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Abstract
We employ a game-theoretic framework to study
the impact of a specific strategic behavior among
creators—group behavior—on recommendation
platforms. In this setting, creators within a group
collaborate to maximize their collective utility.
We show that group behavior has a limited effect
on the game’s equilibrium when the group size
is small. However, when the group size is large,
group behavior can significantly alter content dis-
tribution and user welfare. Specifically, in a top-
K recommendation system with exposure-based
rewards, we demonstrate that user welfare can suf-
fer a significant loss due to group strategies, and
user welfare does not necessarily increase with
larger values of K or more random matching, con-
trasting sharply with the individual creator case.
Furthermore, we investigate user welfare guar-
antees through the lens of the Price of Anarchy
(PoA). In the general case, we establish a nega-
tive result on the bound of PoA with exposure
rewards, proving that it can be arbitrarily large.
We then investigate a user engagement rewarding
mechanism, which mitigates the issues caused by
large group behavior, showing that PoA ≤ K + 1
in the general case and PoA ≤ 2 in the binary
case. Empirical results from simulations further
support the effectiveness of the user engagement
rewarding mechanism.

1. Introduction
With the increasing popularity of online media, content
creation has emerged as a prominent profession in contem-
porary society (Bobadilla et al., 2013; Hoose & Rosenbohm,
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2024). Driven by platforms’ rewarding mechanisms, cre-
ators can generate income proportional to their output and
often strive to maximize their earnings by optimizing their
content, such as selecting formats or topics that yield higher
profitability (Glotfelter, 2019; Hodgson, 2021). To maxi-
mize user utility, leading platforms like Instagram, TikTok,
and YouTube employ sophisticated algorithms to match
users with the most relevant content. This process involves
calculating relevance scores and applying top-K ranking
methods to prioritize and display content that aligns closely
with user preferences.

However, recent studies have shown that user utility can-
not be maximized solely by optimizing matching rules, as
creators can act strategically, leading to dynamic shifts in
content distribution (Ben-Porat & Tennenholtz, 2018; Yao
et al., 2024c;b; Jagadeesan et al., 2023; Hron et al., 2022).
Previous works mainly study this problem under self-played
content creators’ strategic behavior, where every content
creator only focuses on maximizing its utility. As online rec-
ommendation platforms become extremely prevalent these
days, despite individual creators, some creators form a group
to strategically act in this content creation competition, usu-
ally united by a media company, such as an MCN (Gardner
& Lehnert, 2016; Gardner, 2015; Boyle & Boyle, 2018;
Liang & Ji, 2024). To this group of creators, the company
needs to consider assigning and adjusting topics for each
creator in this group to maximize the group’s utility.

Within a group of creators, competition among members can
be strategically reduced to enhance collective utility. Impor-
tantly, the strategies that maximize group utility often differ
significantly from those that maximize individual utilities
when creators act in a self-interested manner. The implica-
tions of group behavior extend beyond merely improving
group utility: such strategic collaboration can alter the equi-
librium of the content creation competition, resulting in a
content distribution that diverges from the equilibrium ob-
served when only individual creators are present. This shift
in content distribution can influence user satisfaction with
recommended content and may potentially diminish overall
user welfare. For instance, consider a scenario where the
user base consists predominantly of sports fans, with only
a small fraction interested in niche topics. When creators
collaborate to boost revenue, they may shift from sports
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to niche topics to minimize internal competition. Conse-
quently, the limited supply of sports-related content may fail
to meet the demand of the majority sports fan population.
Thus, it is crucial to analyze the impact of this emerging
group behavior on content distribution and user welfare, as it
holds significant implications for the design and regulation
of recommendation systems. In this study, we analyze the
problem within a well-defined game-theoretic framework—
the Content Creation Competition (C3) introduced by Yao
et al. (2023; 2024a;c)—under a top-K recommendation
mechanism with exposure reward, which is widely used by
online content platforms (Ben-Porat & Tennenholtz, 2018;
Hron et al., 2022; Jagadeesan et al., 2023; Meta, 2022; Savy,
2019; Eilat & Rosenfeld, 2023). We begin by examining
a simplified scenario, termed the bandit C3 game, where
users’ features and creators’ action sets are represented as
orthogonal unit basis vectors in Rn. We define the group
equilibria and establish constraints under which the group
equilibrium remains consistent with the individual case.
While these constraints ensure that group behavior does
not alter the content distribution, they are neither generally
applicable nor practical in most real-world settings. We
then investigate the resulting user welfare loss when these
constraints are relaxed.

We show that, due to the zero-sum like structure of the
exposure-based rewarding mechanism, creators within a
group can reduce internal competition to improve group
utility. This strategic behavior can potentially harm user
welfare. The worst-case scenario occurs when all creators
form a single group, leading to a user welfare loss as large
as O(n).

We also show that the parameters K and β in the exposure
rewarding mechanism can significantly influence user wel-
fare. First, we demonstrate that in the case where users pay
constant attention to the recommended items, increasing
competition—such as by increasing K or β—can improve
user welfare. However, given the diminishing attention
spans of users (Carr, 2020), we present contrasting results.
As highlighted in prior work (Yao et al., 2023), a key in-
sight in top-K mechanisms is that user welfare tends to
improve as K or β increases, as both parameters augment
the expected number of creators exposed to users (Yao et al.,
2024c). This is intuitive, as users are more likely to find sat-
isfactory content when presented with more choices. How-
ever, we present a counterintuitive finding in the context of
group behavior and the diminishing attention spans of users:
user welfare does not necessarily increase with larger values
of K or β. Together, these findings provide insights for se-
lecting K and β in different practical scenarios, particularly
when considering group dynamics.

In more general scenarios, we first analyze the worst case
for a C3 game with exposure reward, showing that the Price

of Anarchy (PoA) can be arbitrarily bad. This is mainly
due to the inefficiency of the zero-sum structure in motivat-
ing creators to generate high-quality content when certain
groups dominate the entire exposure of users. We then in-
vestigate another rewarding mechanism — user engagement
rewards, which are deemed more effective for maximizing
welfare as they better align with user preferences (Acharya
et al., 2024; Yao et al., 2023). Engagement rewards alleviate
the worst-case issue in exposure rewards, motivating creator
groups to produce high-quality content and enhance user
welfare. We establish an upper bound on the PoA for the
C3 game with user engagement-based rewards and group
behavior, showing that the PoA can be as large as K + 1.
To complement this, we construct a worst-case instance and
derive a lower bound, demonstrating that the lower bound
nearly matches the upper bound. Although this PoA re-
sult is negative, the worst-case scenario can be effectively
mitigated through intervention methods (Yao et al., 2024c).
Additionally, we demonstrate positive results in specific
cases—such as when relevance scores and user attention
scores are binary—showing that the PoA of this game is no
more than 2. We construct simulations to further validate the
effectiveness of the user engagement rewarding mechanism.

2. Related Work
The study of game-theoretic aspects in recommendation
systems began with the seminal works of Ben-Porat & Ten-
nenholtz (2018; 2017), which introduced a recommendation
system based on the Shapley value. This approach guaran-
tees the existence of a unique PNE while satisfying several
fairness criteria. Recently, numerous studies have delved
into the dynamics of strategic content creators, a topic that
has attracted significant attention in both theoretical and
empirical research (Yao et al., 2023; 2024a;c; Zhu et al.,
2023; Hu et al., 2023; Hron et al., 2022; Dean et al., 2024b;a;
Mladenov et al., 2020; Prasad et al., 2023). This growing
body of work underscores the importance of understanding
creators’ strategic behaviors and platform design to achieve
sustainable and equitable outcomes in the long term. A
common assumption in these studies is that creators are
self-interested, with their strategic behavior analyzed under
the mediation of a recommendation system. In contrast, our
work diverges from this assumption by considering creators
who form groups and strategically optimize their collective
utility.

Hron et al. (2022) studied equilibria in exposure games,
where creators are incentivized by exposure-based rewards.
Concurrently, Jagadeesan et al. (2023) explored a related
problem, focusing on supply-side competition in scenarios
where creators operate within a high-dimensional strategy
space. Their study focused on characterizing NE and iden-
tifying conditions under which specialization in creators’
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strategies may emerge. Yao et al. (2023; 2024a) studied
creator dynamics within the C3 framework. Building on
this framework, we analyze creators’ strategic group behav-
ior and its implications for user welfare. Recent work (Yao
et al., 2023) highlights the impact of content creators’ com-
petitive behavior on user welfare in top-K recommenda-
tion systems, suggesting that the user welfare guarantee
improves as either K increases or β increases. However,
in our work, we demonstrate that user welfare no longer
necessarily increases with larger values of K or temperature
β when considering the group behavior of creators.

To maximize long-term user welfare, Hu et al. (2023) de-
veloped a learning algorithm for the platform to encourage
the production of high-quality content, Zhu et al. (2023)
proposed an online learning approach that optimizes the
recommendation policy and payment contracts for creators,
and Yao et al. (2024c) provided intervention mechanisms
for the platform to steer the equilibrium content distribution
towards a desirable user welfare outcome. Specifically, Yao
et al. (2024c) demonstrates that the platform can signal the
importance of a specific user x by increasing K or β, which
enhances x’s visibility among creators. This increases the
chance that creators who were previously unaware of x
recognize the potential benefits of catering to x. We also
analyze the roles of these two parameters in our setting,
showing that larger values of K or β introduce additional
competition to the C3 game, leading to distinct content dis-
tribution and user welfare, which provides insights that the
platform can improve user welfare by appropriately tuning
K and β under different user attention scores on content.

3. Preliminary
In this section, we formalize the game-theoretic framework—
the Content Creator Competition (C3) game—with the plat-
form’s rewarding mechanisms. This strategic game setup
builds upon the framework introduced by Yao et al. (2023;
2024a). Each instance of the C3 game, denoted by G, is de-
scribed by a tuple ({Si}ni=1,X , σ, {ri}ni=1, {Cℓ}Lℓ=1, β,K),
as illustrated below:

1. Basic setups: a user distribution X with finite sup-
port {xj ∈ Rd}mj=1, where x = xj with probabil-
ity {pj}mj=1, and a set of content creators denoted by
[n] = {1, · · · , n}. Each creator i can take an action
si, referred to as a pure strategy in game-theoretic lit-
erature, from an action set Si ⊂ Rd. Here, si is the
embedding of content creator i will produce. Without
loss of generality, ∥x∥2 ≤ 1, ∥si∥2 ≤ 1.

2. Relevance function: the relevance function σ(s,x) :
Rd×Rd → R≥0 measures the relevance score between
a user x ∼ X and content s. Without loss of general-
ity, we normalize σ to [0, 1], where 1 suggests perfect

matching. We focus on modeling the strategic behavior
of creators and thus abstract away the estimation of σ.

3. Matching probability: Given any user x ∈ X and
when each creator commits to a strategy si, the plat-
form retrieves the top-K ranked content in terms
of the relevance scores {σ(si,x)}ni=1. Specifically,
let {σl(1),x ≥ · · · ≥ σl(n),x} be a permutation of
{σ(si,x)}ni=1. The matching probability of s to user
x is calculated using a softmax distribution with tem-
perature β > 0, i.e., for 1 ≤ l(i) ≤ K,

Pi(s,x) ≜ Prob[s = sl(i)] ∝ exp[β−1σl(i),x].
1 (1)

A small β makes the matching strategy more determin-
istic, and β → ∞ corresponds to random matching.

4. User utility and user Welfare definitions: We define
user x’s utility from consuming a list of ranked content
as follows:

π(s,x) =

n∑
i=1

riσl(i)(x) · I{i ≤ K},

where 1 ≥ r1 ≥ r2 ≥ · · · ≥ rn ≥ 0. The sequence
{ri ∈ [0, 1]}ni=1 represents the user’s attention scores
over the k-th ranked content, where content with a
higher relevance score receives more attention. The
user welfare W (s) is defined as the expected user util-
ity:

W (s) = Ex∼X [π(s,x)]. (2)

5. Creator utility: Exposure reward:

ui(s) = Ex∈X [I{σi(s,x) > 0}Pi(s,x)]. (3)

This exposure rewarding mechanism is widely used in
both theoretical and empirical fields (Ben-Porat et al.,
2019; Hron et al., 2022; Jagadeesan et al., 2023; Meta,
2022; Savy, 2019).

6. Separation of creators into groups for multi-group
setting: There are L groups of creators, each Cℓ ⊆ [n],
|Cℓ| = nℓ ≥ 1 for ℓ ∈ [L]. ∪L

ℓ=1Cℓ = [n], ∩L
ℓ=1Cℓ =

∅. Group utility for group ℓ is denoted as

Qℓ(s) =
∑
i∈Cℓ

ui(s), where sℓ = (si)i∈Cℓ
. (4)

4. Bandit C3 Games
An intriguing property for C3 games is that enhancing one
creator’s relevance score for a user can potentially decrease

1Another interpretation of this probability is that the user selects
one item from the provided K items according to the Random
Utility Model (Yao et al., 2023), where β depends on the noise
level.
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the utilities of other creators about that user. Conversely, de-
creasing a creator’s relevance score may increase the utilities
of other creators about that user. This dynamic underscores
a fundamental limitation of self-interested utility maximiza-
tion, which does not necessarily result in optimal group
utility. Increases in the relevance score of one creator can
detrimentally affect the utilities of others within the group.

Consider a simple scenario, where there are three creators
labeled as 1, 2, and 3. Each of them produces videos about
basketball under a stable equilibrium—meaning none of
them has an individual incentive to switch topics. How-
ever, if creator 3 were to change her focus to another topic,
e.g., music, this shift could potentially increase the rewards
received by creators 1 and 2. Importantly, the additional
rewards gained by creators 1 and 2 might surpass the loss in
rewards experienced by creator 3. Consequently, although
creator 3’s utility decreases, the overall utility of the group
increases. This illustrates how individual actions within a
collaborative environment can impact collective outcomes,
sometimes positively, even if they are detrimental to the
individual initiating the change.

Building on this intuition, we analyze content distribution,
equilibria, and user welfare in a representative class of C3

games, namely the Bandit C3 Game. The Bandit C3 Game
models a scenario where the user population comprises
multiple interest groups, each with orthogonal preference
representations. Each content creator has the option to cater
to one and only one user group. While this game is simple
and stylized, it simulates the fundamental scenario where
every creator must select a topic to create content.

Definition 4.1 (Bandit C3 Game). The Bandit C3 game is
specified by the following RS environments:

• The user population is a distribution on {ej}mj=1

where x = ej with probability {pj}mj=1 and E =
{e1, · · · , em} ⊂ Rm is the set of unit basis vectors in
Rm.

• Without additional specification, all creators share the
same action set Si = E. The relevance is measured by
the inner product, i.e., σ(s;x) = s⊤x.

We first analyze the scenario in which a single group of
creators coexists with individual creators.

4.1. Single-group

The pure Nash equilibrium (PNE) (Nash Jr, 1950) is the
most widely recognized concept for characterizing the out-
come of a game. At a PNE, no player can increase their
utility by unilaterally deviating from their current strategy,
given the strategies of the other players.

Definition 4.2 (Vanilla equilibrium). We say sv is a vanilla

equilibrium if for every i ∈ [n], s′i ∈ Si,

ui(s
v) ≥ ui(s

′
i, s

v
−i). (5)

In other words, a vanilla equilibrium is an individual PNE
in bandit C3 games.

In bandit C3 games, a vanilla equilibrium can be represented
as {qvj }mj=1, where qeqj denotes the number of creators se-
lecting ej in a specific equilibrium eq. With a little abuse
of notation, we use s = s′ to denote the profile of two
equilibria s and s′ shapes the same, i.e., they are equal up
to a permutation of strategies.

When there is only one group, i.e., |C1| = nc and |C2| =
|C3| = · · · = |CL| = 1, we denote this group of creators C1
as a set C ⊆ [n], where |C| = nc. The group utility for C
is denoted as Qc(s). For a fixed group strategy sc in a C3

game G, we denote the set of PNE for the remaining players
as PNE(G, sc). We can prove that a PNE and a PNE(G, sc)
always exist in bandit C3 games.
Lemma 4.3. Any bandit C3 game has a vanilla equilibrium
and a PNE(G, sc) for any fixed group strategy sc.

Ideally, this group of creators can optimize their group util-
ity while considering the dynamics of other individual cre-
ators. Based on Lemma 4.3, we know that a Nash equilib-
rium for individual creators outside the group always exists
when the group strategy is fixed. This allows us to define
a Stackelberg-type equilibrium for this game. Its formal
definition is as follows.
Definition 4.4 (Single group Stackelberg equilibrium). We
denote sIc as the solution for the following bilevel optimiza-
tion:

max
sc

Qc(sc, s−c), s.t. s−c ∈ PNE(G, sc).

And sI−c = PNE(G, sIc). Here, s−c is selected from
PNE(G, sc) according to a specific tie-breaking rule, such
as a creator choosing the user with the smaller index when
the utilities for selecting different users are equal. We name
sI as Type-I equilibrium, which denotes the single group
Stackelberg equilibrium.

We also consider the single-group PNE of this game by
treating the group as a single entity. A single-group PNE is
a strategic profile where no entity, including both the group
and individual creators, can improve its utility via unilateral
deviation. A single-group PNE does not necessarily exist in
a bandit C3 game.
Definition 4.5 (Single-group Nash equilibrium). Suppose
sII is a Single-group Nash Equilibrium. Then, for any s′c
and any i /∈ C, sII satisfies the following conditions:

Qc(s
II) ≥ Qc(s

′
c, s

II
−c), and ui(s

II) ≥ ui(s
′
i, s

II
−i).

We refer to the joint strategy profile sII as a Type II.
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4.2. Type I, II = vanilla equilibrium

Example 1. m = 2, n = 5, p1 = 0.7, p2 = 0.3, C =
{1, 2}. sv = sI = {s{1,2,3} = e1, s{4,5} = e2}. sII =
{s{1,2,3} = e1, s{4,5} = e2}.

Example 2. m = 3, n = 3, p1 = 0.5, p2 = 0.4, p3 = 0.1.
C = {1, 2}. sv = {s{1,2} = e1, s3 = e2}. sI = {s1 =
e1, s2=e3, s3=e2}. sII={s1 = e1, s2 = e2, s3 = e1}.

We use two example games to illustrate whether Type I
is a vanilla equilibrium. When considering the dynamic
strategic moves of out-of-group creators, some improve-
ments to group strategies may ultimately fail to increase the
group’s utility. In Example 1, we first consider equilibrium
I, where the group has the incentive to change the strategy.
If they adjust s2 = e1 → s′3 = e2, then creator 4 has the
incentive to change its strategy from s4 = e2 → s′4 = e1,
and this change will decrease the group utility. After these
updates, the group utility decreases. Therefore, the orig-
inal strategy profile remains as equilibrium I. This is be-
cause individual creators who select e2, facing a change
s2 = e1 → s′2 = e2, are influenced to shift strategies
due to increased rewards for e1 and reduced rewards for e2.
Thus, considering the strategic moves of individual creators,
the group will not change its strategy. In contrast, in Ex-
ample 2, under the vanilla equilibrium profile, the group
changes their strategy from s2 = e1 → s′2 = e3. After this
change, the individual creator 2 has no incentive to change
its strategy, and the group utility increases, indicating that
equilibrium I differs from the vanilla equilibrium. Based
on these observations, we develop constraints to ensure that
Type I and Type II align with the vanilla equilibrium.

Theorem 4.6. Under a specific tie-breaking rule, if a bandit
C3 game admits a vanilla equilibrium sv, a Type I equilib-
rium sI, a Type II equilibrium sII, and nc ≤ minj∈[m] q

v
j ,

then sI = sII = sv.

A specific tie-breaking rule can be a creator will choose the
user with the smaller index when the utilities for selecting
different users are equal. This theorem demonstrates that,
when the group size is small, group behavior does not affect
the equilibrium of the bandit C3 game. This is primarily be-
cause, when a group creator attempts to strategically change
its topic to enhance group utility, other individual creators
will fill the resulting gap, as demonstrated in Example 1.

When the group size is small and there are no niche topics
(a small pj), group behavior does not influence the equilib-
rium profile. However, in many practical cases, such as in
TvN games in the following analysis, the group strategies
have a significant influence on content distribution and user
welfare.

4.3. Type I, II ̸= vanilla equilibrium

TvN (Trend v.s. Niche) (Yao et al., 2024a) TvN game is
first introduced by Yao et al. (2024a), where p1 = n+1

2n , and
p2 = · · · = pn = 1

2n . The TvN game captures the essence
of real-world user populations and the dilemmas faced by
creators. Creators often find themselves at a crossroads:
they must decide whether to pursue popular trends to reach
a broader audience, which leads to intense competition, or
focus on niche topics with a smaller audience and reduced
competition.

Next, we use this TvN game to illustrate the difference in
user welfare between the group case and the individual case.

Theorem 4.7. In a TvN game with exposure rewards, we
have sI = sII. If r1 = r2 = · · · = rK = 1, the following
results hold:

1. Individual case (nc = 1):

W (sv,K) =
n+ 1

2n
K,

and the optimal welfare is

Wmax = max
s,K

W (s,K) =
n+ 1

2
.

2. Full group case (nc = n):

W (sII,K) = 1.

3. Partial group case (1 < nc < n): If β → 0, then

qII1 ≤ max
{
1,
⌈√

(n+ 1)(n− nc)
⌉}

,

and the welfare loss is

Wmax −W (sII) =
n− qII1

2
.

If β → ∞, then qII1 = n, and Wmax = W (sII).

We present the results for the case where users have constant
attention over the recommended content, i.e., r1 = r2 =
· · · = rK = 1. This attention is truncated by the parameter
K and it assumes users allocate a fixed amount of attention
uniformly across the top-K items they are shown. This
setting is relevant in practice, particularly in user interfaces
where content is displayed in fixed-sized, unordered blocks
(e.g., a “For You” page with K equally weighted items).
These findings can be readily extended to the general case
of {ri}ni=1 through straightforward adaptation.

To emphasize the potential negative impact of group strate-
gic behavior on user welfare, we consider the TvN game
as an example for worst-case analysis (Yao et al., 2024a).
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The user proportion p in the TvN game, although stylized,
reflects user distributions in real-world online content plat-
forms, which are often highly skewed and unbalanced. And
our choice of this p is also primarily for clarity and simpli-
fication of presentation. We extend our results to a more
general unbalanced case in the Appendix A.4, where the
largest user proportion in the TvN game can vary, and this
will provide a more smooth transit from the extreme case to
the even case.

In this setting, the formation of groups can significantly
impact user welfare. The content creation game with expo-
sure rewards exhibits a nearly zero-sum structure. When
all creators form a single group, they have no incentive to
compete internally, and the optimal group strategy becomes
{si = ei}ni=1. This strategy leads to a drastic decline in
user welfare compared to the optimal welfare scenario. This
result indicates that the worst-case scenario for user welfare
occurs when a group of creators dominates the entire expo-
sure to certain users or topics, which means these users are
only exposed to content created by this group.

The scenario where all creators form a group has practical
relevance in real-world cases. For instance, in online media
platforms, certain modules restrict user access to content
creators within a specific geographic proximity (e.g., the
“People Nearby” feature). In such cases, it is reasonable
to assume that all creators within a small region may form
a group, especially when the creator population is limited.
Furthermore, joining a group is a dominant strategy, as the
group utility is non-decreasing compared to the individual
case—at the very least, it remains unchanged if creators
maintain their previous actions.
Remark 4.8. In a TvN game with exposure rewards, adjust-
ments to the parameters K and β cannot influence individ-
ual creators’ decisions to select e1 and chase the trend (Yao
et al., 2024a). However, when considering creators’ group
behavior, the platform can adjust K and β to improve user
welfare. Increasing β results in a more uniform distribution
of user x’s matches across the top-K candidates, while in-
creasing K expands the set of creators that user x is exposed
to (Yao et al., 2024c), so both of them introduce additional
competition into the game. As shown in Theorem 4.7 item 3,
under constant attention scores, additional competition leads
to improved user welfare outcomes. For general {ri}ni=1,
the user welfare is given by

W (s) =
n+ 1

2n

min(K,q1)∑
i=1

ri +
n− q1
2n

r1.

By tuning K and β, the platform can regulate the number of
creators within the group who select e1, thereby enhancing
user welfare. More generally, the platform can strategically
set values for K and β to achieve a limited improvement on
user welfare by steering the equilibrium of the game.

Theorem 4.9. In a TvN game with exposure reward, r1 =
r2 = · · · = rτ = 1, rτ+1 = · · · = rn = 0, β is sufficiently
large, Si = E \ {e1} for i /∈ C, Si = E for i ∈ C, and the
group size nc > τ , then

W (sII,K) =

{
n+1
2n K + n−K

2n , K ≤ τ,
n+1
2n τ + n−K

2n , τ + 1 ≤ K ≤ nc.

Theorem 4.9 considers another setting with diminishing
attention, modeled as r1 = · · · = rτ = 1, rτ+1 = · · · =
rn = 0, which captures the case where users only pay
attention to the top τ items. These two types—constant
(Theorem 4.7) and diminishing—represent common user
behaviors corresponding to slow-decay and rapid drop-off
attention curves, respectively.

In this game, individual creators are restricted from selecting
e1, reflecting real-world scenarios where such limitations
arise. Potential reasons for this include: (1) They lack
expertise in e1, making the cost of creating content related
to e1 prohibitively high. (2) Due to their local updates, they
only explore a limited region of the strategy space. The
group will assign at most K creators to e1 to capture all
the exposure associated with e1. This result also provides
insight into the scenario where a single group specializes in
a specific topic and monopolizes the associated exposure.
In such cases, the group can reduce its collective effort on
the topic while still capturing the entirety of the exposure.

For the first part of Theorem 4.9, when K ≤ τ , increas-
ing K under constant attention scores leads to improved
user welfare. For the second part of Theorem 4.9, when
τ + 1 ≤ K ≤ nc, the results reveal a counterintuitive
phenomenon: in a top-K recommendation system, user wel-
fare does not necessarily increase with larger values of K.
This contrasts with established findings that user welfare
typically improves as K increases (Yao et al., 2023) and
provides insight that platforms should avoid selecting ex-
cessively large K in recommendation systems where users
have diminishing attention spans. Additionally, we pro-
vide a game instance under the low attention spans of users,
demonstrating that a higher β does not always lead to better
user welfare. The proof follows a similar approach to the
proof of Theorem 4.7, item 3.
Corollary 4.10. In a TvN game with exposure rewards, if
r1 = 1 and r2 = · · · = rn = 0, and when 1 < nc < n,

W (sII, β=0)−W (sII, β=∞) =
n− qII1,0

2n
.

where qII1,0 ≤ max
{
1, ⌈

√
(n+ 1)(n− nc)⌉

}
.

4.4. Multi-groups in bandit C3 games

For bandit C3 games with multiple groups, the results are
similar to those in the single-group case. We briefly present

6



Beyond Self-Interest: How Group Strategies Reshape Content Creation in Recommendation Platforms?

these results here, as they share similar intuition and in-
sights.

Definition 4.11 (Multi-group PNE). For any ℓ ∈ [L], sg is
a multi-group PNE if for any s′ℓ,

Qℓ(s
′
ℓ, s

g
−ℓ) ≤ Qℓ(s

g).

Theorem 4.12. In a bandit C3 game with β → 0, sup-
pose a vanilla equilibrium is {qvj }mj=1. If maxℓ∈[L] nℓ ≤
minj∈[m] q

v
j , then for any multi-group PNE sg in this game,

we have for any j ∈ [m],

qgj − qvj ≤ 2, qvj − qgj ≤ min

{
1 + max

r ̸=s

pr
ps

,
1

3
qvj

}
.

The proof is in Appendix A.7. Similar to Theorem 4.6,
Theorem 4.12 demonstrates that the multi-group PNE (if
it exists) is unlikely to differ significantly from the vanilla
equilibrium when the group size is small. We also intro-
duce a Restricted Multi-Trend vs. Niche (MTvN) game in
Appendix A.6, a variant of the TvN game adapted to the
multi-group setting. This game exhibits results similar to
those in the single-group TvN game.

5. General Case and PoA
In this section, we analyze user welfare under any possible
creator group partition and group coarse correlated equilib-
rium (GCCE) in the C3 game through the lens of the Price
of Anarchy (PoA) (Koutsoupias & Papadimitriou, 1999).
The PoA quantifies the inefficiency in user welfare resulting
from creators’ strategic group behaviors and self-interested
actions.

Definition 5.1 (GCCE). α is a group CCE, for every group
ℓ ∈ [L] and every group strategy s′ℓ,

Es∼α[Qi(s)] ≥ Es∼α[Qi(s
′
ℓ, s−ℓ)]. (6)

Definition 5.2 (PoA under GCCE). Define the price of
anarchy of a C3 instance G as

PoA(G) = maxs W (s)

minα∈GCCE(G) Es∼α[W (s)]
, (7)

where GCCE(G) is the set of GCCEs of G for all possible
creator group partitions.

Based on the definition, PoA(G) ≥ 1, and larger values
indicate worse user welfare. The definition of PoA under
GCCE (Blum et al., 2008) provides the strongest possible
welfare guarantee. Specifically, any upper bound on the
Price of Anarchy (PoA) under GCCE automatically applies
to the PoA under more refined equilibrium concepts, such
as group CE, group PNE, or mixed group NE (if they exist),
as these equilibria are all special cases of GCCE.

As the previous section indicates, when the group is big,
especially when all creators form as a group or multiple
groups dominate multiple topics respectively, we show that
group strategies can inevitably lead to a big fraction loss of
the optimal welfare. Now we show that in the worst case,
PoA in a C3 game with exposure reward can be arbitrarily
bad.

Theorem 5.3. For any C3 instance G with exposure re-
wards,

PoA(G) → ∞.

This phenomenon occurs when a group dominates the total
exposure to a user, even though they reduce their effort and
produce low-quality content (si = ε1, ε is an arbitrarily
small value), they still dominate the exposure to this user.
Both Theorem 4.7 and 5.3 indicate that the most severe
issue with exposure-based rewards occurs when a group of
creators monopolizes the total exposure to users or when
only a group of creators specializes in specific topics. As
highlighted in Yao et al. (2023), rewarding creators based
on user engagement is likely to improve the user welfare of
recommendations. In this work, the engagement reward for
creator i is defined as follows:

Engagment reward: ui(s) = Ex∈X [π(x, s)Pi(s,x)] .

Notably, when user engagement is used as the reward mech-
anism, the welfare of creators aligns with user welfare. Con-
sequently, when all creators act as a group, the optimal
group strategy also maximizes user welfare, which means
PoA = 1 in this case. This engagement reward mitigates
the user welfare loss caused by large or professional groups,
leading to optimal user welfare outcomes in the TvN and
MTvN games discussed in previous sections. However, we
provide a negative result on the PoA bound under the user
engagement reward mechanism with constant user attention
and construct a lower-bound instance to demonstrate the
tightness of this bound.

Theorem 5.4 (PoA under engagement reward). For any C3

instance G with engagement rewards, β ≥ 1, 1 ≤ K ≤ n,
and user welfare defined as in Eq. (2), if r1 = · · · = rK = 1,
then

PoA(G) ≤ 1 +K.

The proof of Theorem 5.4 is provided in Appendix B.2.
One important observation regarding the bound is that the
benchmark maxs W (s,K) varies with K. As K increases,
the benchmark maxs W (s,K) may also increase. Although
the PoA of the C3 game is no longer infinite, it still suffers
from a significant loss in user welfare. We next conduct a
worst-case analysis to identify the scenarios that lead to this
unsatisfactory PoA result.

7
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Theorem 5.5 (Lower Bound). Given any 1 ≤ K ≤ n,
β ≥ 1, and r1 = · · · = rK = 1, there exists a C3 game
instance with engagement rewards such that

PoA(G) ≥ 1 + (K − 1)e−
1
β .

The proof of Theorem 5.5 is provided in Appendix B.3,
which explicitly constructs a game instance that achieves
the stated PoA lower bound. In this instance, the vanilla
equilibrium occurs when all creators in the game select a
user with a very small proportion. This leads to a high
utility for that user, which in turn results in high creator
utility. Consequently, no creator has an incentive to deviate
from their strategy. This leads to a suboptimal outcome for
user welfare, but this worst-case scenario can be alleviated
by the approach proposed in Yao et al. (2024c), which helps
creators escape from the current suboptimal state through a
user importance reweighting method.

These results collectively provide insights for online content
platforms to mitigate user welfare loss caused by group
strategies: use user engagement-based rewarding mech-
anisms and implement intervention methods such as the
user importance reweighting method proposed in Yao et al.
(2024c). The importance reweighting method enables the
platform to steer creator incentives toward under-served
users by modifying the reward structure. Specifically, the
platform defines the creator’s utility as

ui(s) = Ex∈X [w(x)π(x, s)Pi(s,x)] ,

where w(x) represents the importance weight of user x.
When the platform detects that a user is being under-served
under the current content distribution, it increases w(x) for
that user. This effectively amplifies the reward for creators
who target such users, encouraging them to shift their con-
tent in that direction. Over time, this reshapes the content
distribution and improves overall user welfare.

We also show that in some cases, such as when β → 0 and
relevance scores and user attention scores are binary (i.e.,
σ ∈ {0, 1}, r1 = r2 = · · · = rτ = 1, and rτ+1 = · · · =
rn = 0), we obtain a positive result on the PoA.

Proposition 5.6 (PoA under binary σ). For any C3 instance
G with engagement rewards, β → 0, and user welfare de-
fined as in Eq. (2), if the relevance scores and user attention
scores are binary (i.e., σ, ri ∈ {0, 1}), then

PoA(G) ≤ 2.

6. Simulations
Synthetic Environment For the synthetic environment,
we first construct the user population as follows: we fix
an embedding dimension d = 5 and independently sample

m = 10 users from the unit sphere Sd−1. The distribution of
the 10 users is p = 1

200 × [100, 50, 20, 10, 10, 5, 2, 1, 1, 1]⊤.
We then slightly polarize the user distribution to simulate a
real-world scenario (Dean & Morgenstern, 2022; Lin et al.,
2024), where the largest user group is positioned at one
pole and has some distance from the other users. This
setup presents a more challenging case for user welfare
optimization, as in some scenarios, creators must traverse a
long path from one pole to the other to improve user welfare.

The relevance score function is set to σ(s,x) = 1
2 (s

⊤x+
1) ∈ [0, 1]. We use 2 kinds of user attention scores: constant
attention scores where ri = 1 for i ∈ [5] and log cutoff atten-
tion scores {ri}ni=1 = { 1

log2 2 ,
1

log2 3 , . . . ,
1

log2 6 , 0, . . . , 0}.
We set (β,K) = (0.1, 5) by default. This synthetic dataset
characterizes a class of clustered user preference distribu-
tions, such as majority versus minority user groups.

On the creators’ side, there are n = 30 creators in total,
including one group of creators. We vary the group size
nc ∈ {10, 15, 20, 25, 30}. The group of creators’ strategies
is initialized near user x1, while the remaining creators’
strategies are initialized near the other users. This setup
models a scenario where the group of creators specializes
in a specific topic. Individual creators use the LBR algo-
rithm (Yao et al., 2024c;a) to update their strategies, while
the group performs multiple steps of gradient descent on
the objective Qc(sc, s−c) with respect to the group strategy
sc = (s1, s2, · · · , snc).

Results We analyze the average user welfare under vary-
ing reward types, group sizes, and attention score distribu-
tions, with a fixed time horizon of T = 100. The results
are presented in Figure 1. Our experiments reveal that user
welfare under engagement-based rewards consistently sur-
passes that under exposure-based rewards. Notably, user
welfare experiences a significant decline when the group
size increases to nc = 25 or 30 under exposure rewards,
whereas it remains stably high under engagement rewards.
This observation is further supported by a visualization ex-
ample in Appendix C.2 (nc = 10), which illustrates that
creators in the exposure reward setting do not overlap with
the largest user segment x1, as they already dominate the
exposure of x1. In contrast, creators under engagement
rewards exhibit overlap with x1, leading to enhanced user
welfare compared to the exposure reward scenario. Our
experiments also demonstrate that the PoA for engagement
rewards remains close to 1. This result is supported by the
theoretical bounds maxs W (s)≤5 in the constant attention
case and maxs W (s)≤

∑5
i=1

1
log2 i+1 <2.95 in the general

case, highlighting the effectiveness of engagement rewards.

We conduct additional simulations with varying values of
K and β to validate two key theoretical results presented in
Section 4. The outcomes are reported in Appendix C.3 and
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(a) Constant attention scores (b) Log cutoff attention scores

Figure 1: User welfare under different reward types, group sizes, and attention scores.

Appendix C.4. We further evaluate the robustness of our
findings under a more general user distribution p following a
Zipf-like pattern, as detailed in Appendix C.5. Additionally,
we consider an alternative creator initialization, where all
creators are initialized around users 2 to 10. The results of
this setting are provided in Appendix C.6.

7. Conclusion
Our work sheds light on the critical implications of group
strategies among content creators in online recommendation
platforms. Using a game-theoretic framework, we demon-
strate how group strategies reshape content distribution and
user welfare. While small groups exhibit limited effects,
large groups can significantly alter content distribution, lead-
ing to substantial user welfare losses. We analyze the role
of key parameters K and β in exposure rewards and in-
vestigate a user engagement-based rewarding mechanism,
demonstrating their potential to mitigate the adverse effects
of strategic group behavior. These findings offer valuable in-
sights for designing recommendation systems that enhance
user welfare while addressing challenges posed by strategic
group behavior.
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Appendix

A. Proofs for Section 4
A.1. Proof for Lemma 4.3

Proof. We prove the existence of a single-group pure Nash equilibrium (PNE) by constructing it using a self-greedy
algorithm. Suppose creators select strategies sequentially, and let:

• qti denote the number of creators selecting ei at time t. The final number of creators selecting ei is qTi , where T = n.

• vi(qi) represent the utility for selecting ei, defined as:

vi(qi) =

{
pi exp(β

−1)
q exp(β−1)+(K−q) , 1 ≤ qi ≤ K,
pi

qi
, qi ≥ K + 1.

Note that vi(qi) is non-increasing in qi. When more than K creators have identical relevance scores for user i, ties are
broken by uniformly and randomly selecting K creators, ensuring vi(qi) =

pi

qi
for qi ≥ K + 1.

• The equilibrium condition requires:

vi(q
T
i ) ≥ vj(q

T
j + 1) for all i ̸= j.

We construct the equilibrium using a self-greedy algorithm, where creators sequentially select strategies to maximize their
utility. The algorithm proceeds as follows:

Algorithm 1 Self-Greedy Algorithm for Constructing a PNE

Require: Number of creators n, initial counts q0i = 0 for all i.
1: for t = 1 to n do
2: st = argmaxi∈[m] vi(q

t−1
i + 1)

3: end for

Let t0i denote the time when the last creator selects ei, i.e., t0i = argmint q
t
i = qTi . The algorithm ensures:

vi(q
T
i ) = vi(q

t0i
i ) ≥ vj(q

t0i
j + 1) for all j ̸= i.

Since vj(qj) is non-increasing in qj , we have vj(q
t0i
j + 1) ≥ vj(q

T
j + 1) because q

t0i
j ≤ qTj . Thus, {qTi }mi=1 constitutes a

pure Nash equilibrium.

To extend this result to a group of creators with fixed strategies sc, we revise the initial conditions {q0i }mi=1 and repeat the
procedure. This yields a PNE for the out-of-group creators, denoted as PNE(sc).

A.2. Proof for Theorem 4.6

Proof. We assume a Type I is {qj}mj=1. If {qj}mj=1 ̸= {qvj }mj=1, there must exists j ∈ [m] qj > qvj , then there exists k ̸= j,
qk < qvk , and we have

vk(qk + 1) ≥ vk(q
v
k) ≥ vj(q

v
j + 1) ≥ vj(qj).

Since nc ≤ minj∈[n] qj , then there exists i ∈ [n]/C, si = ej . If vk(qvk) > vj(q
v
j + 1), then creator i will have incentive to

change its action from ej to ek, so {qj}mj=1 is not an Type I. If vk(qvk) = vj(q
v
j + 1), by the assumption that {qvj }mj=1 is

formed by some specific tie-breaking rules, meaning that creators prefer selecting ek to ej , then creator i will change its
action from ej to ek, so {qj}mj=1 is not an Type I. By contradiction, Type I is a vanilla equilibrium. Analogously, Type II is
also a vanilla equilibrium.

12



Beyond Self-Interest: How Group Strategies Reshape Content Creation in Recommendation Platforms?

Lemma A.1. In the TvN game, for any equilibrium sv, sI, or sII, the following conditions on the qi values hold:

q1 ≥ 1, qi ∈ {0, 1} for i ̸= 1.

Additionally, the strategy of any individual creator is e1, and we have sI = sII.

Proof. In the TvN game, the probabilities of exposure are given by:

p1 =
n+ 1

2n
, pi =

1

2n
for i ̸= 1.

The reward for selecting strategy ei is determined as follows:

vi(qi) =


0, if qi = 0,

pi exp(β
−1)

q exp(β−1)+(K−q) , if 1 ≤ qi ≤ K,
pi

qi
, if qi ≥ K + 1.

.

Now, suppose q1 = 0. In this case, there must exist distinct indices i ̸= j such that si = sj = ek, with corresponding
utilities ui and uj . If si changes its action from ek to e1, the new utilities of the agents are denoted as u′

i and u′
j , respectively.

From this, we obtain the following inequalities:

u′
i > ui, u′

j ≥ uj , u′
i + u′

j > ui + uj .

Thus, in sv, sI, or sII, we conclude that q1 ≥ 1.

Next, suppose si = sj = ek, with utilities ui and uj for agents i and j, respectively. Since q1 ≥ 1, there must exist a
k′ ̸= 1, k such that qk′ = 0. If si changes its action from ek to ek′ , the new utilities of the agents are denoted by u′

i and u′
j ,

respectively. Again, the following inequalities hold:

u′
i > ui, u′

j ≥ uj , u′
i + u′

j > ui + uj .

Thus, in sv , sI, or sII, it follows that qi ≤ 1 for all i ̸= 1.

Finally, in the TvN game, for any K ≤ n and i ̸= 1, we have:

v1(q1) ≥ v1(n) =
n+ 1

2n2
>

1

2n
≥ vi(1).

Therefore, any individual creator will choose e1 as their strategy. Since individual creators will all select e1, it follows that
sI = sII.

A.3. Proof for Theorem 4.7

Proof. (1) When nc = 1, Based on Lemma A.1, qi ∈ {0, 1} for i ̸= 1, so the general user welfare is

W (s) =
n+ 1

2n

min(K,q1)∑
i=1

ri +
n− q1
2n

r1. (8)

According to Lemma A.1, for the vanilla equilibrium sv = {si = e1 for all i ∈ [n]}, for any {ri}ni=1, the optimal welfare
is achieved when K = n:

argmax
K

W (sv,K) = n.

And when r1 = r2 = · · · = rn = 1,

W (s) =
n+ 1

2n
min(K,n),
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So W (s) is maximized when K = n, and Wmax = n+1
2 .

(2) When nc = n, we have
Qc(s) ≤ 1

The equality in the above inequality holds when

sI = sII = {si = ei for i ∈ [n]}.

Under this equilibrium, the user welfare W (sII) = 1.

(3) When β → 0,

vi(qi) =

{
0, if qi = 0,
pi

qi
, if qi ≥ 1.

Let the number of creators in the group choosing e1 be q1(c), q1(c) ≥ 1, and we have

Qc(q1(c)) =
n+ 1

2n
· q1(c)

n− nc + q1(c)
+

1

2n
· (nc − q1(c)).

Maximize Qc(q1(c)) and we got

q1(c)
⋆ = 1 or ⌊

√
(n+ 1)(n− nc)− (n− nc)⌋ or ⌈

√
(n+ 1)(n− nc)− (n− nc)⌉.

When β → ∞,

vi(qi) =

{
0, if qi = 0,
pi

n , if qi ≥ 1.

Qc(q1(c)) =
n+ 1

2n
· q1(c)

n
+

1

2n
· nc − q1(c)

n
.

Maximize Qc(n1) and we got q1(c)⋆ = nc. Combining q1(c)
⋆ with Eq. 8, we complete the proof.

A.4. Additional results for Theorem 4.7 with a more general p

Theorem A.2. Consider a bandit C3 game with exposure rewards, where the user distribution satisfies p1 ≥ 1
n , p1 + (n−

1)p2 = 1, and p2 = p3 = · · · = pn. Let ρ1,2 = p1

p2
. Then, sI = sII. Moreover, if r1 = r2 = · · · = rK = 1, the following

results hold:

1. Individual case (nc = 1): If β → 0, the vanilla equilibrium satisfies ρ1,2 − 1 ≤ qv1 ≤ ρ1,2, and

W (sv,K) = p1q
v
1 + p2(n− qv1) ≥ (n2 + 2n− 1)p2 +

1

p2
− 2n− 1.

If β → ∞,
W (sv,K) = p1K,

and the optimal welfare is Wmax = maxs,K W (s,K) = p1n.

2. Full group case (nc = n): When all creators form a single group,

W (sII,K) = 1.

3. Partial group case (1 < nc < n): If β → 0, two cases arise: (i) If qv1 ≤ n − nc, which is guaranteed when
p2 ≥ 1

2n−nc−1 , then qII1 = qv1 . (ii) If qv1 > n− nc, then

qII1 ≤ max

{
1,

⌈√
ρ1,2(n− nc)

⌉}
,
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and the welfare loss is
Wmax −W (sII) = (p1 − p2)(n− qII1 ).

If β → ∞, we have qII1 = n and Wmax = W (sII).

Theorem A.2 can be proved analogously to the proof of Theorem 4.7.

A.5. Proof for Theorem 4.9

Proof. Based on Lemma A.1, we have q1(c) ≥ 1 and qj ∈ {0, 1} for j ̸= 1, meaning individual creators select distinct
strategies ej . Additionally, q1 = q1(c) in this game, where individual creators have restricted action sets. The group utility
is defined as follows:

For 1 ≤ q1 ≤ K, the group utility is:

Qc(q1) = p1
q1 exp(β

−1)

q1 exp(β−1) + (K − q1)
+ p2(nc − q1). (9)

Let b = exp(β−1)− 1 ∈ (0,∞). We compute the derivative of Qc(q1) with respect to q1:

Q′
c(q1) =

n+ 1

2n
· (b+ 1)K

(q1b+K)2
− 1

2n
.

By selecting a sufficiently large β, we ensure Q′
c(q1) > 0 for 1 ≤ q1 ≤ K.

For q1 ≥ K + 1, the group utility simplifies to:

Qc(q1) = p1 + p2(nc − q1).

Thus, when 1 ≤ q1 ≤ K, Qc(q1) increases as q1 increases; when q1 ≥ K + 1, Qc(q1) decreases as q1 increases. Therefore,
the optimal value q⋆1 = K maximizes the group utility. Combining this result with Eq. 8, we complete the proof.

Note that for a more general unbalanced user distribution satisfying p1 ≥ 1
n , p1 + (n− 1)p2 = 1, and p2 = p3 = · · · = pn,

the results still hold when p1 > Kp2. Moreover, when p is uniform, the value of K no longer affects user welfare in this
setting.

A.6. Restricted MTvN Game

In the Restricted MTvN game, there are L groups, each of size h, with user distribution pℓ = n+1
n(L+1) for ℓ ∈ [L] and

pL+1 = · · · = pn = 1
n(L+1) . Each group specializes in specific topics: for group ℓ ∈ [L], the action set is restricted to

{eℓ} ∪ {eL+1, eL+2, . . . , en}. This setup models scenarios where creators with expertise in specific topics form groups to
maximize their collective utility.
Corollary A.3. In a Restricted MTvN game, the following results hold:

1. When r1 = r2 = · · · = rK = 1, if β → 0, then W (sg,K) = 1. If β → ∞, then W (sg,K) = Wmax.

2. If r1 = · · · = rτ = 1 and rτ+1 = · · · = rn = 0, and h > τ then:

W (sII,K) =

{
(n+1)L
n(L+1)K + n−KL

n(L+1) , K ≤ τ,
(n+1)L
n(L+1)τ + n−KL

n(L+1) , 1 + τ ≤ K ≤ h.

A.7. Proof for Theorem 4.12

Proof. For each group ℓ ∈ [L], let qj(ℓ) denote the number of creators in group ℓ selecting strategy ej . If the group
pure Nash equilibrium {qj}mj=1 differs from the vanilla equilibrium {qvj }mj=1, there exist j, k ∈ [m] such that qj < qvj and
qk > qvk . We focus on the group utility for users j and k. As β → 0, the vanilla equilibrium {qvj }mj=1 satisfies:

pj
qvj

≥ pk
qvk + 1

,
pj

qvj + 1
≤ pk

qvk
. (10)
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Next, we compute the reward increment when a creator in group ℓ switches from strategy ek to ej :

Qℓ (qj(ℓ) + 1, qk(ℓ)− 1)−Qℓ (qj(ℓ), qk(ℓ)) (11)
= vj(qj + 1) · (qj(ℓ) + 1)− vj(qj) · qj(ℓ) + vk(qk − 1) · (qk(ℓ)− 1)− vk(qk) · qk(ℓ)

=
pj

qj + 1
(qj(ℓ) + 1)− pj

qj
qj(ℓ) +

pk
qk − 1

(qk(ℓ)− 1)− pk
qk

qk(ℓ)

=
pj

qj + 1

(
1− qj(ℓ)

qj

)
− pk

qk − 1

(
1− qk(ℓ)

qk

)
.

For every group ℓ ∈ [L] with qk(ℓ) ≥ 1, if qj(ℓ) = 0, then based on (10) and the conditions qj ≤ qvj − 1 and qk ≥ qvk + 1,
we have:

Qℓ(qj(ℓ) + 1, qk(ℓ)− 1)−Qℓ(qj(ℓ), qk(ℓ)) > 0.

This implies that a creator in this group can increase the group utility by switching from ek to ej , contradicting the
assumption that {qj}mj=1 is a multi-group PNE. Therefore, for every ℓ ∈ [L] with qk(ℓ) ≥ 1, we have qj(ℓ) ≥ 1.

Let Cj,k denote the set of groups ℓ where qk(ℓ) ≥ 1. Since no group has an incentive to change strategies, for every ℓ ∈ Cj,k,
(11) ≤ 0. As qk(ℓ) < qk, |Cj,k| ≥ 2. Summing over all ℓ ∈ Cj,k, we obtain:∑

ℓ∈Cj,k

Qℓ (qj(ℓ) + 1, qk(ℓ)− 1)−Qℓ (qj(ℓ), qk(ℓ)) ≤ 0.

Given that
∑

ℓ∈Cj,k
qj(ℓ) ≤ qj and

∑
ℓ∈Cj,k

qk(ℓ) = qk, we derive:

pj
qj + 1

≤ pk
qk − 1

. (12)

Combining the vanilla equilibrium conditions (10) with (12), and noting that qj ≤ qvj − 1 and qk ≥ qvk + 1, we have:

pk
qvk + 1

≤ pj
qvj

≤ pj
qj + 1

≤ pk
qk − 1

≤ pk
qvk

.

This implies qk − qvk ≤ 2. We now consider two cases:

(1) If there exists k ∈ [m] such that qk − qvk = 2, then:

pk
qvk + 1

≤ pj
qvj

≤ pj
qj + 1

≤ pk
qk − 1

=
pk

qvk + 1
. (13)

All inequalities in (13) must hold as equalities, implying qj = qvj − 1.

(2) If for all k ∈ [m] satisfying qk < qvk , qk − qvk = 1, combining (10) and (12), we have:

pj
qj + 1

≤ pk
qk − 1

=
pk
qvk

≤ pj
qvj − pj

pk

.

Thus, qj ≥ qvj − pj

pk
.

Since qj = qvj + (qvj − qj), there are at least (qvj − qj) strategies ek with qk − qvk = 1, each involving at least 2 groups.
Given that qj(ℓ) ≥ 1 for every ℓ ∈ [L], there are at least 2(qvj − qj) distinct groups in ej . Therefore:

qj ≥ 2(qvj − qj).

This yields qj ≥ 2
3q

v
j , completing the proof.
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B. Proofs for Section 5
B.1. Submodularity of user welfare

Lemma B.1. [Submodularity of Welfare] For any s = (s1, · · · , sn), let S = {s1, · · · , sn}. Then the social welfare
function defined in Eq (2) is submodular as a set function, i.e., for any S, sx, sy it holds that

W (S ∪ {sx})−W (S) ≥ W (S ∪ {sx, sy})−W (S ∪ {sy}). (14)

Proof. It is sufficient to prove that for any fixed K and any fixed user xj ,

πj(Tj(S ∪ {sx}))− πj(Tj(S)) ≥ πj(Tj(S ∪ {sx, sy}))− πj(Tj(S ∪ {sy})).

Case 1: If sx /∈ Tj(S ∪ sx), then LHS = 0 = RHS.

Case 2: If sx /∈ Tj(S ∪ {sx, sy}), then LHS ≥ 0 and RHS = 0.

Next we assume that sx ∈ Tj(S ∪ {sx, sy}). We denote the relevance scores of sx, sy toward this user as σx and σy .

Case 3.1: If sy /∈ Tj(S ∪ {sy}), then RHS = LHS.

Case 3.2: If sy /∈ Tj(S ∪ {sx, sy}) and sy ∈ Tj(S ∪ {sy}), so σy ranks as the last one in Tj(S ∪ {sx, sy}),

we have

LHS − RHS = rK(σK−1 − σK)− rK(σK−1 − σy) = rK(σy − σK) ≥ 0.

Case 3.3: If sy ∈ Tj(S ∪ {sx, sy}) and σy ≥ σx, and we suppose that σx replace the original relevance score in
sy ∈ Tj(S ∪ {sx}) at index ix, then

LHS − RHS = (rix − rix+1)(σ
x − σix) +

K−1∑
t=ix+1

(rt − rt+1)(σt − σt+1) + rK(σK−1 − σK) ≥ 0.

Case 3.4 If sy ∈ Tj(S ∪ {sx, sy}) and σy < σx, and we suppose that σy replace the original relevance score in
sy ∈ Tj(S ∪ {sx, sy}) at index iy , then

LHS − RHS

= riy (σiy−1 − σiy )− riy (σiy − σy) + riy+1(σiy − σiy+1)− riy+1(σ
y − σiy+1) +

K−1∑
t=iy+1

rt+1(σt − σt+1)− rt+1(σt − σt+1)

= riy (σ
y − σiy ) + riy+1(σiy − σiy+1)− riy+1(σ

y − σiy ) +

K−1∑
t=iy+1

rt+1(σt − σt+2)

≥ riy (σ
y − σiy )− riy+1(σ

y − σiy ) = (riy − riy+1)(σ
y − σiy ) ≥ 0.

We can further extend (14) to a more general version: For any S, S′, S′′ it holds that

W (S ∪ S′′)−W (S) ≥ W (S ∪ S′ ∪ S′′)−W (S ∪ S′). (15)

It is sufficient to prove that for any S, S′, sx, sy it holds that

W (S ∪ {sx, sy})−W (S) ≥ W (S ∪ S′ ∪ {sx, sy})−W (S ∪ S′).

Based on Lemma B.1, we have

LHS = W (S ∪ {sx, sy})−W (S ∪ {sy}) +W (S ∪ {sy})−W (S)

≥ W (S ∪ S′ ∪ {sx, sy})−W (S ∪ S′ ∪ {sy}) +W (S ∪ S′ ∪ S′{sy})−W (S ∪ S′)

= RHS.
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B.2. Proof for Theorem 5.4

Proof. We set W̃ (s) = βW (s), σ̃(s, x) = β−1σ(s, x). Under a rescaling of constant β, it is without loss of generality to
consider a scoring function σ ∈

[
0, 1

β

]
, the user utility function, and the social welfare function in the following form.

Tj(S;K) represents the strategies s with the top-K relevance scores for user xj , where S = s1, · · · , sn. If |S| < K, we
complement S with strategy 0 to ensure |S| = K, as this does not affect the result. We prove the theorem for the fixed K.
We ignore K in Tj(S), and write as Tj(S) in abbreviation.

Qi(si; s−i) =
∑
i∈Cℓ

m∑
j=1

pjπj(S)I [si ∈ Tj(S;K)]
exp (σ(si, xj))∑

s′∈Tj(S;K) exp (σ(s
′, xj))

,

W (S) =

m∑
j=1

πj(S) =

m∑
j=1

K∑
k=1

σj,l(k).

We need to prove that

Qℓ(sℓ, s−ℓ) ≥
1

K
[W (S)−W (S−ℓ)] . (16)

It is sufficient to prove that for any j ∈ [m],

βπj(S)
∑
i∈Cℓ

I [si ∈ Tj(S)]
exp (σ(si, xj))∑

s′∈Tj(S) exp (σ(s
′, xj))

≥ β
1

K
[πj(S)− πj(S−ℓ)] . (17)

When si /∈ Tj(S) for any i ∈ Cℓ, (17) is trivially held because LHS = RHS = 0. With a little abuse of notation, next we
assume that there are h content of group ℓ in Tj(S). Next we let

{exp(σ(s, xj)) | s ∈ Tj(S)} = {v1, v2, . . . , vh, vh+1, . . . , vK},

and
{exp(σ(s, xj)) | s ∈ Tj(S−ℓ)} = {v′1, v′2, . . . , v′h, vh+1, . . . , vK},

where vi ≥ v′i for i ∈ [h], and h ≤ min{K, |Cℓ|}, and vi ∈ [1, e
1
β ].

We let

Sh = v1 + · · · vh, SK = v1 + · · · vh + vh+1 + · · ·+ vK , SK−h = Sk − Sh

Ph = v1v2 · · · vh > 1, P ′
h = v′1v

′
2 · · · v′h, PK = v1v2 · · · vK , PK−h = PK/Ph.

So we can rewrite (17) as
Sh

SK
logPK ≥ 1

K
[logPh − logP ′

h] .

Noticed that P ′
h ≥ 1, it is sufficient to show that

Sh

SK
logPK ≥ 1

K
logPh. (18)

Let

f(v1, · · · , vK) =
Sh logPK

SK logPh
.

For i ∈ [h+ 1,K],
∂f

∂vi
=

Sh

logPh
·

1
vi
Sk − logPk

(Sk)2
.
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Since vj > log vi for vj ∈ [1, e
1
β ], so Sk > logPk when vi = 1. So we have the partial derivative of vi greater than 0 on

vi = 1:
∂f

∂vi
(v1, · · · , vi = 1, · · · , vK) =

Sh

logPh
· Sk − logPk

(Sk)2
> 0.

Since 1
vi
Sk− logPk is non-increasing in vi, so the value of function f in non-decreasing or increases first and then decreases

with variable vi increases, so only boundary values of vi will minimize f .

Thus when we intend to minimize f , vi = 1 or e
1
β for i ∈ [h+ 1,K]. Suppose that there are w vi’s equal to e

1
β . Then

Sk = K − h− w + w · e
1
β ,

logPk−h =
w

β
.

So

f =
Sh

logPh

logPh + w
β

(Sh +K − h− w + w · e
1
β )

.

And noticed that for w ∈ [0,K − h],
∂f

∂w
≤ 0 or

∂f

∂w
≥ 0.

Therefore, only boundary values of w will minimize f . So w = 0 or w = K − h.

(i) When w = 0 or K = h, then

f =
Sh · logPh

(Sh +K − h) · logPh
=

Sh

Sh +K − h
≥ h

h+K − h
=

h

K
≥ 1

K
.

(ii) When w = K − h ≥ 1, then:

f =
Sh

(
log(Ph) +

K−h
β

)
[
Sh + (K − h)e

1
β

]
log(Ph)

.

Simplify it we have

f =
Sh

Sh + (K − h)e
1
β

+
Sh(K − h)

β
[
Sh + (K − h)e

1
β

]
log(Ph)

>
Sh

β
[
Sh + (K − h)e

1
β

]
log(Ph)

.

By GM-AM inequality, we have Ph ≤ (Sh/h)
h. So

Sh

β
[
Sh + (K − h)e

1
β

]
log(Ph)

≥ Sh

βh
[
Sh + (K − h)e

1
β

]
log(Sh/h)

.

We let = Sh

h , so we have

Sh

βh
[
Sh + (K − h)e

1
β

]
log(Sh/h)

=
1

β
(
h+ (K − h)e

1
β t−1

)
log t

≥ 1

β
(
1 + (K − 1)e

1
β t−1

)
log t

. (19)

we define
G(t) =

(
1 + (K − 1)e

1
β t−1

)
log t.

We only need to prove that G(t) ≤ K. We first take the derivative of G(t),

G′(t) =
t+ (K − 1)e

1
β (1− log t)

t2
.
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Define H(t) = t+ (K − 1)e
1
β (1− log t). Then we calculate the derivative of H(t),

H ′(t) = 1− (K − 1)e
1
β · 1

t
≤ 0.

For H(t) and β ≥ 1
H(t = 1) = 1 > 0,

H(t = e
1
β ) = e

1
β + (K − 1)e

1
β

(
1− 1

β

)
> 0.

So H(t) > 0 for t ∈ [1, e
1
β ]. So G(t) is non-decreasing for t ∈ [1, e

1
β ], so G(t) is maximized at t = e

1
β .

Therefore
G(t) = Gmax(t) = G(t = e

1
β ) = K.

Let s = (sℓ)
L
ℓ=1 and s∗ = (s∗ℓ )

L
ℓ=1 be two different strategy profiles, where sℓ represents group ℓ’s strategy. First, based on

Lemma B.1 and (15), for every ℓ ∈ [L] we have

W ([s∗ℓ , s−ℓ])−W (s−ℓ) ≥ W ([s∗1, · · · , s∗ℓ−1, s
∗
ℓ , s])−W ([s∗1, · · · , s∗ℓ−1, s]).

Summing over all group ℓ we obtain

L∑
ℓ=1

(W ([s∗ℓ , s−ℓ])−W (s−ℓ)) ≥
L∑

ℓ=1

(W ([s∗1, · · · , s∗ℓ−1, s
∗
ℓ , s])−W ([s∗ℓ , · · · , s∗ℓ−1, s]))

= W ([s∗, s])−W (s)

≥ W (s∗)−W (s),

where the last inequality holds because the top-K relevance scores are elementwise non-decreasing with the addition of
more items (strategies), resulting in non-decreasing user welfare. From the Inequlity (16), we have

Qi(s
∗
ℓ ; s−ℓ) ≥

1

K
·
[
W ([s∗ℓ , s−ℓ])−W (s−ℓ)

]
, (20)

And therefore
n∑

i=1

Qi(s
∗
i ; s−i) ≥

1

K
·

n∑
i=1

[
W ([s∗i , s−i])−W (s−i)

]
≥ 1

K
[W (s∗)−W (s)].

Then we can take expectation over s ∼ α and obtain

n∑
i=1

Es∼α[Qi(s
∗
i ; s−i)] ≥

1

K
[W (s∗)− Es∼α[W (s)]]. (21)

Therefore, combining the definition of GCCE, we have

Es∼α[W (s)] = Es∼α[

L∑
ℓ=1

Qℓ(s)]

≥ Es∼α[

L∑
ℓ=1

Qℓ(s
∗
i ; s−i)]

≥ 1

K
·

L∑
ℓ=1

[
Es∼α[W ([s∗ℓ , s−ℓ])]− Es∼α[W (s−ℓ)]

]
≥ 1

K
[W (s∗)− Es∼α[W (s)]].
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Rearranging terms we obtain

PoA(G) = maxs W (s)

minα∈GCCE Es∼α[W (s)]
≤ 1 +K. (22)

B.3. Proof for Theorem 5.5

Proof. We construct a game instance of the bandit C3 game with user engagement rewards. Let p1 = e
1
β +K−1

2e
1
β +K−1

, p2 =

e
1
β

2e
1
β +K−1

, and n = K. A vanilla equilibrium of this game is sv = {si = e2 for i ∈ [n]}, since

ui(s
v) = p2 = p1

e
1
β

e
1
β +K − 1

= ui(si = e1, s
v
−i).

The welfare at this equilibrium is W (sv) = p2K. For the joint strategy s⋆ = {si = e1}, the welfare is W (s⋆) = Kp1.
Thus, the PoA satisfies

PoA(G) ≥ W (s⋆)

W (sv)
=

p1
p2

=
e

1
β +K − 1

e
1
β

.

B.4. Proof for Proposition 5.6

Proof. Based on the proof of Theorem 5.4, it suffices to show that for any j ∈ [m],

πj(S)
∑
i∈Cℓ

I [si ∈ Tj(S)]
exp

(
β−1σ(si, xj)

)∑
s′∈Tj(S) exp (β

−1σ(s′, xj))
≥ πj(S)− πj(S−ℓ). (23)

As β → 0 and σ ∈ {0, 1}, assume that r1 = r2 = · · · = rτ = 1 and rτ+1 = · · · = rn = 0. If si /∈ Tj(S) for any i ∈ Cℓ,
(17) holds trivially since LHS = RHS = 0.

Let

{σ(s, xj) | s ∈ Tj(S)} = {σ1, σ2, . . . , σh, σh+1, . . . , σK},

and

{σ(s, xj) | s ∈ Tj(S−ℓ)} = {σ′
1, σ

′
2, . . . , σ

′
h, σh+1, . . . , σK},

where σ1 = σ2 = . . . = σh = 1, σ′
i ≤ for i ∈ [h], and h ≤ min{K, |Cℓ|}. Since β → 0 and σ ∈ {0, 1}, we have

∑
i∈Cℓ

I [si ∈ Tj(S)]
exp

(
β−1σ(si, xj)

)∑
s′∈Tj(S) exp (β

−1σ(s′, xj))
=

h

x
,

where x is the number of relevance scores equal to 1 in Tj(S), and x = πj(S). Let y = πj(S−ℓ). Noting that h ≥ x− y,
we obtain for the LHS and RHS of (23):

LHS = x · h
x
≥ x− y = RHS.

The proof of Proposition 5.6 can then be completed analogously to the proof of Theorem 5.4 in Appendix B.2.

C. Supplementary Material for Section 6
C.1. LBR algorithm (Yao et al., 2024a;c)
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Algorithm 2 (LBR) Local Better Response update at time step t

1: Input: Learning rate η, the joint strategy profile s(t) = (s
(t)
1 , · · · , s(t)n ) at the current step t.

2: Generate a random direction gi ∈ Sd.
3: if ui(s

(t)
i + ηgi, s

(t)
−i) ≥ ui(s

(t)) then

4: s
(t+ 1

2 )
i = s

(t)
i + ηgi.

5: Find s
(t+1)
i as the projection of s(t+

1
2 )

i in Si.
6: else
7: s

(t+1)
i = s

(t)
i

8: end if

C.2. Creators’ final strategies visualization

Figure 2 presents a visualization of the creators’ final strategies under constant attention scores.

(a) Exposure reward (b) Engagement reward

Figure 2: Visualization of creators’ final strategies under constant attention scores, nc = 10

C.3. User welfare comparison under different K values

We further validate Theorem 4.9 through simulations with varying values of K, using the same user proportions as in the
TvN game but with users no longer orthogonal to each other. All group creators are initialized near user x1, while the
remaining individual creators are each assigned to a different user xj , where j ̸= 1. We set n = 30, β = 100, and define the
attention scores as r1 = r2 = r3 = 1 and ri = 0 for i > 3 (τ = 3). The group size is fixed at nc = 10, and the time horizon
is set to T = 1000. All other parameters follow the simulation setup in Section 6.

We evaluate K over the set {1, 2, 3, 6, 10, 15}. Results for K = 1 and K = 2 are not presented graphically. The final user
welfare values for K = 1 and K = 2 are 0.9726 ± 0.0019 and 1.9416 ± 0.0073, respectively. When K ≤ τ = 3, user
welfare increases with larger K. For K > τ , user welfare slightly declines as K increases. These results align with and
further validate the theoretical results of Theorem 4.9.
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Figure 3: User welfare under different K values

C.4. User welfare comparison under different β values

Figure 4: User welfare under different β values

We also conduct simulations to validate item 3 of Theorem 4.7. We use the same user proportions as in the TvN game but
with users no longer orthogonal to each other. The number of creators is set to n = 30, with constant attention scores ri = 1
for all i ∈ [n], and K = n, T = 2000. We test two values of β: β = 0.1 and β = 10. All other parameters follow the
simulation setup in Section 6. A larger β leads to higher user welfare, which aligns with the theoretical findings of item 3 in
Theorem 4.7.

C.5. Additional simulations on Zipf-like user distributions

We further strengthen the practical relevance and credibility of our results by using a more general p based on a Zipf-like
or power-law distribution, where pj ∝ 1

jα with α > 1. Such distributions are well-documented in real-world platforms
and capture the skewed nature of user preferences (Chowdhury & Makaroff, 2013; Cameron, 2022; Chris & Simon, 2022).

23



Beyond Self-Interest: How Group Strategies Reshape Content Creation in Recommendation Platforms?

Our setup in the main text already follows a similarly skewed pattern. The additional results under this new p yield similar
results and insights, further supporting our conclusions. We present results for 3 different values of α. In these simulations,
we first set wj = max

{
1
jα , 0.01

}
, and then normalize the user distribution by setting pj ∝ wj .

Table 1: User welfare under different group sizes and reward types for α = 1.1, α = 1.5, and α = 1.8.

Size α = 1.1 α = 1.5 α = 1.8
Exposure Engagement Exposure Engagement Exposure Engagement

10 4.72±0.04 4.81±0.03 4.80±0.03 4.86±0.01 4.85±0.02 4.89±0.02
15 4.65±0.05 4.79±0.04 4.75±0.04 4.87±0.02 4.84±0.02 4.90±0.01
20 4.59±0.07 4.81±0.02 4.68±0.06 4.87±0.02 4.73±0.05 4.89±0.01
25 4.52±0.08 4.82±0.03 4.65±0.03 4.87±0.02 4.70±0.03 4.89±0.01
30 3.26±0.02 4.77±0.01 3.54±0.01 4.84±0.02 3.75±0.01 4.88±0.01

C.6. User welfare comparison under a different creator initialization

(a) Constant attention scores (b) Log cutoff attention scores

Figure 5: User welfare under different reward types, group sizes, and attention scores.

We also examine the impact of an alternative creator initialization where all creators are initialized around users 2 to 10.
Under this initialization, the resulting user welfare under exposure rewards is worse. The simulation results are presented in
Figure 5.
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