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Abstract

In-context learning is an emergent learning001
paradigm that enables an LLM to learn an un-002
seen task by seeing a number of demonstra-003
tions in the context window. The quality of004
the demonstrations is of paramount importance005
as 1) context window size limitations restrict006
the number of demonstrations that can be pre-007
sented to the model, and 2) the model must008
identify the task and potentially learn new, un-009
seen input-output mappings from the limited010
demonstration set. An increasing body of work011
has also shown the sensitivity of predictions to012
perturbations on the demonstration set. Given013
this importance, this work presents a survey014
on the current literature pertaining to the re-015
lationship between data and in-context learn-016
ing. We present our survey in three parts: the017
“good” – qualities that are desirable when se-018
lecting demonstrations, the “bad” – qualities019
of demonstrations that can negatively impact020
the model, as well as issues that can arise in021
presenting demonstrations, and the “debatable”022
– qualities of demonstrations with mixed results023
or factors modulating data impacts.024

1 Introduction025

In-context learning (ICL) is an emergent capability026

of large language models (LLMs) that allows them027

to learn new tasks at inference time without any028

parameter updates (Wei et al., 2022a). By provid-029

ing a few examples (demonstrations) within the030

context window (as illustrated in Figure 2), LLMs031

can effectively "learn" in context and generalize to032

unseen tasks (Brown et al., 2020). This is different033

from traditional fine-tuning, which requires updat-034

ing the model’s parameters to learn a specific task.035

ICL, on the other hand, can infer from demonstra-036

tions directly during prediction and leave model037

parameters unchanged.038

In ICL, performance depends on two key factors:039

1) the base LLM and its prompt formatting capabili-040

ties, and 2) the provided demonstrations in-context.041
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Figure 1: The data-centric view of the survey topics
covered in this survey.

While the importance of the base model is well- 042

established, a systematic analysis of ICL from the 043

perspective of demonstration data has been largely 044

overlooked. 045

However, the data used in ICL is crucial for both 046

its performance and robustness, making it essential 047

to study. For example, different selected examples 048

can cause instability in performance, thereby caus- 049

ing a robustness issue dependent on the selected 050

examples (Rubin et al., 2022; Liu et al., 2022; 051

Wu et al., 2023; Zhao et al., 2021). Therefore, 052

while previous work has given a broad overview of 053

the ICL literature (Dong et al., 2024) and focused 054

on theoretical interpretations of ICL (Zhou et al., 055

2024d), our work differs in that we take a data- 056

centric angle to analyze the current work on ICL. 057

Specifically, our work focuses on the impact of the 058

demonstration data on ICL. As shown in Figure 1, 059

we structure our survey in three parts: 1) the “good” 060

qualities of ICL data (section 3), 2) the “bad” qual- 061

ities of ICL data and issues that can arise due to 062

its organization (section 4), and 3) the “debatable” 063

qualities of ICL data (section 5) and model factors 064
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      Knitting is fun.               \n          Positive
      It’s miserably cold outside.     \n          Negative
      …
      Kittens are so sweet.               \n          Positive
      I liked the food!     \n          _______
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Figure 2: Overview of ICL using K input-output demonstrations concatenated to the test input {xtest, ytest},
overlaid with the topics covered in our survey (Good, Bad, Debatable).

that can modulate data impacts.065

2 Background066

Brown et al. (2020) introduced in-context learning,067

where a model conditions on a few input-output068

pairings (demonstrations) concatenated to the tar-069

get input in the context window. This enables the070

model to learn to perform a given task at inference,071

without any gradient updates. Formally, given a072

test example xtest, in-context learning concatenates073

K demonstrations to the task instruction I , where074

S = {xi, yi}Ki=1 denotes the example set. The075

full context window of the model is provided as076

C = {I, S, xtest}. Brown et al. (2020) further iden-077

tified few-shot (K = n), one-shot (K = 1), and078

zero-shot (K = 0) settings in in-context learning.079

While “in-context learning” is the most com-080

mon and descriptive term, other names have been081

used, sometimes interchangeably. For example,082

few-shot prompting (Wei et al., 2022a) has been083

used to refer to few-shot ICL (and sometimes even084

used synonymously with ICL in general (Lu et al.,085

2022; Ma et al., 2023)). Priming-based few-shot086

learning (Kumar and Talukdar, 2021) is another al-087

ternative. ICL can be considered a subcategory of088

prompt learning, as it incorporates demonstrations089

within the prompt. It is also related to traditional090

few-shot learning, which encompasses techniques091

like few-shot prompt-based fine-tuning or, simply,092

few-shot prompting (Köksal et al., 2023). Despite093

the variations, “in-context learning” remains the094

predominant term for the collection of methods de-095

scribed above and will be used in the rest of this096

survey.097

3 The Good: Desirable Data Qualities for098

ICL099

In this section, we address the question of what data100

qualities improve ICL performance by surveying101

demonstration selection methods. We identify and102

structure our discussion around three key aspects: 103

similarity, diversity, and informativeness. 104

3.1 Similarity 105

Similarity focuses on the relationship between a 106

test input and a candidate demonstration, typically 107

computed using distance metrics to measure the 108

similarity of embeddings. One approach is to use 109

off-the-shelf embeddings (e.g. SBERT (Reimers 110

and Gurevych, 2019)) in-conjunction with unsuper- 111

vised similarity metrics. Liu et al. (2022) propose 112

a k-nearest neighbor based retriever that selects the 113

k semantically-similar candidates in embedding 114

space for each test sample using cosine similarity 115

or negative Euclidean distance. This method has 116

been extended to cross-lingual settings (Tanwar 117

et al., 2023). Shin et al. (2021) propose to instead 118

directly use GPT-3 to select similar examples for 119

few-shot semantic parsing, where the relevance of 120

a training example {ui, ti} to a test input u is com- 121

puted using p(u|ui). 122

Rather than using off-the-shelf embeddings or 123

directly using LLMs, other works aim to train a 124

prompt retriever. Rubin et al. (2022) propose a 125

method to learn embeddings for similarity-based 126

retrieval, EPR. It first retrieves candidate exam- 127

ples using an unsupervised retriever (e.g. BM25 128

(Robertson et al., 2009)) and then uses these to train 129

a dense retriever with contrastive learning. Finally, 130

the trained retriever uses the example embeddings 131

to select the top-k examples based on inner prod- 132

uct similarity. Li et al. (2023b) extend this to a 133

unified, multi-task setting, and Hu et al. (2022) pro- 134

pose a similar method of two-stage learned embed- 135

dings for dialogue state tracking. Liu et al. (2024b) 136

find that the previous methods learning similarity 137

measurements work because they integrate task- 138

agnostic similarities at different levels and incorpo- 139

rate task-specific similarity, and they propose two 140

selection methods that address these factors. 141

While similarity considers the relationship be- 142
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tween the test inputs and exemplars, considering143

the relationship between exemplars (i.e. diversity)144

is also effective, as discussed in the following sec-145

tion. Notably, most methods that utilize the diver-146

sity of examples also incorporate similarity.147

3.2 Diversity148

Diversity focuses on the relationship between can-149

didate exemplars. Some methods incorporate150

diversity-enhancing components into learned re-151

trievers, either at training or inference. Ye et al.152

(2023a) retrieve example sets using maximum a153

posteriori inference with a learned determinantal154

point process (DPP) module, where the DPP kernel155

is defined to incorporate both diversity and rele-156

vance. Liu et al. (2024a) propose a sequential exam-157

ple selection method that leverages LLM feedback158

to score candidate example sequences for training,159

then constructs diverse example sequences at infer-160

ence using beam search.161

Other works enhance diversity through iterative162

selection with penalty terms on similarity. Ye et al.163

(2023b) propose to iteratively select examples us-164

ing maximum marginal relevance, incorporating165

a penalty term on similarity to already selected166

examples. Hongjin et al. (2022) iteratively select167

examples to annotate in a “select-then-annotate”168

paradigm, where candidate scores are discounted169

based on their graph-based similarity to previously170

selected examples. They further define a bucket-171

ing procedure to annotate examples across diverse172

model confidence scores, and finally select k exam-173

ples from the annotated set using cosine similarity.174

Similar to enhancing diversity through bucket-175

ing (Hongjin et al., 2022), other methods use inter-176

vals or clusters to select diverse examples. Zhang177

et al. (2023) use k-means clustering to select di-178

verse exemplars. Yao et al. (2024) use intervals to179

select candidates across a diverse range of input-180

candidate similarity scores, which are then used in181

different prompts followed by a majority vote.182

Finally, selecting diverse examples by diversi-183

fying the embedded representations of inputs has184

proven effective. Specifically, Qin et al. (2023)185

select the top-k examples based on the cosine sim-186

ilarity between each candidate exemplar and the187

zero-shot reasoning path on the test input, use the188

selected examples to generate a new reasoning path189

on the test input, iterate n times (selecting new190

examples with the updated reasoning paths each191

time), and perform majority voting. Notably, they192

argue that iterating on the reasoning path can en-193

hance diversity by potentially selecting different 194

examples in each iteration. 195

3.3 Informativeness 196

Informativeness of examples relates to the contri- 197

bution of examples to the test input and has been 198

defined both at the individual and set level. At the 199

level of individual examples, Li and Qiu (2023) use 200

LLM feedback to measure how informative an ex- 201

ample is for the model to correctly classify the test 202

input, and subsequently apply a diversity-guided 203

search of permutations. Nguyen and Wong (2023) 204

use the influence function (Koh and Liang, 2017) 205

to select examples that have a positive impact on 206

performance. 207

Beyond the level of individual example infor- 208

mativeness, notions of coverage have been used 209

to select informative and diverse sets of examples. 210

This includes syntactic and lexical coverage for ma- 211

chine translation (Tang et al., 2024) and substruc- 212

ture coverage for compositional generalization in 213

semantic parsing (Levy et al., 2023). Gupta et al. 214

(2023b) extend the notion of coverage to diverse 215

tasks by selecting demonstration sets that are maxi- 216

mally informative for the salient aspects of the test 217

input (e.g. reasoning patterns) using BERTScore- 218

Recall (BSR). Related to information contained in 219

the examples, Shi et al. (2023a) show that including 220

examples with irrelevant information (i.e. distrac- 221

tors) can teach LLMs to ignore irrelevant context 222

and help mitigate distractability on reasoning tasks. 223

3.4 Discussion 224

Similarity vs. Diversity: Task-Dependent Trade- 225

offs. Several works point to a task- and dataset- 226

dependence on the importance of similarity vs. di- 227

versity in selecting examples. When proposing 228

in-context sampling (ICS), Yao et al. (2024) ex- 229

plored different sampling strategies: similarity (top- 230

k based on cosine similarity of embeddings), di- 231

versity (k at different intervals based on cosine 232

similarity, to capture more of the input space), and 233

hybrid (k2 from each). They found that no single 234

strategy performed best across all datasets. Qin 235

et al. (2023) found similar results when comparing 236

random sampling (diversity setting) with similarity 237

sampling. Other works that have shown impres- 238

sive performance have directly acknowledged and 239

accounted for this trade-off (Ye et al., 2023a,b). 240

Pre-Processed Input Representations & Other 241

Information Sources. While many selection 242
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strategies directly utilize the embedded representa-243

tions of test inputs and candidate exemplars, other244

works pre-process the inputs prior to embedding245

and subsequent selection, or otherwise incorporate246

richer information sources such as explanations.247

Qin et al. (2023) perform selection using the co-248

sine similarity between candidate exemplars and249

iterative representations of the LLM’s reasoning250

path on a test input. An et al. (2023) use an LLM251

to rewrite each candidate and test example using252

skill-based descriptions, and then using the cosine253

similarity between descriptions to select demon-254

strations. Other works incorporate the use of ex-255

planations Ye et al. (2023b) and chain-of-thought256

reasoning (Wei et al., 2022b) to enhance ICL per-257

formance. Expanding on the prior discussion on258

similarity and diversity, these factors are benefi-259

cial when using pre-processed representations and260

explanations as well (Ye et al., 2023b; Qin et al.,261

2023).262

4 The Bad: Data Issues in ICL263

In this section, we address the question of what264

qualities of data for ICL are undesirable, and what265

can go wrong when there are issues with the se-266

lected data. We center our discussion around: 1)267

sensitivity to data organization, and 2) data biases.268

4.1 Sensitivity to Data Organization269

LLMs are sensitive to the choice of selected exam-270

ples (Zhao et al., 2021; Liu et al., 2022) as well as271

their order (Zhang et al., 2022; Chen et al., 2023b).272

Both organization factors are data and model de-273

pendent (Peng et al., 2024; Pecher et al., 2024).274

For example, the performance of example permu-275

tations cannot generalize across models, yet mod-276

els of all sizes exhibit order sensitivity (Lu et al.,277

2022). Recent works have also shown a sensitiv-278

ity to the position of relevant information in the279

context. Specifically, models are biased towards in-280

formation at the beginning and end of the prompt in281

long-contexts (Liu et al., 2024c), shortcut triggers282

at the end of prompts (Tang et al., 2023), and labels283

that are proximal to the test input (Zhao et al., 2021;284

Li et al., 2024b; Nguyen and Wong, 2023) (covered285

in more detail in subsection 4.2). Another factor of286

data organization, the number of examples, is cov-287

ered in section 5. Additionally, as we focus on the288

demonstrations themselves, the impact of prompt289

template is outside of the scope of our discussion.290

In the following subsection, we discuss mitigation291

strategies for sensitivity to example organization, 292

with a particular focus on ordering. 293

4.1.1 Mitigating Ordering Sensitivity 294

Approaches to mitigating sensitivity to ordering 295

can be categorized as: 1) identifying a good or- 296

der of selected examples, 2) selecting examples 297

simultaneously with their order, and 3) selecting 298

examples with lower variance across permutations. 299

Select-then-Organize: Identifying an Effective 300

Ordering. When selecting examples based on 301

their similarity to the test input, one practice is to 302

sort the examples in ascending order of similarity, 303

with the most similar example the most proximal 304

to the test input (Ye et al., 2023a; Rubin et al., 305

2022). Complexity, as measured by LLM perplex- 306

ity, is also effective for ordering similar examples 307

to the test input, from least to most complex in a 308

curriculum learning framework (Liu et al., 2024d) 309

Alternatively, Kumar and Talukdar (2021) use a 310

genetic algorithm to search for a good permutation 311

of demonstrations. 312

Concepts from information theory have also 313

been effective to find optimal example orderings. 314

Lu et al. (2022) propose local and global entropy 315

metrics for demonstration reordering. Wu et al. 316

(2023) propose an information-theory-driven rank- 317

ing algorithm and find the best subset organization 318

based on the codelength to compress and transmit 319

label y given test input x and organization c. Guo 320

et al. (2024) first filter candidate orderings using 321

a content-free (Zhao et al., 2021) entropy metric, 322

then select an order that maximizes the output in- 323

fluence of each test instance. 324

Select-and-Organize: Selecting Examples with 325

Their Order. Approaches that focus on reorder- 326

ing examples may fail depending on the selected 327

examples. Zhang et al. (2022) demonstrate that on 328

TREC (Voorhees and Tice, 2000), even the best per- 329

forming permutation of k = 4 examples (4! = 24 330

permutations) performs below a random baseline 331

on 9 out of 30 selected example sets. 332

Sequential example selection can identify a good 333

selection and permutation of examples. Ma et al. 334

(2023) sequentially select a permutation of exam- 335

ples using entropy as a measure of predictive bias 336

over labels, where higher entropy correlates with 337

higher accuracy. Zhang et al. (2022) propose ac- 338

tive example selection and use reinforcement learn- 339

ing to optimize a policy for sequential data selec- 340

tion and annotation. Liu et al. (2024a) sequen- 341
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tially select examples and score candidate exam-342

ple sequences using LLM feedback. These meth-343

ods also increase stability across permutations (Liu344

et al., 2024a) and different unlabeled example pools345

(Zhang et al., 2022).346

Selecting Stable Subsets. Rather than select-347

and-organize or select-then-organize paradigms,348

an alternative approach is to identify data subsets349

to sample from that are more robust to different350

orderings. Chang and Jia (2023) focus specifically351

on identifying stable data subsets to sample from,352

where stability is defined as having higher aver-353

age and worst-case accuracy compared to sampling354

from the full training set. They propose two meth-355

ods to find stable subsets: scoring each example356

by the average validation accuracy when combined357

with random examples (inspired by Data Shapley358

(Ghorbani and Zou, 2019)) and scoring each ex-359

ample based on the associated weights of a linear360

regression model fit to predict the LLM’s output361

based on which example is present at each index in362

the prompt.363

Zhao et al. (2021) suggested that instability and364

sensitivity to data organization arises from biases365

in models towards predicting certain answers. In-366

terestingly, however, balanced labels do not consis-367

tently lead to greater performance or less variance368

across permutations than unbalanced labels (Zhang369

et al., 2022). We cover data biases, including label370

biases, in more detail in the following section.371

4.2 Data Biases372

In this section, we address two questions: 1) how373

do data biases impact the robustness and perfor-374

mance of ICL, and 2) how can negative impacts375

from data biases be mitigated?376

4.2.1 Types of Data Biases377

Based on the current literature, we identify and dis-378

cuss two categories of data biases: shortcut learn-379

ing and label biases.380

Shortcut learning. Features learned by LLMs381

may be semantically meaningful (i.e. robust) or382

related to biases and spuriously correlated label383

mappings (non-robust) (Du et al., 2023). The learn-384

ing of these features has been termed “shortcut385

learning” as it pertains to the model learning se-386

mantically irrelevant features that may not relate to387

the underlying task. While most previous studies388

look at settings with weight updates, recent works389

have demonstrated that LLMs can also learn short- 390

cut features in the context window. 391

Token-level shortcut features learnable from 392

demonstrations include letters, symbols, common 393

words, rare words, and sentences (i.e. sequences 394

of tokens) (Tang et al., 2023). At a higher level, 395

features such as length (Schoch and Ji, 2025), text 396

styles (Tang et al., 2023), and concepts (e.g. the 397

concept “food” being spuriously correlated with 398

a specific label) (Zhou et al., 2024c) have also 399

been shown to be learnable from demonstrations. 400

Tang et al. (2023) show there is a positional com- 401

ponent in shortcut learning, where LLMs are par- 402

ticularly biased towards shortcuts placed at the end 403

of prompts. 404

In addition to learning shortcut features from 405

demonstrations, LLMs can exhibit shortcut behav- 406

iors on in-context demonstrations. Sun et al. (2024) 407

show that LLMs can utilize reasoning shortcuts 408

such as negation and word overlap in in-context set- 409

tings. LLMs can also exhibit a tendency to instead 410

copy answers from the exemplars, termed copy 411

bias, rather than learning an underlying pattern in 412

tasks that require novel responses (e.g. counting 413

vowels) (Ali et al., 2024). Si et al. (2023) use un- 414

derspecified demonstrations (where two features 415

such as sentiment and topic are equally predictive 416

of the label) to show that LLMs can exhibit feature 417

bias, where the model is biased towards using one 418

feature over the other. Jang et al. (2024) identified 419

demonstration bias as the reliance of LLMs on se- 420

mantic priors rather than learning new input-label 421

relationships (discussed in more detail in section 5). 422

Label biases. In its simplest form, label bias 423

refers to an undesirable behavior where a LLM pre- 424

dicts certain labels over others. Reif and Schwartz 425

(2024) defined two measures to quantify label bias: 426

relative standard deviation of class-wise accuracy 427

(Croce et al., 2021; Benz et al., 2021), which is 428

defined as the standard deviation of class-wise ac- 429

curacy divided by the mean overall accuracy, and 430

BiasScore, which is defined as the total variation 431

distance between the estimated model output distri- 432

bution and the uniform distribution over labels. 433

LLMs can acquire label biases through pretrain- 434

ing data and in-context demonstrations. Label bias 435

acquired during pretraining has been termed vanilla 436

label bias (Fei et al., 2023) and common token bias 437

(Zhao et al., 2021). It can be thought of as the 438

uncontextual preference of the model to predicting 439

certain labels or answers, and may relate to the 440
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pretraining term frequencies (Fei et al., 2023). On441

multiple choice datasets, LLMs can also exhibit442

selection bias where the LLM exhibits a preference443

to select specific option IDs as answers (Zheng444

et al., 2024). Fei et al. (2023) also identify a fur-445

ther form of label bias that can be acquired during446

pretraining, domain-label bias, where the model447

relies on prior knowledge of the task when making448

predictions, based on learned associations between449

words and labels in pretraining.450

The label bias acquired from demonstrations has451

been termed context-label bias (Fei et al., 2023).452

Both the distribution and position of labels in the453

demonstration set can bias outputs in ICL (Zhao454

et al., 2021). Majority label bias refers to the ten-455

dency of LLMs to predict labels that are seen fre-456

quently in the in-context examples, i.e. the distri-457

bution of in-context labels is skewed (Zhao et al.,458

2021; Gupta et al., 2023a). Recency bias occurs459

when the LLM is biased towards predicting labels460

seen at the end of the prompt (Zhao et al., 2021).461

Nguyen and Wong (2023) used influence to con-462

firm recency bias, and Li et al. (2024b) demon-463

strated label recency bias in long-context LLMs.464

Notably, label recency bias has some connection465

to Tang et al. (2023) who found that LLMs were466

biased towards shortcut trigger placed at the end467

of prompts. While many of these works focus on468

classification tasks, Gao et al. (2024) extend the469

discussion to generation tasks, finding that label470

noise in demonstrations degrades ICL performance471

on generation tasks (i.e. noisy annotations on text472

generation tasks hurts performance).473

While biases are generally problematic for per-474

formance and generalization, the presence of bi-475

ases may also relate to observable robustness issues476

across different ICL configurations. (Zhao et al.,477

2021) suggested that label biases can cause high478

performance variance (i.e. instability) across differ-479

ent training examples, permutations, and prompt480

formats. Label bias also obscures sensitivity in ICL,481

yet sensitivity is important to quantify as predic-482

tions sensitive to perturbation are less likely to be483

correct (Chen et al., 2023b). In the next section, we484

discuss techniques to mitigate various data biases.485

4.2.2 Mitigating Data Biases486

In this section, we discuss methods that have been487

used to mitigate data biases. Notably, as data biases488

can lead to sensitivity to data organization, mitiga-489

tion methods that address label biases often further490

address sensitivity to data organization.491

One of the primary methods of mitigating la- 492

bel biases lies in calibrating the model’s output 493

distribution (i.e. shifting the decision boundary) 494

using an estimated bias prior p̂ = p(y | C), 495

where y 2 Y denotes the label set and C denotes 496

the context. Zhao et al. (2021) propose to esti- 497

mate this prior using a content-free input. Using 498

p̂ = p(y | [N/A], C), they define a calibration ma- 499

trix W = diag(p̂)�1 and transform uncalibrated 500

scores using Wp(y | x,C). This effectively shifts 501

the output distribution so there is a uniform distri- 502

bution over labels when using a content-free input. 503

Fei et al. (2023) suggest that this cannot address 504

“domain-label” biases arising from word-label as- 505

sociations of the task learned during pretraining. 506

They propose to use random in-domain words 507

rather than content-free inputs and averaging over 508

M times, p̂ = 1
M

PM
j=1 p(y | [randomi.d.]j , C). 509

They shift the output distribution by dividing by 510

the prior, 511

ŷi = argmaxy2Y
p(y | xi, C)

p̂
. (1) 512

Several works have suggested that methods us- 513

ing heuristics such as content-free or random in- 514

domain inputs are too simplistic and may introduce 515

new bias, and propose alternatives using the test 516

inputs (Zhou et al., 2024a), generated sequences 517

(Jiang et al., 2023), and in-context demonstrations 518

(Reif and Schwartz, 2024). Zhou et al. (2024a) 519

propose to directly use batches of M unlabeled 520

test data, p̂ = p(y | C)j = Ex⇠P (x)

h
p(y = yj | 521

x,C)
i
⇡ 1

M

PM
i=1 p(y = yj | x(i), C)8yj 2 Y 522

and calibrate the output probability with Equation 1. 523

This is essentially shifting the decision boundary 524

by the mean for each class and effectively aligns 525

the score distribution to the estimated class mean 526

to reduce any impact of label biases. Jiang et al. 527

(2023) use the generative capabilities of LLMs 528

to estimate the in-context label marginal using 529

Monte Carlo sampling of generated sequences with 530

p̂ = 1
L

PL
l=1 pLM

⇣
T (y) | D(D⇡

t ) � T (xl)
⌘

, 531

where xl is a generated sequence sampled from 532

pLM

⇣
T (y) | D(D⇡

t )
⌘

. This value is then plugged 533

back into Equation 1. Reif and Schwartz (2024) ob- 534

tain output probabilities pi(y) for each in-context 535

example using a leave-one-out method. They then 536

average the output probabilities for each label 537

and obtain p̂ using the mean of the intra-label 538

averages p̂(y) = 1
Y

P
l2Y

⇣
1

|Dl|
P

yi2Dl
pi(y)

⌘
, 539
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where Dl = {pi | yi = l}. Calibration param-540

eters are then computed as in (Zhao et al., 2021).541

Jang et al. (2024) similarly estimate the semantic542

prior on labels using a leave-one-out method on the543

demonstrations that additionally incorporates an544

estimate of the word-by-word semantic distribution545

using random shuffling (and use Equation 1). Esti-546

mation of bias priors has also shown effective for547

mitigating selection bias for option IDs in multiple548

choice datasets (Zheng et al., 2024).549

Alternatively, some calibration methods adopt550

statistical models to calibrate the output distribu-551

tion. Han et al. (2023b) use a Gaussian Mixture552

Model to learn a robust decision boundary, and Nie553

et al. (2022) augment predictions with a k-nearest-554

neighbor classifier over a datastore.555

Rather than calibrating the model output distribu-556

tion externally, other works aim to calibrate the in-557

ternal mechanisms of the model. Zhao et al. (2024)558

add noise to the model parameters to minimize559

the impact of pretrained token and label biases.560

To calibrate the model’s prediction bias, they per-561

turb model parameters using random noise sampled562

from a normal distribution N (0,�2) with intensity563

hyperparameter �. This allows interpolation be-564

tween each parameter ✓i and the noise matrix using565

✓0i = (1 � �)✓i + �N (0,�2). Other works aim566

to identify and mitigate components responsible567

for the bias. Zhou et al. (2024b) showed that label568

biases can stem from biased behaviors of attention569

heads and feed-forward network vectors and miti-570

gated their impact via masking. Ali et al. (2024) use571

Integrated Gradients (Sundararajan et al., 2017) to572

identify neurons responsible for copy bias and mit-573

igate their impact via pruning. The pruned models574

perform better and also lead to better task vectors575

(Hendel et al., 2023), indicating that bias neurons576

can interfere with the model’s ability to learn the577

underlying task.578

The design of in-context demonstrations and579

prompts can also be used to mitigate shortcut be-580

haviors, such as designing prompts to reduce re-581

liance on negation and overlap on reasoning tasks582

(Sun et al., 2024), using in-context demonstrations583

to mitigate length biases from fine-tuned models584

(Schoch and Ji, 2025), and using semantically-585

relevant labels to mitigate feature biases (Si et al.,586

2023). On generation tasks, noisy annotations can587

be identified and replaced with their nearest neigh-588

bors that are likely to be clean, using a perplexity-589

based method (Gao et al., 2024).590

5 The Debatable: Open Questions in ICL 591

In this section, we discuss data qualities in ICL 592

that have mixed results (ground truth labels, input 593

length, number of examples) as well as the relation- 594

ship between ICL demonstrations and the underly- 595

ing model (model size, pretraining data). Within 596

this discussion, we include some open questions. 597

Ground Truth Labels. Some work has sug- 598

gested that correct input-label pairings have mini- 599

mal impact on ICL performance (Min et al., 2022). 600

However, other works have suggested that the im- 601

portance of ground truth labels is dependent on the 602

task and task difficulty (Madaan and Yazdanbakhsh, 603

2023; Yoo et al., 2022), experimental configuration 604

(Yoo et al., 2022), and model size (Pan et al., 2023; 605

Wei et al., 2024). While some work has begun 606

to analyze the mechanisms responsible for how 607

LLMs utilize label information (Wang et al., 2023) 608

and the influence of semantic priors (Pan et al., 609

2023), the role of ground truth labels (and underly- 610

ing mechanisms) in in-context learning remains an 611

open research area. 612

Model Size. Increasing the size of models can 613

increase the potential performance gains from in- 614

context learning (Milios et al., 2023; Lu et al., 615

2022). However, it can also increase the poten- 616

tial for robustness issues stemming from the in- 617

context demonstrations. This includes vulnerability 618

to shortcut features (Tang et al., 2023; Schoch and 619

Ji, 2025), input noise (Shi et al., 2023b), and label 620

noise (Pan et al., 2023; Wei et al., 2024; Shi et al., 621

2023b) in the demonstrations. This underscores 622

an important direction in accounting for potential 623

trade-offs between performance and robustness un- 624

der ICL settings with respect to model size. Some 625

works posit that the vulnerability to noise may arise 626

from the fact that larger models cover more hidden 627

features whereas smaller models emphasize more 628

hidden features (Shi et al., 2023b), or from the 629

ability of larger models to override their pretrained 630

priors in comparison to smaller models (Pan et al., 631

2023; Wei et al., 2024). Other works, however, 632

have shown promise for smaller models to override 633

semantic priors and learn new input-label mappings 634

(Kossen et al., 2024; Jang et al., 2024). 635

Input Length. The impact of input length on 636

ICL performance is not currently well-understood. 637

Chang and Jia (2023) did not find a correlation be- 638

tween good examples selected by their method and 639
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sequence length, other than a small negative corre-640

lation when sequence length is very long. Length641

information, however, can be learned by the model642

in-context (Schoch and Ji, 2025). Some other stud-643

ies have incorporated length into their methods644

of analysis and label bias mitigation. Fei et al.645

(2023) calibrate output distributions using random646

in-domain word sequences of the average input text647

length. Min et al. (2022) selected examples with648

similar lengths to the test inputs in their analysis of649

ICL. However, it is unclear whether similar length650

to test inputs is important given the absence of re-651

sults with dissimilar or otherwise varied lengths.652

Number of Examples. There are currently a653

number of conflicting results regarding the number654

of examples to use for ICL. Some works have sug-655

gested that learning with few demonstrations out-656

performs zero-shot settings (Min et al., 2022), yet657

other work has shown this may not generalize to all658

datasets and models (Brown et al., 2020; Xie et al.,659

2022; Lin and Lee, 2024). Further, some works660

show conflicting results on performance plateaus.661

Wang et al. (2024) found performance plateaus at662

k = 4 under their LLM-R framework, whereas Min663

et al. (2022) found performance plateaus occurring664

at k � 8. They further suggested that aspects im-665

portant for ICL such as the input distribution, label666

space, and input-output mapping format are eas-667

ily recoverable from few examples, whereas larger668

amounts of data (such as in fine-tuning settings) are669

required to supervise input-label correspondence670

(Min et al., 2022).671

The performance plateaus at k � 8 (Min et al.,672

2022), however, may be dependent on the spe-673

cific organization (selection and order) of exam-674

ples. Wu et al. (2023) observed similar plateaus675

at k = 8 when using a random baseline, but un-676

der their self-adaptive method for selecting a good677

organization of demonstrations, performance con-678

sistently increased from k = {0, 1, ..., 32}. Lu et al.679

(2022) similarly observed performance increases680

using k = {1, 2, ..., 32}, and further underscored681

the importance of ordering by noting that increas-682

ing the number of examples does not decrease the683

variance across permutations. Beyond sensitivity to684

ordering, Schoch and Ji (2025) demonstrated that685

increasing the number of examples can increase686

the sensitivity of the model to data biases in the687

demonstrations.688

There are also task-specific considerations in the689

benefit or risk of increasing the number of exam-690

ples. On reasoning tasks, Chen et al. (2023a) also 691

showed that one example can outperform settings 692

with more examples due to interference and spuri- 693

ous correlations that can arise between examples. 694

On text generation tasks, Gao et al. (2024) showed 695

that increasing the number of examples in the pres- 696

ence of noisy annotations can degrade performance, 697

even when using selection methods such as top-k. 698

Pretraining Data. The pretraining data distribu- 699

tion is impactful on ICL learnability (Wies et al., 700

2023). Properties that have been identified as bene- 701

ficial for the emergence of ICL include burstiness, 702

a large number of rarely occurring classes (Chan 703

et al., 2022), and diverse tasks (Kirsch et al., 2022; 704

Yadlowsky et al., 2023; Raventós et al., 2024). 705

While task diversity is important, in few-shot ICL 706

settings pretraining data does not necessarily re- 707

quire domain relevance to the downstream task 708

(Han et al., 2023a; Shin et al., 2022). 709

The pretraining data distribution can also im- 710

pact the model’s performance on different test data 711

in-context. Pretraining label and token term fre- 712

quencies can introduce bias into the model’s output 713

distribution (Zhao et al., 2021). Other work has 714

demonstrated positive correlations between term 715

frequencies and ICL performance on numerical rea- 716

soning tasks (Razeghi et al., 2022) and QA tasks 717

(Kandpal et al., 2023). For models where the pre- 718

training data is unknown, this can make the eval- 719

uation of ICL performance difficult to interpret 720

(Razeghi et al., 2022). 721

6 Discussion & Conclusion 722

In this survey, we gave an overview on the relation- 723

ship between data and ICL. Beyond the open issues 724

raised in section 5, there are several important di- 725

rections for data-centric ICL research. Notably, 726

much of the current work on understanding data 727

impacts in ICL are on reasoning and classification 728

tasks. Extending our understanding on generation 729

tasks (Gao et al., 2024), low-resource tasks (Patel 730

et al., 2022), and long-context settings (Li et al., 731

2024c; Liu et al., 2024c; Bertsch et al., 2024; Hao 732

et al., 2022; Li et al., 2023a; Agarwal et al., 2024) 733

would greatly enrich the discussion. Additionally, 734

a number of different theoretical interpretations of 735

ICL have been proposed (Xie et al., 2022; Dai et al., 736

2023), and understanding ICL data through these 737

lenses could serve as an interesting future direction. 738
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7 Limitations739

In this work, we aimed to provide a comprehensive,740

data-centric overview of the ICL literature. While741

we made every effort to include all of the relevant742

works, we may have overlooked some valuable743

contributions given the extensive and rapidly pro-744

gressing state of ICL research. Additionally, to745

realistically constrain the scope of our survey, we746

note several areas which are outside of the scope747

of the current work. Specifically, potential data-748

centric ICL works with domain-specific challenges749

were outside of the scope of the current work, as750

well as more extensive discussion of long-context751

LLMs and many-shot ICL settings. As an addi-752

tional constraint on scope, we did not include works753

on prompt template design. However, we acknowl-754

edge that the prompt template is an important de-755

sign component that interacts with the ICL demon-756

strations. We leave a survey on prompt template757

design to future work.758
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Figure 3: Our data-centric taxonomy of ICL.
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