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Abstract

Probabilistic principal component analysis (PPCA) is currently one of the
most used statistical tools to reduce the ambient dimension of the data. From
multidimensional scaling to the imputation of missing data, PPCA has a broad
spectrum of applications ranging from science and engineering to quantitative
finance.

Despite this wide applicability in various fields, hardly any theoretical guarantees
exist to justify the soundness of the maximum likelihood (ML) solution for this
model. In fact, it is well known that the maximum likelihood estimation (MLE)
can only recover the true model parameters up to a rotation. The main obstruction
is posed by the inherent identifiability nature of the PPCA model resulting from
the rotational symmetry of the parameterization. To resolve this ambiguity, we
propose a novel approach using quotient topological spaces and in particular, we
show that the maximum likelihood solution is consistent in an appropriate quotient
Euclidean space. Furthermore, our consistency results encompass a more general
class of estimators beyond the MLE. Strong consistency of the ML estimate and
consequently strong covariance estimation of the PPCA model have also been
established under a compactness assumption.

1 Introduction

In the era of big data, principal component analysis (PCA) is a standard dimension reduction tool
frequently used in exploratory data analysis. PCA is however not a statistical model, implying that
uncertainty quantification is not available. Uncertainty quantification is desirable in some situations,
like when principal components have an interpretation. Probabilistic principal component analysis
(PPCA) is a model introduced by Tipping and Bishop [1999] to remedy the situation. It consists of
an additive model with a normal noise term. Let p > q be two given positive integers. The PPCA
model can be written as x = Wz + ε, where x ∈ Rp denotes a random vector that is observed after
a linear transformation W is applied to a latent (hidden) variable z ∈ Rq up to a gaussian noise
ε ∼ N (0, σ2Ip). We assume that our data is centered, meaning x has zero mean. In practice, the
latent variable z is not observed and is conventionally assumed to be normally distributed. Given a
set of n data points or observations {x1, x2, . . . , xn} ⊂ Rp, the two unknown parameters W and σ2

are estimated by maximum likelihood estimation (MLE).
PPCA is a very well-known and pervasive technique used in dimension reduction of high-dimensional
data and used in figuring out the relevant dimensions in large-scale data mining. It must be said that

∗arghya.datta@umontreal.ca
†sayakchakrabarty2025@u.northwestern.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



2

the primary goal of PPCA is not always to perform better than traditional PCA but open up a series
of possibilities for future extensions for further analysis. PPCA also enables comparison with other
probabilistic techniques. Namely, it is possible to quantify the uncertainty in parameters W and σ2

through a Bayesian reformulation [Tipping and Bishop, 1999]. One can also consider modelling
the error terms using heavy-tailed distributions (such as Student-t) to achieve robustness [Gai et al.,
2008]. These models have appealing properties; in particular, the quality of the information retained
from the original data is similar to that of the original PCA with added flexibility.

Despite the wide applicability, nothing is known about the consistency of the maximum
likelihood (ML) estimation of the PPCA. The main obstruction is posed by the identifiability of the
PPCA model over the parameter space (W, σ2) ∈ M(p, q) × R+, where M(p, q) and R+ denote
the set of all p × q matrices and the set of positive real numbers respectively. One can restrict the
attention only to rank q matrices, but as we shall see, doing so will not significantly make our
goal any harder (or easier) to achieve as the ML estimation of W has rank q. It can be readily
seen that our model induces a Gaussian distribution on the data points x ∼ N (0,WWT + σ2Ip),
which is to be used for the maximum likelihood estimation. From a frequentist point of view, we
now assume that the unknown parameters (W, σ2) has a true value which is equal to (W0, σ

2
0).

Additionally, we observe that the marginal distribution of the data points N (0,WWT + σ2Ip) used
for the ML estimation remains invariant under any translation of W by an orthogonal matrix R since
(WR)(WR)T = WWT . As can be seen in the literature it is only possible to recover the maximum
likelihood estimate of W up to rotations [Tipping and Bishop, 1999]. This lack of identifiability
puts an immediate roadblock to directly applying Wald’s consistency theorems [Wald, 1949], a
well-known method to guarantee the consistency of maximum likelihood estimate.
It turns out that the quotients of the Euclidean spaces and in particular, the quotient of the
space M(p, q) × R+ ⊂ Rp×q × R is the natural topological object to consider to talk about the
consistency results of the PPCA model. In a simplified situation when σ2 is known, heuristically,
the quotient space treats all the points W0 and its rotational translates W0R as a single entity
by labelling them equivalent and therefore throwing all of them into a single equivalence class.
Therefore, the parameter space for W, i.e. Σ = M(p, q) becomes a set of equivalence classes
Σ̃ = {[W] : W ∈ M(p, q)} through an equivalence relation W′ ∈ [W] iff W′W′T = WWT or
equivalently W′ = WR, for some orthogonal matrix R. In this setting, we thus get rid of the
identifiability issue by passing through the quotient of Rp×q × R via the proposed equivalence
relation. We then study the consistency of the maximum likelihood in this space. The formal
details about the definition of quotient space by a given equivalence relation can be found in Section 4.

The above approach is inspired by Redner [1981] where the author outlines a way to extend Wald’s
consistency theorems [Wald, 1949] under the non-identifiability assumption. We would like to
mention that, even though passing through the quotient topological space eliminates the rotational
ambiguity of the ML estimate by definition, it introduces many further technical issues. To the best
of our knowledge, all the subtleties have not been properly addressed in Redner’s work even though
the author applies the proposed methodology to analyze the consistency of ML estimates of mixture
models. One of the key things that is not explicitly mentioned in their work is that the underlying
metric space structure of the quotient topological space can be substantially different from the natural
topological structure of the quotient space itself and the topology generated by the open balls with the
induced metric in quotient space is in general, not same as that of the usual quotient topology. Thus
related geometric properties, for instance, the notion of convergence and other regularity properties
of the parameter space become more delicate to analyze. We address all these underlying issues
carefully later in section 4.

To the best of our knowledge, no previous research work has attempted to justify the wide
usage of the ML estimate of the PPCA model because of the inherent identifiability nature of the
model parameters. To resolve this challenge we propose a novel framework to see the PPCA model
through the lens of an appropriate quotient of an Euclidean space. This perspective not only allows us
to formalize the problem in precise mathematical terms but also helps us resolve the dispute caused
by the non-identifiability.

Considering from the point of novelty, the contributions of this paper are two-fold: we prove that
the maximum likelihood estimates (Ŵ, σ̂2) are consistent, i.e., (Ŵ, σ̂2) → (W0, σ0

2) in probability
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in the appropriate quotient Euclidean space. In fact, our consistency results are valid for a general
family of estimators that in particular, contains the maximum likelihood estimator. Furthermore,
strong consistency, i.e., an almost sure convergence of the ML estimates to the true parameter is also
deduced when the parameter space is compact.

The rest of the paper is organized as follows: section 2 outlines a brief description of the
necessary background followed by a comprehensive discussion of relevant research works. In section
3, we formally introduce the PPCA model, and the ML estimates of the parameters of interest and
talk about the main question we are interested in. In section 4, we provide several basic definitions
and mention a few key results from the theory of quotient topological spaces in a self-contained
fashion. Section 5 contains all our contributions followed by their detailed proofs in section 6. In
section 7, we state Wald’s conditions and interpret them within the quotient parameter space. Finally,
in section 8, we talk about the impact of our work and put forward a few open questions before
concluding in section 9.

2 Background and Previous Work

The abstract formalism concerning quotient topological spaces is not foreign to the theory of applied
statistics. For an in-depth discussion about the application of quotient space into various statistical
models, see McCullagh [1999]. Even though, the necessary tools and definition of topological
quotients are introduced in section 4, an inquisitive reader is certainly encouraged to consult the
classic Munkres. The main line of attack used in this paper has been previously introduced in Redner
[1981], where the author proves the consistency of mixture models under the standard regularity
conditions of Wald’s consistency theorems [Wald, 1949]. It is worthwhile to mention that the
theoretical justification of using the maximum likelihood estimates in practice has gained a lot of
recent interest. For instance, Chen [2017] has a rigorous treatment of several consistency results with
an application to non-parametric mixture models.

In the previous section, we have already mentioned that PPCA offers many advantages over
traditional PCA, particularly in terms of model flexibility and the potential for generalization to
accommodate various statistical reformulations. Building upon the recognition of its strength by
Bengio et al. [2013], Goodfellow et al. [2016], and Ruff et al. [2021] as one of the most notable
advancements in probabilistic models, subsequent research endeavours have leveraged PPCA to
achieve remarkable results in various applications. Within the realm of cryo-electron microscopy
(cryo-EM) in the field of biology, extensive discussions in the literature have explored its efficacy,
as evidenced by the works of Heimowitz et al. [2018], Penczek et al. [2011], Tagare et al. [2015].
Similarly, in the domain of computer vision, the probabilistic model has proven its superiority, as
demonstrated by Szeliski [2022] and others. While the precise reasons underlying its success in
certain situations remain elusive, PPCA has found widespread applicability in diverse domains.
It has found great applications in incremental learning for visual tracking [Lim et al., 2004], in
the study of Gaussian processes [Bonilla et al., 2007, Lawrence and Hyvärinen, 2005], orthogonal
signal correction (OSC) [Lee et al., 2023], weighted nuclear norm minimization [Gu et al., 2017],
and in outlier detection algorithms like [Domingues et al., 2018]. Recent advancements have
showcased its potential in areas such as few-shot learning [Wang et al., 2020], data mining techniques
[Witten and Frank, 2002], and most notably, in finance for exploiting market integration for pure
alpha investments [Tzagkarakis et al., 2013]. The broad spectrum of applications where PPCA has
exhibited remarkable performance underscores its versatility and its value as a powerful tool in
numerous domains.

As we have already noted, the theoretical justification behind the ML estimates used for the PPCA
model in practice is not always straightforward and has recently attracted the attention of several
authors. In a fairly recent work [Chérief-Abdellatif, 2019], the authors provide a consistent estimator
of the quantity WWT assuming σ2 is known. Their work is primarily concerned with the model
selection questions in statistics using a variational approach. Even though in our work we assume
the rank of the matrix rank(W) = q to be known and is fixed by the user (this assumption can be
removed as long as q does not grow with the sample size n), it is of independent interest to want
to estimate q. In their work [Chérief-Abdellatif, 2019], the authors constructed an estimator of the
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quantity q to demonstrate how closely their estimated model recovers the true model corresponding
to the true value of W, they were also able to estimate the marginal covariance of the data points and
thereby came up with a consistent estimator of WWT . One may notice that, in this case, estimating
WWT instead of W eliminates the non-identifiability issue. It is important to mention that their work
does not use the maximum likelihood approach and instead uses variational techniques to construct an
estimator of WWT . In this regard, it is relevant to mention that another work [Bouveyron et al., 2011]
was able to provide a consistent estimator of the parameter q using maximum likelihood estimation.
Finally, we restate that no related previous work attempts to justify the commonly used ML estimates
(Ŵ, σ̂2) of the PPCA model, perhaps due to ambiguity caused by the inherent non-identifiable
parameter space. In the following section, we begin by presenting the PPCA model and concerned
ML estimates originally developed in Tipping and Bishop [1999]

3 Problem Statement

Notation In what follows, we shall always let capital letters denote random variables and their
deterministic realizations will be denoted by lowercase letters. Let X1, X2, . . . be a sequence
of independent identically distributed random variables where the p.d.f. of the distribution of
X1 is known except a parameter θ = (Wθ, σ

2
θ) in some parameter space Θ ⊂ Rp×q × R+ for

some matrix Wθ and positive integers p, q. We assume the distribution of X1 is generated from a
true parameter θ0. For a given parameter θ = (Wθ, σ

2
θ), we let f(x; θ) denote the normal p.d.f.

N (x; 0,WθWT
θ + σ2

θIp). Henceforth, the notation ∥W∥ will mainly refer to the spectral norm,
which is defined as the largest eigenvalue of the matrix WWT . It is worth noting that in some rare
instances, we have employed the Frobenius norm, but such usage has been explicitly mentioned.
Unless otherwise stated, all the probabilities and expectations are taken with respect to the true
parameter θ0. Finally, for a m×m matrix A, we denote its characteristic polynomial det(λIm −A)
by PA(λ).

The PPCA model: Let us consider that we have access to a structured dataset taking the
form of a matrix X whose lines are given by x1, . . . , xn ∈ Rp with p a large positive integer. We
assume that the columns of X are centered (meaning a mean of 0). We assume

xi = Wzi + εi, (3.1)

where z1, . . . , zn, ε1, . . . , εn are i.i.d. the realizations of independent random variables with z ∼
N (0, Iq) and ε ∼ N (0, σ2Ip), and W is an unknown fixed p× q matrix, σ > 0 being an unknown
fixed scale parameter and Iq and Ip being identity matrices of size q and p, respectively. The random
variable z plays the role of a hidden (latent) variable and ε that of an error term. We recall that
rank(W) = q. To estimate the parameters W (often called the loading matrix) and the unknown
variance σ2 of the homoscedastic error term ϵ, Tipping and Bishop [1999] employs the maximum
likelihood (ML) procedure and solutions are given as follows

Ŵ = U
(
∆q − σ2Iq

)1/2 R and σ̂2 =
1

p− q

p∑
j=q+1

δj ,

where R is any q × q rotation matrix, the columns of U are given by the first q eigen vectors of the

sample covariance matrix Sx = 1/n
n∑

i=1

xix
T
i and ∆q = diag(δ1, . . . , δq) are the q eigenvalues of

Sx sorted in the descending order. We note that the solution Ŵ, in this case, is not unique since R
could be any orthogonal matrix which in practice, is often set to be Iq. For now, we redistrict our
discussion assuming the rank q is fixed. For this model, given the parameters (W, σ2), we have the
following marginal density for the generated data {xi}

p(x|W, σ) =

∫
p(x|z,W, σ)p(z)dz = N (x; 0,WWT + σ2Ip),

where we used the fact that the latent variable z is distributed as ∼ N (0, Iq). Thus for our problem,
the parameter space is

Θ :=
{
θ : θ = (Wθ, σ

2
θ) ∈ Rp×q × R+

}
.
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In the above definition there is a slight abuse of notation as the parameter θ is self-referencing to
itself. Nonetheless, we retain the notation for the sake of clarity and the ease of exposition. We
assume the data points {xi} are generated from a true parameter θ0 = (W0, σ

2
0), i.e., they are i.i.d.

samples from normal distribution whose p.d.f. is given by f(x; θ0). In this work, we aim to prove the
consistency of maximum likelihood estimates, i.e. we want to discuss whether (Ŵ, σ̂2) → (W0, σ

2
0)

holds Pθ0 almost surely or in probability.

Nearly all consistency proofs of well-known statistical models take identifiability for granted.
Unfortunately, the PPCA model is not identifiable, since there may be matrices Wθ and Wϕ such
that WθWT

θ = WϕWT
ϕ , in which case f(x; θ) = f(x;ϕ) if σθ = σϕ. It is not difficult to see in such

cases, Wϕ will be a rotational translate of the matrix Wθ, i.e., Wϕ = WθR′ for some orthogonal
matrix R′. This rotational symmetry in parameterization results in a lack of identifiability. In the
current work we adopt a similar approach as outlined in Redner [1981] and subsequently work in a
quotient topological space of Θ. Next, we rigorously introduce this quotient space framework and
develop analytical tools to prove our consistency results.

4 A primer on quotient topological spaces

In this section, we give the definition of a quotient of a topological space by a given equivalence
relation and discuss several important results pertinent to our work.

Definition 4.1 (Equivalence relation). Let S be a set. A binary relation ∼ on S is said to be an
equivalence iff it is (i) reflexive: x ∼ x, ∀x ∈ S, (ii) symmetric: x ∼ y ⇐⇒ y ∼ x,∀x, y ∈ S and
(iii) transitive: x ∼ y, y ∼ z =⇒ x ∼ z,∀x, y, z ∈ S.
It is evident that an equivalence relation on a set induces a partition of the set and vice-versa. The
disjoint sets in this partition are called the equivalence classes. If s ∈ S is given, then we write
[s] := {y ∈ S | y ∼ s} for the equivalence class that contains s and finally the set of equivalent
classes (S/ ∼) := {[s] | s ∈ S} are called the quotient of the set S by the equivalence relation ∼.

4.1 Quotient topological spaces and its metrizability

Given a space X and an equivalence relation ∼ on X , the set-theoretic quotient X/ ∼ (the set of
equivalence classes) inherits a topology from X , called the quotient topology [Munkres]. It is well
known that the surjective map π : X → X/ ∼ defined as x→ [x] is continuous. We now record a
useful result from Munkres, which will be important in proving our main results in the forthcoming
sections.

Theorem 4.2. If X,X/ ∼ are topological spaces stated as above, then for another topological
space Y and for a continuous map f : X → Y with the additional property that x ∼ x′ implies
f(x) = f(x′), there exists unique continuous map f̃ : (X/ ∼) → Y such that f = f̃ ◦ π

Figure 1: Illustration of the above theorem using a commutative diagram.

Throughout this paper, we have Y = R and X is a subset of Rp for some positive integer p, which is
a complete metric space and Euclidean distance serves as a natural metric on Rp. The key idea is to
extend this metric from X to X/ ∼ and this job is accomplished through an intermediate state, by
introducing a suitable pseudometric on X . A pseudometric δ is a function on X ×X to non-negative
real numbers and the only difference between a pseudometric and a metric is that δ(x, y) = 0 need
not imply x = y for x, y ∈ X . To construct the most commonly used metric on the quotient space
X/ ∼ we first introduce:
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let X ⊂ Rp be a complete subspace of the Euclidean space and d be the standard Euclidean distance
on Rp. For x, y ∈ X , we let

d1(x, y) := inf{d(x1, y1) + . . .+ d(xn, yn) | x ∼ x1, yi ∼ xi+1(1 ⩽ i ⩽ n− 1), yn ∼ y}.
Then it can be checked that d1 defines a pseudometric on X . We now declare x ≈ y whenever
d1(x, y) = 0, and it is not difficult to verify the relation ≈ is an equivalence. Then we can endow
the set-theoretic quotient X/ ≈ with the metric d̄, which we define as d̄([x], [y]) = d1(x, y) where
[x], [y] are the classes of x, y in X/ ≈. Furthermore, we let X≈ to be the completion of the above
space under the metric d̄, meaning all the Cauchy sequences converge.

As the reader may have noticed already, there are two equivalence relations at play on X ,
namely ∼ and ≈. Although the construction of the space X/ ≈ is dependant on the equivalence ∼
through the definition of d1, it is not straightforward to identify the relationship between the two
abstract quotient spaces X/ ∼ and X/ ≈. Now is a good time to pause and unveil the primary reason
to justify the development of these technical tools. Our initial goal is to metrize the topological
quotient X/ ∼ for a given equivalence relation ∼ so that we could extend Wald’s conditions [Wald,
1949] in X/ ∼ to prove consistency results in this space. The procedure outlined in the previous
paragraph provides a recipe for constructing a metric d̄ on the space X/ ≈. The next crucial result,
Lemma 4.3 shows that for certain nice equivalence relations ∼, the two spaces X/ ≈ and X/ ∼ are
identical. This result is a key fact that allows us to maneuver the metric construction into X/ ∼. We
now state the result from Weaver [2018]. The proof of this result is skipped as it is deemed to be
technical and it serves a little purpose to our main goal. For a thorough treatment of metrizatiblity of
quotient topological spaces, we refer the inquisitive reader to the comprehensive book on Lipschitz
algebras [Weaver, 2018].
Lemma 4.3. If C is a closed subset of a complete metric space X . Let X/C denote the quotient
space of X by the equivalence defined by x ∼ y if either x = y or x, y ∈ C then the underlying set
X≈ and the quotient X/C are the same. The metric on X/C in this case, will take the form:

d̄([x], [y]) = min(d(x, y), d(x,C) + d(y, C)) for any [x], [y] ∈ X/C.

In the above statement, d(x,C) denotes the distance between the point x and the closed subset C
defined by d(x,C) := infc∈C d(x, c) and likewise for d(y, C). An immediate follow-up question
of the above result would be: what is the space X and the closed subset C we use in our context?
We now recall two things from the previous section, first the parameter space for the PPCA model
which is Θ ⊂ Rpq+1 and second the issue of identifiability, which arose because there could exist
two parameters θ, ϕ ∈ Θ such that their corresponding densities are equal, which is equivalent to
WθWT

θ + σ2
θIp = WϕWT

ϕ + σ2
ϕIp. In what follows, using Redner’s idea [Redner, 1981] we consider

the closed subset defined by

C := {θ ∈ Θ : WθWT
θ + σ2

θIp = W0WT
0 + σ2

0Ip} ⊂ Θ,

which allows us to get rid of identifiability since in the quotient topological space Θ/C,
f(x; [θ]) = f(x; [θ0]) if and only if [θ] = [θ0] or equivalently θ ∼ θ0 by construction. We can now
hope for checking Wald’s consistency conditions in Θ/C to prove [θ̂] converges to [θ0] in probability,
where θ̂ = (Ŵ , σ̂2) denotes the MLE.

In the introduction, we pointed out that despite the extension of Wald’s work [Wald, 1949]
to quotient topological spaces by Redner [1981], an inadequate amount of attention was paid to
the comprehensive understanding of the interplay between the quotient topology and the topology
generated by the metric d̄ in that treatment. For instance, a priori it is, by no means obvious how
one would interpret their assumption 3 in the quotient space Θ/C without invoking Lemma 4.3.
Also, their assumption 5 does not clearly mention what mode of convergence has been used since
there are two available notions of convergence, one coming from the quotient topology and another
coming from the metric topology generated by d̄, and those two topologies are not same in general.
It is a nontrivial fact that the latter is contained in the former (for a discussion on this topic see
James [1990]). However, in most statistical applications, for example in the applications to mixture
distributions and clustering [Redner, 1981], we tend to quotient the parameter space by a suitable
closed subspace depending on the context, and subsequently the quotient metric takes an easier form
as given in Lemma 4.3. Therefore, several technical constructions get greatly simplified in these
applications.
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5 Theoretical Results

In this section, we state our main results. Let {xi}ni=1 ⊂ Rp be a sequence of data points that are
generated from latent observations {zi}ni=1 ∈ Rq via the PPCA model defined in (3.1) and recall from
section 3 that the data points are assumed to be generated from the true parameter θ0 := (W0, σ

2
0) ∈ Θ

of the underlying model. Our data points xi can therefore be viewed as a sequence of realizations of
i.i.d. random variables whose true marginal density is given by f(x; θ0) = N (x; 0,W0WT

0 + σ2
0Ip).

We note a crucial point that for two parameters θ, ϕ ∈ Θ, f(x; θ) = f(x;ϕ) holds if and only if
[θ] = [ϕ] in Θ/C. Therefore, we write f(x; θ) for simplicity, instead of cumbersome f(x; [θ]) when
stating results in the quotient space Θ/C. In the spirit of Wald [1949] and Redner [1981], two of our
main results are the following:
Theorem 5.1. Let S is any closed subset of Θ not intersecting C then

P

(
lim
n

sup
θ∈S

n∏
i=1

f(xi; θ)

f(xi; θ0)
= 0

)
= 1.

Theorem 5.2. Let θn(x1, . . . , xn) be any measurable function of the observations x1, . . . , xn such
that

n∏
i=1

f(xi; θn)

f(xi; θ0)
⩾ c > 0 for all n,

then P
(
lim
n
[θn] = [θ0]

)
= 1, that is θn converges to θ0 in θ/C almost surely, and therefore in

probability.

The above results have elegant geometric interpretations. In particular, Theorem 5.1 implies that
if UC is any open neighbourhood containing C then almost surely all but finitely many terms of
the sequence {θn} land inside UC . As an immediate consequence of Theorem 5.2 when c = 1, we
obtain:
Corollary 5.3 (Strong consistency of the MLE in the quotient space). Let θn denote the sequence of
maximum likelihood estimates of the PPCA model. We then have that

P
(
lim
n
[θn] = [θ0]

)
= 1

that is maximum likelihood estimates converge to the true parameter θ0 almost surely, and therefore
in probability in the quotient space Θ/C.

Additionally, using the above corollary we obtain that the covariance for the PPCA process can be
consistently (strong) estimated under a compactness assumption.
Theorem 5.4. Let Θ0 be a compact subset of Θ containing the point θ0 = (W0, σ

2
0). Let θn =

(Ŵ, σ̂2) denote the sequence of maximum likelihood estimates of the PPCA model. Then we have

P
(

ŴŴ
T
+ σ̂2Ip → W0WT

0 + σ2
0Ip

)
= 1.

Now we talk about possible generalizations above results in light of Wolfowitz [1949], where the
observations {Xi}ni=1 are assumed to be identically distributed but need not be independent. As noted
in Wolfwowitz’s work that Wald [1949] proves strong consistency (i.e. almost sure convergence)
and his proof techniques can be extended for dependent random variables {Xi}ni=1 as long as the
sequence {Xi} satisfies the strong law of large numbers. In the spirit of Wald’s work, Wolfowitz
[1949] proves the consistency of ML estimates (i.e. convergence in probability) only under the
assumption that the sequence {Xi} satisfies weak law of large numbers. The assumption that the
sequence {Xi} satisfies the weak law of large numbers may seem technical but it offers a great deal
of flexibility in real life applications due to the following result of Bernstein [Cacoullos, 2012].
Theorem 5.5 (Bernstein). Let {Xi} be a sequence of centered random variables. If there exists a
constant κ > 0 such that for every i ∈ N we have Var(Xi) ⩽ κ and if the following condition is true:

lim
|i−j|→∞

Cov(Xi, Xj) = 0,

then the weak law of large numbers holds.
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We may note that the above result could be extremely relevant in real life applications as intuitively it
accommodates all statistical models which allows local dependence among observations, in the sense
that Xi can significantly correlate with Xj as long as j remains sufficiently close to i (i.e., |i− j| is
small), but the correlation gradually vanishes as |i− j| becomes large. Temporal stochastic processes
or time series data with appropriate assumptions could be tailored into the category of those statistical
models where Bernstein’s result applies. We therefore state our next set of results on the consistency
of maximum likelihood estimates of the PPCA model but only under a weak law assumption. The
following result is an immediate consequence of Wolfowitz [1949].
Theorem 5.6. Let the data points {xi}ni=1 be realizations of identically distributed random variables
{Xi}ni=1 whose density is given by f(x; θ0). Let the sequence of random variables {Xi} satisfy the
weak law of large numbers. Given η > 0 and a closed subset S of Θ not intersecting C, there exists
a quantity h(S) ∈ (0, 1) which depends only on the closed set S and an integer N(η, S) such that

P

(
sup
θ∈S

n∏
i=1

f(xi; θ)

f(xi; θ0)
> hn(S)

)
< η for every n ⩾ N(η, S).

Theorem 5.7. Let the data points {xi}ni=1 be realizations of identically distributed random variables
{Xi}ni=1 whose density is given by f(x; θ0). Let the sequence of random variables {Xi} satisfy the
weak law of large numbers. Let θn(x1, . . . , xn) be any measurable function of the observations
x1, . . . , xn such that

n∏
i=1

f(xi; θn)

f(xi; θ0)
⩾ c > 0 for all n,

then [θn]
P→ [θ0], that is θn converges to θ0 in θ/C in probability.

Furthermore we also have the two following results in spirit of corollary 5.3 and Theorem 5.4.
Corollary 5.8 (Consistency of the MLE in the quotient space). Let the data points {xi}ni=1 be
realizations of identically distributed random variables {Xi}ni=1 whose density is given by f(x; θ0).
Let the sequence of random variables {Xi} satisfy the weak law of large numbers. Let θn denote the
sequence of maximum likelihood estimates of the PPCA model. We then have that

[θn]
P→ [θ0],

that is maximum likelihood estimates converge to the true parameter θ0 in probability in the quotient
space Θ/C.

Additionally, using the above corollary we can obtain prove consistent covariance estimation is
possible for the PPCA model under a compactness assumption.
Theorem 5.9 (Consistent estimation of covariance). Let the data points {xi}ni=1 be realizations
of identically distributed random variables {Xi}ni=1 whose density is given by f(x; θ0). Let the
sequence of random variables {Xi} satisfy the weak law of large numbers. Let Θ0 be a compact
subset of Θ containing the point θ0 = (W0, σ

2
0). Let θn = (Ŵ, σ̂2) denote the sequence of maximum

likelihood estimates of the PPCA model. Then we have

ŴŴ
T
+ σ̂2Ip

P→ W0WT
0 + σ2

0Ip.

6 Proof of theoretical results

We only present the proofs of Theorem 5.7 and Theorem 5.9. Corollary 5.8 follows from Theorem
5.7. The proofs of Theorem 5.2, corollary 5.3 and Theorem 5.4 will be analogous.

Proof of Theorem 5.7. We fix two quantities η1, η2 > 0.We need to show that there existsN0(η1, η2)
such that

P
(
d̄([θn], [θ0]) > η1

)
⩽ η2

holds for all n ⩾ N0(η1, η2). We consider the following closed subset of the parameter space Θ
which does not intersect C

S0 :=
{
θ ∈ Θ : d̄([θ], [θ0]) ⩾ η1

}
.
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Using Theorem 5.6 we select 0 < h(η2) < 1 such that

P

(
sup
θ∈S0

n∏
i=1

f(xi; θ)

f(xi; θ0)
> hn(η2)

)
< η2 for every n ⩾ N(η1, η2),

for some N(η1, η2). The dependence on η1 comes from the choice of the set S0. Next, we choose N0

such that hn(η2) < c holds for every n ⩾ N0. Let N0(η1, η2) = max(N0, N(η1, η2)). Therefore for
all n ⩾ N0(η1, η2), we have that

P(d̄([θn], [θ0]) > η1) ⩽ P

(
sup
θ∈S0

n∏
i=1

f(xi; θ)

f(xi; θ0)
⩾ c

)

⩽ P

(
sup
θ∈S0

n∏
i=1

f(xi; θ)

f(xi; θ0)
> hn(η2)

)
⩽ η2.

To prove Theorem 5.9 we need the following lemma.
Lemma 6.1. Let Y be a complete metric space, and let ψ : Θ → Y be a Lipschitz map such that
ψ(θ) = ψ(θ′) whenever θ ∼ θ′. Then ψ lifts to an unique Lipschitz map from Θ/C to Y .

Proof. The proof of the statement follows from proposition 1.4.4 and proposition 1.4.3 in Weaver
[2018].

Proof of Theorem 5.9. We consider the function ψ : Θ → Rp×p defined by ψ(W, σ2) =

WWT + σ2Ip. Since θ0 ∈ int(Θ0), we can therefore consider the restriction ψ|Θ0
: Θ0 → Rp×p,

which is a Lipschitz function as ψ is C1 and Θ0 is compact. Therefore the lift ψ̃
∣∣∣
Θ0

: Θ0/C → Rp×p

is Lipschitz and hence continuous with respect to the topology generated by the metric d̄.

Invoking corollary 5.8, we have [Ŵ, σ̂2]
P→ [W0, σ

2
0 ]. Since ψ̃

∣∣∣
Θ0

is continuous with re-

spect to the topology generated by the quotient metric d̄ from the previous lemma, using standard
results from probability theory we infer that ψ̃

∣∣∣
Θ0

([Ŵ, σ̂2])
P→ ψ̃

∣∣∣
Θ0

([W0, σ
2
0 ]).

As we saw in the demonstration above, Lemma 6.1 plays a crucial role. We would like to emphasize
that Theorem 4.2 would not be sufficient to ensure the continuity of the lift of ψ with respect to the
metric d̄ as the quotient topology needs to be same that of the topology generated by the metric d̄ on
the quotient space Θ/C (see the counterexamples subsection in the appendices).

7 Auxiliary Lemmas

Our goal for this section will be to state Wald’s conditions [Wald, 1949] to establish the consistency
of MLE of the PPCA model and interpret those in the quotient parameter space Θ/C as stated in
Redner [1981]. Unless otherwise stated, throughout this section we will be working in the quotient
parameter space Θ/C introduced in section 4. We recall that θ0 = (W0, σ

2
0) denotes the unknown

parameter such that the true marginal distribution of the data points {xi}ni=1 is given by the density
f(x; θ0) = N (0,W0WT

0 + σ2
0Ip). For a given r > 0, we let Nr([θ]) denote the closed ball of radius

r around [θ] in Θ/C. Following Redner [1981] we begin by introducing the quantities:

f(x, θ, r) = sup
[ϕ]∈Nr([θ])

f(x;ϕ) and f∗(x, θ, r) = max{1, f(x, θ, r)},

h(x, s) = sup
[ϕ]/∈Ns([θ0])

f(x;ϕ) and h∗(x, s) = max{1, h(x, s)}.

We are now in a position to state Wald’s conditions as a series of following lemmas whose proofs
will imply Theorem 5.1 and Theorem 5.6 as a consequence of the results stated in Wald [1949] and
Wolfowitz [1949], respectively.
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Lemma 7.1. The parameter space (Θ/C, d̄) is a metric space with the property that every closed
and bounded subset of Θ/C is compact.

Lemma 7.2. For each parameter [θ] ∈ Θ/C and for sufficiently small r and sufficiently large s,
f(., θ, r) is measurable and the following expectations are bounded

Eθ0 [log f
∗(x, θ, r)] <∞ and Eθ0 [log h

∗(x, s)] <∞.

Lemma 7.3. Let {[θi]} ⊂ Θ/C be a sequence. If d̄([θi], [θ0]) → ∞ then f(x; θi) → 0 except on a
Pθ0 -null set which does not depend on the sequence {[θi]}.

Lemma 7.4. For each ([θ], [ϕ]) ∈ Θ/C ×Θ/C We have

Eϕ[| log f(x; θ)|] <∞.

Lemma 7.5. If [θi] → [θ] in Θ/C then f(x; θi) → f(x; θ) except on a Pθ0-null set which does not
depend on the sequence {[θi]}.

The above conditions are fairly technical and primarily deal with the geometry of the quotient
parameter space Θ/C. One also needs to be careful as there are two different topologies available in
this quotient space which need not be the same. For instance, in Lemma 7.5, the convergence under
the if condition [θi] → [θ] is required to hold in the topology generated by the metric d̄ which is a
stronger requirement than merely asking for convergence in the quotient topology. The proofs of the
above results are deferred to the relevant subsection in the appendices.

8 Limitations and Broader Impact

In this work, we were primarily focused to establish the consistency of maximum likelihood estimates
of the PPCA model in a quotient Euclidean space. However, we were neither able to provide a rate of
convergence nor we could say something definitive about the asymptotic distribution of the MLE,
and this opens up two avenues for future research. Nonetheless, it is worth noting that our research
does not present any discernible negative societal implications.

9 Conclusion

In this paper, we proposed a novel topological framework to provide rigorous justification for the
theoretical validity of the maximum likelihood estimation of the Probabilistic Principal Component
Analysis (PPCA) model. Although our consistency results hold within a quotient space, implying that
the true parameter is recoverable up to a closed subset of the parameter space, our results establish
that this represents the optimal achievable outcome due to the challenges caused by identifiability
inherent in the underlying model. Our result is stated in terms of the abstract framework of quotient
topological spaces, but an immediate (and concrete) consequence of our work is (strong) consistent
covariance estimation of the PPCA process through maximum likelihood estimates, which wasn’t
known before. Our rigorous framework opens doors for applications in many other statistical
models where rotational ambiguity (or more generally ambiguity due to a closed space or symmetric
parametrization) is present. One such example is the matrix factorization problem where one is
interested in the estimation of two matrices A, B such that the data matrix X = AB + noise is one
such problem. Our methodology is highly flexible in the sense that it does not depend on the statistical
model much as long as there are some regularities in the geometry of the parameter space Θ, which
makes it even more usable, even for non-linear models such as nonlinear independent component
analysis where the observed data is generated as x = ξ(z|θ) + noise, where z is a latent random
vector and θ is a parameter and the function ξ is non linear. The methodology we developed in our
work for the PPCA model could be readily applied in this case as our quotient space construction
barely depends on the fact that ξ is linear for PPCA. The primary focus for us was to build a strong
theoretical foundation which was missing in the relevant literature. Furthermore, our study offers a
concise and comprehensive treatment of the theory of quotient topological spaces, with an eye on
statistical applications, building upon and expanding upon previous works with enhanced rigour and
clarity.



11

10 Acknowledgements

The first author would like to thank his supervisors, Prof. Philippe Gagnon and Prof. Florian Maire,
for many helpful conversations and continuous support by providing generous financial assistance
and excellent working conditions during this project. The authors would like to express their gratitude
to the anonymous reviewers and area chairs of NeurIPS 2023 for their careful review of the paper
and their valuable comments and suggestions, which have greatly contributed to improving earlier
versions of the manuscript. The authors would also like to thank Prof. Nik Weaver in the mathematics
department at Washington University in St. Louis for an insightful private communication. The
first author received financial support from his supervisors and fellowships provided by the Faculté
des études supérieures et postdoctorales (FESP) and the Bourse d’exemption at the Université de
Montréal during the course of this work. The first author is sincerely thankful to his family and
remains deeply indebted to his special friend who goes by the nickname 1915131 for providing
support of all kinds unconditionally throughout the duration of the work.

The second author would like to acknowledge the financial assistance and excellent work-
ing condition provided by Northwestern University.

References
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.

IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

D. P. Bertsekas and S. E. Shreve. Stochastic optimal control: the discrete time case. 1978.

E. V. Bonilla, K. Chai, and C. Williams. Multi-task gaussian process prediction. Advances in neural
information processing systems, 20, 2007.

C. Bouveyron, G. Celeux, and S. Girard. Intrinsic dimension estimation by maximum likelihood in
isotropic probabilistic PCA. Pattern Recognition Letters, 32(14):1706–1713, 2011.

T. Cacoullos. Exercises in probability. Springer Science & Business Media, 2012.

J. Chen. Consistency of the mle under mixture models. STATISTICAL SCIENCE, pages 47–63, 2017.

B.-E. Chérief-Abdellatif. Consistency of elbo maximization for model selection. In Symposium on
Advances in Approximate Bayesian Inference, pages 11–31. PMLR, 2019.

R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A comparative evaluation of outlier
detection algorithms: Experiments and analyses. Pattern recognition, 74:406–421, 2018.

J. Gai, Y. Li, and R. L. Stevenson. Robust bayesian PCA with student’s t-distribution: the variational
inference approach. In 2008 15th IEEE International Conference on Image Processing, pages
1340–1343. IEEE, 2008.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm minimization and
its applications to low level vision. International journal of computer vision, 121:183–208, 2017.

A. Heimowitz, J. Andén, and A. Singer. Apple picker: Automatic particle picking, a low-effort
cryo-em framework. Journal of structural biology, 204(2):215–227, 2018.

I. M. James. Introduction to uniform spaces, volume 144. Cambridge University Press, 1990.

N. Lawrence and A. Hyvärinen. Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of machine learning research, 6(11), 2005.

G. Lee, E. Sim, Y. Yoon, and K. Lee. Probabilistic orthogonal-signal-corrected principal component
analysis. Knowledge-Based Systems, 268:110473, 2023.

J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual tracking. Advances in
neural information processing systems, 17, 2004.



12

P. McCullagh. Quotient spaces and statistical models. Canadian Journal of Statistics, 27(3):447–456,
1999.

J. Munkres. Topology, second edition.

P. A. Penczek, M. Kimmel, and C. M. Spahn. Identifying conformational states of macromolecules
by eigen-analysis of resampled cryo-em images. Structure, 19(11):1582–1590, 2011.

R. Redner. Note on the consistency of the maximum likelihood estimate for nonidentifiable distribu-
tions. The Annals of Statistics, pages 225–228, 1981.

L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich,
and K.-R. Müller. A unifying review of deep and shallow anomaly detection. Proceedings of the
IEEE, 109(5):756–795, 2021.

R. Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022.

H. D. Tagare, A. Kucukelbir, F. J. Sigworth, H. Wang, and M. Rao. Directly reconstructing principal
components of heterogeneous particles from cryo-em images. Journal of structural biology, 191
(2):245–262, 2015.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

G. Tzagkarakis, J. Caicedo-Llano, and T. Dionysopoulos. Exploiting market integration for pure
alpha investments via probabilistic principal factors analysis. 2013.

A. Wald. Note on the consistency of the maximum likelihood estimate. The Annals of Mathematical
Statistics, 20(4):595–601, 1949.

Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. Instance credibility inference for few-shot learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12836–12845, 2020.

N. Weaver. Lipschitz algebras. World Scientific, 2018.

I. H. Witten and E. Frank. Data mining: practical machine learning tools and techniques with java
implementations. Acm Sigmod Record, 31(1):76–77, 2002.

J. Wolfowitz. On Wald’s proof of the consistency of the maximum likelihood estimate. The Annals
of Mathematical Statistics, 20(4):601–602, 1949.



13

11 Appendix

11.1 Counterexample: Quotient topology and the metric topology on the quotient parameter
space are different.

It was pointed out in the introduction that special care is needed when talking about continuity and
convergence in probability within the quotient parameter space Θ/C as there are two different
topologies at play. In fact, a substantial challenge of our work was to meticulously address the
technical issues that arise from the interplay between these two topologies. In Redner [1981], it
was claimed that the MLE converges to the true parameter in the quotient topological space and
this follows from the theory of quotient spaces which is not true in general, as it is untrue that the
quotient metric behaves in a similar fashion to that of the original Euclidean metric and therefore it
would take a great deal of effort to unambiguously define the right notion of convergence to be used
for assumption 5 (and 3) in Redner [1981]. The interaction between the metric topology and the
quotient topology depends highly on the equivalence relation ∼ on the parameter space Θ. Here is a
counter-example highlighting a situation where the quotient topology is nontrivial but the topology
generated by the quotient metric d̄ is degenerate:

Consider the space X = {(x, y) : x, y ⩾ 0} − {(0, 0)} with the usual Euclidean norm,
i.e., the first quadrant with axes except the origin and define the equivalence relation ∼ on X given
by: p1 ∼ p2 ⇐⇒ p1 = λp2 for some λ > 0, i.e., the points p1, p2 are equivalent if they are on the
same ray. The projection map here is π : X → X/ ∼ is given by π(p) = [p]. Geometrically, it is
helpful to visualize the space X/ ∼ as a north-east part of the unit circle S1, which is a subspace of
a full circle. Under this equivalence relation it is true that d1([x], [y]) = 0 (from the definition of
pseudo metric d1 in section 4) for any two distinct [x], [y] ∈ X/ ∼, which can be easily argued by
taking x1 = x/n, y1 = y/n with n ∈ N, so that, x1 ∼ x, y1 ∼ y and letting n→ ∞. Therefore the
usual metric structure totally breaks down in the quotient space as any two different equivalence class
has a distance zero between them while in this case the quotient topology is non-trivial and we can
still talk about convergence with regards to the quotient topology. But to extend Wald’s condition in
the quotient, the space X/ ∼ must be endowed with a non-trivial metric space structure, which is
impossible in a situation like this.
We also note that the quotient space had to pass through a pseudometric to achieve the desired
metric space structure in order to set up the ground for Wald’s results to extend. In general, it is very
hard to interpret something meaningful out of this intangible metric from a statistical point of view.
However, when the quotient is done with respect to a closed set, one can provide a concrete tangible
geometrical description of the quotient metric space through Lemma 4.3, which in our work has
been done in the context of PPCA. The model PPCA is not important here, rather the key part is
that: the quotient has to be with respect to a nice enough equivalence (for instance with respect to a
closed set, which is the case in Redner’s work, our work and numerous other statistical models where
identifiablity arises). This key technical but unavoidable construction seems to have gone unnoticed
in earlier works. Note that, it was imperative to come up with an explicit and tangible description
of the metric in the quotient space as that plays a crucial role towards the proof of assumption 5
(Lemma 7.5 in our work) in Redner [1981], whose proof was assumed straightforward.

11.2 Counterexample: Theorem 4.2 is not sufficient to ensure the continuity of the lift with
respect to the quotient metric d̄.

We pointed out in section 6 that Lemma 6.1 is not sufficient to guarantee the continuity of the lift of
the map ψ used in the deduction of Theorem 5.9. Indeed it is possible that a continuous (and not
Lipschitz) function g : Θ → Y lifts to a function g̃ : Θ/C → Y which is no longer continuous with
respect to the metric topology generated by d̄ on the space Θ/C. Here is a counterexample which
highlights the situation:

Let X be a subset of the unit square [0, 1]2 consisting of the origin and the points
an = ( 1n , 0), bn = ( 1n , 1 − 1

n ), and cn = ( 1n , 1) for n ⩾ 2. We endow X with the Eu-
clidean metric inherited from [0, 1]2. We declare the following equivalence relation ∼ on X: we let
an ∼ bn for all n, and let g : X → R be the function such that g(0) = g(an) = g(bn) = 0, and
g(cn) = 1. In the quotient space X/ ∼, the sequence {[cn]} converges to the origin, so the lift g̃
isn’t continuous, as g̃([cn]) = 1 for every n and g(0) = 0. One may note that the function g is not
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Lipschitz in this example since the points {bn} and {cn} will become arbitrarily close as n → ∞
while |g(bn)− g(cn)| = 1. Even though the domain of the function g, in this case, is discrete, one
can extend g continuously to [0, 1]2, using the Tietz extension theorem (see Munkres) and provide a
counterexample where the domain is an Euclidean space.

We note that ψ (used in the deduction of Theorem 5.9) is not Lipschitz in the parameter
space Θ due to the presence of a quadratic term in W. One way to ensure that ψ is Lipschitz is to
assume the existence of a compact subset Θ0 which contains the point θ0 in its interior.

11.3 Proofs of auxiliary lemmas

Proof of Lemma 7.1. This is a direct consequence of the properties discussed in Section 4 and in
particular, the fact that the topology generated from the metric d̄ is weaker than the standard quotient
topology on Θ/C. Let K be a closed and bounded set in (Θ/C, d̄) and {Uα}α∈Λ be an open cover
for K. Since the set π−1(K) is closed (by the continuity of quotient map) and bounded in Θ, it is
compact. Therefore the open cover {π−1(Uα)}α∈Λ can be reduced to a finite sub-cover of π−1(K)
in Θ. Using the surjectivity of the quotient map, we then see that there is a finite subset F ⊂ Λ such
that

K = π(π−1(K)) ⊆ π

(⋃
α∈F

π−1(Uα)

)
=
⋃
α∈F

Uα.

Proof of Lemma 7.2. To ensure the measurability conditions so that the above integrals are well
defined we include all the Pθ0 null sets to the associated Borel sigma algebra as discussed in
Bertsekas and Shreve [1978] (p.167, Corollary 7.42.1).

Given a parameter ϕ = (Wϕ, σ
2
ϕ) ∈ Θ, and r > 0, we note the function ϕ 7→ −p log(2π)/2 −

log det(WϕWT
ϕ + σ2

ϕI)/2 is continuous functions on Θ. If ϕ ∼ ϕ′, then the function evaluates to
the same value for ϕ and ϕ′. Therefore the function factors through the quotient topological space
Θ/C by Theorem 4.2. In this case, the map ϕ 7→ −p log(2π)/2− log det(WϕWT

ϕ + σ2
ϕI)/2 can be

realized as a continuous function on the quotient space Θ/C. For [θ] ∈ Θ/C fixed, we consider the
ball Nr([θ]), which is compact. Thus by the virtue of continuous functions, the map will have finite
maximum in Nr([θ]). We call these maximum M1(r). The log-likelihood log f(x;ϕ) is given by

log f(x;ϕ) = −p log(2π)
2

− 1

2
log det(WϕWT

ϕ + σ2
ϕIp)−

1

2
xT (WϕWT

ϕ + σ2
ϕIp)

−1x,

and thus we have that

Eθ0 [log f
∗(x, θ, r)] =

∫
Rp

logmax

{
1, sup

[ϕ]∈Nr([θ])

f(x;ϕ)

}
dPθ0(x)

⩽
∫
Rp

sup
[ϕ]∈Nr([θ])

log f(x;ϕ)dPθ0(x)

=

∫
Rp

M1(r)dPθ0(x)−
1

2
Eθ

[
inf

[ϕ]∈Nr([θ])
xT (WϕWT

ϕ + σ2
ϕI)

−1x

]
⩽M1(r)

(
since (WϕWT

ϕ + σ2
ϕI)

−1 is positive definite
)
.

Bounding h∗(x, s) is a similar task. First we note there exists M∗ > 0 such that f(x;ϕ) < 1 (using
Wald’s assumption 3 Wald [1949] or the next lemma) whenever d̄([ϕ], 0) = ∥[ϕ]∥ > M∗. Pick
s sufficiently large such that [ϕ] /∈ Ns([θ0]) implies ∥[ϕ]∥ ⩾ M∗ (can be ensured using triangle
inequality ∥[ϕ]∥ ⩾ ∥[θ0] − [ϕ]∥ − ∥[θ0]∥) and thus in this case h∗(x, s) = 1 and E[log h∗(x, s)]
evaluates to 0.

Proof of Lemma 7.3. Since d̄([θi], [θ0]) → ∞ in Θ/C implies d(θi, θ0) → ∞ in Θ (by definition of
d̄ in Section 4), we have ∥θi∥ → ∞ by triangle inequality. We aim to show log f(x; θi) → −∞. The
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log-likelihood, therefore, is bounded by

log f(x; θi) = −p log(2π)
2

− 1

2
log det(WθiW

T
θi + σ2

θiIp)−
1

2
xT (WθiW

T
θi + σ2

θiIp)
−1x

⩽ −1

2
log det(WθiW

T
θi + σ2

θiIp)

= −1

2
logP−Wθi

WT
θi

(σ2
θi)

(
P−Wθi

WT
θi

is the characteristic polynomial
)

= −1

2

p∑
j=1

log(σ2
θi + λij)

(
{λij}pj=1eigenvalues of WθiW

T
θi

)
⩽ −1

2
log
(
σ2
θi + ∥Wθi∥

)
.

We observe that if ∥θi∥ → ∞, either ∥Wθi∥ or ∥σ2
θi
∥ (or both) must become arbitrarily large, which

in turn implies the required result.

Proof of Lemma 7.4.

Eϕ[| log f(x; θ)|] =
∫
Rp

| log f(x; θ)|dPϕ(x)

=

∫
Rp

(
p log(2π)

2
+

1

2
log det(WθWT

θ + σ2
θI)

)
dPϕ(x)

+
1

2
Eϕ[x

T (WθWT
θ + σ2

θI)
−1x]

⩽ c1(θ) +
1

2
Eϕ[∥x∥2∥(WθWT

θ + σ2
θI)

−1x∥2]

⩽ c1(θ) + ∥(WθWT
θ + σ2

θI)
−1∥Eϕ[∥x∥22].

Proof of Lemma 7.5. Suppose, θ ∈ C. We observe d̄([θi], [θ]) → 0 in Θ/C implies d(θi, C) → 0 in
Θ. Since C is a closed set and Θ is complete, therefore the sequence {θi} converges to some θ0 ∈ C.
As θ 7→ f(x; θ) is continuous, we have f(x; θi) → f(x; θ0) = f(x; θ), in this case.
If θ /∈ C, then there is a neighbourhood Uθ ⊂ Θ of θ such that Uθ ∩ C = ∅ and consequently all but
finitely many terms in the sequence {θi} belong toUθ. This implies, in this case, d̄([θi], [θ]) = d(θi, θ)
for all but finitely many i and the conclusion readily follows.
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