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Abstract

Prior work on integrating text corpora with001
knowledge graphs (KGs) to improve Knowl-002
edge Graph Embedding (KGE) have obtained003
good performance for entities that co-occur in004
sentences in text corpora. Such sentences (tex-005
tual mentions of entity-pairs) are represented006
as Lexicalised Dependency Paths (LDPs) be-007
tween two entities. However, it is not possible008
to represent relations between entities that do009
not co-occur in a single sentence using LDPs.010
In this paper, we propose and evaluate sev-011
eral methods to address this problem, where012
we borrow LDPs from the entity pairs that co-013
occur in sentences in the corpus (i.e. with men-014
tions entity pairs) to represent entity pairs that015
do not co-occur in any sentence in the corpus016
(i.e. without mention entity pairs). We pro-017
pose a supervised borrowing method, Super-018
Borrow, that learns to score the suitability of019
an LDP to represent a without-mentions en-020
tity pair using pre-trained entity embeddings021
and contextualised LDP representations. Ex-022
perimental results show that SuperBorrow im-023
proves the link prediction performance of mul-024
tiple widely-used prior KGE methods such as025
TransE, DistMult, ComplEx and RotatE.026

1 Introduction027

Knowledge Graphs (KGs) are a structured form028

of information that underline the relationships029

between real-world entities (Ehrlinger and Wöß,030

2016; Kroetsch and Weikum, 2016; Paulheim,031

2017). A KG is represented using a set of rela-032

tional tuples of the form (h, r, t), where r repre-033

sents the relation between the head entity h and034

the tail entity t. For example, the relational tu-035

ple (Joe Biden, president-of, US) indicates that the036

president-of relation holds between Joe Biden and037

US. There exists a large number of publicly avail-038

able and widely used KGs, such as Freebase (Bol-039

lacker et al., 2008), DBpedia (Auer et al., 2007),040

and YAGO ontology (Suchanek et al., 2007). KGs041

have been effectively applied in various NLP tasks 042

such as, relation extraction (Riedel et al., 2013; We- 043

ston et al., 2013), question answering (Das et al., 044

2017; Sydorova et al., 2019), and dialogue sys- 045

tems (Xu et al., 2020). However, most KGs suffer 046

from data sparseness as many relations between 047

entities are not explicitly represented (Min et al., 048

2013). 049

To overcome the sparsity problem, Knowledge 050

Graph Embedding (KGE) models learn representa- 051

tions (a.k.a. embeddings) for entities and relations 052

in a given KG in a vector space, which can then be 053

used to infer missing links between entities (Bordes 054

et al., 2013; Nickel et al., 2015; Wang et al., 2017). 055

Such models are trained to predict relations that 056

are likely to exist between entities (known as link 057

prediction or KG completion) according to some 058

scoring formula. Although previously proposed 059

KGE methods have shown good empirical perfor- 060

mances for KG completion (Minervini et al., 2015), 061

the KGEs are learnt from the KGs only, which 062

might not represent all the relations that exist be- 063

tween the entities included in the KG. To overcome 064

this limitation, prior work has used external text 065

corpora in addition to the KGs (Toutanova et al., 066

2015; Xu et al., 2016; Long et al., 2016; An et al., 067

2018; Wang et al., 2019b,a; Lu et al., 2020). Com- 068

pared to structured KGs, unstructured text corpora 069

are abundantly available, up-to-date and have di- 070

verse linguistic expressions for extracting relational 071

information. 072

The co-occurrences of two entities within sen- 073

tences (a.k.a textual mentions) in a text corpus has 074

shown its success for text-enhanced KGEs (Komni- 075

nos and Manandhar, 2017; An et al., 2018). For 076

example, the relational tuple in the Freebase KG 077

(Joe Biden, president-of, US) is mentioned in the 078

following sentence “Joseph Robinette Biden Jr. is 079

an American politician who is the 46th and current 080

president of the United States.” This sentence ex- 081

presses the president-of relation between the two 082
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entities Joe Biden and US. As the entity-pair (Joe083

Biden,US) appears in a single sentence, we call084

it a with-mention entity-pair. However, even in a085

large text corpus, not every related entity pair co-086

occurs in a specified window, which are referred087

to as without-mention entity-pairs in previous stud-088

ies. For instance, if we consider the widely used089

FB15K-237 KG (Toutanova et al., 2015) and the090

ClueWeb12 (Gabrilovich et al., 2013) text corpus091

with FB entity mention annotations,1 33% of entity-092

pairs in FB15k-237 do not have textual mentions093

within the same sentences. This sparseness prob-094

lem limits the generalisation capabilities of using095

textual mentions for enhancing KGEs. Specifi-096

cally, Toutanova et al. (2015); Komninos and Man-097

andhar (2017) have shown larger improvements in098

link prediction for with-mention entity-pairs over099

without-mention pairs.100

In this paper, we propose a method to augment a101

given KG with additional textual relations extracted102

from a corpus and represented as LDPs. The aug-103

mented KG can then be used to train any KGE104

learning method. This is attractive from both scala-105

bility and compatibility point of views because our106

proposal is agnostic to the KGE learning method107

that is subsequently used for learning KGEs. Our108

main contribution in this paper is to improve link109

prediction for without-mention entity-pairs by bor-110

rowing LDPs from with-mentions entity-pairs to111

overcome the sparseness in co-occurrences of the112

without-mentions entity-pairs. We show that learn-113

ing a supervised borrowing method, SuperBorrow,114

that scores suitable LDPs to represent without-115

mention entity-pairs based on pre-trained entity116

embeddings and contextualised LDP embeddings117

boosts the performance of link prediction using a118

series of KGE methods, compared to what would119

have been possible without textual relations.120

2 Related Work121

KGEs from a Multi-relational Graph: Typi-122

cally, KG embedding models consist of two main123

steps: (a) defining a scoring function for a tu-124

ple, and (b) learning entity and relation representa-125

tions. Entities are usually represented as vectors,126

whereas relations can be represented by vectors127

(e.g. TransE (Bordes et al., 2013), DistMult (Yang128

et al., 2014) and ComplEx (Trouillon et al., 2016))129

matrices (e.g. RESCAL (Nickel et al., 2011)), or130

1200 million sentences in CluWeb12 annotated with FB
entity mention annotations.

KGE method Score function
f(h,R, t)

TransE (Bordes et al., 2013) ||h + r − t||`1/2
DistMult (Yang et al., 2014) 〈h, r, t〉
ComplEx (Trouillon et al., 2016) 〈h, r, t̄〉
RotatE (Sun et al., 2019) ||h ◦ r − t||2

Table 1: Score functions proposed in KGE methods.
Entity embeddings h, t ∈ Rd are vectors in all models,
except in ComplEx where h, t ∈ Cd. Here, `1/2 de-
notes either `1 or `2 norm of a vector. In ComplEx, t̄ is
the element-wise complex conjugate.

by 3D tensors (e.g. Neural Tensor Network (Socher 131

et al., 2013)). 132

Using some form of a representation, scoring 133

functions are then defined to evaluate the strength 134

of a relation r between h and t entities in a 135

triple. TransE is one of the earliest and well-known 136

distance-based KGE method that performs a lin- 137

ear translation and its scoring function is given in 138

Table 1. Alternatively, a bilinear function is used 139

in several KGE models, such as RESCAL, Dist- 140

Mult and ComplEx, for which scoring functions 141

are defined in Table 1. KGEs are learnt such that 142

the observed facts (positive triples) are assigned 143

higher scores compared to that of the negative triple 144

(for example generated by perturbing a positive in- 145

stance by replacing its head or tail entities by an 146

entity randomly selected from the set of entities) 147

by minimising a loss function, such as the logistic 148

loss or the margin loss. 149

Conventional KGE models are trained using 150

the facts in the KGs, which are often incomplete. 151

Therefore, to overcome the sparsity of structured 152

KGs, we propose to integrate information from a 153

text corpus, thereby augmenting the KG. The aug- 154

mented KG is then used as the input to existing 155

KGE methods to learn accurate entity and relation 156

embeddings. In particular, we do not modify the 157

scoring functions nor optimisation objectives for 158

the respective KGE methods, which makes our pro- 159

posed approach applicable in many existing KGE 160

methods without any modifications. 161

Text-Enhanced KGEs: Recently, a new line of 162

research that combines textual information with re- 163

lational graphs has emerged (Lu et al., 2020). Dif- 164

ferent combination methods have been proposed 165

for this purpose. Wang et al. (2014) proposed a 166

model to embed both entities and words (using en- 167

tity names and Wikipedia anchors) into the same 168

low-dimensional vector space to capture relational 169
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information from a KG and the co-occurrences170

from the corpus. Rosso et al. (2019) control the171

amount of information shared between the two data172

sources in the joint embedding space using regu-173

larisation. This joint model is further enhanced174

by incorporating entity descriptions from an ex-175

ternal corpus, which are jointly learnt with the176

KG (Zhong et al., 2015; Xie et al., 2016; Veira et al.,177

2019). In a different scenario, the text-enhanced178

knowledge embedding model by Wang et al. (2016)179

creates a co-occurrence network of words and enti-180

ties from an entity-annotated corpus. The authors181

define point-wise and pair-wise contexts using the182

co-occurrence frequencies in the network. Then,183

entity and relation embeddings are enhanced using184

textual point-wise and pair-wise embeddings, re-185

spectively. Similarly, Rezayi et al. (2021) construct186

an augmented KG that has nodes from external187

text. The original and the augmented graphs are188

then aligned to suppress the noise and distil relevant189

information. In our work, we focus on adding extra190

edges to the KG rather than nodes as in Rezayi et al.191

(2021) and Wang et al. (2016).192

In addition to contextual information and textual193

descriptions of individual words/entities, sentences194

where two entities co-occur have been used as con-195

textual evidence to learn KGEs (Toutanova et al.,196

2015; Komninos and Manandhar, 2017; Tang et al.,197

2019). For example, Toutanova et al. (2015) ex-198

tracted LDPs by parsing co-occurring sentences199

in a text corpus, which are then used as textual200

relations in the KG. This model can be seen as201

a special case of universal schema (Riedel et al.,202

2013), which combines textual and KG relations in203

the same entity-pair co-occurrence matrix, subse-204

quently decomposed to obtain entity embeddings.205

Komninos and Manandhar (2017) proposed a novel206

triple scoring function where textual mentions are207

used as a source of supporting evidence for a triple.208

Our problem setting differs from prior work on209

text-enhanced KGEs in two important ways. First,210

we do not modify the underlying structure of the211

KGE method, which is attractive from both scala-212

bility and compatibility of our proposal. Second,213

rather than considering only entity-pairs that are oc-214

curring within a specified context in the corpus (i.e.215

with-mention entity-pairs), we propose to borrow216

LDPs from with-mention entity-pairs to overcome217

the data sparseness in without-mention entity-pairs218

that never co-occur within any sentence in the cor-219

pus.220

3 Method 221

A relational KGD consists of a set of entities E and 222

a set of relationsR. InD, knowledge is represented 223

by relational tuples (h, r, t) ∈ D, where the head 224

entity h is related to the tail entity t by the KG 225

relation r. In this work, we assume relations to be 226

asymmetric in general (if (h, r, t) ∈ D then it does 227

not necessarily follow that (t, r, h) ∈ D). The goal 228

is to learn representations for entities and relations 229

such that missing tuples can be accurately inferred. 230

As KGs D are often sparse with many missing 231

edges between entities, the learnt KGEs are af- 232

fected, which in return impacts the performance of 233

KGEs on downstream tasks such as link prediction. 234

To address this sparseness problem, we consider the 235

availability of a text corpus T where relational facts 236

are expressed using contexts in which an entity-pair 237

co-occurs. The textual relations that are extracted 238

from T can be injected into D before applying a 239

KGE method. 240

To align D with T , entity linking is applied 241

to resolve ambiguous entity mentions in the text 242

with unique entities in the KG (Gabrilovich et al., 243

2013; Shen et al., 2014). Then, sentences of which 244

two entities co-occurring with are considered as 245

textual mentions of relations that exist between 246

those entities. Assuming that the corpus is anno- 247

tated using the entities in D, there are multiple 248

possibilities to obtain relational features of sen- 249

tences that mention the entities. Following previ- 250

ous work (Toutanova et al., 2015), we first run a 251

dependency parser (Chen and Manning, 2014) on 252

each sentence in the entity-annotated corpus to ob- 253

tain LDPs. Then, if D contains the head and tail 254

entities of an LDP l, we insert l into D to form a 255

textual triple (h, l, t) ∈ D. The augmented KG is 256

then used to learn embeddings for E andR using 257

different KGE methods. During KGE processs, 258

we treat both original relations in the KG and the 259

augmented LDPs equally. In principle, any exist- 260

ing KGE learning method can be applied on the 261

augmented KG as we later see in our experiments. 262

One obvious limitation of the above-described 263

method is that entity-pairs that never co-occur in 264

any contextual window (e.g. a sentence) will not 265

be connected by any LDP during the augmentation 266

process. This is fine if the two entities are truly 267

unrelated. However, this is problematic for entities 268

that are related but their relations were not suffi- 269

ciently covered in the text corpus because of the 270

coverage issues and small size of the corpus. As 271
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Relations Entities Triples w-m w/o-m
Train/Test

FB 237 14,541 272,115/20,466 2,344 18,122
Text 1,100 12,930 404,009/- - -

Table 2: Statistics of the datasets. w-m and w/o-m de-
notes the number of test instances respectively in with-
mention and without-mention entity-pair sets.

we later see in our evaluations (§ 5), this is indeed272

the case for the majority of the without-mention273

entity-pairs. To overcome this limitation of our pro-274

posal, next we describe a method to borrow LDPs275

from with-mention entity-pairs to without-mention276

entity pairs.277

3.1 Learn to Borrow LDPs278

Given a without-mention entity pair (h∗, t∗), we279

propose a supervised borrowing method SuperBor-280

row to rank LDPs that are extracted for the with281

mention entity-pairs from a text corpus. Given pre-282

trained entity representations h and t, we learn an283

entity-pair encoder, f , parametrised by θ, to create284

an entity-pair representation, f(h, t; θ), for (h, t).285

In this work, the encoder f is implemented as a286

multilayer perceptron with a nonlinear activation,287

where the input entity-pair to the MLP is encoded288

as follows:289

x = [h⊕ t⊕ (h− t)⊕ (h ◦ t)] (1)290

Here, ⊕ denotes the concatenation of vectors and291

◦ is the element-wise multiplication between two292

vectors. (1) considers the information in the head293

and tail entity embeddings independently as well294

as the interactions between their corresponding di-295

mensions. The final output vector f(h, t; θ) of the296

MLP is treated as the representation of the entity-297

pair (h, t).298

As an alternative to representing the relation-299

ship between two entities in an entity-pair (h, t)300

by f(h, t; θ) using the corresponding entity em-301

beddings, we can use L(h,t), the set of LDPs co-302

occurring between h and t (Bollegala et al., 2010).303

Because an LDP is a sequence of textual tokens,304

we can use any sentence encoder to represent305

an LDP by a vector. Specifically, in our experi-306

ments later we use the pretrained sentence encoder307

SBERT (Reimers and Gurevych, 2019) to represent308

an LDP, l, by a vector, l.309

We require LDPs that co-occur with an entity-310

pair (h, t) to be similar to f(h, t; θ) than LDPs that311

do not co-occur with (h, t). Specifically, we use312

the set of with-mention entity-pairs with their as- 313

sociated LDPs as positive training instances S(h,t). 314

LDPs that are associated with either h or t alone 315

(not both) are used as negative training instances 316

S ′(h,t) as given by (2). 317

S ′
(h,t) = {(h, l, t)|∃t′(h, l, t′) ∈ D ∧ t′ 6= t, 318

∃h′(h′, l, t) ∈ D ∧ h′ 6= h} (2) 319

We learn the parameters of f(h, t, θ) by minimising 320

the marginal loss over S(h,t) and S ′(h,t) as shown 321

in (3). 322

∑
(h,l,t)∈S(h,t)

∑
(h,l′,t)∈S′

(h,t)

max
(
0, γ − f(h, t; θ)>(l− l′)

)
(3)

323

324

Here, γ(≥ 0) is the margin and is set to 1 in 325

our experiments. To determine which LDPs to 326

be borrowed for a particular without-mention en- 327

tity pair, (h∗, t∗), we first compute its represen- 328

tation, f(h∗, t∗; θ) using the θ found by minimis- 329

ing (3) above. We then score each LDP, l, using 330

the sentence encoder model, by the inner-product, 331

f(h∗, t∗; θ)>l. We then select the top-k LDPs with 332

the highest inner-products with f(h∗, t∗; θ) to aug- 333

ment the KG. The number of borrowed LDPs (k) is 334

a hyperparameter that is tuned using the validation 335

triples selected from the KG. 336

4 Experimental Setup 337

4.1 Dataset and Training Details 338

Datasets: We use FB15k237 as the KG and 339

ClueWeb122 as the corpus for extracting LDPs for 340

the entity-pairs in the FB157k237 KG. Specifically, 341

we use the textual triples consisting of LDPs that 342

are extracted and made available3 by Toutanova 343

et al. (2015). The number of extracted unique LDPs 344

and textual triples in this dataset are respectively 345

2, 740, 176 and 3, 978, 014. To make the training 346

of KGE methods computationally efficient, we fil- 347

ter out LDPs that occur in less than 100 distinct 348

entity-pairs in the corpus. The FB15k237 test set 349

is split into with-mention (i.e. entity-pairs that 350

co-occur in some LDP) and without-mention (i.e 351

entity-pairs that do not co-occur in any LDP) sets 352

as shown in Table 2. According to Table 2, there 353

are 88.14% without-mentions entity-pairs in the 354

2https://lemurproject.org/clueweb12/
3https://www.microsoft.com/en-us/

download/details.aspx?id=52312
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overall with-mention without-mention

Model MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE (KG only) 0.336 113 0.523 0.368 0.243 0.314 135 0.508 0.349 0.218 0.333 111 0.519 0.364 0.241
KG+ExtractedLDPs 0.314 126 0.495 0.343 0.224 0.433 43 0.659 0.489 0.319 0.293 138 0.468 0.318 0.206
LinkAll 0.344 105 0.531 0.380 0.249 0.430 44 0.653 0.493 0.316 0.328 113 0.510 0.360 0.235
Co-occurrence 0.502 47 0.695 0.553 0.402 0.412 48 0.639 0.464 0.297 0.506 47 0.695 0.557 0.408
NeighbBorrow 0.491 49 0.682 0.541 0.392 0.422 46 0.646 0.475 0.308 0.493 50 0.68 0.542 0.395
SuperBorrow 0.751 15 0.868 0.799 0.681 0.394 49 0.629 0.445 0.277 0.787 11 0.888 0.835 0.723

DistMult (KG only) 0.302 133 0.489 0.333 0.209 0.257 149 0.436 0.289 0.165 0.302 131 0.489 0.333 0.209
KG+ExtractedLDPs 0.325 113 0.512 0.357 0.232 0.427 35 0.656 0.483 0.311 0.306 125 0.488 0.335 0.216
LinkAll 0.329 108 0.521 0.363 0.233 0.437 33 0.670 0.496 0.315 0.309 118 0.497 0.339 0.215
Co-occurrence 0.365 74 0.574 0.404 0.261 0.428 33 0.664 0.479 0.310 0.351 81 0.558 0.388 0.248
NeighbBorrow 0.415 54 0.639 0.465 0.302 0.412 35 0.645 0.463 0.297 0.408 57 0.631 0.458 0.295
SuperBorrow 0.482 53 0.681 0.535 0.377 0.415 35 0.655 0.475 0.291 0.482 56 0.678 0.534 0.379

ComplEx (KG only) 0.312 125 0.493 0.342 0.222 0.275 142 0.459 0.299 0.185 0.312 124 0.493 0.342 0.222
KG+ExtractedLDPs 0.321 107 0.505 0.349 0.229 0.407 36 0.637 0.458 0.291 0.304 117 0.482 0.329 0.216
LinkAll 0.328 107 0.519 0.361 0.232 0.432 34 0.665 0.493 0.311 0.309 118 0.496 0.338 0.216
Co-occurrence 0.358 76 0.570 0.399 0.252 0.436 33 0.679 0.499 0.319 0.342 83 0.552 0.380 0.238
NeighbBorrow 0.428 47 0.650 0.479 0.315 0.418 35 0.646 0.478 0.298 0.422 50 0.643 0.472 0.309
SuperBorrow 0.489 42 0.687 0.540 0.385 0.416 38 0.653 0.481 0.291 0.491 43 0.686 0.541 0.388

RotatE (KG only) 0.358 94 0.560 0.395 0.259 0.331 120 0.527 0.365 0.236 0.354 92 0.557 0.391 0.254
KG+ExtractedLDPs 0.359 94 0.551 0.396 0.264 0.448 44 0.672 0.509 0.333 0.341 101 0.528 0.374 0.247
LinkAll 0.363 91 0.558 0.400 0.266 0.442 44 0.671 0.503 0.321 0.346 98 0.536 0.378 0.251
Co-occurrence 0.435 54 0.639 0.484 0.329 0.441 46 0.663 0.499 0.327 0.426 56 0.629 0.473 0.321
NeighbBorrow 0.463 43 0.672 0.514 0.357 0.443 45 0.675 0.497 0.326 0.457 44 0.664 0.508 0.351
SuperBorrow 0.682 19 0.836 0.739 0.594 0.412 51 0.652 0.473 0.290 0.706 16 0.851 0.764 0.621

Table 3: Results of link prediction on FB15K237. Higher is better for all metrics except for the mean rank (MR) for
which lower values indicate better performance. The best result for each metric and each KGE method is shown in
bold.

test set. Note that even if we consider the complete355

set of LDPs from the ClueWeb12, the portion of356

without-mention test entity-pairs in FB15k237 is357

only 73.23%. This shows the significance of the358

problem of representing without-mention entity-359

pairs, which is the focus of this paper.360

Training SuperBorrow: We used the with-361

mention entity-pairs in train split of FB15K237 to362

train SuperBorrow. The number of entity-pairs in363

the training set is 311,906, and on average we have364

1.32 LDPs per entity-pair. On average, we generate365

100 negative triples for each with-mention pair. We366

hold-out 10% of the training entity-pairs for valida-367

tion purposes (we obtain 280716 and 31190 entity-368

pairs for training and validation, respectively). To369

represent each entity, we use the publicly avail-370

able 100-dimensional pre-trained RelWalk embed-371

dings4, which are publicly available for the entities372

and relations in FB15k237.373

According to (1), the input layer of the trained374

MLP has 400 features. The hyperparameters375

including the number of hidden layers {2, 3},376

`2, regularisation coefficient {0, 0.01, 0.001},377

the learning rate {0.01, 0.1} and the non-linear378

4https://github.com/LivNLP/
Relational-Walk-for-Knowledge-Graphs

activation {tanh, relu, sigmoid} are tuned using 379

the above-mentioned validation set. The MLP 380

consists of two 768-dimensional layers, and 381

the last layer represents the entity-pair to be 382

mapped to the LDP embedding space that has 383

768 dimensions encoded using the SBERT 384

paraphrase-distilroberta-base5 385

model, which has reported SoTA performance on 386

various knowledge-intensive tasks (Warstadt et al., 387

2020). SuperBorrow is trained for 50 iterations 388

using mini-batch Stochastic Gradient Descent with 389

momentum and a batch size of 128.6 390

Evaluation Protocol: After augmenting 391

FB15K237 with the borrowed k LDPs for 392

each without-mention entity-pair, we train a KGE 393

method to obtain embeddings for the entities 394

in E , relations in R and textual relations. The 395

hyperparameter k is tuned on the validation 396

set of FB15K237 for each KGE method from 397

{1, 3, 10, 15, 20, 25, 30}. 398

We use Link Prediction, which has been popu- 399

larly used as an evaluation task to compare the 400

5https://huggingface.
co/sentence-transformers/
paraphrase-distilroberta-base-v2

6The source is uploaded to openreview and will be made
publicly available upon paper acceptance.
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KGEs we obtain from a KGE learning method401

before and after augmenting the KG with the402

LDPs borrowed using SuperBorrow and other base-403

lines (Wang et al., 2021). Link prediction is the404

task of predicting the missing head (i.e. (?, r, t)) or405

tail (i.e. (h, r, ?)) entity in a given triple by ranking406

the entities in the KG according to the scoring func-407

tion of the KGE method. Following prior work,408

the performance is evaluated using Mean Recip-409

rocal Rank (MRR), Mean Rank (MR) and Hits at410

Rank k (H@k) under the filtered setting, which re-411

moves all triples appeared in training, validating or412

testing sets from candidate triples before obtaining413

the rank for the ground truth triple. We consider414

all entities that appear in the corresponding argu-415

ment of the relation to be predicted to further filter416

out incorrect candidates, which is known as type-417

constraint setting (Chang et al., 2014; Toutanova418

and Chen, 2015).419

We also evaluate the learnt KGEs using a relation420

prediction task, which predicts the relation between421

two given entities (i.e., (h, ?, t)) from the set of422

relations in the KG. This task assumes that we423

are given entity-pairs with candidate relations. The424

performance is measured using the same evaluation425

metrics as used in the link prediction task under426

the filtered setting. We use the publicly available427

OpenKE tool to conduct experiments with different428

KGE methods (Han et al., 2018).7429

4.2 Baselines430

We compare the proposed LDP borrowing method431

against multiple baselines as follows.432

LinkAll: In this baseline we connect the two en-433

tities in each without-mention entity-pair using a434

distinct relation specific to that entity-pair and aug-435

ment the KG with the without-mention entity-pairs.436

This baseline enables us to simply incorporate all437

without-mention entity-pairs into the KG without438

requiring to borrow any LDPs. It will demonstrate439

the importance, if any, of sharing LDPs between440

with- vs. without-mention entity-pairs as opposed441

to simply connecting all without-mention entity-442

pairs with distinct relations.443

Co-occurrence: This baseline connects all entity-444

pairs that co-occurs in any sentence in the corpus445

(T ) with a generic relation (i.e. co-occurrence rela-446

tion) in the augmented KG and does not distinguish447

between different textual relations. This baseline is448

designed to highlight the importance of the context449

7https://github.com/thunlp/OpenKE

of entity-pair co-occurrences in the corpus beyond 450

simply treating all co-occurrences equally during 451

the augmenting process. 452

NeighbBorrow: Given a without-mention entity- 453

pair (h∗, t∗), we can borrow the LDPs from the first 454

nearest neighbouring (1NN) with-mention entity- 455

pair (h, t). The similarity between entity-pairs can 456

be computed using (4) in an unsupervised manner 457

using pretrained entity embeddings such as Rel- 458

Walk embeddings (Bollegala et al., 2021). 459

sim((h, t), (h∗, t∗)) = cos(h,h∗) cos(t, t∗) (4) 460

Here, cos is the cosine similarity between two vec- 461

tors converted to nonnegative values (i.e. [0, 1]) 462

using the linear transformation (x+ 1)/2. On aver- 463

age, when considering 1NN, we borrow 1.3 LDPs 464

for each without-mention pair of entities. In con- 465

trast to the proposed SuperBorrow, NeighbBorrow 466

is unsupervised and decouples entities in each pair 467

when computing their similarity. 468

5 Results 469

Link Prediction: Table 3 shows the results of 470

link prediction for different settings on FB15K237 471

under different KGE methods. Two translational 472

distance-based KGE methods (i.e. TransE and 473

RotatE) and two semantic matching-based mod- 474

els (i.e. DistMult and ComplEx) are used as the 475

KGE learning methods (Rossi et al., 2021; Wang 476

et al., 2021). We emphasize that our purpose here 477

is not to compare the absolute performance among 478

those KGE methods, but to evaluate the effect of 479

using LDPs for augmenting the KG and represent- 480

ing the without-mention entity-pairs via different 481

borrowing methods. For SuperBorrow, the optimal 482

numbers of borrowed LDPs (k) determined using 483

the validation set for TransE, DistMult, ComplEx 484

and RotatE respectively are 30, 20, 15 and 25. 485

As shown in Table 3, augmenting the KG 486

with the extracted LDPs (i.e., KG+ExtractedLDPs) 487

significantly improves the performance for with- 488

mention entity-pairs for all KGE methods. How- 489

ever, the performance when predicting links for 490

without-mention entity-pairs decreases slightly for 491

all KGE methods, except for DistMult in the 492

KG+ExtractedLDPs setting. For the borrowing 493

models, even though the co-occurrence baseline 494

improves the prediction for without-mention set, 495

borrowing relevant LDPs from the 1NN entity- 496

pairs (NeighbBorrow) or the proposed supervised 497

borrowing (SuperBorrow) reports superior results. 498
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overall without-mention

Model MR H@3 H@1 MR H@3 H@1

DistMult (KG only) 4.1 0.938 0.856 4.0 0.942 0.865
KG+ExtractedLDPs 2.6 0.955 0.876 2.7 0.957 0.883
LinkAll 7.2 0.887 0.752 7.8 0.880 0.744
Co-occurrence 2.4 0.954 0.875 2.4 0.956 0.882
NeighbBorrow 3.0 0.955 0.874 3.0 0.956 0.881
SuperBorrow 2.2 0.960 0.875 2.2 0.962 0.882

ComplEx (KG only) 3.1 0.954 0.900 2.8 0.957 0.908
KG+ExtractedLDPs 1.9 0.967 0.917 1.9 0.967 0.922
LinkAll 4.0 0.909 0.812 4.3 0.902 0.808
Co-occurrence 1.8 0.967 0.916 1.8 0.967 0.920
NeighbBorrow 1.7 0.973 0.921 1.7 0.974 0.925
SuperBorrow 1.7 0.972 0.917 1.7 0.973 0.922

Table 4: Results of relation prediction on FB15K237.

We can see that the best performance for the over-499

all and without-mention sets are achieved with the500

augmented KG using SuperBorrow, followed by501

NeighbBorrow.502

Relation Prediction: Table 4 shows the accura-503

cies for the relation prediction task. Experimen-504

tally, the best results for this task is obtained when505

corrupting r, in addition to h and t corruptions, is506

applied to generate negative triples to train the KGE507

method. This negative sampling schedule follows508

the evaluation procedure of relation prediction. As509

shown in the table, SuperBorrow reports the best510

MR and Hits@3 for DistMult KGEs, while Neibh-511

Borrow baseline performs better than SuperBorrow512

with ComplEx method. Further results for relation513

prediction are in the Supplementary Appendix A.514

Comparisons against Prior Work: We compare515

our proposed method against prior work, namely516

Feature Rich Network (FRN) (Komninos and Man-517

andhar, 2017) and Conv (E+DistMult) (Toutanova518

et al., 2015). In FRN, an MLP is trained to pre-519

dict the probability of a given triple being true us-520

ing different types of features such as the entity521

types and features extracted from textual relation522

mentions. Conv(E+DistMult) represents LDPs by523

vectors using a convolutional neural network, and524

combines DistMult scoring function with that of the525

Entity model (E) proposed by Riedel et al. (2013).526

E model learns a vector for each entity and two527

vectors for each relation corresponding to the two528

arguments rh and rt of a relation r. The scor-529

ing function of a triple in E model is defined as530

h>rh + t>rt. The combined model (E+DistMult)531

is trained on a linearly weighted combination of532

KG triples and textual triples. For a fair compari-533

son, we consider the task of predicting missing tail534

entities and we avoid the type-constraint setting.535

As shown in Table 5, for the overall test set of536

overall with-mention without-mention

Model MRR H@10 MRR H@10 MRR H@10

Conv (E+DistMult) 0.401 0.581 0.339 0.499 0.424 0.611
FRN 0.403 0.620 0.441 0.683 0.387 0.595
ours (DistMult) 0.460 0.714 0.378 0.649 0.468 0.720
ours (RotatE) 0.499 0.712 0.439 0.674 0.504 0.715

Table 5: Comparisons against prior work on link pre-
diction on FB15K237. The results for prior work are
taken from the original papers. The best results are in
bold, while the second best results are underlined.

FB15K237 our models outperform both FRN and 537

Conv models according to MRR and H@10. For 538

with-mention entity-pairs, our models report higher 539

scores compared to Conv(E+DistMult), while FRN 540

performs best. For with-mention entity-pairs FRN 541

can extract rich features from the contexts of co- 542

occurrences, which helps it to obtain superior per- 543

formances. However, both FRN and Conv models 544

perform poorly on without-mention entity-pairs, 545

where such contextual features are unavailable. On 546

the other hand, by using the proposed SuperBorrow 547

to augment LDPs for KGs we can overcome this 548

limitation successfully. 549

6 Analysis 550

Borrowed LDPs: To provide examples of LDPs 551

injected into FB15K237, Table 6 shows the bor- 552

rowed LDPs by NeighbBorrow and SuperBorrow 553

for some selected entity-pairs. We can see that 554

representative LDPs of various relation types are 555

ranked at the top by SuperBorrow. For example, for 556

the film-distributor relation, NeighbBorrow selects 557

LDPs containing specific tokens such as movie or 558

film, whereas SuperBorrow retrieves LDPs that bet- 559

ter express the target relation such as 20th Century 560

Fox:〈-dobj〉:released:〈nsubj〉:Lincoln. 561

Relation Categories: To better analyse the ef- 562

fect of the proposed SuperBorrow for KGEs, we 563

evaluate the link prediction task on different re- 564

lation categories including 1to1, 1toN, Nto1 and 565

NtoN as defined in Bordes et al. (2013). 566

Table 7 presents the results of predicting head 567

entities for all KGE methods considering KG only 568

and SuperBorrow. We can see that SuperBor- 569

row achieves higher performance over the original 570

graph on all relation categories. In particular, our 571

proposal significantly boosts the performance of 572

predicting head entities for the Nto1 relation type 573

where all KGE methods report the lowest H@10 for 574
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Entity-pairs (h, r, t) Borrowed LDPs
NeighbBorrow SuperBorrow

h= Woodrow Wilson h:〈-nsubj〉:joined:〈dobj〉:t h:〈-poss〉:t
t= League of Nations h:〈-nsubj〉:left:〈dobj〉:t h:〈-nsubj〉:president:〈prep〉:of:〈pobj〉:t
r= organizations-founded h:〈-poss〉:t h:〈-nsubj〉:joined:〈dobj〉:t

h:〈-poss〉:ambassador:〈prep〉:to:〈pobj〉:t
h:〈-nsubj〉:member:〈prep〉:of:〈pobj〉:t

h= 20th Century Fox h:〈-nn〉:movie:〈appos〉:t h:〈-dobj〉:released:〈nsubj〉:t
t= Lincoln h:〈-nn〉:film:〈nsubj〉:t h:〈-dobj〉:release:〈nsubj〉:t
r= film-distributor h:〈-nn〉:movie:〈dep〉:t h:〈-nsubj〉:released:〈dobj〉:t

h:〈-poss〉:t h:〈-appos〉:grant:〈appos〉:t
h= Deep Impact h:〈-pobj〉:in:〈-prep〉:work:〈poss〉:t h:〈-dep〉:film:〈poss〉:t
t= Leslie Dilley h:〈-nn〉:fame:〈-pobj〉:of:〈-prep〉:t h:〈vmod〉:produced:〈prep〉:by:〈pobj〉:t
r= film-production-design-by h:〈poss〉:t h:〈vmod〉:written:〈prep〉:by:〈pobj〉:t

h:〈-dep〉:tagged:〈appos〉:t
h:〈-nn〉:film:〈nsubj〉:t

h= Idaho h:〈-nsubjpass〉:located:〈prep〉:in:〈pobj〉:t h:〈-poss〉:t
t= Christianity h:〈-appos〉:usa:〈-appos〉:t h:〈-amod〉:state:〈prep〉:of:〈pobj〉:t
r= religion h:〈-poss〉:t h:〈rcmod〉:plays:〈dobj〉:t

h:〈-dobj〉:entered:〈nsubj〉:t
h:〈-nn〉:date:〈nn〉:t

Table 6: Borrowed LDPs of selected entity-pairs. Top 5 LDPs with our borrowing method and LDPs borrowed
from 3NN entity-pairs are shown.

Method 1to1 1toN Nto1 NtoN
# Tuples 192 1293 4289 14,696

TransE
KG only 0.536 0.597 0.124 0.418
SuperBorrow 0.947 0.984 0.377 0.829

DistMult
KG only 0.500 0.433 0.064 0.371
SuperBorrow 0.922 0.856 0.338 0.547

ComplEx
KG only 0.495 0.434 0.045 0.368
SuperBorrow 0.917 0.913 0.277 0.601

RotatE
KG only 0.568 0.631 0.118 0.388
SuperBorrow 0.932 0.969 0.404 0.722

Table 7: Hits@10 of tail prediction for different rela-
tion categories.

the KG only setting. Similar results are obtained575

for predicting the tail entities as in Appendix B.576

Overall, these results show that incorporating infor-577

mation from text corpora into KGs enables us to578

learn KGEs that encode diverse relation types.579

Visualisation of Entity Embeddings: In Fig-580

ure 1, we visualise the entity embeddings of581

KGonly and KG with LDPs using t-distributed582

stochastic neighbour embeddings (t-SNE) (Hinton583

and Roweis, 2002) method. Relations in FB15k237584

are labelled as domain/type/property where do-585

main/type represents the type of a head entity in586

the relation. Thus, for each entity in the KG, we587

extract its types from all training triples where the588

entity acts as the head. We label entities that belong589

to the two most frequent entity types, which are590

people/person (4,538 entities) and film/film (1,923591

(a) KG only (b) KG with LDPs

Figure 1: t-SNE plots for DistMult entity embeddings
comparing (a) KG-only and (b) KG with LDPs.

entities). From Figure 1, we see that the embed- 592

dings learnt from the augmented graph results in 593

distinct clusters of the same type, compared to the 594

clusters obtained from the KG alone. This empha- 595

sizes the importance of using textual mentions in 596

KGE learning. 597

7 Conclusion 598

We considered the problem of representing without- 599

mention entity-pairs in KGE learning. Specifically, 600

we proposed a method (SuperBorrow) to determine 601

which LDPs to borrow from with-mention entity- 602

pairs to augment a KG using a corpus. Our pro- 603

posed method improves the performance of several 604

KGE learning methods in link and relation predic- 605

tion tasks. 606
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Supplementary Material848

A Relation Prediction849

Relation prediction results for all the KGE meth-850

ods are shown in Table 8. As we see, unlike se-851

mantic matching-based KGE models, incorporat-852

ing LDPs into the KG do not improve relation pre-853

diction for translational distance-based KGE meth-854

ods (TransE and RotatE). For KG+ExtractedLDPs855

embeddings, the performance for with-mention set856

decreases by 0.045 and 0.012 on average for MRR857

and H@{10,3,1}, for TransE and RotatE respec-858

tively. In-depth analysis for this observation can be859

conducted in future research.860

B Tail Prediction for Relation Categories861

Table 9 presents Hits@10 for tail prediction con-862

sidering 1to1, 1toN, Nto1 and NtoN relation cate-863

gories. As we see, SuperBorrow embeddings ob-864

tain the best results for all KGE methods and all865

the relation categories.866

Method 1to1 1toN Nto1 NtoN
# Tuples 192 1293 4289 14,696

TransE
KG only 0.547 0.097 0.851 0.574
SuperBorrow 0.943 0.647 0.980 0.907

DistMult
KG only 0.521 0.055 0.774 0.507
SuperBorrow 0.880 0.424 0.898 0.657

ComplEx
KG only 0.500 0.034 0.787 0.518
SuperBorrow 0.869 0.456 0.964 0.753

RotatE
KG only 0.536 0.107 0.855 0.561
SuperBorrow 0.927 0.731 0.983 0.853

Table 9: Hits@10 of tail prediction for different rela-
tion categories.

C Training KGE Methods 867

For reproducability, we list the hyperparameter 868

setting to train KGE methods in Table 10. Ada- 869

Grad (Duchi et al., 2011) with 100 batches is used 870

to learn KGEs. Table 11 shows the training time (in 871

hours) to train KGE methods for KG only and Su- 872

perBorrow using OpenKE-Pytorch tool (Han et al., 873

2018). 874

Method #Train tuples Time (h)

TransE
KG only 272,115 0.42

SuperBorrow 1,217,294 1.58

DistMult
KG only 272,115 0.78

SuperBorrow 1,036,904 2.67

ComplEx
KG only 272,115 0.69

SuperBorrow 946,709 2.11

RotatE
KG only 272,115 1.11

SuperBorrow 1,127,099 4.13

Table 11: Training time on FB15K237 in hours.
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overall with-mention without-mention

Model MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE (KG only) 0.961 1.6 0.992 0.980 0.940 0.919 1.9 0.988 0.958 0.875 0.967 1.5 0.993 0.983 0.949
KG+ExtractedLDPs 0.934 1.6 0.994 0.967 0.899 0.860 1.7 0.991 0.926 0.789 0.944 1.5 0.994 0.973 0.914
LinkAll 0.932 1.5 0.993 0.955 0.899 0.845 1.9 0.985 0.887 0.778 0.944 1.4 0.994 0.964 0.916
Co-occurrence 0.925 1.6 0.993 0.962 0.887 0.863 1.8 0.990 0.931 0.793 0.933 1.5 0.993 0.967 0.899
NeighbBorrow 0.927 1.5 0.994 0.964 0.888 0.862 1.7 0.993 0.929 0.791 0.936 1.5 0.994 0.969 0.901
SuperBorrow 0.925 1.5 0.993 0.963 0.886 0.868 1.8 0.990 0.926 0.802 0.933 1.5 0.994 0.968 0.897

DistMult (KG only) 0.901 4.1 0.968 0.938 0.856 0.855 4.5 0.959 0.914 0.789 0.907 4.0 0.969 0.942 0.865
KG+ExtractedLDPs 0.918 2.6 0.980 0.955 0.876 0.887 2.4 0.982 0.940 0.826 0.922 2.7 0.980 0.957 0.883
LinkAll 0.825 7.2 0.940 0.887 0.752 0.883 2.1 0.986 0.944 0.813 0.818 7.8 0.934 0.880 0.744
Co-occurrence 0.918 2.4 0.979 0.954 0.875 0.89 2.0 0.980 0.942 0.831 0.921 2.4 0.979 0.956 0.882
NeighbBorrow 0.917 3.0 0.979 0.955 0.874 0.883 2.7 0.976 0.942 0.819 0.921 3.0 0.979 0.956 0.881
SuperBorrow 0.920 2.2 0.984 0.960 0.875 0.885 2.2 0.980 0.943 0.822 0.924 2.2 0.985 0.962 0.882

ComplEx (KG only) 0.929 3.1 0.977 0.954 0.900 0.884 4.8 0.962 0.925 0.835 0.935 2.8 0.980 0.957 0.908
KG+ExtractedLDPs 0.944 1.9 0.987 0.967 0.917 0.921 1.7 0.986 0.962 0.877 0.947 1.9 0.987 0.967 0.922
LinkAll 0.867 4.0 0.955 0.909 0.812 0.906 1.8 0.988 0.960 0.848 0.861 4.3 0.951 0.902 0.808
Co-occurrence 0.944 1.8 0.987 0.967 0.916 0.930 1.7 0.989 0.965 0.892 0.946 1.8 0.987 0.967 0.920
NeighbBorrow 0.948 1.7 0.989 0.973 0.921 0.925 1.9 0.987 0.965 0.884 0.951 1.7 0.989 0.974 0.925
SuperBorrow 0.946 1.7 0.990 0.972 0.917 0.922 1.8 0.987 0.962 0.879 0.949 1.7 0.990 0.973 0.922

RotatE (KG only) 0.972 1.4 0.996 0.990 0.954 0.945 1.3 0.993 0.981 0.910 0.976 1.4 0.997 0.991 0.960
KG+ExtractedLDPs 0.967 1.3 0.995 0.988 0.945 0.933 1.5 0.983 0.974 0.892 0.971 1.2 0.996 0.990 0.952
LinkAll 0.958 1.3 0.995 0.984 0.931 0.923 1.6 0.983 0.964 0.879 0.963 1.3 0.996 0.987 0.938
Co-occurrence 0.964 1.3 0.994 0.985 0.943 0.931 1.4 0.987 0.970 0.892 0.969 1.3 0.995 0.987 0.949
NeighbBorrow 0.964 1.3 0.995 0.985 0.941 0.933 1.5 0.985 0.971 0.894 0.968 1.2 0.996 0.987 0.948
SuperBorrow 0.964 1.2 0.995 0.986 0.941 0.931 1.5 0.985 0.972 0.892 0.968 1.2 0.996 0.988 0.947

Table 8: Relation predictino on FB15K237.

KGE Method learning rate embedding dimension negative samples loss function margin epochs
TransE 1.0 300 25 Margin loss 5.0 1000

DistMult 0.5 300 25 SoftPlus loss - 1000
ComplEx 0.5 100 25 SoftPlus loss - 1000

RotatE 2e-5 300 25 SigmoidLoss 9.0 1000

Table 10: The hyperparameter setting for KGE methods on link prediction task.
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