throughputs of the proposed network.

• Extensive experimental results demonstrate the superiority
of the proposed method in both runtime and registration
performance. Our method achieves a significant speedup

over state-of-the-art methods without compromising the
registration quality.

2 RELATEDWORK
2.1 Deformable Registration
DIR is a voxel-level (or pixel-level for a 2D scenario) task that
estimates a new coordinate for each voxel. Afterward, the moving
image is warped and registered by interpolating under the obtained
coordinate grid, which can be expressed as 𝐼𝑤 = 𝜙 ◦ 𝐼𝑚 . Here, 𝐼𝑚 ,
𝐼𝑤 , and 𝜙 represent the moving image, the warping result, and the
deformation field, respectively. Commonly, deformation refers to
a natural process of continuity, differentiability, invertibility, and
strong local consistency. As a result, the objective function for
solving a registration problem typically consists of two terms:

min
𝜙

Lsim (𝐼𝑓 , 𝜙 ◦ 𝐼𝑚) + 𝜆Reg(𝜙), (1)

where 𝐼𝑓 is the fixed target image; Lsim (·), as a similarity metric,
penalizes the distance between the registered image pair; Reg(·)
imposes extra constraints based on a priori knowledge of the defor-
mation. Due to the physical nature of deformation, many methods
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[5, 10] employ the diffusion energy and bending energy to regular-
ize the first and second derivatives of displacement fields, promoting
smooth deformation.

2.2 Diffeomorphic Deformation
Image registration is often utilized to facilitate information fusion
for multiple images [21, 45], highlighting the importance of preserv-
ing topological structures. Thus, DIR often necessitates a delicate
balance between registration precision and diffeomorphism. Well-
designed regularization can somewhat avoid destroying topological
structures by voxel folding, but there is usually no guarantee of
diffeomorphism. To tackle this, the Lie group has to be introduced
to ensure diffeomorphic deformation. Let deformation be the con-
tinuous motion within a time interval, i.e., 𝑡 ∈ [0, 1]. 𝜙𝑡 represents
the deformation field at a given time 𝑡 . Assume that the velocity
field, denoted by 𝑣 , is stationary, which holds 𝑣𝑑𝑡 = 𝑑𝜙𝑡 . In particu-
lar, 𝜙𝑡=0 = id is an identity map. Then, the exponential map of the
velocity field is defined by:

exp(𝑣𝑡) = lim
𝑛→∞

(id + 𝑣𝑡

𝑛
)𝑛, (2)

which splits the deformation into 𝑛 equivalent minimal motions
over 𝑡

𝑛 . Thus, 𝜙𝑡 belongs to a Lie group that holds 𝜙𝑡 = exp(𝑣𝑡) and
𝜙𝑡1+𝑡2 = exp(𝑣𝑡1) ◦ exp(𝑣𝑡2). As long as each sub-deformation is
sufficiently small, the integrated deformation can be ensured to be
diffeomorphic. Ultimately, 𝜙1 can be derived recursively through
𝜙𝑡 = 𝜙𝑡/2 ◦ 𝜙𝑡/2, which is the widely applied squaring and scaling
(SS) skill [1, 9, 32].

2.3 Learning-based Deformable Registration
Learning-based methods have been driving the advancement of DIR
for years due to their capability of generalizing knowledge from vast
amounts of data. These methods can be trained efficiently in end-
to-end manners with appropriate loss functions. Currently, there
are two main categories of registration networks according to their
computational modules, i.e., CNN-based methods and Transformer-
based methods. Both of the two types of registration networks
commonly adopt UNet-like architectures [35] to produce deforma-
tion fields by incorporating a final registration head [2, 6, 37, 46].
Some studies [20, 28, 29, 39] propose refining the deformation field
progressively, which is beneficial for addressing large deformations.
Jia et al. [22] utilize the band-limited Fourier domain to represent
displacement fields in a low-dimensional space. Kim et al. [24] pro-
pose employing cycle consistency to enhance topology preservation.
Zhou et al. [52] and Vray et al. [42] utilize the technique of knowl-
edge distillation to improve network efficiency and registration
performance. The networks proposed by Chen et al. [5, 6, 38, 48, 53]
introduce the widely applied self-attention mechanism to enlarge
reception fields, achieving state-of-the-art registration performance.
TransMatch [8] performs feature matching between the misplaced
image pair with a modified cross-attention mechanism. Most of
the Transformer-based methods adopt the attention technique of
Swin-Transformer [27] due to the high resolution of 3D medical
volumes.

3 METHODOLOGY
Although the existing methods have significantly improved reg-
istration performance, their computational complexities remain
infeasible to deploy in real-time medical devices. Based on our ob-
servation that most computational latencies stem from the upper
encoders and decoders, the main idea of this study is to sink the
computation of the network down to a lower resolution while still
maintaining high registration performance. The overall architecture
and the proposed modules are illustrated in Fig. 2.

3.1 Shifted Embedding
A 1D sequence can be cut in half through the 1D convolution with a
stride of 2, commonly used as a learnable downsampling approach.
However, this process inevitably incurs image degradation and
information loss, which is not invertible, making it impossible to
recover the original information completely. Essentially, the strided
convolution skips parts of the sliding positions, thus obtaining a
shorter scanning path. The missing sliding positions can be directly
recovered through shifting. As illustrated in Fig. 3, two different
paths are derived by shifting the starting point, leading to distinct
kernel coverages and convolutional outputs. Hence, the 1D stride-2
convolution can produce two different downsampling sequences,
effectively filling in the missing details caused by resolution reduc-
tion. When extended to the 3D convolution, eight shifting options
are available on the cubic grid.

2D 

3D 

1D 1

2

3

4

5

6

1

2

3

4

5

6

Figure 3: Two different scanning paths of the 1D stride-2 con-
volution. The left path is {1, 3}, whereas the right one is {2, 4}.
The number of shifting options is 4 for the 2D convolution
and 8 for a 3D scenario.

Based on this, a lossless downsampling operator is obtained
by shifting the input images and acquiring multiple encoding se-
quences through the stride-2 convolution. We utilize this approach
to construct the shifted embedding, which serves as the kernel
module of the proposed network. As shown in Fig. 2b, the input
image pair is concatenated and shifted along three directions to
produce eight data volumes. The stride-2 convolution is then used
to reduce the resolution to 1

2 . Nonetheless, this module actually per-
forms pseudo-downsampling that grafts the spatial dimension onto
the batch size. The complexity of network computation remains
unchanged. Thus, we propose the complementary techniques of
feature grouping and group merging to achieve efficient registra-
tion.

3.2 Feature Grouping and Group Merging
As commonly known, the local intensities of a natural image are
highly correlated, which limits the encoding differences of the eight
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shifts. In the decoding stage, i.e., the right part of Fig. 2a, which is
comparatively costlier than encoding, reserving all these feature
tensors is unnecessary. A better deal is to perform mean estimation
as it can markedly reduce computational overhead and boost the
feature representations.

Therefore, we divide the eight feature tensors into two groups
according to their convolutional starting points. Fig. 2b displays
that every four features with the same color are grouped together.
Precisely, four shifting destinations of one group are positioned
near the starting point, whereas others are far from it. The shifting
step is minor, no greater than 1. Consequently, the two group-wise
mean estimates exhibit a high level of consistency, thereby provid-
ing a basis for conducting self-consistency learning. In addition,
averaging significantly reduces feature variance, demonstrating
strong robustness.

During decoding, we initially perform averaging within groups
to reduce the eight feature tensors to only two, thereby reducing
the decoding overhead to 1

4 . Even though the encoding stream costs
the same as before, the proposed shifting and grouping strategies
significantly accelerate our network, in view of the fact that de-
coders of a UNet-like network are usually more expensive than
encoders.

3.3 Shifted Connection
The typical implementation of the decoder with a skip connection
can be formulated by:

𝑓 2𝑟dec =𝑊𝑇
dec (𝑓

𝑟
enc ⊕ 𝑓 𝑟dec), (3)

where ⊕ and𝑊𝑇
dec represent concatenating and decoding, respec-

tively; 𝑓 𝑟enc and 𝑓 𝑟dec denote the encoding and decoding outcomes
at the resolution scale of 𝑟 . The skip connection concatenates the
decoding features with the encoding features at the same resolution
level, which is time-consuming due to the concurrent expansion
of channels and spatial resolution. We propose shifting the skip
connection down to obtain an even cheaper decoder, i.e., the shifted
connection in Fig. 2d. The shifted connection densely connects the
decoding features with the downsampled features from the upper
encoder, as expressed by:

𝑓 2𝑟dec =𝑊𝑇
dec (𝑊down 𝑓

2𝑟
enc ⊕ 𝑓 𝑟dec), (4)

where𝑊down represents downsampling. As a result, feature con-
catenations are ahead of upsampling; the decoder operates in a
lower-dimensional space, further reducing the computational com-
plexity. Besides, this design is of lower rank than the classical skip
connection, which is beneficial for filtering out noise and redundant
features [14, 23].

3.4 Self-Consistency
Due to the grouping strategy, the final registration head of Shift-
Morph can produce two deformation fields for each image pair, as
depicted in Fig. 2a. These two fields, denoted by 𝜙 and 𝜙 , represent
the deformation of an approximately identical voxel grid. In view
of this, a reasonable assumption is made that 𝜙 and 𝜙 are highly
consistent. We then reverse the registration direction of the second
group, thus obtaining 𝜙−1. To promote natural deformations, an
extra regularizer is introduced to approximate the identity map by

composing 𝜙 and 𝜙−1, which is expressed by:

Lconsis = ∥𝜙 ◦ 𝜙−1 − id∥22 . (5)

This regularization term, namely self-consistency learning, aids in
model training and enhances the quality of deformation fields. In
addition, the restricted difference between𝜙 and 𝜙 offers a potential
for removing one feature group after training.

3.5 Halved Network
In the training stage, both groups are needed for computing 𝜙 and
𝜙 . Alternatively, either 𝜙 or 𝜙 can be used for testing due to self-
consistency learning, which implies that we can discard one group
naively after training. This paper only reserves the group near the
starting point and uses 𝜙 to perform registration in testing cases.
Hence, the overall computational burden of ShiftMorph can be
reduced by half, achieving a 2× speedup on top of the complete
implementation of ShiftMorph.

3.6 Recurrent Registration
A plain CNN tends to be weak in capturing long-distance correla-
tions. Without special designs, these networks are prone to failure
in the case of large deformation. This topic is beyond the focus of
this paper. As an alternative, we start with𝜙 (0) = id and recurrently
warp the moving image multiple times as follows:

𝜙 (𝑛) = ShiftMorph𝜃 (𝐼𝑓 , 𝜙 (𝑛−1) ◦ 𝐼𝑚) ◦ 𝜙 (𝑛−1) . (6)

𝜃 denotes the learnable parameters of ShiftMorph.

3.7 Loss Functions
As presented in Eq. (1), the deformation loss used in this paper con-
sists of two terms based on the image similarity and the smoothness
of the deformation field.

Image Similarity Metric.Mean square error (MSE) is a com-
mon metric for quantifying the similarity between the model out-
put and the ground truth in generative tasks, such as denoising
and super-resolution [30, 40, 51]. However, MSE is sensitive to the
voxel intensity. The image pairs in registration tasks often hold
weak voxel-wise consistency, thus limiting the effectiveness of
MSE in training registration networks. Instead, normalized cross-
correlation (NCC) is not sensitive to the voxel intensity and is
preferable for measuring texture and structure similarities. NCC
can be formulated as:

NCC(𝑥,𝑦) = Cov(𝑥,𝑦)Cov(𝑥,𝑦)
Var(𝑥)Var(𝑦) , (7)

where Cov(·) and Var(·) respectively estimate the covariance and
variance of the input sequence. Local NCC (LNCC), which estimates
the covariance and variance within a local patch, is a more common
choice when dealing with image data.

Smoothness Regularization. The smoothness of deformation
is encouraged by its physical nature. Let 𝑢 represent the displace-
ment field of a 3D image that holds𝜙 = id+𝑢 and∇𝑖𝜙 = 1+∇𝑖𝑢,∀𝑖 ∈
{𝑥,𝑦, 𝑧}. ∇𝑥 , ∇𝑦 , and ∇𝑧 are the Laplacian operators estimating the
spatial gradients along three directions. We utilize the diffusion
energy to penalize the spatial gradients of the output displacement
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Table 1: Comparison of runtime and registration performances on two Brain MRI registration benchmarks. CTPP and GTPP
represent the registration time per image pair on the CPU and GPU, respectively. Rankings are superscripted on the right.

Runtime Performance OASIS IXI
Params (M) MACs (G) CTPP (ms)↓ GTPP (ms)↓ Dice↑ HD95↓ Folds (%)↓ Dice↑ HD95↓ Folds (%)↓

TransMorph 46.6 723 43124 1897 0.82123 2.07523 1.12988 0.74326 3.73596 1.94978
TransMatch 70.7 753 67368 2828 0.81484 2.10054 0.93846 0.74374 3.71645 1.74907
VoxelMorph 0.3 514 25533 1345 0.79628 2.39499 1.30279 0.72049 3.89648 2.17609
LapIRN 1.2 1067 50136 1586 0.81196 2.20527 1.08507 0.74087 4.04889 1.71406
PCNet 4.4 1982 192759 6809 0.82412 2.01162 0.06032 0.75022 3.59403 0.32392
FourierNet 4.1 170 11012 523 0.79479 2.25238 0.45573 0.74058 3.46672 0.44963
ShiftMorph 6.7 164 9111 391 0.81167 2.11246 0.77865 0.74345 3.64644 1.49935
ShiftMorph-diff 6.7 164 53967 402 0.81225 2.10065 0.02311 0.74763 3.41311 0.04801
ShiftMorph × 3 6.7 493 46345 1274 0.82661 1.97711 0.47364 0.75101 3.75027 1.07644
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(b) Results on the IXI dataset.

Figure 4: Violin plots with twin axes illustrating score distributions evaluated on two brain image registration tasks. Note
that the HD95 axis is inverted for better visualization. ShiftMorph exhibits good registration performance and generalization
ability, as proven by the highly clustered Dice and HD95 scores and consistent distribution shapes.

field, as formulated by:

LGrad (𝜙) =
1
3

(
∥∇𝑥𝜙 − 1∥22 +

∇𝑦𝜙 − 1
2
2 + ∥∇𝑧𝜙 − 1∥22

)
, (8)

Keypoint Correspondence Supervision. Keypoint correspon-
dences can be used as the ground truth to supervise deforma-
tion estimation. In this case, target registration error (TRE) is em-
ployed for supervised training. Consider two point clouds with 𝑘

matched point pairs of the fixed and moving image, denoted by
𝑃𝑓 = {𝑥1, 𝑥2, · · · , 𝑥𝑘 } and 𝑃𝑚 = {𝑦1, 𝑦2, · · · , 𝑦𝑘 }. The TRE loss is
then calculated as:

LTRE =
1
𝑘

𝑘∑︁
𝑖

∥𝑥𝑖 − 𝑦𝑖 ∥2 (9)

Incorporating the aforementioned self-consistency, the com-
bined loss function of this paper is as follows:

L = − LLNCC (𝐼𝑓 , 𝜙 ◦ 𝐼𝑚) + 𝛼LTRE (𝑃𝑓 , 𝜙 ◦ 𝑃𝑚)

+ 𝜆LGrad (𝜙) + 𝛾Lconsis (𝜙, 𝜙).
(10)

4 EXPERIMENTS
4.1 Experimental Settings
Baseline Methods. We evaluate two Transformer-based methods
and five CNN-based methods, including TransMorph [5], Trans-
Match [8], VoxelMorph [2], VoxelMorph++[16], LapIRN[33], PCNet
[29], and FourierNet [22], in comparison with ShiftMorph. There-
into, PCNet, TransMorph, and TransMatch are the current state-of-
the-art learning-based methods. VoxelMorph is a classical method
and has been widely applied. VoxelMorph++ with spatial search
for keypoint displacements is an improved version for supervised
learning with keypoint correspondences. The original implemen-
tation of PCNet is based on TensorFlow. We reimplement it under
the PyTorch framework to ensure a fair comparison. All the other
methods are trained using the published source codes.

ImplementationDetails.Three versions of the proposedmethod
are implemented in this paper, including ShiftMorph, ShiftMorph-
diff, and ShiftMorph×3. ShiftMorph-diff employs the squaring and
scaling skill to improve the diffeomorphism of the resultant defor-
mation field through 7 iterations. ShiftMorph×3 recurrently warp
the moving image three times and output 𝜙 (3) following Eq. (6).
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Figure 5: Qualitative comparison of the warped brain slices and the deformation fields in normal and noisy (SD = 30) cases.
The Dice scores are marked in green. The folded voxels and the fraction are marked in red. The registration results of our
method are in the best accord with the target image and exhibit minimal noise effect, maintaining good shape continuity in the
warping results and high smoothness in the deformation fields.

Parameter Settings. The proposed method and the comparison
baselines are trained under the same experimental settings for a fair
comparison. We set 𝛼 = 1 for supervised training if correspondence
labels are available; otherwise, TRE loss is not involved. We follow
a common setting of 𝜆 = 1 without hyperparameter fine-tuning for
all the comparing methods. 𝛾 = 0.01 is used only for ShiftMorph
with self-consistency learning. The Adam optimizer [25] with a
learning rate of 0.0001 is utilized for training. The learning rate is
adjusted by a cosine annealing schedule with a maximum epoch of
300. All the experiments are conducted using an Intel Xeon Silver
4314 CPU and a 24G NVIDIA Geforce RTX 3090 graphics card.

Evaluation Metric. The Dice similarity coefficient (DSC) and
Hausdorff distance (HD) are utilized to measure the registration
accuracy of each anatomical structure. DSC calculates the degree
of overlap of segmentation labels after deformation. The HD score
measures the shape distance between the warped image and the
target image from being isometric. We use the 95th percentile HD to
mask out outliers, namely HD95. Topological preservation should
also be emphasized to protect the original information of the mov-
ing image. To this end, the Jacobian Determinant (JacDet) is utilized
to examine whether a voxel is folded by warping. ∇𝑥𝜙 (𝑝), ∇𝑦𝜙 (𝑝),
and ∇𝑧𝜙 (𝑝) represent 3 directional vectors determining the 𝑝-th
minimal cube in𝜙 . The determinant, i.e., |∇𝑥𝜙 (𝑝),∇𝑦𝜙 (𝑝),∇𝑧𝜙 (𝑝) |,
calculates the volume of this cube. A non-positive volume value
indicates that the corresponding voxel is flipped over or folded
after deforming, losing its original topological structure. Thus, the
degree of topology destruction is measured using the percentage
of voxels with a non-positive JacDet.

4.2 Unsupervised Brain MRI Image Registration
In this section, we evaluate the registration performance in inter-
patient and atlas-based brain magnetic resonance imaging (MRI)
registration tasks.

For inter-patient registration, we utilize the OASIS dataset [19,
31] acquired from the 2021 Learn2Reg challenge [18], which con-
sists of 451 brain T2-weighted MRI images. The Learn2Reg official
split contains 394, 19, and 38 images for training, validation, and
testing. The segmentation labels of testing images are not available.
Thus, we conduct the testing stage on the validation set instead.

For atlas-based registration, we choose the IXI dataset1, a com-
monly chosen benchmark. In this experiment, the brain atlas image
is used as the source image, whereas patient images act as the tar-
get images. The IXI dataset consists of 414 brain MRI images that
are T1-weighted. The original MRI scans are preprocessed using
FreeSurfer [13] through a stream that includes skull stripping, spa-
tial normalization, labeling, and others. We adopt the same split
used by TransMorph [5], which contains 403 images for training,
58 for validation, 115 for testing, and one atlas image. Each image
undergoes voxel-wise labeling for 30 anatomical structures.

The first part of Tab. 1 displays the runtime performance of reg-
istering images sized 160 × 192 × 224 from the two datasets. The
Transformer-based methods own large amounts of parameters and
multiply-accumulate (MAC) operations, whereas CNN-based meth-
ods tend to be faster and contain fewer parameters. Most of the
comparing methods incur high latencies exceeding 0.1s, leading to

1https://brain-development.org/ixi-dataset/
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Table 2: Comparision of runtime and registration performance for lung CT images sized 160 × 128 × 160 in the Lung250M-4B
dataset. The left part presents the required training time, memory usage, and inference time per pair on the GPU. TRE opt.
represents the TRE score after instance optimization.

Runtime Performance Validation Testing
Tr. Time (h) Tr. Mem. (GB) GTPP (ms) TRE (mm) TRE opt. (mm) Folds (%) TRE (mm) TRE opt. (mm) Folds (%)

TransMorph 7.50 8.25 867 5.11657 2.58718 1.19518 5.67407 2.33897 0.56188
TransMatch 7.58 9.25 1038 6.44679 3.22189 0.55327 7.67179 4.21529 0.27117
VoxelMorph++ 5.92 7.91 715 4.12503 2.22583 − 4.42153 1.90813 −
LapIRN 8.17 10.31 726 2.51242 2.09122 0.02303 1.98432 1.33382 0.01984
PCNet 12.25 11.76 3209 5.13188 2.57797 0.10215 5.91778 2.66758 0.05656
FourierNet 5.92 4.34 253 4.65016 2.44526 0.16686 5.13036 2.26746 0.05465
ShiftMorph 5.58 6.24 191 4.53185 2.35964 0.05224 4.92155 1.99895 0.00062
ShiftMorph-diff 5.67 6.72 232 4.46514 2.36065 0.00001 4.73824 1.93584 0.00001
ShiftMorph×3 8.01 12.62 614 2.23891 2.06161 0.01972 1.69531 1.28831 0.01803

a low throughput even on a high-performance GPU device. The re-
sults given by FourierNet seem appealing, but this method roughly
masks out most high-frequency features, causing significant ac-
curacy degradation. In comparison, ShiftMorph demonstrates sig-
nificant superiority in both the computational overhead and the
inference speed, achieving over 3× the speeds of most comparing
methods. Even if recurrently warping the moving image three times
for high accuracy, ShiftMorph×3 can still achieve a better speed
than most on a GPU device. However, warping as a highly parallel
operator is slow when using a serial CPU processor.

The right parts of Tab. 1 present the averaged evaluation results
on these two registration tasks. Fig. 4 displays violin plots showing
the score distributions of evaluated methods. The Dice and HD95
scores of our method are on par with those of the state-of-the-art
methods. Besides, ShiftMorph-diff with enhanced diffeomorphism
can be even more competitive, outperforming most CNN-based
methods except for PCNet. Moreover, the recurrent version of
ShiftMorph×3 achieves the best Dice and HD95 scores in most
cases and keeps a favorable inference speed.

As for topological preservation, ShiftMorph-diff is the most effec-
tive in this experiment. ShiftMorph folds 0.7786% of voxels on the
OASIS dataset; this value can be lowered to 0.0231% by ShiftMorph-
diff. As for the IXI dataset, the folded voxel proportion is reduced
from 1.4993% to 0.048%. In contrast, PCNet, equivalently armedwith
the SS skill, folds more voxels than our method and has significantly
higher computational complexity. FourierNet also shows good run-
time performance and topological preservation, but its registration
precision is relatively weak. If not using the SS and band-limit skills,
i.e., excluding ShiftMorph-diff, PCNet, and FourierNet, ShiftMorph
keeps better diffeomorphism than other methods, which benefits
from self-consistency learning and merging the shifted features.

4.3 Supervised Lung CT Image Registration
We then use the Lung250M-4B dataset [12], a combined lung com-
puted tomography (CT) image registration benchmark, to evaluate
our method in a supervised large deformation scenario. This dataset
contains 124 pairs of expiratory and inspiratory lung CT scans from
different patients. The official split selects 97, 17, and 10 paired scans
for training, validation, and testing. For the CT scans in the training
set, keypoint correspondences are automatically generated by the

LapIRN VoxelMorph++

FourierNet ShiftMorph×3

Initial

ShiftMorph

Figure 6: Visualizing the deformation results of five represen-
tative methods without instance optimization. The yellow
and bluemasks represent the expiratory and inspiratory lung
morphology, respectively. The proposed method performs
the best in shortening the distances of matched landmarks
in the region of lower lung lobes with larger deformations.

corrfield method2[36] to support supervised training. As for the val-
idation and testing set, manual landmark annotations are provided
to determine registration accuracy. Lung CT image registration is
still challenging for learning-based methods. Following the pipeline
in [36], we conduct instance optimization to refine the network
outputs through 50 iterations of minimizing the dissimilarity of
MIND features [17] and a Lapalace regularization.

Fig. 6 displays parts visualization results of representative meth-
ods. Numerical experimental results on this dataset are presented in
Tab. 2. LapIRN and VoxelMorph++ show good registration accuracy
in this case of large deformation due to the advantages of pyra-
mid deformation enhancement and spatial search. Comparingly,
ShiftMorph and ShiftMorph-diff, as plain CNN-based methods, get
medium rankings. However, after recurrently composing the pre-
dicted deformation fields, ShiftMorph×3 can effectively produce
long-distance deformations, achieving the best TRE scores on both
the validation and testing stages. Moreover, ShiftMorph×3 exhibits
appealing throughput and diffeomorphism, exceeding most com-
paring methods on this dataset.
2https://grand-challenge.org/algorithms/corrfield/
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4.4 Robustness Testing
We next utilize Gaussian noise to simulate image degradation and
conduct robustness testing on the OASIS dataset. Fig. 5 illustrates
the warped images and deformation fields produced by correspond-
ing methods. The baseline methods, except FourierNet, suffer from
significant performance degradation, resulting in seriously folded
deformation fields and abnormal warping results. In contrast, Shift-
Morph demonstrates the best deformation results and preserves
topological structures commendably, exhibiting smooth and contin-
uous surface shapes in the warped slices. Fig. 7 exhibits the impacts
of various noise levels on registration performances. The noise level
indicates the standard deviations (SD) of Gaussian noise added to
the testing images with a voxel intensity range of [0, 255]. As the
noise level increases, the registration performance of most compar-
ing methods decreases linearly with a large slope. In contrast, the
Dice score of ShiftMorph only experiences a slight drop when the
noise level is 10 and decreases with a small slope when the noise
level exceeds 10.
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Figure 7: The impacts of noise on registration performance
regarding the Dice score. Our method exhibits good robust-
ness to Gaussian noise.

4.5 Ablation Study
We conduct a brief ablation study on the proposed modules and
assess the effect of self-consistency learning. We evaluate the regis-
tration performance of the corresponding model variants on the
OASIS dataset. Results are summarized in Tab. 3 and Tab. 4. By
default, we apply the shifted embedding in combination with the
grouping strategy to save space.

The first item of Tab. 3 represents a naive UNet using the skip
connection without downsampling. Downsampling with trilinear
interpolation significantly improves network speed; however, it
comes at the high price of a loss of registration accuracy. Compar-
ingly, shifted embedding armed with the grouping strategy can
reduce computational overhead and improve registration perfor-
mance. Besides, the voxel folding is mitigated by imposing consis-
tency among neighbor voxels with self-consistency learning. The
shifted connection also contributes to a notable improvement in
network performance, achieving 1.6× the speed of a naive UNet.

Ultimately, ShiftMorph achieves 3.6× the speed, better registration
results, and better diffeomorphism.

As evidenced by Tab. 4, performing self-consistency learning is
beneficial for improving the quality of output deformation fields.
In most cases, except the red one, self-consistency leads to better
evaluation scores for three versions of ShiftMorph. However, this
improvement is relatively small when combined with the SS skill,
which can also be viewed as particular regularization. Applying too
much regularization may cause underfitting.

Table 3: Ablation study on different ways to downsampling
and feature concatenation. × represents registration with-
out downsampling; Tri. represents the naive downsampling
using trilinear interpolation. "Skip" represents the classical
skip connection. SEMB. and SCON. represent the proposed
shifted embedding and shifted connection, respectively.

Down. Connect Dice HD95 Folds (%) GTPP (ms) Speedup

× Skip 0.80844 2.23674 1.16304 140 -
× SCON. 0.81003 2.19733 1.22785 88 ×1.6
Tri. Skip 0.79845 2.24285 0.92513 19 ×7.4

SEMB. Skip 0.81092 2.17292 0.89222 103 ×1.4
SEMB. SCON. 0.81161 2.11241 0.77861 39 ×3.6

Table 4: Ablation study on self-consistency for three versions
of ShiftMorph. %represents 𝛾 = 0; !represents 𝛾 = 0.01.
Improved scores are marked in blue.

Self-Consistency Dice HD95 Folds (%)

ShiftMorph % 0.8102 2.1475 0.8738
! 0.8116 2.1124 0.7786

ShiftMorph-diff % 0.8120 2.0842 0.0256
! 0.8122 2.1006 0.0231

ShiftMorph×3 % 0.8258 1.9804 0.5052
! 0.8266 1.9771 0.4736

5 CONCLUSION
In this paper, we have investigated the common issue that 3D de-
formable registration networks frequently suffer from low inference
efficiency. We have revisited the widely adopted network architec-
ture of the UNet style for image registration, demonstrating that
the major computational burden of these networks stems from
the operations at the top level. To achieve fast and high-quality
registration, we have proposed downsampling using the strided
convolution and compensating for information loss by shifting. We
have presented a grouping strategy to merge features group-wisely
and reduce redundant computations. The proposed shifted con-
nection contributes to a further acceleration and improvement of
registration. Self-consistency learning, derived from the grouping
strategy, promotes the quality of deformation fields and supports
pruning half of the network. Experimental results demonstrate
that the proposed method performs competitively with current
state-of-the-art methods, however, at 3× the speed of most.
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