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ABSTRACT

Dynamic graph representation learning under distribution shifts has drawn an in-
creasing amount of attention in the research community, given its wide applicability
in real-world scenarios. Existing methods typically employ a fixed-architecture
design to extract invariant patterns. However, there may exist evolving distribution
shifts in dynamic graphs, leading to suboptimal performance of fixed-architecture
designs. To address this issue, we propose a novel adaptive-architecture design to
handle evolving distribution shifts over time, to the best of our knowledge, for the
first time. The proposed adaptive-architecture design introduces an adaptive mix-
ture of architecture experts to capture invariant patterns under evolving distribution
shifts, which imposes three challenges: 1) How to detect and characterize evolv-
ing distribution shifts to inform architectural decisions; 2) How to dynamically
route different expert architectures to handle varying distribution characteristics; 3)
How to ensure that the adaptive mixture of experts effectively discovers invariant
patterns. To solve these challenges, we propose a novel Adaptive Mixture of
Disentangled Experts (AdaMix) model to adaptively route architecture experts
to varying distribution shifts and jointly learn spatio-temporal invariant patterns.
Specifically, we propose a spatio-temporal distribution detector to infer evolving
distribution shifts by jointly leveraging historical and current information. Building
upon this, we develop a prototype-guided mixture of disentangled experts that
adaptively routes experts with disentangled factors to different distribution shifts.
Finally, we design a distribution-aware intervention mechanism that discovers
invariant patterns based on expert selection of nodes. Extensive experiments on
both synthetic and real-world datasets demonstrate that our proposed (AdaMix)
model significantly outperforms state-of-the-art baselines.

1 INTRODUCTION

Dynamic graph representation learning under distribution shifts (Zhang et al., 2022; 2023; Yuan
et al., 2023; Yang et al., 2024) aims to tackle distribution shifts and ensure effective generalization
for dynamic graphs, whose structures and features evolve over time (Li et al., 2019; You et al., 2019;
Wu et al., 2020). Existing methods for dynamic graphs under distribution shifts typically attempt
to extract invariant patterns, i.e., structures and features whose predictive abilities remain stable
across shifts. For example, DIDA (Zhang et al., 2022) employs a disentangled spatio-temporal graph
attention network to encode node trajectories into invariant and variant representations, and then
applies random interventions on the variant part to force predictions to rely on the invariant patterns.

However, existing methods typically rely on fixed-architecture designs to extract invariant patterns,
overlooking that distribution shifts in dynamic graphs are continuously evolving and may require
adaptive architectures over time to extract optimal invariant patterns. For instance, in academic
collaboration networks, the distribution of research topics may evolve with certain regularities.
Typical phenomena include the growth in the number of publications (expanding graph size), the
increasing density of citation relationships (rising node degrees), and the diversification of research
fields (increasing feature diversity). This example illustrates a broader phenomenon where the
characteristics of distribution shifts themselves evolve, exemplifying common distribution shifts in
graphs (Gui et al., 2022; Li et al., 2025). Furthermore, the evolution of these distribution shifts may
require changes in architectural requirements over time, as the required architectures are inherently
shaped by the underlying data distributions (Niu et al., 2021; Wu et al., 2024).
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In this paper, we propose a novel adaptive-architecture design to address evolving distribution shifts
in dynamic graphs, leveraging a mixture of experts (MoE) that dynamically adjusts the model
architecture over time to capture invariant patterns more effectively. This design to handle evolving
distribution shifts remains largely unexplored in the literature, and is highly non-trivial, presenting
several key challenges: 1) How to detect and characterize evolving distribution shifts to inform
architectural decisions? 2) How to dynamically route different expert architectures to handle varying
distribution characteristics? 3) How to ensure that the adaptive mixture of experts effectively discovers
invariant patterns?

To address these challenges, we propose a novel Adaptive Mixture of Disentangled Experts (AdaMix)
method to adaptively route expert networks to different distribution shifts for jointly learning spatio-
temporal invariant patterns. Specifically, we propose a spatio-temporal distribution detector to infer
evolving distribution shifts based on historical and current information, which includes a memory
vector for storing historical distribution information. Then, we develop a prototype-guided mixture
of disentangled experts that adaptively routes experts to varying distribution shifts. Each expert
is associated with a disentangled prototype that captures a distinct factor of variation. Finally, we
design a distribution-aware intervention mechanism that encourages nodes to be intervened upon
by others from different distributions, leveraging expert-based interventions to discover invariant
patterns. Extensive experiments on real-world and synthetic datasets demonstrate the effectiveness of
our proposed method, outperforming state-of-the-art baselines. The contributions of this paper are
summarized as follows:

• We propose a novel adaptive-architecture design—Adaptive Mixture of Disentangled Experts
(AdaMix)—to handle evolving distribution shifts in dynamic graphs, where the adaptive-
architecture is defined relative to the underlying data distribution. To the best of our knowledge,
this is the first work to address dynamic graph distribution shifts from an architectural perspective.

• We observe that different timestamps under evolving distribution shifts may require distinct
architecture designs, and further provide a theoretical analysis demonstrating the advantages
of adaptive architectures over fixed ones in such cases.

• We propose three key components to address adaptive mixture of experts for dynamic graph
out-of-distribution generalization, i) spatio-temporal distribution detector; ii) prototype-guided
disentangled experts; and iii) distribution-aware intervention mechanism.

• We conduct extensive experiments on real-world and synthetic datasets, demonstrating the effec-
tiveness of our proposed method, which outperforms state-of-the-art baselines.

2 PROBLEM FORMULATION AND NOTATIONS

In this section, we present the fundamental concepts and notations used throughout the paper, focusing
on dynamic graphs and distribution shifts within them. Random variables are denoted using bold
letters (e.g., G), while their realizations are denoted using italic letters (e.g., G).

Dynamic Graphs. We denote a dynamic graph as G = {Gt}Tt=1, where T denotes the total number
of timestamps. Each snapshot Gt = (Vt, Et) corresponds to the graph at time t, with node set
Vt and edge set Et. For simplicity, a snapshot can also be expressed as Gt = (Xt,At), where
Xt is the node feature matrix and At is the adjacency matrix. The prediction task on dynamic
graphs aims to leverage historical snapshots to make future predictions, i.e., p(Yt|G1:t), where
G1:t = {G1, . . . ,Gt} represents the graph trajectory up to time t, and Yt denotes the target labels
(e.g., node properties or future links) at time t+ 1. Following (Zhang et al., 2022), the distribution of
the entire trajectory can be factorized into ego-graph trajectories: p(Yt | G1:t) =

∏
v p(y

t
v | G1:t

v ).

Distribution Shifts in Dynamic Graphs. The standard learning objective is to optimize a predictor
under empirical risk minimization (ERM): minθ E(yt

v,G1:t
v )∼ptr(yt

v,G
1:t
v ) L(fθ(G1:t

v ), ytv), where fθ
is a parameterized dynamic graph neural network. However, under distribution shifts, the predic-
tor trained on the training distribution ptr may not generalize to the test distribution pte, since
ptr(Y

t,G1:t) ̸= pte(Y
t,G1:t). Following the OOD generalization literature (Arjovsky et al., 2019;

Wu et al., 2022b; Gagnon-Audet et al., 2022; Zhang et al., 2022), we adopt the following assumption
regarding invariant and variant patterns under distribution shifts in dynamic graphs:
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Assumption 1. For a given task, suppose there exists a predictor f(·) such that, for any distribution,
each sample (G1:t

v , ytv) can be decomposed into two parts: an invariant pattern P t
I (v) and a variant

pattern P t
V (v). These patterns are required to satisfy: (1) the invariant pattern alone is sufficient for

prediction, i.e., ytv = f(P t
I (v)) + ϵ, where ϵ denotes noise; (2) the invariant pattern can be obtained

by excluding the variant pattern from the observed trajectory, i.e., P t
I (v) = G1:t

v \P t
V (v); (3) the effect

of the variant pattern on the label is fully shielded by the invariant pattern, i.e., yt
v ⊥ Pt

V (v) | Pt
I(v).

3 MOTIVATION

In this section, we illustrate the motivation of our proposed method. We begin by introducing the
phenomenon of evolving distribution shifts in dynamic graphs, and then discuss the limitations of
existing methods from an architectural perspective.

0 2 4 6 8 10 12 14
Timestamp

1000

2000

3000

4000

5000

Nu
m

be
r o

f N
od

es

Number of Nodes
Average Degree

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e 

De
gr

ee

Figure 1: Visualizations of the number of nodes
and average degree in each graph snapshot.

Evolving Distribution Shifts. In real-world
dynamic graphs, the underlying data distribution
evolves continuously over time, i.e., p(Gt) ̸=
p(Gt′) for t ̸= t′. To empirically validate this
phenomenon, we analyze several dynamic graph
datasets. As illustrated in Figure 1, on the Col-
lab academic collaboration network, key graph
statistics such as the number of nodes and the
average node degree exhibit a continuous up-
ward trend over time. This evolution reflects
typical forms of graph distribution shifts (Gui
et al., 2022; Li et al., 2025). Importantly, the
presence of some trends implies that historical
trajectories contain valuable signals for inferring
the current distribution. Furthermore, because
the graph distribution continuously evolves, the joint distribution of labels and historical graph data
also changes accordingly, i.e., p(Yt,G1:t) ̸= p(Yt′ ,G1:t′). Additional analyses on other datasets
are provided in Appendix C.3.
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Figure 2: The solid lines indicate the average AUC
across timestamps, with the shaded region repre-
senting the standard deviation.

Architectures Impact. Existing methods for
dynamic graphs typically rely on fixed architec-
tures to extract invariant patterns. However, the
optimal architecture may be inherently tied to
the underlying data distribution (Niu et al., 2021;
Wu et al., 2024). When the data distribution
continuously evolves, as is the case in dynamic
graphs, a single fixed architecture may become
suboptimal over time. We hypothesize that dif-
ferent timestamps under evolving distribution
shifts may require distinct architecture designs.
To validate this hypothesis, we evaluate two
GNN architectures GAT (Veličković et al., 2017)
and GATv2 (Brody et al., 2021), built upon a dy-
namic graph OOD method SILD (Zhang et al.,
2023). Figure 2 presents the performance of each architecture at various timestamps on the Collab
dataset. As can be seen, GAT and GATv2 alternately achieve superior performance over different
time periods, supporting that different timestamps may require distinct architectures. We further
provide a theoretical discussion showing that, under the invariance constraint yt

v ⊥ Pt
V (v) | Pt

I(v)
specified in Assumption 1, when different timestamps require distinct architecture designs, adaptive
architectures can capture invariant and variant patterns more effectively than any fixed architecture.
We formalize this in the following proposition, with the proof deferred to Appendix D.2.

Proposition 1. Under the invariance constraint yt
v ⊥ Pt

V (v) | Pt
I(v), if there exist two timestamps,

t1 and t2, for which the optimal architectures differ when tasked with discovering invariant patterns

3
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Figure 3: Overview framework of AdaMix. Given a snapshot at time t, the spatio-temporal dis-
tribution detector employs Router GNN to infer the current distribution shift based on the current
snapshot and historical information stored in the memory vector, producing a routing vector. In the
prototype-guided disentangled experts module, the routing vector is used to compute the weights of
different experts by measuring the similarity between the routing vector and the experts’ prototypes.
The experts’ prototypes are simultaneously disentangled to ensure minimal similarity, and the ex-
pert outputs are combined according to their weights to obtain the Mixture-of-Experts (MoE) node
embeddings. Finally, in the distribution-aware intervention mechanism, all MoE node embeddings
prior to time t are decoupled into invariant and variant patterns for the current time t, and nodes are
selected for intervention training based on the expert weights.

at t1 and t2, then an adaptive architecture can capture invariant patterns Pt
I(v) and variant patterns

Pt
V (v) more effectively than fixed architecture.

4 METHOD

In this section, we propose Adaptive Mixture of Disentangled Experts (AdaMix) for dynamic graph
OOD generalization. The method comprises three key components: prototype-guided disentangled
experts, a spatio-temporal distribution detector, and a distribution-aware intervention mechanism.
The overall framework of AdaMix is depicted in Figure 3.

4.1 PROTOTYPE-GUIDED DISENTANGLED EXPERTS

To route experts adaptively under evolving distribution shifts, it is crucial that each expert specializes
in a distinct factor of variation in the data distribution, thereby ensuring alignment with the underlying
distribution. However, in standard MoE frameworks, experts operate independently and lack explicit
relational modeling, failing to encourage that each expert corresponds to a meaningful or disentangled
factor of variation. To address this, we propose prototype-guided disentangled experts, which
associate each expert with a corresponding prototype. These prototypes are mutually disentangled,
capturing distinct factors of variation, and act as anchors to guide the routing process.

Disentangled Experts. We adopt K independent GNN architectures as experts, such as
GAT (Veličković et al., 2017) and GCN (Kipf & Welling, 2016), denoted by {GNNk}Kk=1. Each
expert encodes the input graph independently, generating node embeddings:

Ht
k = GNNk

(
Xt,At

)
, (1)

where Ht
k = {ht

v,k | v ∈ V} ∈ R|V|×dh denotes the node representation matrix produced by expert k
at time t, and Xt and At are the node feature matrix and adjacency matrix at time t, respectively, and
dh is the hidden dimension. We utilize a set of learnable prototypes {pk}Kk=1 for K experts, where
each prototype pk ∈ Rdh represents a distinct factor of variation. During training, we encourage

4
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each expert to specialize in capturing information associated with its corresponding prototype. To
this end, we introduce a similarity loss that promotes disentanglement among prototypes:

Ldis =

K∑
k=1

∑
k′ ̸=k

pk · pk′

∥pk∥2 ∥pk′∥2
. (2)

Minimizing this loss enforces mutual dissimilarity among prototypes, thereby fostering disentangle-
ment across experts and encouraging each to develop a distinct area of specialization.

Prototype-guided Routing. Let rtv denote the routing vector for node v at time t, which captures
the current distribution (introduced in the next section). To route experts in alignment with the
underlying distribution, we calculate the similarity between the routing vector rtv and the prototypes
{pk}Kk=1 associated with each expert. The resulting similarity scores are then transformed into expert
weights αt

v,k via a softmax:

αt
v,k =

exp(α̂t
v,k)∑K

k′=1 exp(α̂
t
v,k′)

, α̂t
v,k =

rtv · pk

∥pk∥2
. (3)

When the routing vector rtv is more similar to the prototype of a particular expert, that expert is
assigned a higher weight. The outputs of all experts are then aggregated to obtain the node embedding
ztv for each node v at time t:

ztv =

K∑
k=1

αt
v,k h

t
v,k. (4)

MoE node embeddings Z = {ztv | v ∈ V, t = 1, . . . , T} ∈ RT×|V|×dh are subsequently processed
to extract both invariant and variant patterns.

4.2 SPATIO-TEMPORAL DISTRIBUTION DETECTOR.

To infer specific distribution shifts within the context of evolving distribution shifts, we propose a
spatio-temporal distribution detector that leverages both historical and current information. Specifi-
cally, our goal is to capture node-level distribution by jointly considering the current ego-graph and
historical distributional information.

Snapshot Graph Trajectories Modeling We adopt a GNNr to learn a node-level routing embed-
ding rtv for each node v at time t from its ego-graph trajectory Gt

v = (Vt
v, Et

v), which encodes the
structural and feature information of the current snapshot. Formally,

rtv = GNNr(Vt
v, Et

v), Vt
v = {v} ∪ N t(v), Et

v = {(u, v) ∈ Et | u ∈ Vt}, (5)

where N t(v) = u | (u, v) ∈ Et. High-order structural information can be captured by stacking
multiple GNN layers or employing advanced architectures such as GAT (Veličković et al., 2017).
This produces the node-level routing embedding matrix Rt = {rtv | v ∈ Vt} ∈ R|V|×dh for all nodes
in the snapshot at time t.

Memory-augmented Vector. To infer the distribution from historical information, we utilize a
memory bank M = {mv | v ∈ V} ∈ R|V|×dh , which stores historical distributional information for
all nodes. For each node v, we denote the memory vector mt

v ∈ Rdh that accumulates its historical
information up to time t. At each step, the routing vector rtv is generated by GNNr, which integrates
the initial node embedding xt

v with the previous memory vector mt−1
v :

rtv = GNNr(x̃
t
v,A

t), x̃t
v = Linear

(
[xt

v∥ mt−1
v ]

)
, (6)

where x̃t
v ∈ Rdx is the combined feature of node v at time t, dx denotes the dimension of the

initial node features, ∥ denotes the node-wise concatenation operation, and Linear(·) is a linear
transformation to project the concatenated feature to the input dimension of GNNr. We then obtain
the routing weights αt

v and MoE node embeddings ztv for each node v using the prototype-guided

5
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routing mechanism described in Eq. 3 and Eq. 4, respectively. Finally, we update the memory bank
through a gate-controlled mechanism:

mt
v = gt

v ⊙ ztv +
(
1− gt

v

)
⊙mt−1

v ,gt
v = σ

(
Lineargate

(
[ztv ∥ mt−1

v ]
))

∈ [0, 1]dh , (7)

where ⊙ denotes element-wise multiplication, gt
v ∈ [0, 1]dh is a gate vector that controls the update

rate of the memory, and σ(·) is the sigmoid function. We set the initial memory vector m0
v to a zero

vector. This mechanism allows the memory to adaptively incorporate new information while retaining
relevant historical context, thereby allowing the routing vectors rtv to infer current distribution shifts
from both present and past information.

4.3 DISTRIBUTION-AWARE INTERVENTION MECHANISM

Previous dynamic graph OOD methods typically rely on randomly sampling variant patterns to
replace those of other nodes to discover invariant patterns. However, such interventions may be
inefficient when some nodes are intervened upon by others from the same distribution. To address this,
we leverage the expert weights from previous steps to distinguish nodes from different distributions
better, and we apply interventions using nodes sampled from distinct distributions.

Invariant and Variant Patterns. We first extract the invariant and variant patterns based on
MoE node embeddings Z = {ztv} ∈ RT×|V|×dh in Eq 4. To account for distribution shifts that
may be unobservable in the time domain but become apparent in the spectral domain (Zhang
et al., 2023), we apply a Fast Fourier transform (FFT) to project Z into the spectral domain. Let
Re(Z) = {Re(ztv)} ∈ RT×|V|×dh and Im(Z) = {Im(ztv)} ∈ RT×|V|×dh denote the real and
imaginary parts of the transformed embeddings, respectively. We then derive disentangled invariant
and variant spectrum masks mI and mV as follows:

mI = σ
(m
τ

)
, mV = σ

(
−m

τ

)
, m = MLP(Re(Z)∥ Im(Z)) , (8)

where σ(·) denotes the sigmoid function, τ is a temperature hyperparameter, and MLP(·) is a
multi-layer perceptron. Finally, the invariant and variant patterns ZI and ZV are obtained as follows:

ZI = IFFT (Re(Z)⊙ mI + i Im(Z)⊙mI) , ZV = IFFT (Re(Z)⊙mV + i Im(Z)⊙ mV ) ,
(9)

where IFFT(·) denotes the inverse Fast Fourier transform, and i is the imaginary unit. ZI = {ztv,I} ∈
RT×|V|×dh and ZV = {ztv,V } ∈ RT×|V|×dh represent the invariant and variant patterns for all nodes
across all timestamps, respectively.

Distribution-Aware Intervention. Since experts are assigned to nodes according to their underlying
distributions, a large difference in dominant experts between two nodes strongly suggests that they
follow different distributions. We first identify the dominant expert etv for each node based on the
routing weights αt

v,k in Eq. 3:

etv = argmax
k

αt
v,k. (10)

To ensure that nodes are intervened upon by others from distinct distributions, we intervene on nodes
by sampling other nodes with different dominant experts to replace their variant patterns. Specifically,
at each time step t, we randomly sample a set of nodes u from the invariant patterns ZI (e.g., et

′

u ),
and then replace the variant pattern of node v if its dominant expert at time t differs from that of u at
time t′(t′ ≤ t). Consequently, the invariance loss is defined as follows:

Linv = Var(L|zt
′

u,V : zt
′

u,V ∈ ZV ), (11)

s.t . L|zt
′

u,V =

N∑
v=1

l
(
fI(z

t
v,I) · (σ(zt

′

u,V ) · 1etv ̸=et′u
+ 1 · 1etv=et′u

), yt
v

)
, (12)

where fI(·) is a classifier based on invariant patterns, l(·, ·) is the cross-entropy loss, and 1at
u ̸=at

v
is

an indicator function that equals 1 if atu ̸= atv and 0 otherwise. In this way, we ensure that nodes are

6
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intervened upon by others from different distributions, thereby enhancing the effectiveness of the
intervention mechanism. Then, we calculate the final loss as follows:

L = LI + λ Linv + α Ldis , (13)
Eq. 12 Eq. 2

where LI is the empirical risk based on invariant patterns, and λ and α are hyperparameters that
balance the three loss terms. The overall training procedure of AdaMix is summarized in Algorithm 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate that our proposed method effectively
handles distribution shifts on dynamic graphs through an adaptive MoE framework. Additional
details regarding experimental settings and supplementary results are provided in the Appendix C.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on three real-world dynamic graph datasets that exhibit evolving
distribution shifts. For the task of link prediction, we use two datasets: Collab (Tang et al., 2012), an
academic collaboration network spanning papers published from 1990 to 2006, and Yelp (Sankar
et al., 2020), which contains customer reviews of businesses over a 24-month period. For both
datasets, the data is partitioned such that the test set contains different fields from those used in
training, thereby simulating a real-world distribution shift. For node classification, we use the Aminer
dataset (Tang et al., 2008; Sinha et al., 2015), a citation network covering papers published from
2001 to 2015. In addition, we employ synthetic datasets (Zhang et al., 2023) with different levels
of distribution shifts(0.4, 0.6, 0.8) to further validate the effectiveness of our method. Figures in
Appendix C.3 illustrate the evolving distribution shifts across these datasets. Additional details about
the datasets are provided in Appendix C.1.

Baselines. We compare our proposed AdaMix with three categories of baselines: (1) representative
dynamic GNNs, including GCRN (Seo et al., 2018), EGCN (Pareja et al., 2020), and DySAT (Sankar
et al., 2020); (2) general OOD generalization methods, including IRM (Arjovsky et al., 2019),
GroupDRO (Sagawa et al., 2019), and V-REx (Krueger et al., 2021); (3) static graph MoE methods,
including GMoE (Wang et al., 2023) and GraphMETRO (Wu et al., 2024); and (4) dynamic graph
OOD generalization methods, including DIDA (Zhang et al., 2022), EAGLE (Yuan et al., 2023) and
SILD (Zhang et al., 2023). To ensure that the performance gains are not merely due to introducing
specialized architectures, we replace the original architecture in SILD (Zhang et al., 2023) with the
same architecture experts used in our method for comparison, including GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), GIN (Xu et al., 2018), and GATv2 (Brody et al., 2021). More details
about the baselines are provided in Appendix C.2.

5.2 MAIN RESULTS

Real-world Datasets. Following Zhang et al. (2023), we evaluate the performance of different
methods on real-world datasets with distribution shifts split, details of which are provided in Ap-
pendix C.1. Table 1 presents the results of different methods on real-world datasets. From Table 1,
we have the following observations: (1) Dynamic graph OOD methods generally achieve better
performance than both dynamic GNNs and general OOD methods, highlighting the importance of
incorporating temporal information when addressing distribution shifts in dynamic graphs. However,
results on the Aminer dataset show that dynamic graph methods cannot guarantee optimal perfor-
mance at all time periods. For instance, when SILD employs GATv2 as its backbone, it achieves the
best performance on Aminer15 but underperforms GAT on Aminer17. This suggests that distribution
shifts may differ across time, necessitating different architectures to handle them effectively. (2) Our
proposed AdaMix achieves superior or competitive performance on most datasets, often surpassing
existing baselines. These results highlight its effectiveness in handling distribution shifts in dynamic
graphs, with the adaptive MoE framework enabling better adaptation to evolving distribution shifts.

7
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Table 1: Performance of different methods on real-world link prediction and node classification
datasets. The best results are highlighted in bold, and the second-best are underlined. For the Aminer
dataset, the year indicates the test split, e.g., ‘Aminer15’ refers to the average test accuracy in 2015.

Task Link Prediction (AUC%) Node Classification (ACC%) Avg.
Dataset Collab Yelp Aminer15 Aminer16 Aminer17
GCRN 69.72±0.45 54.68±7.59 47.96±1.12 51.33±0.62 42.93±0.71 57.27
EGCN 76.15±0.91 53.82±2.06 44.14±1.12 46.28±1.84 37.71±1.84 57.56
DySAT 76.59±0.20 66.09±1.42 48.41±0.81 49.76±0.96 42.39±0.62 63.18

IRM 75.42±0.87 56.02±16.08 48.44±0.13 50.18±0.73 42.40±0.27 59.48
VREx 76.24±0.77 66.41±1.87 48.70±0.73 49.24±0.27 42.59±0.37 63.16

GroupDRO 76.33±0.29 66.97±0.61 48.73±0.61 49.74±0.26 42.80±0.36 63.46

GMoE 56.45±0.56 72.53±15.14 49.17±1.54 50.89±1.61 43.14±0.61 58.90
GraphMETRO 57.92±0.11 45.66±10.59 50.05±0.17 52.12±1.96 42.29±1.91 50.58

DIDA 81.87±0.40 75.92±0.90 50.34±0.81 51.43±0.27 44.69±0.06 68.87
EAGLE 84.41±0.87 77.26±0.74 51.48±0.45 54.87±0.31 45.97±0.23 70.81

SILD 84.09±0.16 78.65±2.22 52.35±1.04 54.11±0.62 45.54±1.19 71.14

SILD-GCN 79.53±0.70 43.74±0.24 50.54±0.87 53.47±0.60 41.64±2.96 57.27
SILD-GAT 83.82±0.25 50.18±0.75 51.68±1.81 53.93±1.89 44.87±1.42 61.39
SILD-GIN 75.18±0.42 81.55±0.67 49.04±1.92 51.15±1.63 23.68±17.22 66.01

SILD-GATv2 83.97±0.12 47.84±1.96 52.70±1.54 54.15±0.93 43.35±3.14 60.63

AdaMix 84.85±0.39 82.65±0.87 52.95±0.70 54.58±0.20 46.50±0.63 72.95

Table 2: Performance of different methods on synthetic link prediction and node classification datasets.
The best results are highlighted in bold, and the second-best are underlined. A larger shift indicates a
higher level of distribution shift.

Dataset Link-Synthetic (AUC%) Node-Synthetic (ACC%) Avg.
Shift 0.4 0.6 0.8 0.4 0.6 0.8

GCRN 72.57±0.72 72.29±0.47 67.26±0.22 27.19±2.18 25.95±0.80 29.26±0.69 49.09
EGCN 69.00±0.53 62.70±1.14 60.13±0.89 24.01±2.29 22.75±0.96 24.98±1.32 43.93
DySAT 70.24±1.26 64.01±0.19 62.19±0.39 40.95±2.89 37.94±1.01 30.90±1.97 51.04

IRM 69.40±0.09 63.97±0.37 62.66±0.33 33.23±4.70 30.29±1.71 29.43±1.38 48.16
VREx 70.44±1.08 63.99±0.21 62.21±0.40 41.78±1.30 38.11±2.81 29.56±0.44 51.02

GroupDRO 70.30±1.23 64.05±0.21 62.13±0.35 41.35±2.19 35.74±3.93 31.03±1.24 50.77

GMoE 55.39±1.92 54.97±4.94 56.30±2.35 83.33±1.04 80.83±0.06 72.08±1.31 67.15
GraphMETRO 59.53±0.08 59.28±0.09 58.72±0.12 75.82±4.35 78.19±3.53 75.25±3.82 67.80

DIDA 85.20±0.84 82.89±0.23 72.59±3.31 43.33±7.74 39.48±7.93 28.14±3.07 58.60
EAGLE 88.32±0.61 87.29±0.71 82.30±0.75 47.03±0.10 35.84±1.05 28.50±0.16 61.55

SILD 85.95±0.18 84.69±1.18 78.01±0.71 43.62±2.74 39.78±3.56 38.64±2.76 61.78

SILD-GCN 69.43±0.19 63.16±0.12 60.64±0.08 78.59±1.00 73.21±2.62 65.93±3.51 68.49
SILD-GAT 85.97±0.15 84.69±1.11 78.01±0.61 43.15±4.21 40.15±1.95 38.51±2.09 61.75
SILD-GIN 60.73±1.01 58.99±1.31 55.22±0.80 77.89±2.12 74.65±3.38 63.36±4.09 65.14

SILD-GATv2 86.19±0.43 83.82±0.14 68.43±0.59 41.48±0.85 40.18±2.30 38.08±1.03 59.70

AdaMix 90.21±0.13 89.64±0.26 88.86±0.13 83.63±1.60 81.50±0.38 76.19±0.82 85.00

Synthetic Datasets. Table 2 reports the results on six synthetic datasets. (1) We observe that
AdaMix outperforms most baselines across the datasets, indicating that its adaptive architecture
effectively captures invariant patterns under varying levels of distribution shift. (2) As the degree
of distribution shift increases, the performance of all baselines degrades significantly. In contrast,
AdaMix shows a smaller performance drop, further demonstrating its strong ability to handle
distribution shifts. (3) The performance of SILD varies significantly when using different GNN
architectures as experts, indicating that no single architecture is optimal for all distribution shifts. In
contrast, AdaMix consistently achieves strong performance by adaptively selecting the most suitable
architectures for each node at each time step.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY
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Figure 4: Comparisons of different ablated versions of AdaMix on real-world and synthetic datasets.

To verify the effectiveness of each designed component in AdaMix , we compare different ablated
versions on each dataset: 1) w/o dis: we remove the disentanglement loss Ldis in Eq. 2 by setting
α = 0 in Eq. 13; 2) rep rou: we replace the prototype-guided routing mechanism with a simple
linear router that directly maps the routing embeddings to expert weights; 3) w/o mem: we remove
the memory-augmented mechanism by setting the memory vector always to a zero vector; 4) rep
inv: we replace the invariance loss in Eq. 12 with a random intervention mechanism that randomly
samples nodes from the invariant patterns to replace the variant patterns; 5) w/o inv: we remove the
invariance loss Linv in Eq. 12 by setting λ = 0 in Eq. 13. 6) w/o fft: we remove the FFT and IFFT
operations in Eqs. 9 when extracting invariant and variant patterns. 7) w/o mem&rou: we remove
both the memory-augmented mechanism and replace the prototype-guided routing mechanism with a
deeper linear router.

The results are shown in Figure 4. We have the following observations: i) The ablated versions w/o
dis and rep rou exhibit a significant drop and unstable performance on some datasets, indicating that
disentangled prototypes help the router better distinguish different distributions, thereby selecting the
appropriate experts. ii) The ablated version w/o mem and w/o mem&rou leads to a noticeable perfor-
mance decrease, indicating that leveraging the historical distribution information stored in memory
vectors enables better inference of the current distribution. Moreover, disentangled prototypes allow
the router to distinguish more effectively between different distributions. iii) The ablated version rep
inv and w/o inv yield suboptimal performance, demonstrating the effectiveness of the expert-based
interventions in discovering invariant patterns. iv) The ablated version w/o fft,which relies solely on
time-domain information, shows noticeable declines compared to the full model. This demonstrates
that spectral-domain invariant pattern modeling effectively captures distribution shifts that may be
unobservable in the time domain but become evident in the spectral domain.

6 RELATED WORK

Dynamic Graph Neural Networks. Dynamic graphs are pervasive in numerous real-world sce-
narios (Deng et al., 2020; Wang et al., 2021; Cai et al., 2021), ranging from social interactions and
recommendation systems to event prediction (Skarding et al., 2021; Zhu et al., 2022; Chen et al.,
2023a). One paradigm employs snapshot-based GNNs to learn node representations at each time step
and then applies temporal modules such as recurrent or attention-based models to capture temporal
evolution (Yang et al., 2021; Sun et al., 2021; Hajiramezanali et al., 2019; Seo et al., 2018). Another
paradigm integrates temporal encoding mechanisms that directly embed temporal information into
time-aware representations, which are then processed with GNNs or memory architectures (Cong
et al., 2021; Xu et al., 2020). Despite these advances, the impact of distribution shifts on dynamic
graphs has received limited attention. Some recent works (Zhang et al., 2022; Yuan et al., 2023; Yang
et al., 2024; Tieu et al., 2025) have begun to explore this area. For instance, SILD (Zhang et al.,
2023) proposes a spectral-domain method to disentangle invariant and variant spectral patterns in
dynamic graphs, thereby achieving generalization against distribution shifts (especially those that
are unobservable in the time domain). However, existing methods typically rely on a single model
architecture, which may not be optimal for handling evolving distribution shifts over time.

Graph Mixture of Experts. Mixture of experts (MoE) models have recently been applied to graph
learning to handle the diverse structures and features inherent to graph data. (Hu et al., 2021; Liu
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et al., 2023; Rumiantsev & Coates, 2024; Han et al., 2024; Yao et al., 2025; Ye et al., 2025). An MoE
architecture comprises multiple expert networks specialized for different patterns, along with a gating
network that selects or weights their outputs. For instance, GMoE (Wang et al., 2023) proposes that
each node dynamically routes to one of several information aggregation experts, each with differing
hop sizes, so as to better adapt to local graph structure in large-scale settings. Mowst (Zeng et al.,
2023) takes a different perspective, utilizing a weak MLP and a strong GNN expert, with a confidence
gate that per-node decides how much to rely on feature-only vs. structure-aware prediction. In
the context of OOD generalization, GraphMETRO (Wu et al., 2024) uses a Mixture-of-Experts
architecture to decompose complex distribution shifts into multiple components. A gating network
infers which shifts affect each graph, and each expert is trained to produce representations invariant to
its designated shift. However, these methods focus on static graphs, whereas we propose an adaptive
MoE framework for dynamic graphs, routing experts based on historical and current information to
discover invariant patterns more effectively under evolving distribution shifts.

7 CONCLUSION

In this paper, we study distribution shifts in dynamic graphs from an architectural perspective. We
propose AdaMix , a novel adaptive mixture-of-experts framework that dynamically selects the most
suitable architecture for each node at every time step based on its inferred distribution. Specifically,
AdaMix employs a spatio-temporal distribution detector to infer the underlying distribution of each
node by leveraging both historical and current information. It then incorporates a prototype-guided
disentangled experts module, which ensures that each expert specializes in a distinct factor of
variation, thereby enabling effective routing. Finally, a distribution-aware intervention mechanism
is introduced to enhance the discovery of invariant patterns by intervening nodes with others from
different distributions. Extensive experiments on both real-world and synthetic datasets demonstrate
the effectiveness of our proposed method. One limitation of our work is that we mainly focus on
node-level tasks, and we leave the exploration of graph-level tasks for future work.
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All authors of this work have adhered to the ICLR Code of Ethics. In preparing this manuscript, we
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Binwu Wang, Jiaming Ma, Pengkun Wang, Xu Wang, Yudong Zhang, Zhengyang Zhou, and Yang
Wang. Stone: A spatio-temporal ood learning framework kills both spatial and temporal shifts. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2948–2959, 2024.

Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella,
Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with explicit
diversity modeling. Advances in Neural Information Processing Systems, 36:50825–50837, 2023.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974,
2021.

Yuanchao Wang, Zhao-Rong Lai, and Tianqi Zhong. Out-of-distribution generalization for total
variation based invariant risk minimization. arXiv preprint arXiv:2502.19665, 2025.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L Hamilton. Temp: Temporal message
passing for temporal knowledge graph completion. arXiv preprint arXiv:2010.03526, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. arXiv preprint arXiv:2202.02466, 2022a.

Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
complex graph distribution shifts via mixture of aligned experts. Advances in Neural Information
Processing Systems, 37:9358–9387, 2024.

Yihan Wu, Aleksandar Bojchevski, and Heng Huang. Adversarial weight perturbation improves
generalization in graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 10417–10425, 2023.

Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. arXiv preprint arXiv:2201.12872, 2022b.

Donglin Xia, Xiao Wang, Nian Liu, and Chuan Shi. Learning invariant representations of graph
neural networks via cluster generalization. Advances in Neural Information Processing Systems,
36:45602–45613, 2023.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
tion learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, and
Junchi Yan. Rethinking cross-domain sequential recommendation under open-world assumptions.
In WWW, 2024.

Kuo Yang, Zhengyang Zhou, Qihe Huang, Limin Li, Yuxuan Liang, and Yang Wang. Improving
generalization of dynamic graph learning via environment prompt. Advances in Neural Information
Processing Systems, 37:70048–70075, 2024.

Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-time
temporal network embedding via implicit hierarchical learning in hyperbolic space. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1975–1985,
2021.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improv-
ing out-of-distribution robustness via selective augmentation. In Proceeding of the Thirty-ninth
International Conference on Machine Learning, 2022.

Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, and Kun Zhang. Empowering
graph invariance learning with deep spurious infomax. arXiv preprint arXiv:2407.11083, 2024.

Zelin Yao, Mukun Chen, Chuang Liu, Xianke Meng, Yibing Zhan, Jia Wu, Shirui Pan, Huiting Xu,
and Wenbin Hu. Da-moe: Addressing depth-sensitivity in graph-level analysis through mixture of
experts. Neural Networks, pp. 108064, 2025.

Junda Ye, Zhongbao Zhang, Li Sun, and Siqiang Luo. Mose: Unveiling structural patterns in graphs
via mixture of subgraph experts. arXiv preprint arXiv:2509.09337, 2025.

Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg, and Jure Leskovec.
Hierarchical temporal convolutional networks for dynamic recommender systems. In The world
wide web conference, pp. 2236–2246, 2019.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
Environment-aware dynamic graph learning for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 36:49715–49747, 2023.

Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak & strong experts
on graphs. arXiv preprint arXiv:2311.05185, 2023.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
neural networks under spatio-temporal distribution shift. In Advances in Neural Information
Processing Systems, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Haoyang Li, Wenwu Zhu,
et al. Spectral invariant learning for dynamic graphs under distribution shifts. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. Advances in Neural Information Processing Systems,
34, 2021.

Yuecai Zhu, Fuyuan Lyu, Chengming Hu, Xi Chen, and Xue Liu. Learnable encoder-decoder
architecture for dynamic graph: A survey. arXiv preprint arXiv:2203.10480, 2022.

Yun Zhu, Haizhou Shi, Zhenshuo Zhang, and Siliang Tang. Mario: Model agnostic recipe for
improving ood generalization of graph contrastive learning. In Proceedings of the ACM Web
Conference 2024, pp. 300–311, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

In this work, we leveraged a large language model (LLM) to assist with checking for grammatical
errors and improving the clarity and readability of the manuscript. Specifically, the LLM was used
to proofread sentences, suggest stylistic improvements, and ensure that the text adhered to formal
academic writing standards. All scientific content, ideas, and results presented in this paper are solely
the work of the authors.

A NOTATIONS

Table 3: The summary of the notations and their descriptions used in this paper.

Notations Descriptions
G = (V, E) Dynamic graph with node set V and edge set E

Gt = (Vt, Et) Graph snapshot at time t with node set Vt and edge set Et

Gt
v = (Vt

v, Et
v) Ego-graph trajectory of node v at time t

G1:t
v = (V1:t

v , E1:t
v ) Historical ego-graph trajectory of node v from time 1 to t

dx, dh Dimensions of input features and hidden embeddings
Xt ∈ R|Vt|×dx ,At ∈ R|Vt|×|Vt| Node feature matrix and adjacency matrix at time t

yt
v Label of node v at time t

Ht
k ∈ R|V|×dh Node embedding matrix produced by expert k at time t
pk ∈ Rdh Learnable prototype for expert k
rtv ∈ Rdh Routing vector for node v at time t
mt

v ∈ Rdh Memory vector for node v at time t
αt
v,k Weight of expert k for node v at time t

mI and mV Invariant and variant masks
ztv ∈ Rdh MoE node embedding for node v at time t

ZI ,ZV ∈ RT×|V|×dh Invariant and variant patterns for all nodes across all timestamps
etv Dominant expert for node v at time t

LI,Linv,Ldis Empirical risk based on invariant patterns, invariance loss, and disentanglement loss
λ, α Hyperparameters to balance different loss terms

B ALGORITHM AND TIME COMPLEXITY ANALYSIS

Algorithm 1 Training pipeline for AdaMix

Input: data D = {(G1:t
v , ytv)}, number of experts K, hyperparameters λ and α

Initialize: experts {GNNk}Kk=1, prototypes {pk}Kk=1, initial memory bank M, distribution detec-
tor GNNr

for each epoch do
Reset memory bank M
for each time step t = 1 to T do

for each node v ∈ Vt do
Obtain routing vector rtv using Eq. 6.
Calculate expert weights αt

v,k using Eq. 3.
Obtain MoE node embedding ztv using Eq. 4.
Update memory vector mt

v using Eq. 7.
end for
Calculate invariant and variant masks mI and mV using Eq. 8.
Extract invariant and variant patterns ZI and ZV using Eq. 9.
Calculate loss L using Eq. 13.

end for
end for

Time Complexity Analysis. Let |V|, |E|, and T denote the number of nodes, edges, and time
steps, respectively. We denote the dimensions of input features and hidden embeddings by dx
and dh, respectively, and let |S| represent the number of intervention times. The time complexity
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of AdaMix mainly consists of the following components: the time complexity of K experts is
O(KT |E|dx +KT |V|dxdh); the time complexity of the router GNN is O(T |E|dh + T |V|d2h); the
time complexity of computing MoE weights is O(T |V|Kdh), and the time complexity of computing
MoE node embeddings is also O(T |V|Kdh). In addition, the time complexity of extracting invariant
and variant patterns is O(T |V|dh log T ), and the time complexity of distribution-aware interventions
is O(|S|T |V|dh).
Therefore, the overall time complexity of AdaMix is:

O
(
KT |E|dx +KT |V|dxdh + T |E|dh + T |V|d2h + T |V|Kdh + T |V|dh log T + |S|T |V|dh

)
which scales linearly with the number of edges and nodes in the dynamic graph, which is comparable
to existing dynamic graph OOD generalization methods (Zhang et al., 2023; Yuan et al., 2023).

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 DATASETS DETAILS

We summarize the dataset statistics in Table 4 and describe the dataset details as follows.

Table 4: Dataset statistics

Dataset Task # Nodes # Edges # Snapshots Time Granularity # Features Evolving Features
Collab Link 23,035 151,790 16 Year 32 No
Yelp Link 13,095 65,735 24 Month 32 No
Aminer Node 43,141 851,527 17 Year 128 No
Link-Synthetic Link 151,790 18,974 16 - 64 Yes
Node-Synthetic Node 5,000 11,252,385 100 - 4 No

Collab (Tang et al., 2012) is an academic collaboration dataset comprising 16 graph snapshots of
co-authored papers published between 1990 and 2006. Nodes represent authors, and edges denote
co-authorship relationships. Each edge is annotated with one of five domain-specific attributes: "Data
Mining", "Database", "Medical Informatics", "Theory", and "Visualization". For OOD generalization
experiments, we designate "Data Mining" as the shifted attribute. The dataset is chronologically
split into 10/1/5 graph snapshots for training, validation, and testing, respectively. The full dataset
comprises 23,035 authors and 151,790 co-authorship links in total.

Yelp (Sankar et al., 2020) is a business review dataset where nodes represent customers or businesses,
and edges denote review behaviors. We utilize data from January 2019 to December 2020 (24
graph snapshots), selecting users and reviews with more than 10 interactions. Node features are
extracted using word2vec (Mikolov et al., 2013) from reviews, averaged to form 32-dimensional
representations for both users and businesses. The distribution shift arises from the COVID-19
pandemic and differing business categories, including "Pizza", "American (New) Food", "Coffee &
Tea", "Sushi Bars", and "Fast Food". We designate "Pizza" as the shifted attribute and use 15/1/8
chronological graph slices for training, validation, and testing, respectively. The dataset comprises
13,095 nodes and 65,375 links in total.

Aminer (Tang et al., 2008; Sinha et al., 2015) is a citation network constructed by aggregating data
from multiple academic sources, including DBLP, ACM, MAG, and others. The dataset comprises
research papers and their citation relationships. For our experiments, we focus on predicting the
publication venue of a paper. We select the top 20 venues in the dataset as target categories. We use
word2vec (Mikolov et al., 2013) to extract 128-dimensional features from paper abstracts and average
to obtain paper features. The distribution shift in this task might be attributed to the significant rise
of deep learning research. Therefore, we use papers published between 2001 and 2011 for training,
those published between 2012 and 2014 for validation, and papers published from 2015 onwards for
testing.

Link-Synthetic (Zhang et al., 2022) is a synthetic dataset designed to evaluate OOD generalization
under controlled spatio-temporal shifts. It is constructed by augmenting the COLLAB dataset. We
generate a synthetic feature set Xt

2 by training embeddings to reconstruct future links Ãt+1 using a
cross-entropy loss ℓ(Xt

2(X
t
2)

⊤, Ãt+1). This ensures Xt
2 encodes strong, spurious correlations with
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future link patterns. The input features are Xt = [Xt
1∥Xt

2], where Xt
1 are the original COLLAB

features. The intensity of the distribution shift is controlled by a time-varying sampling probability
p(t) = clip(p̄+ σ cos(t), 0, 1), where p̄ is set to 0.4, 0.6, or 0.8 for training and 0.1 for testing.We
preserve the dataset division method of training, validation, and testing time steps of 10, 1, and 5.

Node-Synthetic (Zhang et al., 2023) is designed to simulate distribution shifts in node classification
tasks by explicitly modeling frequency components on dynamic graphs that exhibit invariant correla-
tions with labels, while others do not. To construct this dataset, we employ a stochastic block model
(SBM) (Holland et al., 1983) to generate links between nodes, where the link probability between
nodes depends on their class labels. Specifically, the SBM is parameterized as SBM(pin, pout), with
pin ∈ [0, 1]C×1 denoting the intra-class link probability and pout representing the inter-class link prob-
ability. We set C = 5 classes for the node labels. Each node is associated with two types of frequency
parameters: flow ∈ {0.02, 0.04, 0.08, 0.10, 0.12} and fhigh ∈ {0.22, 0.24, 0.28, 0.30, 0.32}. The cor-
relation between flow and labels is varied across training (0.4), validation (0.6), and testing (0.8) splits,
while fhigh maintains a fixed correlation of 1 with labels across all splits. At each time step t, the
dynamic graph Gt is constructed by aggregating multiple subgraphs: (1) a random graph Gt

r generated
from Gaussian noise, (2) an invariant graph Gt

I = SBM(phigh
in (t), pout) derived from high-frequency

parameters, and (3) a variant graph Gt
V = SBM(plow

in (t), pout) based on low-frequency parameters.
The temporal evolution of these parameters is governed by plow

in (t, f) = S1 (2 + cos(2πft)) and
phigh

in (t, f) = S2 (2 + cos(2πft)), where pout, S1, S2 are set to 1e-3, 1e-2, 5e-3 respectively. Each
node is assigned 4-dimensional random features to enhance realism. To ensure generalization under
distribution shifts, models must identify and prioritize the invariant graph component (Gt

I ) for accu-
rate predictions, as the variant component (Gt

V ) exhibits unstable label relationships across training
and testing phases. This design enables rigorous evaluation of a model’s ability to disentangle and
leverage invariant spectral patterns in dynamic graphs.

C.2 BASELINES DETAILS

We adopt several representative dynamic GNNs and Out-of-Distribution(OOD) generalization meth-
ods as our baselines:

• Dynamic GNNs: GCRN (Seo et al., 2018) integrates a spatial graph convolutional network
(GCN) (Kipf & Welling, 2016) with a temporal gated recurrent unit (GRU) (Cho et al., 2014)
to capture both structural and temporal dependencies in dynamic graphs. EGCN (Pareja et al.,
2020) dynamically evolves GCN parameters over time by incorporating an LSTM (Hochreiter
& Schmidhuber, 1997) or GRU (Cho et al., 2014), enabling adaptive modeling of network
evolution. DySAT (Sankar et al., 2020) employs structural self-attention mechanisms to aggregate
neighborhood information at each timestamp and uses temporal self-attention to model dynamic
network patterns.

• general OOD generalization methods: IRM (Arjovsky et al., 2019) seeks to learn a domain-
invariant predictor by minimizing the maximum empirical risk across training domains. Group-
DRO (Sagawa et al., 2019) prioritizes domains with higher prediction errors during training,
reducing worst-case risks across heterogeneous environments. V-REx (Krueger et al., 2021)
minimizes the variance of empirical risks across training domains to enhance generalization under
distributional shifts. Although these methods focus on static graphs, they are adapted here by
leveraging the best-performing DGNNs as backbone architectures for dynamic graph tasks.

• static graph MoE methods: GMoE (Wang et al., 2023) utilizes a mixture-of-experts architecture
where each expert captures information at different hop sizes, allowing dynamic routing based on
local graph structures. GraphMETRO (Wu et al., 2024) employs a mixture-of-experts framework
to decompose complex distribution shifts into multiple components, with each expert learning
representations invariant to its designated shift.

• dynamic graph OOD generalization methods: DIDA (Zhang et al., 2022) captures invariant
and variant patterns by utilizing disentangled attention in the spatial-temporal domain, and
conducts a spatial-temporal intervention mechanism to let the model abandon spurious features
and turning to utilizing invariant features to make predictions. EAGLE (Yuan et al., 2023)uses an
EA-DGNN to disentangle multi-channel environments. Then, an ECVAE infers and generates
diverse environment samples for fine-grained causal interventions. SILD (Zhang et al., 2023)
disentangles the frequency components of node feature trajectories in the spectral domain, and
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then captures invariant patterns by masking out variant frequency components. SILD-GCN,
SILD-GAT, SILD-GATv2, SILD-GIN apply the SILD framework using the GCN (Kipf & Welling,
2016),GAT (Veličković et al., 2017), GATv2 (Brody et al., 2021) and GIN (Xu et al., 2018)
backbone, respectively. We implement these variants to ensure a fair comparison with our
AdaMix model.

C.3 CASE STUDY OF EVOLVING DISTRIBUTION SHIFTS

We visualize the evolving distribution shifts in real-world dynamic graphs in terms of the number
of nodes and average degree in Figure 5. The distributions of these key graph statistics change
significantly over time, confirming the presence of continuous distribution shifts. While some datasets,
such as Collab, exhibit a consistent monotonic trend (e.g., continuous growth), this observation
suggests that analyzing historical trends can be crucial for inferring the current graph distribution.
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Figure 5: Visualizations of the number of nodes and average degree in each graph snapshot.

C.4 CASE STUDY OF ARCHITECTURE IMPACT

To effectively demonstrate that different time periods in a dynamic graph require distinct optimal
architectures, we conduct a case study using two GNN architectures: GAT (Veličković et al., 2017)
and GATv2 (Brody et al., 2021). Built upon the SILD framework (Zhang et al., 2023), we visualize
the timestamp-wise performance of both architectures in Figure 6. Our results reveal that the optimal
architecture is not static; GAT outperforms GATv2 at certain timestamps, while GATv2 demonstrates
superior performance at others. This finding indicates that no single fixed architecture is sufficient
for all time periods, underscoring the critical need for adaptive architectures to handle evolving
distribution shifts in dynamic graphs effectively.
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Figure 6: Performance comparison of GAT and GATv2 on the real-world dynamic graphs. The solid
lines indicate the average AUC across timestamps, with the shaded region representing the standard
deviation.

C.5 HYPERPARAMETERS SENSITIVITY ANALYSIS

We conduct the sensitivity analysis on two key hyperparameters: the weight of the invari-
ance loss, λ, and the weight of the disentanglement loss, β. We vary both λ and β from
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}, while keeping all other hyperparameters fixed. The
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results on both real-world and synthetic datasets are presented in Figure 7 and Figure 8, respectively.
The hyperparameter λ in Eq. 13 controls the trade-off between minimizing the empirical risk from
predictions (LI ) and enhancing generalization through learning invariant patterns (Linv), as defined
in Eq. 12. A large value of λ could lead to an over-emphasis on invariance, potentially causing
underfitting of the invariant patterns. Similarly, the hyperparameter β in Eq. 13 controls the trade-off
between LI and the disentanglement loss (Ldis), as defined in Eq. 2. Ldis is crucial for encouraging
each expert to learn distinct factors, which is necessary for capturing diverse distribution shifts in
dynamic graphs. As shown in Figure 8, our model yields stable performance across a wide range of β
values, demonstrating that the contribution of the disentanglement loss is robust to its hyperparameter
selection.
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Figure 7: Sensitivity analysis of hyperparameter λ on real-world and synthetic datasets. The solid
line represents the average AUC (%), with the shaded area showing the standard deviation. The
dashed line indicates the average AUC (%) of baseline SILD.
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Figure 8: Sensitivity analysis of hyperparameter β on real-world and synthetic datasets. The solid
line represents the average AUC (%), with the shaded area showing the standard deviation. The
dashed line indicates the average AUC (%) of baseline SILD.

C.6 SHOWCASE OF ADAPTIVE ARCHITECTURES

As shown in Figure 9, we present the final architectures discovered for Nodes 0–2 in the Aminer
dataset. Several observations support our earlier hypotheses: architectures searched for different
nodes at the same time step can differ, and architectures for the same node can change over time.
Notably, Node 1 exhibits significant architectural changes between early and later stages. In contrast,
some nodes maintain consistent architectures, such as Node 0, while Node 2 shows only minor
variations, suggesting that the underlying distribution for some nodes may not experience substantial
shifts.

C.7 TRAINING AND INFERENCE TIME
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Figure 9: Illustration of the final architectures for Nodes 0–2 from Aminer across different time steps.

As shown in Table 5, we evaluated the training and inference cost of our approach compared with
competitive baselines. The training time is measured on the portion of the “W/O DS” dataset that
requires loss computation and backpropagation (i.e., its training split). The inference time is measured
on the remaining parts of the dataset, including the validation and test splits of “W/O DS” as well
as the entire “W DS” dataset. The results are as follows. The table reports, for each method and
each dataset, the average per-epoch training and inference cost (in seconds). All measurements
are obtained under the same hardware configuration for a fair comparison. We can observe that
environment-modeling methods such as EAGLE incur substantially higher time cost compared to
non-environment-modeling approaches. In contrast, our AdaMix introduces only modest overhead
relative to SILD.

Table 5: Training and inference time (in seconds) of different methods on various datasets.

Dataset EAGLE Train EAGLE Inf SILD Train SILD Inf AdaMix Train AdaMix Inf
Yelp 6.84 0.87 0.93 0.74 0.78 0.67
Collab 14.16 3.88 0.37 0.20 0.45 0.56
Link-syn (0.4) 4.96 1.23 0.35 0.36 0.47 0.71
Link-syn (0.6) 7.77 1.99 0.27 0.31 0.32 0.62
Link-syn (0.8) 11.02 2.20 0.53 0.34 0.48 0.69
Aminer 9.22 0.18 0.31 0.27 1.03 1.15
Node-syn (0.4) 3.44 0.43 0.29 0.16 1.04 0.55
Node-syn (0.6) 3.47 0.44 0.23 0.12 1.17 0.60
Node-syn (0.8) 3.48 0.44 0.22 0.12 1.14 0.60

C.8 PERFORMANCE WITH MORE EXPERTS

To evaluate sensitivity to the number of experts, we add GraphConv (Morris et al., 2019) to the
original set of four expert architectures and examined the effect of increasing the number of experts.
As shown in Table 6, the results indicate that using five experts still achieves comparable performance.

Table 6: Performance comparison with different numbers of experts.

Dataset Collab Yelp Link-syn (0.4) Link-syn (0.6) Link-syn (0.8)

Four experts 84.85 ± 0.39 82.65 ± 0.87 90.21 ± 0.13 89.64 ± 0.26 88.86 ± 0.13
Five experts 85.24 ± 0.27 83.59 ± 0.19 88.71 ± 0.41 89.34 ± 0.77 88.78 ± 0.42
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D IMPLEMENTATION DETAILS

D.1 HYPERPARAMETERS

For all baseline models, we use their official implementations and carefully tune hyperparameters
to ensure the best possible performance. For the SILD framework (Zhang et al., 2023), we replace
its original backbone with several widely-used GNN architectures: GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), GATv2 (Brody et al., 2021), and GIN (Xu et al., 2018). For our
method, we also use these four GNNs as our experts to ensure a fair comparison, maintaining
consistent layer and dimension configurations. To ensure a fair comparison, we adopt the same
hyperparameter search spaces as the baselines for shared parameters, including the number of attention
heads, normalization methods, and dropout rates. For our method’s specific hyperparameters, the
invariance loss weight λ and the disentanglement loss weight β, we perform a grid search over the
set {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100} and empirically select the optimal values for each
dataset. We use different learning rates for the expert network and other modules, and we fine-tune
both the learning rate and weight decay for each dataset via a grid search on the validation split.

D.2 CONFIGURATIONS

We conduct all experiments in the following configurations.

• Operating System: Ubuntu 24.04.3 LTS

• CPU: AMD EPYC 7543 32-Core Processor

• GPU: NVIDIA A100-SXM4-40GB and NVIDIA A100-SXM4-80GB

• Software: Python 3.9, CUDA 11.7, Pytorch (Paszke et al., 2019) 2.0.1

E PROOF

Proposition 1: Under the invariance constraint yt
v ⊥ Pt

V (v) | Pt
I(v), if there exist two timestamps,

t1 and t2, for which the optimal architectures differ when tasked with discovering invariant patterns
at t1 and t2, then an adaptive architecture can capture invariant patterns Pt

I(v) and variant patterns
Pt

V (v) more effectively than fixed architecture.

We provide a proof from the perspective of mutual information. Consider dynamic graphs
{G1:t,Yt}Tt=1, where G1:t = (G1,G2, . . . ,Gt) denotes the sequence of graph snapshots up to
time t, and Yt represents the labels at time t. At each timestamp t, an encoder architecture ϕt extracts
two invariant patterns and variant patterns Pt

I(v) and Pt
V (v):

Pt
I(v) = fI(ϕ

t(G1:t
v )), Pt

V (v) = fV (ϕ
t(G1:t

v )) (14)

We denote the K candidate architectures as ϕk for k = 1, 2, . . . ,K, and define the following two
sets:

• Fixed architectures ϕfix = {ϕt
k | t = 1, 2, . . . , T}: a single architecture ϕk is shared across

all timestamps t. We denote the set containing all ϕfix as Φfix.

• Adaptive architectures ϕada = {ϕt
S(G1:t

v ) | t = 1, 2, . . . , T}: the architecture ϕ is allowed
to vary with G1:t

v , where S is a routing variable that depends on G1:t
v . We denote the set

containing all ϕada as Φada.

To satisfy the invariance constraint in Assumption 1, we aim to minimize the conditional mutual
information I(Pt

V (v);y
t
v | Pt

I(v)). For each timestamp t, we aim to find a ϕt that achieve :

I(Pt
V (v);y

t
v | Pt

I(v)) = I
(
fV (ϕ

t(G1:t
v ));yt

v | fI(ϕt(G1:t
v ))

)
= ε, (15)
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where ε is a sufficiently small constant. We then define the constraint-satisfying subsets Ffix(ε) and
Fada(ε) of Φfix and Φada, respectively, as follows:

Ffix(ε) =
{
ϕfix ∈ Φfix

∣∣∣ I(Pt
V (v);y

t
v

∣∣Pt
I(v)

)
= ε, ∀t

}
(16)

Fada(ε) =
{
ϕada ∈ Φfix

∣∣∣ I(Pt
V (v);y

t
v

∣∣Pt
I(v)

)
= ε, ∀t

}
(17)

Clearly, Φfix ⊂ Φada (since setting S to a constant recovers a fixed architecture), which implies
Ffix(ε) ⊂ Fada(ε). Then we apply the chain rule of mutual information:

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
= I(Pt

I(v);y
t
v) + I

(
Pt

V (v);y
t
v | Pt

I(v)
)

(18)

Therefore, under the invariance constraint I (Pt
V (v);y

t
v | Pt

I(v)) = ε, maximizing
I ((Pt

I(v),P
t
V (v));y

t
v) is equivalent to maximizing I(Pt

I(v);y
t
v). Overall, for any ϕ ∈ F(ε),

we have:

sup
F(ε)

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
= sup

F(ε)

T∑
t=1

[
I
(
Pt

I(v);y
t
v

)
+ I

(
Pt

V (v);y
t
v | Pt

I(v)
)]

(19)

= sup
F(ε)

T∑
t=1

[
I
(
Pt

I(v);y
t
v

)
+ ε

]
(20)

The adaptive architectures can capture both invariant and variant patterns at least as effectively as
fixed architectures under the same invariance constraint. Since Ffix(ε) ⊂ Fada(ε), it follows that:

sup
Ffix(ε)

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
≤ sup

Fada(ε)

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
(21)

Similarly, for any subset T ⊆ {1, . . . , T}, we can derive an analogous result:

sup
Ffix(ε)

∑
t∈T

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
≤ sup

Fada(ε)

∑
t∈T

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
(22)

We next show that adaptive architectures can strictly outperform fixed architectures when there exist
two timestamps, t1 and t2, for which the optimal architectures differ when tasked with discovering in-
variant patterns at t1 and t2, i.e., argmaxϕ I(P

t1
I (v);yt1

v ) ̸= argmaxϕ I(P
t2
I (v);yt2

v ). Specifically,
let ϕi and ϕj denote the optimal architectures at t1 and t2, respectively, with i ̸= j. By the definition
of optimality, we have:

sup
ϕi

I(Pt1
I (v);yt1

v ) + sup
ϕj

I(Pt2
I (v);yt2

v ) > sup
ϕi

I(Pt1
I (v);yt1

v ) + sup
ϕi

I(Pt2
I (v);yt2

v )

> sup
ϕj

I(Pt1
I (v);yt1

v ) + sup
ϕj

I(Pt2
I (v);yt2

v )
(23)

The first inequality follows from the fact that ϕj outperforms ϕi at t2, while the second follows
because ϕi outperforms ϕj at t1. Consequently, an adaptive architecture that applies ϕi at t1 and ϕj

at t2 strictly outperforms any fixed architecture. For the remaining time steps, we can regard them as
a subset T ⊆ {1, . . . , T}. By the result in Eq. 22, we therefore obtain:

sup
Fada(ε)

T∑
t=1

I(Pt
I(v);y

t
v) > sup

ϕfix={ϕt
i|t=1,2,...,T}

T∑
t=1

I(Pt
I(v);y

t
v)

> sup
ϕfix={ϕt

j |t=1,2,...,T}

T∑
t=1

I(Pt
I(v);y

t
v)

(24)

Combining Eq. 20 and Eq. 24, we obtain:

sup
Fada(ε)

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
> sup

ϕfix={ϕt
i|t=1,2,...,T}

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

)
> sup

ϕfix={ϕt
j |t=1,2,...,T}

T∑
t=1

I
(
(Pt

I(v),P
t
V (v));y

t
v

) (25)
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In summary, adaptive encoder architectures are at least as effective as fixed architectures in capturing
both invariant and variant patterns under the same invariance constraint. Moreover, they can strictly
outperform fixed architectures when the optimal invariance-preserving encoder differs across times-
tamps, as this allows the model to adapt to varying distribution shifts, thereby capturing more total
information and yielding invariant patterns and variant patterns more effectively.

F ADDITIONAL RELATED WORKS

Out of Distribution Generalization. Most existing machine learning approaches rely on the as-
sumption that training and test datasets are independently and identically distributed, an assumption
often violated in practical scenarios (Arjovsky et al., 2019; Ahuja et al., 2020b; Shen et al., 2021; Lin
et al., 2022; Bae et al., 2021). In such cases, distribution shifts between training and test data can
severely undermine model performance. To mitigate this, the study of Out-of-Distribution (OOD)
generalization has gained substantial attention across a wide range of domains (Yao et al., 2022;
Xu et al., 2024; Wang et al., 2025). Representative methods include Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019), which seeks predictors invariant across training domains by minimiz-
ing empirical risks jointly, thereby achieving consistent performance across diverse environments.
GroupDRO (Sagawa et al., 2019) instead emphasizes robustness to worst-case groups by focusing
optimization on domains with the highest error rates. Similarly, VREx (Krueger et al., 2021) reduces
risk variance across domains, alleviating sensitivity to distributional changes. However, these methods
fail to consider the unique challenges posed by graphs, such as complex relational structures and
dependencies, which are crucial for effective OOD generalization in graph-based tasks.

Invariant Representation Learning. Deep invariant representation learning aims to achieve out-
of-distribution generalization by capturing stable relationships between graph data and tasks, thereby
enabling more robust prediction (Arjovsky et al., 2019; Ahuja et al., 2020a; Xia et al., 2023; Zhu et al.,
2024; Sun et al., 2024; Wang et al., 2024). For instance, DIR (Wu et al., 2022b) discovers causal
rationales that remain invariant across different distributions, while suppressing spurious patterns
that are unstable. EERM (Wu et al., 2022a) proposes an invariant learning framework that employs
adversarially trained graph structure editors to simulate virtual environments, enabling GNNs to
extrapolate beyond the single observed environment and thus achieve robust node-level prediction.
However, most recent works merely focus on fixed model architectures instead of adaptive structures,
which is one of our main concerns. However, existing works adopt fixed model architectures to learn
invariant representations, which may not be optimal for dynamic graphs with evolving distribution
shifts.

Graph Out of Distribution Generalization. Graph out-of-distribution generalization must account
for distribution shifts not only in node features but also in complex structural dependencies and
relational patterns (Zhu et al., 2021; Fan et al., 2021; Chen et al., 2022; Gui et al., 2023; Chen et al.,
2023b; Wu et al., 2023; Jia et al., 2024; Yao et al., 2024; Chen et al., 2024), where the challenges often
stem from variations in topology, such as graph size or structural attributes. For example, Bevilacqua
et al. (Bevilacqua et al., 2021) employ structural causal models under independence assumptions to
learn representations transferable across different graph size distributions. G-mixup (Han et al., 2022)
proposes a data augmentation strategy that interpolates node features and structures in embedding
space to enhance robustness. Advances in graph self-supervised learning and graph explanation
techniques further contribute to addressing structural distribution shifts (Li et al., 2022). However,
these methods often overlook the evolving nature of distribution shifts in dynamic graphs, which can
significantly impact model performance over time.
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