

ADAPTIVE MIXTURE OF DISENTANGLER EXPERTS FOR DYNAMIC GRAPHS UNDER DISTRIBUTION SHIFTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Dynamic graph representation learning under distribution shifts has drawn an in-
 012 creasing amount of attention in the research community, given its wide applicability
 013 in real-world scenarios. Existing methods typically employ a fixed-architecture
 014 design to extract invariant patterns. However, there may exist evolving distribution
 015 shifts in dynamic graphs, leading to suboptimal performance of fixed-architecture
 016 designs. To address this issue, we propose a novel adaptive-architecture design to
 017 handle evolving distribution shifts over time, to the best of our knowledge, for the
 018 first time. The proposed adaptive-architecture design introduces an adaptive mix-
 019 ture of architecture experts to capture invariant patterns under evolving distribution
 020 shifts, which imposes three challenges: 1) How to detect and characterize evol-
 021 ving distribution shifts to inform architectural decisions; 2) How to dynamically
 022 route different expert architectures to handle varying distribution characteristics; 3)
 023 How to ensure that the adaptive mixture of experts effectively discovers invariant
 024 patterns. To solve these challenges, we propose a novel **AdaMix** model to adaptively route architecture experts
 025 to varying distribution shifts and jointly learn spatio-temporal invariant patterns.
 026 Specifically, we propose a spatio-temporal distribution detector to infer evolving
 027 distribution shifts by jointly leveraging historical and current information. Building
 028 upon this, we develop a prototype-guided mixture of disentangled experts that
 029 adaptively routes experts with disentangled factors to different distribution shifts.
 030 Finally, we design a distribution-aware intervention mechanism that discovers
 031 invariant patterns based on expert selection of nodes. Extensive experiments on
 032 both synthetic and real-world datasets demonstrate that our proposed **(AdaMix)**
 033 model significantly outperforms state-of-the-art baselines.

1 INTRODUCTION

037 Dynamic graph representation learning under distribution shifts (Zhang et al., 2022; 2023; Yuan
 038 et al., 2023; Yang et al., 2024) aims to tackle distribution shifts and ensure effective generalization
 039 for dynamic graphs, whose structures and features evolve over time (Li et al., 2019; You et al., 2019;
 040 Wu et al., 2020). Existing methods for dynamic graphs under distribution shifts typically attempt
 041 to extract invariant patterns, i.e., structures and features whose predictive abilities remain stable
 042 across shifts. For example, DIDA (Zhang et al., 2022) employs a disentangled spatio-temporal graph
 043 attention network to encode node trajectories into invariant and variant representations, and then
 044 applies random interventions on the variant part to force predictions to rely on the invariant patterns.

045 However, existing methods typically rely on fixed-architecture designs to extract invariant patterns,
 046 overlooking that distribution shifts in dynamic graphs are continuously evolving and may require
 047 adaptive architectures over time to extract optimal invariant patterns. For instance, in academic
 048 collaboration networks, the distribution of research topics may evolve with certain regularities.
 049 Typical phenomena include the growth in the number of publications (expanding graph size), the
 050 increasing density of citation relationships (rising node degrees), and the diversification of research
 051 fields (increasing feature diversity). This example illustrates a broader phenomenon where the
 052 characteristics of distribution shifts themselves evolve, exemplifying common distribution shifts in
 053 graphs (Gui et al., 2022; Li et al., 2025). Furthermore, the evolution of these distribution shifts may
 054 require changes in architectural requirements over time, as the required architectures are inherently
 055 shaped by the underlying data distributions (Niu et al., 2021; Wu et al., 2024).

In this paper, we propose a novel adaptive-architecture design to address evolving distribution shifts in dynamic graphs, leveraging a mixture of experts (MoE) that dynamically adjusts the model architecture over time to capture invariant patterns more effectively. This design to handle evolving distribution shifts remains largely unexplored in the literature, and is highly non-trivial, presenting several key challenges: 1) How to detect and characterize evolving distribution shifts to inform architectural decisions? 2) How to dynamically route different expert architectures to handle varying distribution characteristics? 3) How to ensure that the adaptive mixture of experts effectively discovers invariant patterns?

To address these challenges, we propose a novel **Adaptive Mixture of Disentangled Experts (AdaMix)** method to adaptively route expert networks to different distribution shifts for jointly learning spatio-temporal invariant patterns. Specifically, we propose a spatio-temporal distribution detector to infer evolving distribution shifts based on historical and current information, which includes a memory vector for storing historical distribution information. Then, we develop a prototype-guided mixture of disentangled experts that adaptively routes experts to varying distribution shifts. Each expert is associated with a disentangled prototype that captures a distinct factor of variation. Finally, we design a distribution-aware intervention mechanism that encourages nodes to be intervened upon by others from different distributions, leveraging expert-based interventions to discover invariant patterns. Extensive experiments on real-world and synthetic datasets demonstrate the effectiveness of our proposed method, outperforming state-of-the-art baselines. The contributions of this paper are summarized as follows:

- We propose a novel adaptive-architecture design—**Adaptive Mixture of Disentangled Experts (AdaMix)**—to handle evolving distribution shifts in dynamic graphs, where the adaptive-architecture is defined relative to the underlying data distribution. To the best of our knowledge, this is the first work to address dynamic graph distribution shifts from an architectural perspective.
- We observe that different timestamps under evolving distribution shifts may require distinct architecture designs, and further provide a theoretical analysis demonstrating the advantages of adaptive architectures over fixed ones in such cases.
- We propose three key components to address adaptive mixture of experts for dynamic graph out-of-distribution generalization, i) spatio-temporal distribution detector; ii) prototype-guided disentangled experts; and iii) distribution-aware intervention mechanism.
- We conduct extensive experiments on real-world and synthetic datasets, demonstrating the effectiveness of our proposed method, which outperforms state-of-the-art baselines.

2 PROBLEM FORMULATION AND NOTATIONS

In this section, we present the fundamental concepts and notations used throughout the paper, focusing on dynamic graphs and distribution shifts within them. Random variables are denoted using **bold** letters (e.g., \mathbf{G}), while their realizations are denoted using *italic* letters (e.g., \mathcal{G}).

Dynamic Graphs. We denote a dynamic graph as $\mathcal{G} = \{\mathcal{G}^t\}_{t=1}^T$, where T denotes the total number of timestamps. Each snapshot $\mathcal{G}^t = (\mathcal{V}^t, \mathcal{E}^t)$ corresponds to the graph at time t , with node set \mathcal{V}^t and edge set \mathcal{E}^t . For simplicity, a snapshot can also be expressed as $\mathcal{G}^t = (\mathbf{X}^t, \mathbf{A}^t)$, where \mathbf{X}^t is the node feature matrix and \mathbf{A}^t is the adjacency matrix. The prediction task on dynamic graphs aims to leverage historical snapshots to make future predictions, *i.e.*, $p(\mathbf{Y}^t | \mathbf{G}^{1:t})$, where $\mathbf{G}^{1:t} = \{\mathbf{G}^1, \dots, \mathbf{G}^t\}$ represents the graph trajectory up to time t , and \mathbf{Y}^t denotes the target labels (e.g., node properties or future links) at time $t + 1$. Following (Zhang et al., 2022), the distribution of the entire trajectory can be factorized into ego-graph trajectories: $p(\mathbf{Y}^t | \mathbf{G}^{1:t}) = \prod_v p(\mathbf{y}_v^t | \mathbf{G}_v^{1:t})$.

Distribution Shifts in Dynamic Graphs. The standard learning objective is to optimize a predictor under empirical risk minimization (ERM): $\min_{\theta} \mathbb{E}_{(\mathbf{y}_v^t, \mathcal{G}_v^{1:t}) \sim p_{tr}(\mathbf{y}_v^t, \mathbf{G}_v^{1:t})} \mathcal{L}(f_{\theta}(\mathcal{G}_v^{1:t}), \mathbf{y}_v^t)$, where f_{θ} is a parameterized dynamic graph neural network. However, under distribution shifts, the predictor trained on the training distribution p_{tr} may not generalize to the test distribution p_{te} , since $p_{tr}(\mathbf{Y}^t, \mathbf{G}^{1:t}) \neq p_{te}(\mathbf{Y}^t, \mathbf{G}^{1:t})$. Following the OOD generalization literature (Arjovsky et al., 2019; Wu et al., 2022b; Gagnon-Audet et al., 2022; Zhang et al., 2022), we adopt the following assumption regarding invariant and variant patterns under distribution shifts in dynamic graphs:

108
 109 **Assumption 1.** For a given task, suppose there exists a predictor $f(\cdot)$ such that, for any distribution,
 110 each sample $(\mathcal{G}_v^{1:t}, y_v^t)$ can be decomposed into two parts: an invariant pattern $P_I^t(v)$ and a variant
 111 pattern $P_V^t(v)$. These patterns are required to satisfy: (1) the invariant pattern alone is sufficient for
 112 prediction, i.e., $y_v^t = f(P_I^t(v)) + \epsilon$, where ϵ denotes noise; (2) the invariant pattern can be obtained
 113 by excluding the variant pattern from the observed trajectory, i.e., $P_I^t(v) = \mathcal{G}_v^{1:t} \setminus P_V^t(v)$; (3) the effect
 114 of the variant pattern on the label is fully shielded by the invariant pattern, i.e., $y_v^t \perp P_V^t(v) \mid P_I^t(v)$.
 115

116 3 MOTIVATION

118 In this section, we illustrate the motivation of our proposed method. We begin by introducing the
 119 phenomenon of evolving distribution shifts in dynamic graphs, and then discuss the limitations of
 120 existing methods from an architectural perspective.

122 **Evolving Distribution Shifts.** In real-world
 123 dynamic graphs, the underlying data distribution
 124 evolves continuously over time, i.e., $p(\mathbf{G}^t) \neq$
 125 $p(\mathbf{G}^{t'})$ for $t \neq t'$. To empirically validate this
 126 phenomenon, we analyze several dynamic graph
 127 datasets. As illustrated in Figure 1, on the Collab
 128 academic collaboration network, key graph
 129 statistics such as the number of nodes and the
 130 average node degree exhibit a continuous up-
 131 ward trend over time. This evolution reflects
 132 typical forms of graph distribution shifts (Gui
 133 et al., 2022; Li et al., 2025). Importantly, the
 134 presence of some trends implies that historical
 135 trajectories contain valuable signals for inferring
 136 the current distribution. Furthermore, because
 137 the graph distribution continuously evolves, the joint distribution of labels and historical graph data
 138 also changes accordingly, i.e., $p(\mathbf{Y}^t, \mathbf{G}^{1:t}) \neq p(\mathbf{Y}^{t'}, \mathbf{G}^{1:t'})$. Additional analyses on other datasets
 139 are provided in Appendix C.3.

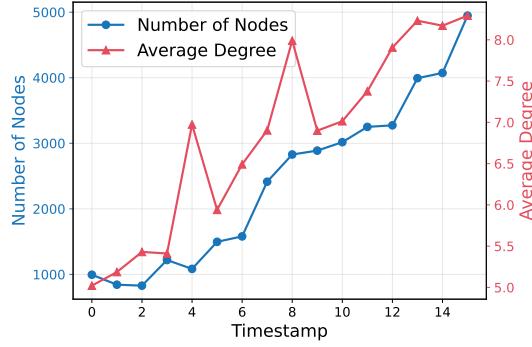


Figure 1: Visualizations of the number of nodes and average degree in each graph snapshot.

140 joint distribution of labels and historical graph data
 141 are provided in Appendix C.3.

142 **Architectures Impact.** Existing methods for
 143 dynamic graphs typically rely on fixed architec-
 144 tures to extract invariant patterns. However, the
 145 optimal architecture may be inherently tied to
 146 the underlying data distribution (Niu et al., 2021;
 147 Wu et al., 2024). When the data distribution
 148 continuously evolves, as is the case in dynamic
 149 graphs, a single fixed architecture may become
 150 suboptimal over time. We hypothesize that
 151 different timestamps under evolving distribution
 152 shifts may require distinct architecture designs.
 153 To validate this hypothesis, we evaluate two
 154 GNN architectures GAT (Veličković et al., 2017)
 155 and GATv2 (Brody et al., 2021), built upon a
 156 dynamic graph OOD method SILD (Zhang et al.,
 157 2023). Figure 2 presents the performance of each
 158 architecture at various timestamps on the Collab
 159 dataset. As can be seen, GAT and GATv2 alternately
 160 achieve superior performance over different
 161 time periods, supporting that different timestamps
 162 may require distinct architectures. We further
 163 provide a theoretical discussion showing that, under
 164 the invariance constraint $y_v^t \perp P_V^t(v) \mid P_I^t(v)$
 165 specified in Assumption 1, when different timestamps
 166 require distinct architecture designs, adaptive
 167 architectures can capture invariant and variant
 168 patterns more effectively than any fixed architecture.
 169 We formalize this in the following proposition, with the proof deferred to Appendix D.2.

170 **Proposition 1.** Under the invariance constraint $y_v^t \perp P_V^t(v) \mid P_I^t(v)$, if there exist two timestamps,
 171 t_1 and t_2 , for which the optimal architectures differ when tasked with discovering invariant patterns

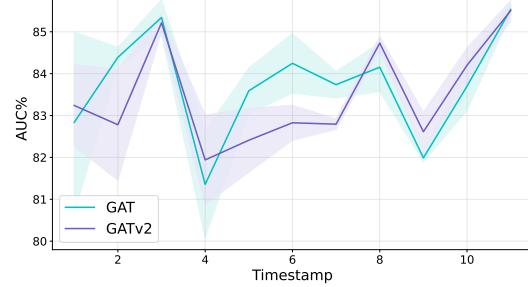


Figure 2: The solid lines indicate the average AUC across timestamps, with the shaded region representing the standard deviation.

172 joint distribution of labels and historical graph data
 173 are provided in Appendix C.3.

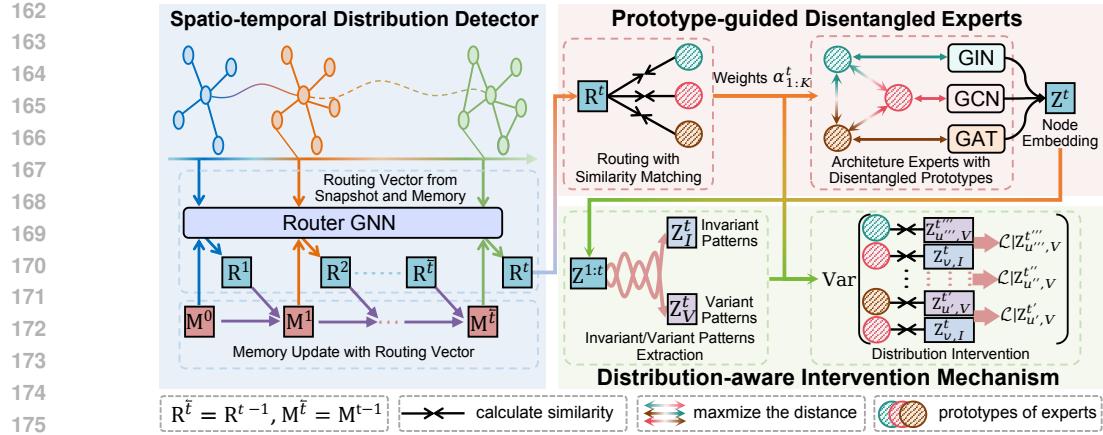


Figure 3: Overview framework of **AdaMix**. Given a snapshot at time t , the spatio-temporal distribution detector employs Router GNN to infer the current distribution shift based on the current snapshot and historical information stored in the memory vector, producing a routing vector. In the prototype-guided disentangled experts module, the routing vector is used to compute the weights of different experts by measuring the similarity between the routing vector and the experts’ prototypes. The experts’ prototypes are simultaneously disentangled to ensure minimal similarity, and the expert outputs are combined according to their weights to obtain the Mixture-of-Experts (MoE) node embeddings. Finally, in the distribution-aware intervention mechanism, all MoE node embeddings prior to time t are decoupled into invariant and variant patterns for the current time t , and nodes are selected for intervention training based on the expert weights.

at t_1 and t_2 , then an adaptive architecture can capture invariant patterns $\mathbf{P}_I^t(v)$ and variant patterns $\mathbf{P}_V^t(v)$ more effectively than fixed architecture.

4 METHOD

In this section, we propose Adaptive Mixture of Disentangled Experts (**AdaMix**) for dynamic graph OOD generalization. The method comprises three key components: prototype-guided disentangled experts, a spatio-temporal distribution detector, and a distribution-aware intervention mechanism. The overall framework of **AdaMix** is depicted in Figure 3.

4.1 PROTOTYPE-GUIDED DISENTANGLED EXPERTS

To route experts adaptively under evolving distribution shifts, it is crucial that each expert specializes in a distinct factor of variation in the data distribution, thereby ensuring alignment with the underlying distribution. However, in standard MoE frameworks, experts operate independently and lack explicit relational modeling, failing to encourage that each expert corresponds to a meaningful or disentangled factor of variation. To address this, we propose prototype-guided disentangled experts, which associate each expert with a corresponding prototype. These prototypes are mutually disentangled, capturing distinct factors of variation, and act as anchors to guide the routing process.

Disentangled Experts. We adopt K independent GNN architectures as experts, such as GAT (Veličković et al., 2017) and GCN (Kipf & Welling, 2016), denoted by $\{\text{GNN}_k\}_{k=1}^K$. Each expert encodes the input graph independently, generating node embeddings:

$$\mathbf{H}_k^t = \text{GNN}_k(\mathbf{X}^t, \mathbf{A}^t), \quad (1)$$

where $\mathbf{H}_k^t = \{\mathbf{h}_{v,k}^t \mid v \in \mathcal{V}\} \in \mathbb{R}^{|\mathcal{V}| \times d_h}$ denotes the node representation matrix produced by expert k at time t , and \mathbf{X}^t and \mathbf{A}^t are the node feature matrix and adjacency matrix at time t , respectively, and d_h is the hidden dimension. We utilize a set of learnable prototypes $\{\mathbf{p}_k\}_{k=1}^K$ for K experts, where each prototype $\mathbf{p}_k \in \mathbb{R}^{d_h}$ represents a distinct factor of variation. During training, we encourage

each expert to specialize in capturing information associated with its corresponding prototype. To this end, we introduce a similarity loss that promotes disentanglement among prototypes:

$$\mathcal{L}_{\text{dis}} = \sum_{k=1}^K \sum_{k' \neq k} \frac{\mathbf{p}_k \cdot \mathbf{p}_{k'}}{\|\mathbf{p}_k\|_2 \|\mathbf{p}_{k'}\|_2}. \quad (2)$$

Minimizing this loss enforces mutual dissimilarity among prototypes, thereby fostering disentanglement across experts and encouraging each to develop a distinct area of specialization.

Prototype-guided Routing. Let \mathbf{r}_v^t denote the routing vector for node v at time t , which captures the current distribution (introduced in the next section). To route experts in alignment with the underlying distribution, we calculate the similarity between the routing vector \mathbf{r}_v^t and the prototypes $\{\mathbf{p}_k\}_{k=1}^K$ associated with each expert. The resulting similarity scores are then transformed into expert weights $\alpha_{v,k}^t$ via a softmax:

$$\alpha_{v,k}^t = \frac{\exp(\hat{\alpha}_{v,k}^t)}{\sum_{k'=1}^K \exp(\hat{\alpha}_{v,k'}^t)}, \quad \hat{\alpha}_{v,k}^t = \frac{\mathbf{r}_v^t \cdot \mathbf{p}_k}{\|\mathbf{p}_k\|_2}. \quad (3)$$

When the routing vector \mathbf{r}_v^t is more similar to the prototype of a particular expert, that expert is assigned a higher weight. The outputs of all experts are then aggregated to obtain the node embedding \mathbf{z}_v^t for each node v at time t :

$$\mathbf{z}_v^t = \sum_{k=1}^K \alpha_{v,k}^t \mathbf{h}_{v,k}^t. \quad (4)$$

MoE node embeddings $\mathbf{Z} = \{\mathbf{z}_v^t \mid v \in \mathcal{V}, t = 1, \dots, T\} \in \mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ are subsequently processed to extract both invariant and variant patterns.

4.2 SPATIO-TEMPORAL DISTRIBUTION DETECTOR.

To infer specific distribution shifts within the context of evolving distribution shifts, we propose a spatio-temporal distribution detector that leverages both historical and current information. Specifically, our goal is to capture node-level distribution by jointly considering the current ego-graph and historical distributional information.

Snapshot Graph Trajectories Modeling We adopt a GNN_r to learn a node-level routing embedding \mathbf{r}_v^t for each node v at time t from its ego-graph trajectory $\mathcal{G}_v^t = (\mathcal{V}_v^t, \mathcal{E}_v^t)$, which encodes the structural and feature information of the current snapshot. Formally,

$$\mathbf{r}_v^t = \text{GNN}_r(\mathcal{V}_v^t, \mathcal{E}_v^t), \quad \mathcal{V}_v^t = \{v\} \cup \mathcal{N}^t(v), \quad \mathcal{E}_v^t = \{(u, v) \in \mathcal{E}^t \mid u \in \mathcal{V}^t\}, \quad (5)$$

where $\mathcal{N}^t(v) = u \mid (u, v) \in \mathcal{E}^t$. High-order structural information can be captured by stacking multiple GNN layers or employing advanced architectures such as GAT (Veličković et al., 2017). This produces the node-level routing embedding matrix $\mathbf{R}^t = \{\mathbf{r}_v^t \mid v \in \mathcal{V}^t\} \in \mathbb{R}^{|\mathcal{V}| \times d_h}$ for all nodes in the snapshot at time t .

Memory-augmented Vector. To infer the distribution from historical information, we utilize a memory bank $\mathbf{M} = \{\mathbf{m}_v \mid v \in \mathcal{V}\} \in \mathbb{R}^{|\mathcal{V}| \times d_h}$, which stores historical distributional information for all nodes. For each node v , we denote the memory vector $\mathbf{m}_v^t \in \mathbb{R}^{d_h}$ that accumulates its historical information up to time t . At each step, the routing vector \mathbf{r}_v^t is generated by GNN_r , which integrates the initial node embedding \mathbf{x}_v^t with the previous memory vector \mathbf{m}_v^{t-1} :

$$\mathbf{r}_v^t = \text{GNN}_r(\tilde{\mathbf{x}}_v^t, \mathbf{A}^t), \quad \tilde{\mathbf{x}}_v^t = \text{Linear}([\mathbf{x}_v^t \parallel \mathbf{m}_v^{t-1}]), \quad (6)$$

where $\tilde{\mathbf{x}}_v^t \in \mathbb{R}^{d_x}$ is the combined feature of node v at time t , d_x denotes the dimension of the initial node features, \parallel denotes the node-wise concatenation operation, and $\text{Linear}(\cdot)$ is a linear transformation to project the concatenated feature to the input dimension of GNN_r . We then obtain the routing weights α_v^t and MoE node embeddings \mathbf{z}_v^t for each node v using the prototype-guided

270 routing mechanism described in Eq. 3 and Eq. 4, respectively. Finally, we update the memory bank
 271 through a gate-controlled mechanism:

$$273 \quad \mathbf{m}_v^t = \mathbf{g}_v^t \odot \mathbf{z}_v^t + (1 - \mathbf{g}_v^t) \odot \mathbf{m}_v^{t-1}, \mathbf{g}_v^t = \sigma(\text{Linear}_{\text{gate}}([\mathbf{z}_v^t \parallel \mathbf{m}_v^{t-1}])) \in [0, 1]^{d_h}, \quad (7)$$

274 where \odot denotes element-wise multiplication, $\mathbf{g}_v^t \in [0, 1]^{d_h}$ is a gate vector that controls the update
 275 rate of the memory, and $\sigma(\cdot)$ is the sigmoid function. We set the initial memory vector \mathbf{m}_v^0 to a zero
 276 vector. This mechanism allows the memory to adaptively incorporate new information while retaining
 277 relevant historical context, thereby allowing the routing vectors \mathbf{r}_v^t to infer current distribution shifts
 278 from both present and past information.

280 4.3 DISTRIBUTION-AWARE INTERVENTION MECHANISM

282 Previous dynamic graph OOD methods typically rely on randomly sampling variant patterns to
 283 replace those of other nodes to discover invariant patterns. However, such interventions may be
 284 inefficient when some nodes are intervened upon by others from the same distribution. To address this,
 285 we leverage the expert weights from previous steps to distinguish nodes from different distributions
 286 better, and we apply interventions using nodes sampled from distinct distributions.

288 **Invariant and Variant Patterns.** We first extract the invariant and variant patterns based on
 289 MoE node embeddings $\mathbf{Z} = \{\mathbf{z}_v^t\} \in \mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ in Eq 4. To account for distribution shifts that
 290 may be unobservable in the time domain but become apparent in the spectral domain (Zhang
 291 et al., 2023), we apply a Fast Fourier transform (FFT) to project \mathbf{Z} into the spectral domain. Let
 292 $\text{Re}(\mathbf{Z}) = \{\text{Re}(\mathbf{z}_v^t)\} \in \mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ and $\text{Im}(\mathbf{Z}) = \{\text{Im}(\mathbf{z}_v^t)\} \in \mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ denote the real and
 293 imaginary parts of the transformed embeddings, respectively. We then derive disentangled invariant
 294 and variant spectrum masks \mathbf{m}_I and \mathbf{m}_V as follows:

$$295 \quad \mathbf{m}_I = \sigma\left(\frac{\mathbf{m}}{\tau}\right), \quad \mathbf{m}_V = \sigma\left(-\frac{\mathbf{m}}{\tau}\right), \quad \mathbf{m} = \text{MLP}(\text{Re}(\mathbf{Z}) \parallel \text{Im}(\mathbf{Z})), \quad (8)$$

297 where $\sigma(\cdot)$ denotes the sigmoid function, τ is a temperature hyperparameter, and $\text{MLP}(\cdot)$ is a
 298 multi-layer perceptron. Finally, the invariant and variant patterns \mathbf{Z}_I and \mathbf{Z}_V are obtained as follows:

$$300 \quad \mathbf{Z}_I = \text{IFFT}(\text{Re}(\mathbf{Z}) \odot \mathbf{m}_I + i \text{Im}(\mathbf{Z}) \odot \mathbf{m}_I), \quad \mathbf{Z}_V = \text{IFFT}(\text{Re}(\mathbf{Z}) \odot \mathbf{m}_V + i \text{Im}(\mathbf{Z}) \odot \mathbf{m}_V), \quad (9)$$

302 where $\text{IFFT}(\cdot)$ denotes the inverse Fast Fourier transform, and i is the imaginary unit. $\mathbf{Z}_I = \{\mathbf{z}_{v,I}^t\} \in$
 303 $\mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ and $\mathbf{Z}_V = \{\mathbf{z}_{v,V}^t\} \in \mathbb{R}^{T \times |\mathcal{V}| \times d_h}$ represent the invariant and variant patterns for all nodes
 304 across all timestamps, respectively.

306 **Distribution-Aware Intervention.** Since experts are assigned to nodes according to their underlying
 307 distributions, a large difference in dominant experts between two nodes strongly suggests that they
 308 follow different distributions. We first identify the dominant expert e_v^t for each node based on the
 309 routing weights $\alpha_{v,k}^t$ in Eq. 3:

$$310 \quad e_v^t = \arg \max_k \alpha_{v,k}^t. \quad (10)$$

312 To ensure that nodes are intervened upon by others from distinct distributions, we intervene on nodes
 313 by sampling other nodes with different dominant experts to replace their variant patterns. Specifically,
 314 at each time step t , we randomly sample a set of nodes u from the invariant patterns \mathbf{Z}_I (e.g., $e_u^{t'}$),
 315 and then replace the variant pattern of node v if its dominant expert at time t differs from that of u at
 316 time t' ($t' \leq t$). Consequently, the invariance loss is defined as follows:

$$318 \quad \mathcal{L}_{\text{inv}} = \text{Var}(\mathcal{L} | \mathbf{z}_{u,V}^{t'} : \mathbf{z}_{u,V}^{t'} \in \mathbf{Z}_V), \quad (11)$$

$$320 \quad \text{s.t. } \mathcal{L} | \mathbf{z}_{u,V}^{t'} = \sum_{v=1}^N l\left(f_I(\mathbf{z}_{v,I}^t) \cdot (\sigma(\mathbf{z}_{u,V}^{t'}) \cdot \mathbf{1}_{e_v^t \neq e_u^{t'}} + 1 \cdot \mathbf{1}_{e_v^t = e_u^{t'}}), \mathbf{y}_v^t\right), \quad (12)$$

323 where $f_I(\cdot)$ is a classifier based on invariant patterns, $l(\cdot, \cdot)$ is the cross-entropy loss, and $\mathbf{1}_{a_u^t \neq a_v^t}$ is
 324 an indicator function that equals 1 if $a_u^t \neq a_v^t$ and 0 otherwise. In this way, we ensure that nodes are

324 intervened upon by others from different distributions, thereby enhancing the effectiveness of the
 325 intervention mechanism. Then, we calculate the final loss as follows:
 326

$$\mathcal{L} = \mathcal{L}_I + \lambda \mathcal{L}_{\text{inv}} + \alpha \mathcal{L}_{\text{dis}}, \quad (13)$$

↑ Eq. 12 ↑ Eq. 2

330 where \mathcal{L}_I is the empirical risk based on invariant patterns, and λ and α are hyperparameters that
 331 balance the three loss terms. The overall training procedure of **AdaMix** is summarized in Algorithm 1.
 332

333 5 EXPERIMENTS

336 In this section, we conduct extensive experiments to demonstrate that our proposed method effectively
 337 handles distribution shifts on dynamic graphs through an adaptive MoE framework. Additional
 338 details regarding experimental settings and supplementary results are provided in the Appendix C.
 339

340 5.1 EXPERIMENTAL SETUP

342 **Datasets.** We evaluate our method on three real-world dynamic graph datasets that exhibit evolving
 343 distribution shifts. For the task of link prediction, we use two datasets: Collab (Tang et al., 2012), an
 344 academic collaboration network spanning papers published from 1990 to 2006, and Yelp (Sankar
 345 et al., 2020), which contains customer reviews of businesses over a 24-month period. For both
 346 datasets, the data is partitioned such that the test set contains different fields from those used in
 347 training, thereby simulating a real-world distribution shift. For node classification, we use the Aminer
 348 dataset (Tang et al., 2008; Sinha et al., 2015), a citation network covering papers published from
 349 2001 to 2015. In addition, we employ synthetic datasets (Zhang et al., 2023) with different levels
 350 of distribution shifts(0.4, 0.6, 0.8) to further validate the effectiveness of our method. Figures in
 351 Appendix C.3 illustrate the evolving distribution shifts across these datasets. Additional details about
 352 the datasets are provided in Appendix C.1.
 353

354 **Baselines.** We compare our proposed **AdaMix** with three categories of baselines: (1) representative
 355 dynamic GNNs, including GCRN (Seo et al., 2018), EGCRN (Pareja et al., 2020), and DySAT (Sankar
 356 et al., 2020); (2) general OOD generalization methods, including IRM (Arjovsky et al., 2019),
 357 GroupDRO (Sagawa et al., 2019), and V-REx (Krueger et al., 2021); (3) static graph MoE methods,
 358 including GMoE (Wang et al., 2023) and GraphMETRO (Wu et al., 2024); and (4) dynamic graph
 359 OOD generalization methods, including DIDA (Zhang et al., 2022), EAGLE (Yuan et al., 2023) and
 360 SILD (Zhang et al., 2023). To ensure that the performance gains are not merely due to introducing
 361 specialized architectures, we replace the original architecture in SILD (Zhang et al., 2023) with the
 362 same architecture experts used in our method for comparison, including GCN (Kipf & Welling, 2016),
 363 GAT (Veličković et al., 2017), GIN (Xu et al., 2018), and GATv2 (Brody et al., 2021). More details
 364 about the baselines are provided in Appendix C.2.
 365

366 5.2 MAIN RESULTS

367 **Real-world Datasets.** Following Zhang et al. (2023), we evaluate the performance of different
 368 methods on real-world datasets with distribution shifts split, details of which are provided in Ap-
 369 pendix C.1. Table 1 presents the results of different methods on real-world datasets. From Table 1,
 370 we have the following observations: (1) Dynamic graph OOD methods generally achieve better
 371 performance than both dynamic GNNs and general OOD methods, highlighting the importance of
 372 incorporating temporal information when addressing distribution shifts in dynamic graphs. However,
 373 results on the Aminer dataset show that dynamic graph methods cannot guarantee optimal per-
 374 formance at all time periods. For instance, when SILD employs GATv2 as its backbone, it achieves the
 375 best performance on Aminer15 but underperforms GAT on Aminer17. This suggests that distribution
 376 shifts may differ across time, necessitating different architectures to handle them effectively. (2) Our
 377 proposed **AdaMix** achieves superior or competitive performance on most datasets, often surpassing
 378 existing baselines. These results highlight its effectiveness in handling distribution shifts in dynamic
 379 graphs, with the adaptive MoE framework enabling better adaptation to evolving distribution shifts.
 380

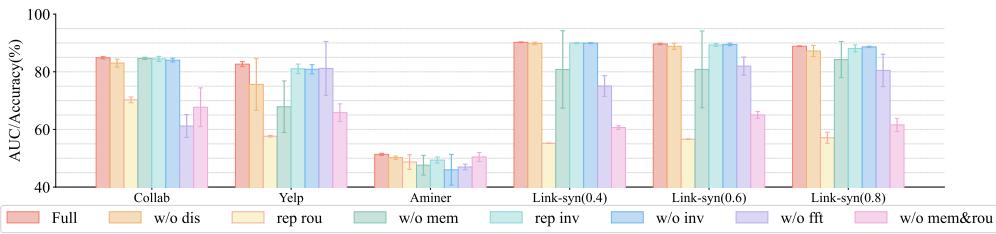
378 Table 1: Performance of different methods on real-world link prediction and node classification
 379 datasets. The best results are highlighted in bold, and the second-best are underlined. For the Aminer
 380 dataset, the year indicates the test split, *e.g.*, ‘Aminer15’ refers to the average test accuracy in 2015.
 381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400	Task Dataset	Link Prediction (AUC%)		Node Classification (ACC%)			Avg.
		Collab	Yelp	Aminer15	Aminer16	Aminer17	
GCRN	69.72 \pm 0.45	54.68 \pm 7.59	47.96 \pm 1.12	51.33 \pm 0.62	42.93 \pm 0.71	57.27	
EGCN	76.15 \pm 0.91	53.82 \pm 2.06	44.14 \pm 1.12	46.28 \pm 1.84	37.71 \pm 1.84	57.56	
DySAT	76.59 \pm 0.20	66.09 \pm 1.42	48.41 \pm 0.81	49.76 \pm 0.96	42.39 \pm 0.62	63.18	
IRM	75.42 \pm 0.87	56.02 \pm 16.08	48.44 \pm 0.13	50.18 \pm 0.73	42.40 \pm 0.27	59.48	
VREx	76.24 \pm 0.77	66.41 \pm 1.87	48.70 \pm 0.73	49.24 \pm 0.27	42.59 \pm 0.37	63.16	
GroupDRO	76.33 \pm 0.29	66.97 \pm 0.61	48.73 \pm 0.61	49.74 \pm 0.26	42.80 \pm 0.36	63.46	
GMoE	56.45 \pm 0.56	72.53 \pm 15.14	49.17 \pm 1.54	50.89 \pm 1.61	43.14 \pm 0.61	58.90	
GraphMETRO	57.92 \pm 0.11	45.66 \pm 10.59	50.05 \pm 0.17	52.12 \pm 1.96	42.29 \pm 1.91	50.58	
DIDA	81.87 \pm 0.40	75.92 \pm 0.90	50.34 \pm 0.81	51.43 \pm 0.27	44.69 \pm 0.06	68.87	
EAGLE	84.41 \pm 0.87	77.26 \pm 0.74	51.48 \pm 0.45	54.87 \pm 0.31	45.97 \pm 0.23	70.81	
SILD	84.09 \pm 0.16	78.65 \pm 2.22	52.35 \pm 1.04	54.11 \pm 0.62	45.54 \pm 1.19	71.14	
SILD-GCN	79.53 \pm 0.70	43.74 \pm 0.24	50.54 \pm 0.87	53.47 \pm 0.60	41.64 \pm 2.96	57.27	
SILD-GAT	83.82 \pm 0.25	50.18 \pm 0.75	51.68 \pm 1.81	53.93 \pm 1.89	44.87 \pm 1.42	61.39	
SILD-GIN	75.18 \pm 0.42	81.55 \pm 0.67	49.04 \pm 1.92	51.15 \pm 1.63	23.68 \pm 17.22	66.01	
SILD-GATv2	83.97 \pm 0.12	47.84 \pm 1.96	52.70 \pm 1.54	54.15 \pm 0.93	43.35 \pm 3.14	60.63	
AdaMix	84.85\pm0.39	82.65\pm0.87	52.95\pm0.70	54.58\pm0.20	46.50\pm0.63	72.95	

401 Table 2: Performance of different methods on synthetic link prediction and node classification datasets.
 402 The best results are highlighted in bold, and the second-best are underlined. A larger shift indicates a
 403 higher level of distribution shift.
 404

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424	Dataset Shift	Link-Synthetic (AUC%)			Node-Synthetic (ACC%)			Avg.
		0.4	0.6	0.8	0.4	0.6	0.8	
GCRN	72.57 \pm 0.72	72.29 \pm 0.47	67.26 \pm 0.22	27.19 \pm 2.18	25.95 \pm 0.80	29.26 \pm 0.69	49.09	
EGCN	69.00 \pm 0.53	62.70 \pm 1.14	60.13 \pm 0.89	24.01 \pm 2.29	22.75 \pm 0.96	24.98 \pm 1.32	43.93	
DySAT	70.24 \pm 1.26	64.01 \pm 0.19	62.19 \pm 0.39	40.95 \pm 2.89	37.94 \pm 1.01	30.90 \pm 1.97	51.04	
IRM	69.40 \pm 0.09	63.97 \pm 0.37	62.66 \pm 0.33	33.23 \pm 4.70	30.29 \pm 1.71	29.43 \pm 1.38	48.16	
VREx	70.44 \pm 1.08	63.99 \pm 0.21	62.21 \pm 0.40	41.78 \pm 1.30	38.11 \pm 2.81	29.56 \pm 0.44	51.02	
GroupDRO	70.30 \pm 1.23	64.05 \pm 0.21	62.13 \pm 0.35	41.35 \pm 2.19	35.74 \pm 3.93	31.03 \pm 1.24	50.77	
GMoE	55.39 \pm 1.92	54.97 \pm 4.94	56.30 \pm 2.35	83.33 \pm 1.04	80.83 \pm 0.06	72.08 \pm 1.31	67.15	
GraphMETRO	59.53 \pm 0.08	59.28 \pm 0.09	58.72 \pm 0.12	75.82 \pm 4.35	78.19 \pm 3.53	75.25 \pm 3.82	67.80	
DIDA	85.20 \pm 0.84	82.89 \pm 0.23	72.59 \pm 3.31	43.33 \pm 7.74	39.48 \pm 7.93	28.14 \pm 3.07	58.60	
EAGLE	88.32 \pm 0.61	87.29 \pm 0.71	82.30 \pm 0.75	47.03 \pm 0.10	35.84 \pm 1.05	28.50 \pm 0.16	61.55	
SILD	85.95 \pm 0.18	84.69 \pm 1.18	78.01 \pm 0.71	43.62 \pm 2.74	39.78 \pm 3.56	38.64 \pm 2.76	61.78	
SILD-GCN	69.43 \pm 0.19	63.16 \pm 0.12	60.64 \pm 0.08	78.59 \pm 1.00	73.21 \pm 2.62	65.93 \pm 3.51	68.49	
SILD-GAT	85.97 \pm 0.15	84.69 \pm 1.11	78.01 \pm 0.61	43.15 \pm 4.21	40.15 \pm 1.95	38.51 \pm 2.09	61.75	
SILD-GIN	60.73 \pm 1.01	58.99 \pm 1.31	55.22 \pm 0.80	77.89 \pm 2.12	74.65 \pm 3.38	63.36 \pm 4.09	65.14	
SILD-GATv2	86.19 \pm 0.43	83.82 \pm 0.14	68.43 \pm 0.59	41.48 \pm 0.85	40.18 \pm 2.30	38.08 \pm 1.03	59.70	
AdaMix	90.21\pm0.13	89.64\pm0.26	88.86\pm0.13	83.63\pm1.60	81.50\pm0.38	76.19\pm0.82	85.00	

Synthetic Datasets. Table 2 reports the results on six synthetic datasets. (1) We observe that **AdaMix** outperforms most baselines across the datasets, indicating that its adaptive architecture effectively captures invariant patterns under varying levels of distribution shift. (2) As the degree of distribution shift increases, the performance of all baselines degrades significantly. In contrast, **AdaMix** shows a smaller performance drop, further demonstrating its strong ability to handle distribution shifts. (3) The performance of SILD varies significantly when using different GNN architectures as experts, indicating that no single architecture is optimal for all distribution shifts. In contrast, **AdaMix** consistently achieves strong performance by adaptively selecting the most suitable architectures for each node at each time step.

432 5.3 ABLATION STUDY
433442 Figure 4: Comparisons of different ablated versions of AdaMix on real-world and synthetic datasets.
443

444 To verify the effectiveness of each designed component in **AdaMix**, we compare different ablated
445 versions on each dataset: 1) **w/o dis**: we remove the disentanglement loss \mathcal{L}_{dis} in Eq. 2 by setting
446 $\alpha = 0$ in Eq. 13; 2) **rep rou**: we replace the prototype-guided routing mechanism with a simple
447 linear router that directly maps the routing embeddings to expert weights; 3) **w/o mem**: we remove
448 the memory-augmented mechanism by setting the memory vector always to a zero vector; 4) **rep**
449 **inv**: we replace the invariance loss in Eq. 12 with a random intervention mechanism that randomly
450 samples nodes from the invariant patterns to replace the variant patterns; 5) **w/o inv**: we remove the
451 invariance loss \mathcal{L}_{inv} in Eq. 12 by setting $\lambda = 0$ in Eq. 13. 6) **w/o fft**: we remove the FFT and IFFT
452 operations in Eqs. 9 when extracting invariant and variant patterns. 7) **w/o mem&rou**: we remove
453 both the memory-augmented mechanism and replace the prototype-guided routing mechanism with a
454 deeper linear router.

455 The results are shown in Figure 4. We have the following observations: i) The ablated versions **w/o**
456 **dis** and **rep rou** exhibit a significant drop and unstable performance on some datasets, indicating that
457 disentangled prototypes help the router better distinguish different distributions, thereby selecting the
458 appropriate experts. ii) The ablated version **w/o mem** and **w/o mem&rou** leads to a noticeable performance
459 decrease, indicating that leveraging the historical distribution information stored in memory
460 vectors enables better inference of the current distribution. Moreover, disentangled prototypes allow
461 the router to distinguish more effectively between different distributions. iii) The ablated version **rep**
462 **inv** and **w/o inv** yield suboptimal performance, demonstrating the effectiveness of the expert-based
463 interventions in discovering invariant patterns. iv) The ablated version **w/o fft**, which relies solely on
464 time-domain information, shows noticeable declines compared to the full model. This demonstrates
465 that spectral-domain invariant pattern modeling effectively captures distribution shifts that may be
466 unobservable in the time domain but become evident in the spectral domain.

467 6 RELATED WORK
468

469 **Dynamic Graph Neural Networks.** Dynamic graphs are pervasive in numerous real-world sce-
470 narios (Deng et al., 2020; Wang et al., 2021; Cai et al., 2021), ranging from social interactions and
471 recommendation systems to event prediction (Skarding et al., 2021; Zhu et al., 2022; Chen et al.,
472 2023a). One paradigm employs snapshot-based GNNs to learn node representations at each time step
473 and then applies temporal modules such as recurrent or attention-based models to capture temporal
474 evolution (Yang et al., 2021; Sun et al., 2021; Hajiramezanali et al., 2019; Seo et al., 2018). Another
475 paradigm integrates temporal encoding mechanisms that directly embed temporal information into
476 time-aware representations, which are then processed with GNNs or memory architectures (Cong
477 et al., 2021; Xu et al., 2020). Despite these advances, the impact of distribution shifts on dynamic
478 graphs has received limited attention. Some recent works (Zhang et al., 2022; Yuan et al., 2023; Yang
479 et al., 2024; Tieu et al., 2025) have begun to explore this area. For instance, SILD (Zhang et al.,
480 2023) proposes a spectral-domain method to disentangle invariant and variant spectral patterns in
481 dynamic graphs, thereby achieving generalization against distribution shifts (especially those that
482 are unobservable in the time domain). However, existing methods typically rely on a single model
483 architecture, which may not be optimal for handling evolving distribution shifts over time.

484 **Graph Mixture of Experts.** Mixture of experts (MoE) models have recently been applied to graph
485 learning to handle the diverse structures and features inherent to graph data. (Hu et al., 2021; Liu

486 et al., 2023; Rumiantsev & Coates, 2024; Han et al., 2024; Yao et al., 2025; Ye et al., 2025). An MoE
 487 architecture comprises multiple expert networks specialized for different patterns, along with a gating
 488 network that selects or weights their outputs. For instance, GMoE (Wang et al., 2023) proposes that
 489 each node dynamically routes to one of several information aggregation experts, each with differing
 490 hop sizes, so as to better adapt to local graph structure in large-scale settings. Mowst (Zeng et al.,
 491 2023) takes a different perspective, utilizing a weak MLP and a strong GNN expert, with a confidence
 492 gate that per-node decides how much to rely on feature-only vs. structure-aware prediction. In
 493 the context of OOD generalization, GraphMETRO (Wu et al., 2024) uses a Mixture-of-Experts
 494 architecture to decompose complex distribution shifts into multiple components. A gating network
 495 infers which shifts affect each graph, and each expert is trained to produce representations invariant to
 496 its designated shift. However, these methods focus on static graphs, whereas we propose an adaptive
 497 MoE framework for dynamic graphs, routing experts based on historical and current information to
 498 discover invariant patterns more effectively under evolving distribution shifts.
 499

500 7 CONCLUSION

501 In this paper, we study distribution shifts in dynamic graphs from an architectural perspective. We
 502 propose **AdaMix**, a novel adaptive mixture-of-experts framework that dynamically selects the most
 503 suitable architecture for each node at every time step based on its inferred distribution. Specifically,
 504 **AdaMix** employs a spatio-temporal distribution detector to infer the underlying distribution of each
 505 node by leveraging both historical and current information. It then incorporates a prototype-guided
 506 disentangled experts module, which ensures that each expert specializes in a distinct factor of
 507 variation, thereby enabling effective routing. Finally, a distribution-aware intervention mechanism
 508 is introduced to enhance the discovery of invariant patterns by intervening nodes with others from
 509 different distributions. Extensive experiments on both real-world and synthetic datasets demonstrate
 510 the effectiveness of our proposed method. One limitation of our work is that we mainly focus on
 511 node-level tasks, and we leave the exploration of graph-level tasks for future work.
 512

513 ETHICS STATEMENT

514 All authors of this work have adhered to the ICLR Code of Ethics. In preparing this manuscript, we
 515 have ensured that no human subjects were directly involved, and all data used are publicly available
 516 benchmark datasets. To assist with language clarity and grammatical correctness, a large language
 517 model (LLM) was employed for proofreading and text refinement; however, all scientific content,
 518 ideas, analyses, and conclusions are solely the work of the authors. We have carefully considered
 519 potential biases, fairness, and reproducibility of our methods, and we confirm that our research does
 520 not involve applications or insights that could cause harm. All experiments comply with applicable
 521 legal and ethical standards in machine learning research.
 522

524 REPRODUCIBILITY STATEMENT

525 We have made every effort to ensure the reproducibility of the results reported in this paper. All
 526 datasets used in our experiments are publicly available, with data preprocessing steps detailed
 527 in Appendix C.1. The proposed Adaptive Mixture of Disentangled Experts (**AdaMix**) model is
 528 described with detailed algorithmic steps in Algorithm 1, hyperparameter settings in Appendix D.1,
 529 and experimental environment configurations in Appendix D.2.
 530

532 REFERENCES

533 Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk
 534 minimization games. In *International Conference on Machine Learning*, pp. 145–155. PMLR,
 535 2020a.

536 Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R Varshney.
 537 Empirical or invariant risk minimization? a sample complexity perspective. *arXiv preprint*
 538 *arXiv:2010.16412*, 2020b.

540 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 541 [arXiv preprint arXiv:1907.02893](https://arxiv.org/abs/1907.02893), 2019.

542

543 Jun-Hyun Bae, Inchul Choi, and Minho Lee. Meta-learned invariant risk minimization. [arXiv preprint](https://arxiv.org/abs/2103.12947)
 544 [arXiv:2103.12947](https://arxiv.org/abs/2103.12947), 2021.

545 Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for graph
 546 classification extrapolations. In [ICML](https://icml.cc/2021/paper/1037.pdf), pp. 837–851, 2021.

547

548 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? [arXiv preprint](https://arxiv.org/abs/2105.14491)
 549 [arXiv:2105.14491](https://arxiv.org/abs/2105.14491), 2021.

550 Lei Cai, Zhengzhang Chen, Chen Luo, Japing Gui, Jingchao Ni, Ding Li, and Haifeng Chen.
 551 Structural temporal graph neural networks for anomaly detection in dynamic graphs. In [Proceedings](https://doi.org/10.1145/3450037.3450060)
 552 of the 30th ACM international conference on Information & Knowledge Management

553 pp. 3747–3756, 2021.

554 Chao Chen, Haoyu Geng, Nianzu Yang, Xiaokang Yang, and Junchi Yan. Easydgl: Encode, train and
 555 interpret for continuous-time dynamic graph learning. [arXiv preprint arXiv:2303.12341](https://arxiv.org/abs/2303.12341), 2023a.

556

557 Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han,
 558 and James Cheng. Invariance principle meets out-of-distribution generalization on graphs. [arXiv](https://arxiv.org/abs/2202.05441)
 559 [preprint arXiv:2202.05441](https://arxiv.org/abs/2202.05441), 2022.

560 Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
 561 graph learning via environment augmentation learn invariance? [Advances in Neural Information](https://doi.org/10.1145/3394411.3403593)
 562 [Processing Systems](https://doi.org/10.1145/3394411.3403593), 36:71486–71519, 2023b.

563 Zhengyu Chen, Teng Xiao, Kun Kuang, Zheqi Lv, Min Zhang, Jinluan Yang, Chengqiang Lu,
 564 Hongxia Yang, and Fei Wu. Learning to reweight for generalizable graph neural network. In
 565 [Proceedings of the AAAI conference on artificial intelligence](https://doi.org/10.1609/aaai.2024.38102), volume 38, pp. 8320–8328, 2024.

566

567 Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
 568 Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for
 569 statistical machine translation. In [EMNLP](https://aclanthology.org/D14-1171.pdf), 2014.

570 Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Mehrdad Mahdavi, and
 571 Chun-cheng Jason Chen. Dynamic graph representation learning via graph transformer networks.
 572 [arXiv preprint arXiv:2111.10447](https://arxiv.org/abs/2111.10447), 2021.

573

574 Songgaojun Deng, Huzeфа Rangwala, and Yue Ning. Dynamic knowledge graph based multi-event
 575 forecasting. In [Proceedings of the 26th ACM SIGKDD International Conference on Knowledge](https://doi.org/10.1145/3385312.3385450)
 576 [Discovery & Data Mining](https://doi.org/10.1145/3385312.3385450), pp. 1585–1595, 2020.

577 Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
 578 on out-of-distribution graphs. [arXiv preprint arXiv:2111.10657](https://arxiv.org/abs/2111.10657), 2021.

579 Jean-Christophe Gagnon-Audet, Kartik Ahuja, Mohammad-Javad Darvishi-Bayazi, Guillaume Du-
 580 mas, and Irina Rish. Woods: Benchmarks for out-of-distribution generalization in time series tasks.
 581 [arXiv preprint arXiv:2203.09978](https://arxiv.org/abs/2203.09978), 2022.

582

583 Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
 584 [Advances in Neural Information Processing Systems](https://doi.org/10.1145/3494935.3495000), 35:2059–2073, 2022.

585

586 Shurui Gui, Meng Liu, Xiner Li, Youzhi Luo, and Shuiwang Ji. Joint learning of label and environment
 587 causal independence for graph out-of-distribution generalization. [Advances in Neural Information](https://doi.org/10.1145/3494935.3495000)
 588 [Processing Systems](https://doi.org/10.1145/3494935.3495000), 36:3945–3978, 2023.

589 Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
 590 and Xiaoning Qian. Variational graph recurrent neural networks. [Advances in neural information](https://doi.org/10.1145/3494935.3495000)
 591 [processing systems](https://doi.org/10.1145/3494935.3495000), 32, 2019.

592 Haoyu Han, Juanhui Li, Wei Huang, Xianfeng Tang, Hanqing Lu, Chen Luo, Hui Liu, and Jiliang
 593 Tang. Node-wise filtering in graph neural networks: A mixture of experts approach. [arXiv preprint](https://arxiv.org/abs/2406.03464)
 594 [arXiv:2406.03464](https://arxiv.org/abs/2406.03464), 2024.

594 Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
 595 graph classification. In ICML, pp. 8230–8248, 2022.
 596

597 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
 598 1735–1780, 1997.

599 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
 600 First steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-8733. doi: [https://doi.org/10.1016/0378-8733\(83\)90021-7](https://doi.org/10.1016/0378-8733(83)90021-7). URL <https://www.sciencedirect.com/science/article/pii/0378873383900217>.
 601

602 Fenyu Hu, Liping Wang, Shu Wu, Liang Wang, and Tieniu Tan. Graph classification by mixture of
 603 diverse experts. arXiv preprint arXiv:2103.15622, 2021.
 604

605 Tianrui Jia, Haoyang Li, Cheng Yang, Tao Tao, and Chuan Shi. Graph invariant learning with
 606 subgraph co-mixup for out-of-distribution generalization. In Proceedings of the AAAI Conference
 607 on Artificial Intelligence, volume 38, pp. 8562–8570, 2024.
 608

609 Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
 610 2016.
 611

612 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 613 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation
 614 (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.
 615

616 Haoyang Li, Peng Cui, Chengxi Zang, Tianyang Zhang, Wenwu Zhu, and Yishi Lin. Fates of
 617 microscopic social ecosystems: Keep alive or dead? In Proceedings of the 25th ACM SIGKDD
 618 International Conference on Knowledge Discovery & Data Mining, pp. 668–676, 2019.
 619

620 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs:
 621 A survey. arXiv preprint arXiv:2202.07987, 2022.
 622

623 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs:
 624 A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.
 625

626 Yong Lin, Hanze Dong, Hao Wang, and Tong Zhang. Bayesian invariant risk minimization. In
 627 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
 628 16021–16030, 2022.
 629

629 Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang Ye, and Chuxu Zhang.
 630 Fair graph representation learning via diverse mixture-of-experts. In Proceedings of the ACM web
 631 conference 2023, pp. 28–38, 2023.
 632

632 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
 633 in vector space. arXiv preprint arXiv:1301.3781, 2013.
 634

634 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 635 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
 636 Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.
 637

637 Shuacheng Niu, Jiaxiang Wu, Guanghui Xu, Yifan Zhang, Yong Guo, Peilin Zhao, Peng Wang,
 638 and Mingkui Tan. Adaxpert: Adapting neural architecture for growing data. In International
 639 conference on machine learning, pp. 8184–8194. PMLR, 2021.
 640

641 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
 642 Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
 643 for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
 644 pp. 5363–5370, 2020.
 645

646 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 647 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 648 high-performance deep learning library. Advances in neural information processing systems, 32,
 649 2019.

648 Pavel Rumiantsev and Mark Coates. Graph knowledge distillation to mixture of experts. [arXiv](#)
 649 [preprint arXiv:2406.11919](#), 2024.

650

651 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 652 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 653 [arXiv preprint arXiv:1911.08731](#), 2019.

654 Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
 655 resentation learning on dynamic graphs via self-attention networks. In [Proceedings of the 13th](#)
 656 [International Conference on Web Search and Data Mining](#), pp. 519–527, 2020.

657

658 Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
 659 modeling with graph convolutional recurrent networks. In [International Conference on Neural](#)
 660 [Information Processing](#), pp. 362–373. Springer, 2018.

661 Zheyuan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
 662 out-of-distribution generalization: A survey. [arXiv preprint arXiv:2108.13624](#), 2021.

663

664 Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and Kuansan
 665 Wang. An overview of microsoft academic service (mas) and applications. In [Proceedings of the](#)
 666 [24th international conference on world wide web](#), pp. 243–246. ACM, 2015.

667 Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of dynamic
 668 networks using dynamic graph neural networks: A survey. [IEEE Access](#), 9:79143–79168, 2021.

669

670 Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and Philip S Yu.
 671 Hyperbolic variational graph neural network for modeling dynamic graphs. In [Proceedings of the](#)
 672 [AAAI Conference on Artificial Intelligence](#), volume 35, pp. 4375–4383, 2021.

673

674 Xin Sun, Liang Wang, Qiang Liu, Shu Wu, Zilei Wang, and Liang Wang. Dive: subgraph disagreement
 675 for graph out-of-distribution generalization. In [Proceedings of the 30th ACM SIGKDD Conference](#)
 676 [on Knowledge Discovery and Data Mining](#), pp. 2794–2805, 2024.

677

678 Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
 679 mining of academic social networks. In [Proceedings of the 14th ACM SIGKDD international](#)
 680 [conference on Knowledge discovery and data mining](#), pp. 990–998, 2008.

681

682 Jie Tang, Sen Wu, Jimeng Sun, and Hang Su. Cross-domain collaboration recommendation. In
 683 [KDD’2012](#), 2012.

684

685 Katherine Tieu, Dongqi Fu, Jun Wu, and Jingrui He. Invariant link selector for spatial-temporal
 686 out-of-distribution problem. [arXiv preprint arXiv:2505.24178](#), 2025.

687

688 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 689 Bengio. Graph attention networks. [arXiv preprint arXiv:1710.10903](#), 2017.

690

691 Binwu Wang, Jiaming Ma, Pengkun Wang, Xu Wang, Yudong Zhang, Zhengyang Zhou, and Yang
 692 Wang. Stone: A spatio-temporal ood learning framework kills both spatial and temporal shifts. In
 693 [Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining](#),
 694 pp. 2948–2959, 2024.

695

696 Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella,
 697 Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with explicit
 698 diversity modeling. [Advances in Neural Information Processing Systems](#), 36:50825–50837, 2023.

699

700 Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
 701 learning in temporal networks via causal anonymous walks. [arXiv preprint arXiv:2101.05974](#),
 702 2021.

703

704 Yuanchao Wang, Zhao-Rong Lai, and Tianqi Zhong. Out-of-distribution generalization for total
 705 variation based invariant risk minimization. [arXiv preprint arXiv:2502.19665](#), 2025.

706

707 Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L Hamilton. Temp: Temporal message
 708 passing for temporal knowledge graph completion. [arXiv preprint arXiv:2010.03526](#), 2020.

702 Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
 703 invariance perspective. [arXiv preprint arXiv:2202.02466](https://arxiv.org/abs/2202.02466), 2022a.
 704

705 Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
 706 complex graph distribution shifts via mixture of aligned experts. [Advances in Neural Information
 707 Processing Systems](https://paperswithcode.com/paper/advances-in-neural-information-processing-systems-37-9358-9387), 37:9358–9387, 2024.

708 Yihan Wu, Aleksandar Bojchevski, and Heng Huang. Adversarial weight perturbation improves
 709 generalization in graph neural networks. In [Proceedings of the AAAI Conference on Artificial
 710 Intelligence](https://aaai.org/ocs/index.php/AAAI/AAAI23), volume 37, pp. 10417–10425, 2023.

711 Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
 712 rationales for graph neural networks. [arXiv preprint arXiv:2201.12872](https://arxiv.org/abs/2201.12872), 2022b.
 713

714 Donglin Xia, Xiao Wang, Nian Liu, and Chuan Shi. Learning invariant representations of graph
 715 neural networks via cluster generalization. [Advances in Neural Information Processing Systems](https://paperswithcode.com/paper/advances-in-neural-information-processing-systems-36-45602-45613),
 716 36:45602–45613, 2023.

717 Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
 718 tion learning on temporal graphs. [arXiv preprint arXiv:2002.07962](https://arxiv.org/abs/2002.07962), 2020.

719 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 720 networks? [arXiv preprint arXiv:1810.00826](https://arxiv.org/abs/1810.00826), 2018.

721 Wujiang Xu, Qitian Wu, Runzhong Wang, Mingming Ha, Qiongxu Ma, Linxun Chen, Bing Han, and
 722 Junchi Yan. Rethinking cross-domain sequential recommendation under open-world assumptions.
 723 In [WWW](https://www2024.acm.org/), 2024.

724 Kuo Yang, Zhengyang Zhou, Qihe Huang, Limin Li, Yuxuan Liang, and Yang Wang. Improving
 725 generalization of dynamic graph learning via environment prompt. [Advances in Neural Information
 726 Processing Systems](https://paperswithcode.com/paper/advances-in-neural-information-processing-systems-37-70048-70075), 37:70048–70075, 2024.

727 Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-time
 728 temporal network embedding via implicit hierarchical learning in hyperbolic space. In [Proceedings
 729 of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining](https://www.kdd.org/kdd2021), pp. 1975–1985,
 730 2021.

731 Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improv-
 732 ing out-of-distribution robustness via selective augmentation. In [Proceeding of the Thirty-ninth
 733 International Conference on Machine Learning](https://proceedings.mlr.press/v160/yao22a.html), 2022.

734 Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, and Kun Zhang. Empowering
 735 graph invariance learning with deep spurious infomax. [arXiv preprint arXiv:2407.11083](https://arxiv.org/abs/2407.11083), 2024.

736 Zelin Yao, Mukun Chen, Chuang Liu, Xianke Meng, Yibing Zhan, Jia Wu, Shirui Pan, Huiting Xu,
 737 and Wenbin Hu. Da-moe: Addressing depth-sensitivity in graph-level analysis through mixture of
 738 experts. [Neural Networks](https://arxiv.org/abs/2501.08064), pp. 108064, 2025.

739 Junda Ye, Zhongbao Zhang, Li Sun, and Siqiang Luo. Mose: Unveiling structural patterns in graphs
 740 via mixture of subgraph experts. [arXiv preprint arXiv:2509.09337](https://arxiv.org/abs/2509.09337), 2025.

741 Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenberg, and Jure Leskovec.
 742 Hierarchical temporal convolutional networks for dynamic recommender systems. In [The world
 743 wide web conference](https://www.aaai.org/ocs/index.php/WWW/WWW2019), pp. 2236–2246, 2019.

744 Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
 745 Environment-aware dynamic graph learning for out-of-distribution generalization. [Advances in
 746 Neural Information Processing Systems](https://paperswithcode.com/paper/advances-in-neural-information-processing-systems-36-49715-49747), 36:49715–49747, 2023.

747 Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak & strong experts
 748 on graphs. [arXiv preprint arXiv:2311.05185](https://arxiv.org/abs/2311.05185), 2023.

749 Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
 750 neural networks under spatio-temporal distribution shift. In [Advances in Neural Information
 751 Processing Systems](https://paperswithcode.com/paper/advances-in-neural-information-processing-systems-36-49715-49747), 2022.

756 Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Haoyang Li, Wenwu Zhu,
757 et al. Spectral invariant learning for dynamic graphs under distribution shifts. In Thirty-seventh
758 Conference on Neural Information Processing Systems, 2023.

759
760 Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnn: Overcoming the
761 limitations of localized graph training data. Advances in Neural Information Processing Systems,
762 34, 2021.

763 Yuecai Zhu, Fuyuan Lyu, Chengming Hu, Xi Chen, and Xue Liu. Learnable encoder-decoder
764 architecture for dynamic graph: A survey. arXiv preprint arXiv:2203.10480, 2022.

765 Yun Zhu, Haizhou Shi, Zhenshuo Zhang, and Siliang Tang. Mario: Model agnostic recipe for
766 improving ood generalization of graph contrastive learning. In Proceedings of the ACM Web
767 Conference 2024, pp. 300–311, 2024.

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811 LLM USAGE STATEMENT

812 In this work, we leveraged a large language model (LLM) to assist with checking for grammatical
 813 errors and improving the clarity and readability of the manuscript. Specifically, the LLM was used
 814 to proofread sentences, suggest stylistic improvements, and ensure that the text adhered to formal
 815 academic writing standards. All scientific content, ideas, and results presented in this paper are solely
 816 the work of the authors.

817
818 A NOTATIONS
819820
821 Table 3: The summary of the notations and their descriptions used in this paper.

822	Notations	Descriptions
824	$\mathcal{G} = (\mathcal{V}, \mathcal{E})$	Dynamic graph with node set \mathcal{V} and edge set \mathcal{E}
825	$\mathcal{G}^t = (\mathcal{V}^t, \mathcal{E}^t)$	Graph snapshot at time t with node set \mathcal{V}^t and edge set \mathcal{E}^t
826	$\mathcal{G}_v^t = (\mathcal{V}_v^t, \mathcal{E}_v^t)$	Ego-graph trajectory of node v at time t
827	$\mathcal{G}_v^{1:t} = (\mathcal{V}_v^{1:t}, \mathcal{E}_v^{1:t})$	Historical ego-graph trajectory of node v from time 1 to t
828	d_x, d_h	Dimensions of input features and hidden embeddings
829	$\mathbf{X}^t \in \mathbb{R}^{ \mathcal{V}^t \times d_x}, \mathbf{A}^t \in \mathbb{R}^{ \mathcal{V}^t \times \mathcal{V}^t }$	Node feature matrix and adjacency matrix at time t
830	\mathbf{y}_v^t	Label of node v at time t
831	$\mathbf{H}_k^t \in \mathbb{R}^{ \mathcal{V} \times d_h}$	Node embedding matrix produced by expert k at time t
832	$\mathbf{p}_k \in \mathbb{R}^{d_h}$	Learnable prototype for expert k
833	$\mathbf{r}_v^t \in \mathbb{R}^{d_h}$	Routing vector for node v at time t
834	$\mathbf{m}_v^t \in \mathbb{R}^{d_h}$	Memory vector for node v at time t
835	$\alpha_{v,k}^t$	Weight of expert k for node v at time t
836	\mathbf{m}_I and \mathbf{m}_V	Invariant and variant masks
837	$\mathbf{z}_v^t \in \mathbb{R}^{d_h}$	MoE node embedding for node v at time t
838	$\mathbf{Z}_I, \mathbf{Z}_V \in \mathbb{R}^{T \times \mathcal{V} \times d_h}$	Invariant and variant patterns for all nodes across all timestamps
839	e_v^t	Dominant expert for node v at time t
840	$\mathcal{L}_I, \mathcal{L}_{\text{inv}}, \mathcal{L}_{\text{dis}}$	Empirical risk based on invariant patterns, invariance loss, and disentanglement loss
841	λ, α	Hyperparameters to balance different loss terms

840 B ALGORITHM AND TIME COMPLEXITY ANALYSIS
841842 **Algorithm 1** Training pipeline for AdaMix

843
844 **Input:** data $\mathcal{D} = \{(\mathcal{G}_v^{1:t}, y_v^t)\}$, number of experts K , hyperparameters λ and α
 845 **Initialize:** experts $\{\text{GNN}_k\}_{k=1}^K$, prototypes $\{\mathbf{p}_k\}_{k=1}^K$, initial memory bank \mathbf{M} , distribution detec-
 846 tor GNN_r
 847 **for** each epoch **do**
 848 Reset memory bank \mathbf{M}
 849 **for** each time step $t = 1$ to T **do**
 850 **for** each node $v \in \mathcal{V}^t$ **do**
 851 Obtain routing vector \mathbf{r}_v^t using Eq. 6.
 852 Calculate expert weights $\alpha_{v,k}^t$ using Eq. 3.
 853 Obtain MoE node embedding \mathbf{z}_v^t using Eq. 4.
 854 Update memory vector \mathbf{m}_v^t using Eq. 7.
 855 **end for**
 856 Calculate invariant and variant masks \mathbf{m}_I and \mathbf{m}_V using Eq. 8.
 857 Extract invariant and variant patterns \mathbf{Z}_I and \mathbf{Z}_V using Eq. 9.
 858 Calculate loss \mathcal{L} using Eq. 13.
 859 **end for**
 860 **end for**

861
862 **Time Complexity Analysis.** Let $|\mathcal{V}|$, $|\mathcal{E}|$, and T denote the number of nodes, edges, and time
 863 steps, respectively. We denote the dimensions of input features and hidden embeddings by d_x
 and d_h , respectively, and let $|\mathcal{S}|$ represent the number of intervention times. The time complexity

of **AdaMix** mainly consists of the following components: the time complexity of K experts is $\mathcal{O}(KT|\mathcal{E}|d_x + KT|\mathcal{V}|d_x d_h)$; the time complexity of the router GNN is $\mathcal{O}(T|\mathcal{E}|d_h + T|\mathcal{V}|d_h^2)$; the time complexity of computing MoE weights is $\mathcal{O}(T|\mathcal{V}|Kd_h)$, and the time complexity of computing MoE node embeddings is also $\mathcal{O}(T|\mathcal{V}|Kd_h)$. In addition, the time complexity of extracting invariant and variant patterns is $\mathcal{O}(T|\mathcal{V}|d_h \log T)$, and the time complexity of distribution-aware interventions is $\mathcal{O}(|\mathcal{S}|T|\mathcal{V}|d_h)$.

Therefore, the overall time complexity of **AdaMix** is:

$$\mathcal{O}\left(KT|\mathcal{E}|d_x + KT|\mathcal{V}|d_x d_h + T|\mathcal{E}|d_h + T|\mathcal{V}|d_h^2 + T|\mathcal{V}|Kd_h + T|\mathcal{V}|d_h \log T + |\mathcal{S}|T|\mathcal{V}|d_h\right)$$

which scales linearly with the number of edges and nodes in the dynamic graph, which is comparable to existing dynamic graph OOD generalization methods (Zhang et al., 2023; Yuan et al., 2023).

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 DATASETS DETAILS

We summarize the dataset statistics in Table 4 and describe the dataset details as follows.

Table 4: Dataset statistics

Dataset	Task	# Nodes	# Edges	# Snapshots	Time Granularity	# Features	Evolving Features
Collab	Link	23,035	151,790	16	Year	32	No
Yelp	Link	13,095	65,735	24	Month	32	No
Aminer	Node	43,141	851,527	17	Year	128	No
Link-Synthetic	Link	151,790	18,974	16	-	64	Yes
Node-Synthetic	Node	5,000	11,252,385	100	-	4	No

Collab (Tang et al., 2012) is an academic collaboration dataset comprising 16 graph snapshots of co-authored papers published between 1990 and 2006. Nodes represent authors, and edges denote co-authorship relationships. Each edge is annotated with one of five domain-specific attributes: "Data Mining", "Database", "Medical Informatics", "Theory", and "Visualization". For OOD generalization experiments, we designate "Data Mining" as the shifted attribute. The dataset is chronologically split into 10/1/5 graph snapshots for training, validation, and testing, respectively. The full dataset comprises 23,035 authors and 151,790 co-authorship links in total.

Yelp (Sankar et al., 2020) is a business review dataset where nodes represent customers or businesses, and edges denote review behaviors. We utilize data from January 2019 to December 2020 (24 graph snapshots), selecting users and reviews with more than 10 interactions. Node features are extracted using word2vec (Mikolov et al., 2013) from reviews, averaged to form 32-dimensional representations for both users and businesses. The distribution shift arises from the COVID-19 pandemic and differing business categories, including "Pizza", "American (New) Food", "Coffee & Tea", "Sushi Bars", and "Fast Food". We designate "Pizza" as the shifted attribute and use 15/1/8 chronological graph slices for training, validation, and testing, respectively. The dataset comprises 13,095 nodes and 65,375 links in total.

Aminer (Tang et al., 2008; Sinha et al., 2015) is a citation network constructed by aggregating data from multiple academic sources, including DBLP, ACM, MAG, and others. The dataset comprises research papers and their citation relationships. For our experiments, we focus on predicting the publication venue of a paper. We select the top 20 venues in the dataset as target categories. We use word2vec (Mikolov et al., 2013) to extract 128-dimensional features from paper abstracts and average to obtain paper features. The distribution shift in this task might be attributed to the significant rise of deep learning research. Therefore, we use papers published between 2001 and 2011 for training, those published between 2012 and 2014 for validation, and papers published from 2015 onwards for testing.

Link-Synthetic (Zhang et al., 2022) is a synthetic dataset designed to evaluate OOD generalization under controlled spatio-temporal shifts. It is constructed by augmenting the COLLAB dataset. We generate a synthetic feature set \mathbf{X}_2^t by training embeddings to reconstruct future links $\tilde{\mathbf{A}}^{t+1}$ using a cross-entropy loss $\ell(\mathbf{X}_2^t(\mathbf{X}_2^t)^\top, \tilde{\mathbf{A}}^{t+1})$. This ensures \mathbf{X}_2^t encodes strong, spurious correlations with

918 future link patterns. The input features are $\mathbf{X}^t = [\mathbf{X}_1^t \parallel \mathbf{X}_2^t]$, where \mathbf{X}_1^t are the original COLLAB
 919 features. The intensity of the distribution shift is controlled by a time-varying sampling probability
 920 $p(t) = \text{clip}(\bar{p} + \sigma \cos(t), 0, 1)$, where \bar{p} is set to 0.4, 0.6, or 0.8 for training and 0.1 for testing. We
 921 preserve the dataset division method of training, validation, and testing time steps of 10, 1, and 5.
 922

923 **Node-Synthetic** (Zhang et al., 2023) is designed to simulate distribution shifts in node classification
 924 tasks by explicitly modeling frequency components on dynamic graphs that exhibit invariant correlations
 925 with labels, while others do not. To construct this dataset, we employ a stochastic block model
 926 (SBM) (Holland et al., 1983) to generate links between nodes, where the link probability between
 927 nodes depends on their class labels. Specifically, the SBM is parameterized as $\text{SBM}(\mathbf{p}_{\text{in}}, p_{\text{out}})$, with
 928 $\mathbf{p}_{\text{in}} \in [0, 1]^{C \times 1}$ denoting the intra-class link probability and p_{out} representing the inter-class link prob-
 929 ability. We set $C = 5$ classes for the node labels. Each node is associated with two types of frequency
 930 parameters: $f_{\text{low}} \in \{0.02, 0.04, 0.08, 0.10, 0.12\}$ and $f_{\text{high}} \in \{0.22, 0.24, 0.28, 0.30, 0.32\}$. The cor-
 931 relation between f_{low} and labels is varied across training (0.4), validation (0.6), and testing (0.8) splits,
 932 while f_{high} maintains a fixed correlation of 1 with labels across all splits. At each time step t , the
 933 dynamic graph \mathcal{G}^t is constructed by aggregating multiple subgraphs: (1) a random graph \mathcal{G}_r^t generated
 934 from Gaussian noise, (2) an invariant graph $\mathcal{G}_I^t = \text{SBM}(\mathbf{p}_{\text{in}}^{\text{high}}(t), p_{\text{out}})$ derived from high-frequency
 935 parameters, and (3) a variant graph $\mathcal{G}_V^t = \text{SBM}(\mathbf{p}_{\text{in}}^{\text{low}}(t), p_{\text{out}})$ based on low-frequency parameters.
 936 The temporal evolution of these parameters is governed by $\mathbf{p}_{\text{in}}^{\text{low}}(t, f) = S_1 (2 + \cos(2\pi ft))$ and
 937 $\mathbf{p}_{\text{in}}^{\text{high}}(t, f) = S_2 (2 + \cos(2\pi ft))$, where p_{out}, S_1, S_2 are set to 1e-3, 1e-2, 5e-3 respectively. Each
 938 node is assigned 4-dimensional random features to enhance realism. To ensure generalization under
 939 distribution shifts, models must identify and prioritize the invariant graph component (\mathcal{G}_I^t) for accu-
 940 rate predictions, as the variant component (\mathcal{G}_V^t) exhibits unstable label relationships across training
 941 and testing phases. This design enables rigorous evaluation of a model’s ability to disentangle and
 942 leverage invariant spectral patterns in dynamic graphs.
 943

944 C.2 BASELINES DETAILS

945 We adopt several representative dynamic GNNs and Out-of-Distribution(OOD) generalization meth-
 946 ods as our baselines:

- 947 • Dynamic GNNs: **GCRN** (Seo et al., 2018) integrates a spatial graph convolutional network
 948 (GCN) (Kipf & Welling, 2016) with a temporal gated recurrent unit (GRU) (Cho et al., 2014)
 949 to capture both structural and temporal dependencies in dynamic graphs. **EGCN** (Pareja et al.,
 950 2020) dynamically evolves GCN parameters over time by incorporating an LSTM (Hochreiter
 951 & Schmidhuber, 1997) or GRU (Cho et al., 2014), enabling adaptive modeling of network
 952 evolution. **DySAT** (Sankar et al., 2020) employs structural self-attention mechanisms to aggregate
 953 neighborhood information at each timestamp and uses temporal self-attention to model dynamic
 954 network patterns.
- 955 • general OOD generalization methods: **IRM** (Arjovsky et al., 2019) seeks to learn a domain-
 956 invariant predictor by minimizing the maximum empirical risk across training domains. **Group-
 957 DRO** (Sagawa et al., 2019) prioritizes domains with higher prediction errors during training,
 958 reducing worst-case risks across heterogeneous environments. **V-REx** (Krueger et al., 2021)
 959 minimizes the variance of empirical risks across training domains to enhance generalization under
 960 distributional shifts. Although these methods focus on static graphs, they are adapted here by
 961 leveraging the best-performing DGNNs as backbone architectures for dynamic graph tasks.
- 962 • static graph MoE methods: **GMoE** (Wang et al., 2023) utilizes a mixture-of-experts architecture
 963 where each expert captures information at different hop sizes, allowing dynamic routing based on
 964 local graph structures. **GraphMETRO** (Wu et al., 2024) employs a mixture-of-experts framework
 965 to decompose complex distribution shifts into multiple components, with each expert learning
 966 representations invariant to its designated shift.
- 967 • dynamic graph OOD generalization methods: **DIDA** (Zhang et al., 2022) captures invariant
 968 and variant patterns by utilizing disentangled attention in the spatial-temporal domain, and
 969 conducts a spatial-temporal intervention mechanism to let the model abandon spurious features
 970 and turning to utilizing invariant features to make predictions. **EAGLE** (Yuan et al., 2023) uses an
 971 EA-DGNN to disentangle multi-channel environments. Then, an ECAE infers and generates
 972 diverse environment samples for fine-grained causal interventions. **SILD** (Zhang et al., 2023)
 973 disentangles the frequency components of node feature trajectories in the spectral domain, and

972 then captures invariant patterns by masking out variant frequency components. **SILD-GCN**,
 973 **SILD-GAT**, **SILD-GATv2**, **SILD-GIN** apply the SILD framework using the GCN (Kipf & Welling,
 974 2016), GAT (Veličković et al., 2017), GATv2 (Brody et al., 2021) and GIN (Xu et al., 2018)
 975 backbone, respectively. We implement these variants to ensure a fair comparison with our
 976 **AdaMix** model.

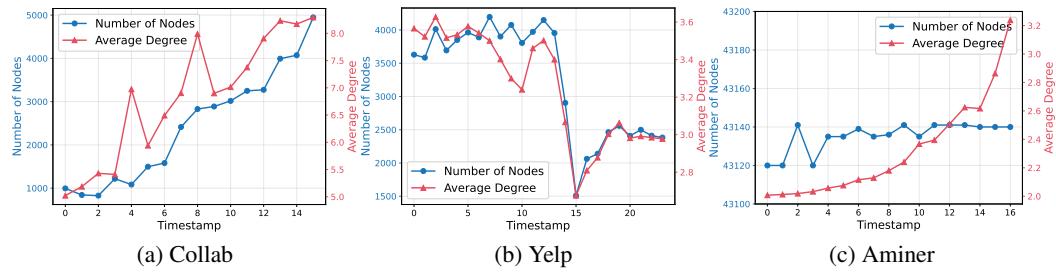
977

978 C.3 CASE STUDY OF EVOLVING DISTRIBUTION SHIFTS

979

980 We visualize the evolving distribution shifts in real-world dynamic graphs in terms of the number
 981 of nodes and average degree in Figure 5. The distributions of these key graph statistics change
 982 significantly over time, confirming the presence of continuous distribution shifts. While some datasets,
 983 such as Collab, exhibit a consistent monotonic trend (e.g., continuous growth), this observation
 984 suggests that analyzing historical trends can be crucial for inferring the current graph distribution.

985



994

995 Figure 5: Visualizations of the number of nodes and average degree in each graph snapshot.

996

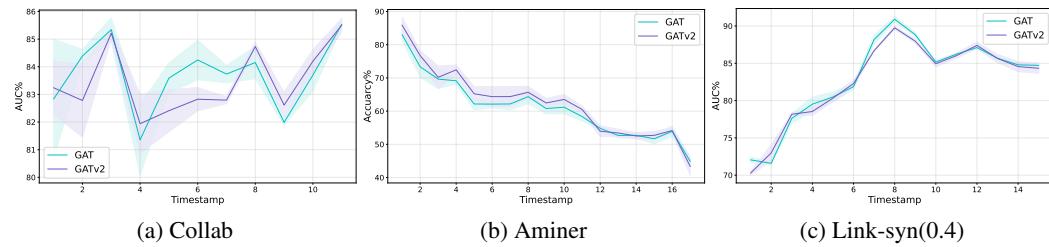
997

998 C.4 CASE STUDY OF ARCHITECTURE IMPACT

999

1000 To effectively demonstrate that different time periods in a dynamic graph require distinct optimal
 1001 architectures, we conduct a case study using two GNN architectures: GAT (Veličković et al., 2017)
 1002 and GATv2 (Brody et al., 2021). Built upon the SILD framework (Zhang et al., 2023), we visualize
 1003 the timestamp-wise performance of both architectures in Figure 6. Our results reveal that the optimal
 1004 architecture is not static; GAT outperforms GATv2 at certain timestamps, while GATv2 demonstrates
 1005 superior performance at others. This finding indicates that no single fixed architecture is sufficient
 1006 for all time periods, underscoring the critical need for adaptive architectures to handle evolving
 1007 distribution shifts in dynamic graphs effectively.

1008



1017

1018

1019

1020 Figure 6: Performance comparison of GAT and GATv2 on the real-world dynamic graphs. The solid
 1021 lines indicate the average AUC across timestamps, with the shaded region representing the standard
 1022 deviation.

1023

1024

1025

1026 C.5 HYPERPARAMETERS SENSITIVITY ANALYSIS

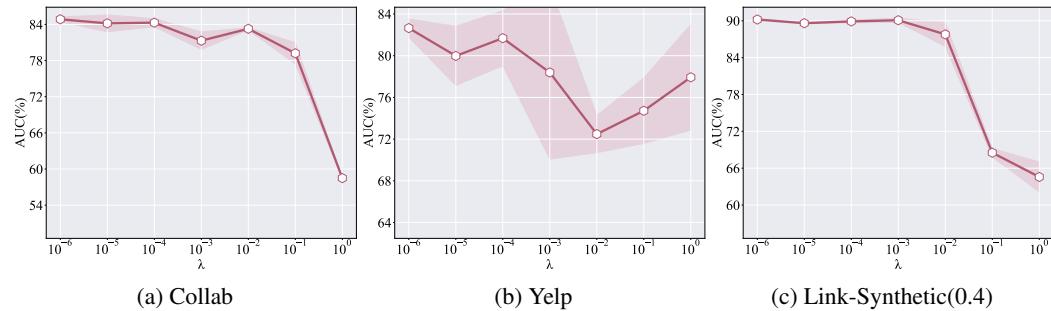
1027

1028

1029 We conduct the sensitivity analysis on two key hyperparameters: the weight of the invariance
 1030 loss, λ , and the weight of the disentanglement loss, β . We vary both λ and β from
 1031 $\{10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0\}$, while keeping all other hyperparameters fixed. The

1026 results on both real-world and synthetic datasets are presented in Figure 7 and Figure 8, respectively.
 1027 The hyperparameter λ in Eq. 13 controls the trade-off between minimizing the empirical risk from
 1028 predictions (L_I) and enhancing generalization through learning invariant patterns (L_{inv}), as defined
 1029 in Eq. 12. A large value of λ could lead to an over-emphasis on invariance, potentially causing
 1030 underfitting of the invariant patterns. Similarly, the hyperparameter β in Eq. 13 controls the trade-off
 1031 between L_I and the disentanglement loss (L_{dis}), as defined in Eq. 2. L_{dis} is crucial for encouraging
 1032 each expert to learn distinct factors, which is necessary for capturing diverse distribution shifts in
 1033 dynamic graphs. As shown in Figure 8, our model yields stable performance across a wide range of β
 1034 values, demonstrating that the contribution of the disentanglement loss is robust to its hyperparameter
 1035 selection.

1036



1046

1047

1048

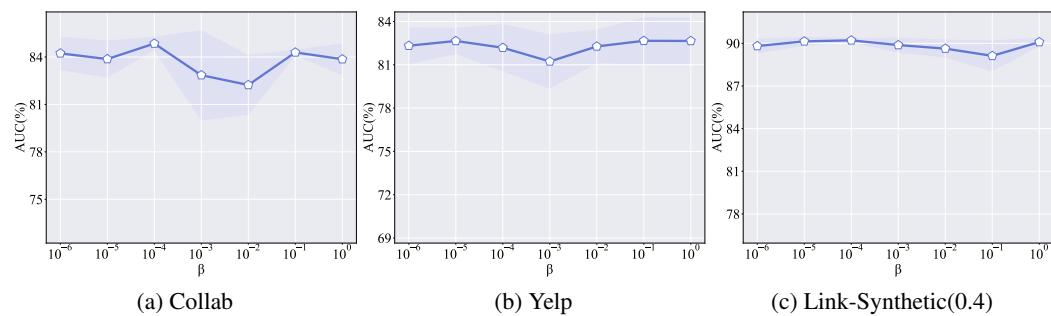
1049

1050

Figure 7: Sensitivity analysis of hyperparameter λ on real-world and synthetic datasets. The solid line represents the average AUC (%), with the shaded area showing the standard deviation. The dashed line indicates the average AUC (%) of baseline SILD.

1051

1052



1061

1062

1063

1064

1065

Figure 8: Sensitivity analysis of hyperparameter β on real-world and synthetic datasets. The solid line represents the average AUC (%), with the shaded area showing the standard deviation. The dashed line indicates the average AUC (%) of baseline SILD.

1066

1067

1068

1069

1070

C.6 SHOWCASE OF ADAPTIVE ARCHITECTURES

1071

1072

1073

1074

1075

1076

1077

1078

1079

As shown in Figure 9, we present the final architectures discovered for Nodes 0–2 in the Aminer dataset. Several observations support our earlier hypotheses: architectures searched for different nodes at the same time step can differ, and architectures for the same node can change over time. Notably, Node 1 exhibits significant architectural changes between early and later stages. In contrast, some nodes maintain consistent architectures, such as Node 0, while Node 2 shows only minor variations, suggesting that the underlying distribution for some nodes may not experience substantial shifts.

C.7 TRAINING AND INFERENCE TIME

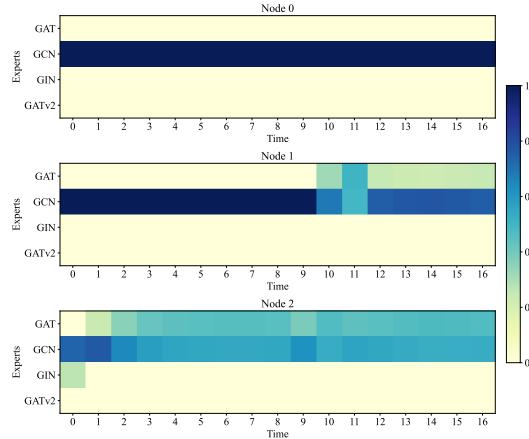


Figure 9: Illustration of the final architectures for Nodes 0–2 from Aminer across different time steps.

As shown in Table 5, we evaluated the training and inference cost of our approach compared with competitive baselines. The training time is measured on the portion of the “W/O DS” dataset that requires loss computation and backpropagation (i.e., its training split). The inference time is measured on the remaining parts of the dataset, including the validation and test splits of “W/O DS” as well as the entire “W DS” dataset. The results are as follows. The table reports, for each method and each dataset, the average per-epoch training and inference cost (in seconds). All measurements are obtained under the same hardware configuration for a fair comparison. We can observe that environment-modeling methods such as EAGLE incur substantially higher time cost compared to non-environment-modeling approaches. In contrast, our AdaMix introduces only modest overhead relative to SILD.

Table 5: Training and inference time (in seconds) of different methods on various datasets.

Dataset	EAGLE Train	EAGLE Inf	SILD Train	SILD Inf	AdaMix Train	AdaMix Inf
Yelp	6.84	0.87	0.93	0.74	0.78	0.67
Collab	14.16	3.88	0.37	0.20	0.45	0.56
Link-syn (0.4)	4.96	1.23	0.35	0.36	0.47	0.71
Link-syn (0.6)	7.77	1.99	0.27	0.31	0.32	0.62
Link-syn (0.8)	11.02	2.20	0.53	0.34	0.48	0.69
Aminer	9.22	0.18	0.31	0.27	1.03	1.15
Node-syn (0.4)	3.44	0.43	0.29	0.16	1.04	0.55
Node-syn (0.6)	3.47	0.44	0.23	0.12	1.17	0.60
Node-syn (0.8)	3.48	0.44	0.22	0.12	1.14	0.60

C.8 PERFORMANCE WITH MORE EXPERTS

To evaluate sensitivity to the number of experts, we add GraphConv (Morris et al., 2019) to the original set of four expert architectures and examined the effect of increasing the number of experts. As shown in Table 6, the results indicate that using five experts still achieves comparable performance.

Table 6: Performance comparison with different numbers of experts.

Dataset	Collab	Yelp	Link-syn (0.4)	Link-syn (0.6)	Link-syn (0.8)
Four experts	84.85 ± 0.39	82.65 ± 0.87	90.21 ± 0.13	89.64 ± 0.26	88.86 ± 0.13
Five experts	85.24 ± 0.27	83.59 ± 0.19	88.71 ± 0.41	89.34 ± 0.77	88.78 ± 0.42

1134 **D IMPLEMENTATION DETAILS**
11351136 **D.1 HYPERPARAMETERS**
1137

1138 For all baseline models, we use their official implementations and carefully tune hyperparameters
1139 to ensure the best possible performance. For the SILD framework (Zhang et al., 2023), we replace
1140 its original backbone with several widely-used GNN architectures: GCN (Kipf & Welling, 2016),
1141 GAT (Veličković et al., 2017), GATv2 (Brody et al., 2021), and GIN (Xu et al., 2018). For our
1142 method, we also use these four GNNs as our experts to ensure a fair comparison, maintaining
1143 consistent layer and dimension configurations. To ensure a fair comparison, we adopt the same
1144 hyperparameter search spaces as the baselines for shared parameters, including the number of attention
1145 heads, normalization methods, and dropout rates. For our method’s specific hyperparameters, the
1146 invariance loss weight λ and the disentanglement loss weight β , we perform a grid search over the
1147 set $\{10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0\}$ and empirically select the optimal values for each
1148 dataset. We use different learning rates for the expert network and other modules, and we fine-tune
1149 both the learning rate and weight decay for each dataset via a grid search on the validation split.
1150

1151 **D.2 CONFIGURATIONS**
1152

1153 We conduct all experiments in the following configurations.
1154

- **Operating System:** Ubuntu 24.04.3 LTS
- **CPU:** AMD EPYC 7543 32-Core Processor
- **GPU:** NVIDIA A100-SXM4-40GB and NVIDIA A100-SXM4-80GB
- **Software:** Python 3.9, CUDA 11.7, Pytorch (Paszke et al., 2019) 2.0.1

1162 **E PROOF**
1163

1164 **Proposition 1:** *Under the invariance constraint $\mathbf{y}_v^t \perp \mathbf{P}_V^t(v) \mid \mathbf{P}_I^t(v)$, if there exist two timestamps,
1165 t_1 and t_2 , for which the optimal architectures differ when tasked with discovering invariant patterns
1166 at t_1 and t_2 , then an adaptive architecture can capture invariant patterns $\mathbf{P}_I^t(v)$ and variant patterns
1167 $\mathbf{P}_V^t(v)$ more effectively than fixed architecture.*

1168 We provide a proof from the perspective of mutual information. Consider dynamic graphs
1169 $\{\mathbf{G}^{1:t}, \mathbf{Y}^t\}_{t=1}^T$, where $\mathbf{G}^{1:t} = (\mathbf{G}^1, \mathbf{G}^2, \dots, \mathbf{G}^t)$ denotes the sequence of graph snapshots up to
1170 time t , and \mathbf{Y}^t represents the labels at time t . At each timestamp t , an encoder architecture ϕ^t extracts
1171 two invariant patterns and variant patterns $\mathbf{P}_I^t(v)$ and $\mathbf{P}_V^t(v)$:
1172

$$\mathbf{P}_I^t(v) = f_I(\phi^t(\mathbf{G}_v^{1:t})), \quad \mathbf{P}_V^t(v) = f_V(\phi^t(\mathbf{G}_v^{1:t})) \quad (14)$$

1173 We denote the K candidate architectures as ϕ_k for $k = 1, 2, \dots, K$, and define the following two
1174 sets:
1175

- **Fixed architectures** $\phi_{\text{fix}} = \{\phi_k^t \mid t = 1, 2, \dots, T\}$: a single architecture ϕ_k is shared across
1176 all timestamps t . We denote the set containing all ϕ_{fix} as Φ_{fix} .
- **Adaptive architectures** $\phi_{\text{ada}} = \{\phi_{S(\mathbf{G}_v^{1:t})}^t \mid t = 1, 2, \dots, T\}$: the architecture ϕ is allowed
1177 to vary with $\mathbf{G}_v^{1:t}$, where S is a routing variable that depends on $\mathbf{G}_v^{1:t}$. We denote the set
1178 containing all ϕ_{ada} as Φ_{ada} .

1179 To satisfy the invariance constraint in Assumption 1, we aim to minimize the conditional mutual
1180 information $I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v))$. For each timestamp t , we aim to find a ϕ^t that achieve :

$$I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) = I(f_V(\phi^t(\mathbf{G}_v^{1:t})); \mathbf{y}_v^t \mid f_I(\phi^t(\mathbf{G}_v^{1:t}))) = \varepsilon, \quad (15)$$

1188 where ε is a sufficiently small constant. We then define the constraint-satisfying subsets $\mathcal{F}_{\text{fix}}(\varepsilon)$ and
 1189 $\mathcal{F}_{\text{ada}}(\varepsilon)$ of Φ_{fix} and Φ_{ada} , respectively, as follows:
 1190

$$\mathcal{F}_{\text{fix}}(\varepsilon) = \left\{ \phi_{\text{fix}} \in \Phi_{\text{fix}} \mid I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) = \varepsilon, \forall t \right\} \quad (16)$$

$$\mathcal{F}_{\text{ada}}(\varepsilon) = \left\{ \phi_{\text{ada}} \in \Phi_{\text{fix}} \mid I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) = \varepsilon, \forall t \right\} \quad (17)$$

1194 Clearly, $\Phi_{\text{fix}} \subset \Phi_{\text{ada}}$ (since setting S to a constant recovers a fixed architecture), which implies
 1195 $\mathcal{F}_{\text{fix}}(\varepsilon) \subset \mathcal{F}_{\text{ada}}(\varepsilon)$. Then we apply the chain rule of mutual information:
 1196

$$I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) = I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) + I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) \quad (18)$$

1198 Therefore, under the invariance constraint $I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) = \varepsilon$, maximizing
 1199 $I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t)$ is equivalent to maximizing $I(\mathbf{P}_I^t(v); \mathbf{y}_v^t)$. Overall, for any $\phi \in \mathcal{F}(\varepsilon)$,
 1200 we have:

$$\sup_{\mathcal{F}(\varepsilon)} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) = \sup_{\mathcal{F}(\varepsilon)} \sum_{t=1}^T \left[I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) + I(\mathbf{P}_V^t(v); \mathbf{y}_v^t \mid \mathbf{P}_I^t(v)) \right] \quad (19)$$

$$= \sup_{\mathcal{F}(\varepsilon)} \sum_{t=1}^T \left[I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) + \varepsilon \right] \quad (20)$$

1204 The adaptive architectures can capture both invariant and variant patterns at least as effectively as
 1205 fixed architectures under the same invariance constraint. Since $\mathcal{F}_{\text{fix}}(\varepsilon) \subset \mathcal{F}_{\text{ada}}(\varepsilon)$, it follows that:
 1206

$$\sup_{\mathcal{F}_{\text{fix}}(\varepsilon)} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \leq \sup_{\mathcal{F}_{\text{ada}}(\varepsilon)} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \quad (21)$$

1212 Similarly, for any subset $\mathcal{T} \subseteq \{1, \dots, T\}$, we can derive an analogous result:
 1213

$$\sup_{\mathcal{F}_{\text{fix}}(\varepsilon)} \sum_{t \in \mathcal{T}} I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \leq \sup_{\mathcal{F}_{\text{ada}}(\varepsilon)} \sum_{t \in \mathcal{T}} I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \quad (22)$$

1217 We next show that adaptive architectures can strictly outperform fixed architectures when there exist
 1218 two timestamps, t_1 and t_2 , for which the optimal architectures differ when tasked with discovering in-
 1219 variant patterns at t_1 and t_2 , i.e., $\arg \max_{\phi} I(\mathbf{P}_I^{t_1}(v); \mathbf{y}_v^{t_1}) \neq \arg \max_{\phi} I(\mathbf{P}_I^{t_2}(v); \mathbf{y}_v^{t_2})$. Specifically,
 1220 let ϕ_i and ϕ_j denote the optimal architectures at t_1 and t_2 , respectively, with $i \neq j$. By the definition
 1221 of optimality, we have:

$$\begin{aligned} \sup_{\phi_i} I(\mathbf{P}_I^{t_1}(v); \mathbf{y}_v^{t_1}) + \sup_{\phi_j} I(\mathbf{P}_I^{t_2}(v); \mathbf{y}_v^{t_2}) &> \sup_{\phi_i} I(\mathbf{P}_I^{t_1}(v); \mathbf{y}_v^{t_1}) + \sup_{\phi_i} I(\mathbf{P}_I^{t_2}(v); \mathbf{y}_v^{t_2}) \\ &> \sup_{\phi_j} I(\mathbf{P}_I^{t_1}(v); \mathbf{y}_v^{t_1}) + \sup_{\phi_j} I(\mathbf{P}_I^{t_2}(v); \mathbf{y}_v^{t_2}) \end{aligned} \quad (23)$$

1226 The first inequality follows from the fact that ϕ_j outperforms ϕ_i at t_2 , while the second follows
 1227 because ϕ_i outperforms ϕ_j at t_1 . Consequently, an adaptive architecture that applies ϕ_i at t_1 and ϕ_j
 1228 at t_2 strictly outperforms any fixed architecture. For the remaining time steps, we can regard them as
 1229 a subset $\mathcal{T} \subseteq \{1, \dots, T\}$. By the result in Eq. 22, we therefore obtain:

$$\begin{aligned} \sup_{\mathcal{F}_{\text{ada}}(\varepsilon)} \sum_{t=1}^T I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) &> \sup_{\phi_{\text{fix}}=\{\phi_i^t | t=1, 2, \dots, T\}} \sum_{t=1}^T I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) \\ &> \sup_{\phi_{\text{fix}}=\{\phi_j^t | t=1, 2, \dots, T\}} \sum_{t=1}^T I(\mathbf{P}_I^t(v); \mathbf{y}_v^t) \end{aligned} \quad (24)$$

1236 Combining Eq. 20 and Eq. 24, we obtain:
 1237

$$\begin{aligned} \sup_{\mathcal{F}_{\text{ada}}(\varepsilon)} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) &> \sup_{\phi_{\text{fix}}=\{\phi_i^t | t=1, 2, \dots, T\}} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \\ &> \sup_{\phi_{\text{fix}}=\{\phi_j^t | t=1, 2, \dots, T\}} \sum_{t=1}^T I((\mathbf{P}_I^t(v), \mathbf{P}_V^t(v)); \mathbf{y}_v^t) \end{aligned} \quad (25)$$

1242 In summary, adaptive encoder architectures are at least as effective as fixed architectures in capturing
 1243 both invariant and variant patterns under the same invariance constraint. Moreover, they can strictly
 1244 outperform fixed architectures when the optimal invariance-preserving encoder differs across times-
 1245 stamps, as this allows the model to adapt to varying distribution shifts, thereby capturing more total
 1246 information and yielding invariant patterns and variant patterns more effectively.
 1247

1248 F ADDITIONAL RELATED WORKS

1250 **Out of Distribution Generalization.** Most existing machine learning approaches rely on the as-
 1251 sumption that training and test datasets are independently and identically distributed, an assumption
 1252 often violated in practical scenarios (Arjovsky et al., 2019; Ahuja et al., 2020b; Shen et al., 2021; Lin
 1253 et al., 2022; Bae et al., 2021). In such cases, distribution shifts between training and test data can
 1254 severely undermine model performance. To mitigate this, the study of Out-of-Distribution (OOD)
 1255 generalization has gained substantial attention across a wide range of domains (Yao et al., 2022;
 1256 Xu et al., 2024; Wang et al., 2025). Representative methods include Invariant Risk Minimization
 1257 (IRM) (Arjovsky et al., 2019), which seeks predictors invariant across training domains by minimiz-
 1258 ing empirical risks jointly, thereby achieving consistent performance across diverse environments.
 1259 GroupDRO (Sagawa et al., 2019) instead emphasizes robustness to worst-case groups by focusing
 1260 optimization on domains with the highest error rates. Similarly, VREx (Krueger et al., 2021) reduces
 1261 risk variance across domains, alleviating sensitivity to distributional changes. However, these methods
 1262 fail to consider the unique challenges posed by graphs, such as complex relational structures and
 1263 dependencies, which are crucial for effective OOD generalization in graph-based tasks.
 1264

1265 **Invariant Representation Learning.** Deep invariant representation learning aims to achieve out-
 1266 of-distribution generalization by capturing stable relationships between graph data and tasks, thereby
 1267 enabling more robust prediction (Arjovsky et al., 2019; Ahuja et al., 2020a; Xia et al., 2023; Zhu et al.,
 1268 2024; Sun et al., 2024; Wang et al., 2024). For instance, DIR (Wu et al., 2022b) discovers causal
 1269 rationales that remain invariant across different distributions, while suppressing spurious patterns
 1270 that are unstable. EERM (Wu et al., 2022a) proposes an invariant learning framework that employs
 1271 adversarially trained graph structure editors to simulate virtual environments, enabling GNNs to
 1272 extrapolate beyond the single observed environment and thus achieve robust node-level prediction.
 1273 However, most recent works merely focus on fixed model architectures instead of adaptive structures,
 1274 which is one of our main concerns. However, existing works adopt fixed model architectures to learn
 1275 invariant representations, which may not be optimal for dynamic graphs with evolving distribution
 1276 shifts.
 1277

1278 **Graph Out of Distribution Generalization.** Graph out-of-distribution generalization must account
 1279 for distribution shifts not only in node features but also in complex structural dependencies and
 1280 relational patterns (Zhu et al., 2021; Fan et al., 2021; Chen et al., 2022; Gui et al., 2023; Chen et al.,
 1281 2023b; Wu et al., 2023; Jia et al., 2024; Yao et al., 2024; Chen et al., 2024), where the challenges often
 1282 stem from variations in topology, such as graph size or structural attributes. For example, Bevilacqua
 1283 et al. (Bevilacqua et al., 2021) employ structural causal models under independence assumptions to
 1284 learn representations transferable across different graph size distributions. G-mixup (Han et al., 2022)
 1285 proposes a data augmentation strategy that interpolates node features and structures in embedding
 1286 space to enhance robustness. Advances in graph self-supervised learning and graph explanation
 1287 techniques further contribute to addressing structural distribution shifts (Li et al., 2022). However,
 1288 these methods often overlook the evolving nature of distribution shifts in dynamic graphs, which can
 1289 significantly impact model performance over time.
 1290

1291
 1292
 1293
 1294
 1295