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ABSTRACT

Graph Domain Adaptation (GDA) addresses a pressing challenge in cross-network
learning, particularly pertinent due to the absence of labeled data in real-world
graph datasets. Recent studies attempted to learn domain invariant representations
by eliminating structural shifts between graphs. In this work, we show that existing
methodologies have overlooked the significance of the graph node attribute, a
pivotal factor for graph domain alignment. Specifically, we first reveal the impact
of node attributes for GDA by theoretically proving that in addition to the graph
structural divergence between the domains, the node attribute discrepancy also
plays a critical role in GDA. Moreover, we also empirically show that the attribute
shift is more substantial than the topology shift, which further underscore the
importance of node attribute alignment in GDA. Inspired by this finding, a novel
cross-channel module is developed to fuse and align both views between the source
and target graphs for GDA. Experimental results on a variety of benchmark verify
the effectiveness of our method.

1 INTRODUCTION

In the area of widespread internet data collection, graph vertices are frequently associated with
content information, referred to as node attributes within basic graph data. Such graph data can be
widely used in prevalent real-world applications, with data suffering from label scarcity problems
in annotating complex structured data is both expensive and difficult (Xu et al., 2022). To solve
such a challenge, transferring abundant labeling knowledge from task-related graphs is a method
considered (Chen et al., 2019). Giving labeled graphs as a source to solve unlabeled graph targets has
been proposed as graph domain adaptation (GDA) as a paradigm to effectively transfer knowledge
across graphs by addressing distribution shifts (Shi et al., 2024).
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Early works on GDA apply deep domain adapta-
tion (DA) techniques directly, thereby (Shen et al.,
2020b; Wu et al., 2020; Shen et al., 2020a; Dai et al.,

2022) without considering the topological structures 01

of graphs for domain alignment. To address this issue,  § oo 005 I I I
several recent works have been proposed to leverage . o

the inherent properties of graph topology (e.g., adja- =AGH SDBLP Cieseer aUSA mErazh mEwope
cency matrix). While these methods (Yan & Wang, Figure 1: This represents feature value in two
2020; Shi et al., 2023; Shen et al., 2023; Wu et al., groups of datasets. This shows the feature value
2023) have achieved substantial improvements by distribution gap in the attribute is larger than in the
alleviating the topological discrepancy between do- 0P0l0gy-

mains, they overlook the importance of node attributes, a fundamental aspect of GDA. To verify
our argument, we investigate the projected feature values' of graph topology and attribute on two
GDA benchmarks, as shown in Figurel. It can be observed that feature value discrepancy exists in
all GDA benchmark inside datasets, with feature value discrepancy for attributes significantly larger
than topology feature value discrepancy. Based on this observation, we can conclude that (1) graph
distribution shift exists in both attribute and topology; (2) attribute divergence between the source
and target graphs is more significant than the topology divergence.
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"Details on the construction of project features are presented in SectionB of Appendix.
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Figure 2: (a) An overview of our method. GAA gives attribute and topology graph representation,
where minimizing source and target distribution shift through two views. (b)(i) Distribution shifts
exist in both topology and attribute views before alignment. (ii) Existing GDA algorithms can only
address graph topology shifts but not attribute shifts. (iii) GAA can address GDA attribute shifts.

Motivated by this observation, we theoretically investigate the domain discrepancy between two
graphs, revealing the role of node attribute for GDA. Specifically, by leveraging the PAC-Bayes
framework, we derive a generalization bound of GDA, which unveils how graph structure and node
attributes jointly affect the expected risk of the target graph. Moreover, we also show that the
discrepancy between the source and target graphs can be upper bounded in terms of both node
attributes and topological structure. In other words, our theoretical analysis reveals that both attribute
and topology views should be considered for GDA, with the former having a more significant impact
on domain alignment, as shown in Figure .1.

Our theoretical insights highlight the significance of characterizing the cross-network domain shifts
in both node attributes and topology. To this end, we propose a novel cross-channel graph attribute-
driven alignment (GAA) algorithm for cross-network node classification, as shown in Figure.2
(a). Unlike existing methods that rely solely on topology, GAA also constructs an attribute graph
(feature graph) to mitigate domain discrepancies. Furthermore, GAA also introduces a cross-view
similarity matrix, which acts as a filter to enhance and integrate feature information within each
domain, facilitating synergistic refinement of both attribute and topology views for GDA. Figure2 (b)
illustrates the benefits of GAA for GDA, which alleviates both attribute and topology shifts.

Our main contributions are summarized as follows:

* We reveal the importance of node attributes in GDA from both empirical and theoretical
aspects.

* Motivated by our theoretical analysis, we proposed GAA, a novel GDA algorithm that
minimizes both attribute and topology distribution shifts based on intrinsic graph property.

» Comprehensive experiments on benchmarks show the superior performance of our method
compared to other state-of-the-art methods for real-world datasets of the cross-network node
classification tasks.

2 RELATED WORK

Unsupervised domain adaptation is a wildly used setting of transfer learning methods that aims to
minimize the discrepancy between the source and target domains. To solve cross-domain classification
tasks, these methods are based on deep feature representation (Zhu et al., 2022), which maps different
domains into a common feature space. Some recent studies have overcome the imbalance of domains
and the label distribution shift of classes to transfer model well (Jing et al., 2021; Xu et al., 2023).
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Some novel settings in domain adaption have also gotten a lot of attention, like source free domain
adaption(SFDA) (Yang et al., 2021), test time domain adaption(TTDA) (Wang et al., 2022). As for
graph-structured data, several studies have been proposed for cross-graph knowledge transfer via
GDA setting methods (Shen & Chung, 2019; Dai et al., 2022; Shi et al., 2024). ACDNE (Shen et al.,
2020a) adopt k-hop PPMI matrix to capture high-order proximity as global consistency for source
information on graphs. CDNE (Shen et al., 2020b) learning cross-network embedding from source
and target data to minimize the maximum mean discrepancy (MMD) directly. GraphAE (Yan &
Wang, 2020) analyzes node degree distribution shift in domain discrepancy and solves it by aligning
message-passing routers. DM-GNN (Shen et al., 2023) proposes a method to propagate node label
information by combining its own and neighbors’ edge structure. UDAGCN (Wu et al., 2020)
develops a dual graph convolutional network by jointly capturing knowledge from local and global
levels to adapt it by adversarial training. ASN (Zhang et al., 2021) separates domain-specific and
domain-invariant variables by designing a private en-coder and uses the domain-specific features
in the network to extract the domain-invariant shared features across networks. SOGA (Mao et al.,
2024) first time uses discriminability by encouraging the structural consistencies between target
nodes in the same class for the SFDA in the graph. GraphAE (Guo et al., 2022) focuses on how
shifts in node degree distribution affect node embeddings by minimizing the discrepancy between
router embedding to eliminate structural shifts. SpecReg (You et al., 2022) used the optimal transport-
based GDA bound for graph data and discovered that revising the GNNs’ Lipschitz constant can be
achieved by spectral smoothness and maximum frequency response. JHGDA (Shi et al., 2023) studies
the shifts in hierarchical graph structures, which are inherent properties of graphs by aggregating
domain discrepancy from all hierarchy levels to derive a comprehensive discrepancy measurement.
ALEX (Yuan et al., 2023) first creates a label shift enhanced augmented graph view using a low-
rank adjacency matrix obtained through singular value decomposition by driving contrasting loss.
SGDA (Qiao et al., 2023) enhances original source graphs by integrating trainable perturbations
(adaptive shift parameters) into embeddings by conducting adversarial learning to simultaneously
train both the graph encoder and perturbations, to minimize marginal shifts.

3 THEORETICAL ANALYSIS

In this subsection, we provide a discussion on the PAC-Bayesian analysis with the graph domain
adaptation.

Notations. An undirected graph G = {V, &, A, X, Y} consists of a set of nodes V and edges &,
along with an adjacency matrix A, a feature matrix X, and a label matrix Y. The adjacency matrix
A € RVXN encodes the connections between N nodes, where A;; = 1 indicates an edge between
nodes ¢ and j, and A;; = 0 means the nodes are not connected. The feature matrix X € RN xd
represents the node features, with each node described by a d-dimensional feature vector. Finally,
Y € RV XC contains the labels for the N nodes, where each node is classified into one of C' classes.

In this work, we explore the task of node classification in a semi-supervised setting, where both the
node feature matrix X and the graph structure A are given before learning. We assume that all key
aspects of our analysis are conditioned on the fixed graph structure A and feature matrix X, while
the uncertainty arises from the node labels Y. Specifically, we assume that the label y; for each node
i € V is drawn from a latent conditional distribution Pr(y; | Z;), where Z = f(X, G), with f being
an aggregation function that combines features from the local neighborhood of each node within
the graph. Additionally, we assume that the labels for different nodes are independent of each other,
given their respective aggregated feature representations Z;. With a partially labeled node set V; C V),
our objective in the node classification problem is to learn a model » : R¥*? x G — RV X from
a family of classifiers H that can predict the labels for the remaining unlabeled nodes. For a given
classifier h, the predicted label Y; for node i is determined by: Y; = arg maxieq1,...cy hi(X, G)[k],
where h; (X, G) is the output corresponding to node ¢ and h; (X, G)[k] represents the score for the
k-th class for node :.

Margin loss on each subgroup. Now we can define the empirical and expected margin loss
of a classifier h € H on source graph G® = {V¥,£% A5 X9 Y5} and target graph GT =
{yT, €T, AT, X1}, Given Y?, the empirical margin loss of & on G for a margin v > 0 is defined
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as
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where 1 [-] is the indicator function, ¢ represents node labeling . The expected margin loss is then
defined as

LL(h) = EY,;NPr(Y\Zi),iEVSEg‘(h) 2

Definition 1 (Expected Loss Discrepancy). Given a distribution P over a function family H, for
any A\ > 0 and v > 0, for any G° and G", define the expected loss discrepancy between V° and

v/2 _
VT as D§ p(P;A) :=In Ejpe’ <£T (h) 'Cs(h)), where E}/z(h) and L} (h) follow the definition
of Eq. (2).

Intuitively, D:’g’T(P ; \) captures the difference of the expected loss between V* and VT in an average
sense (over P).

Theorem 1 (Domain Adaptation Bound for Deterministic Classifiers). Let H be a family of clas-
sification functions. For any classifier h in H, and for any parameters A > 0 and v > 0,
consider any prior distribution P over H that is independent of the training data V°. With
a probability of at least 1 — & over the sample Y°, for any distribution Q on M such that

Prj o [maXiGVSUVT [hi(X,G) = hi(X, @)oo < %} > 1, the following inequality holds:

2

- . 1 1 A
L9(h) < LL(h) + ~ [2(Dku(Q|P) + 1) +In = + —— + DY2(P; 0| . 3)
A ) 4NS ?

We follow the characterization from (Ma et al., 2021). In the generalization bound, the KL-divergence
Dk, (Q||P) is usually considered as a measurement of the model complexity. The terms In(1/§)
and ﬁ are commonly seen in PAC-Bayesian analysis for IID supervised settings. The expected

loss discrepancy Dg{%(P; \) between the source nodes V? and the targeted nodes V7 is essential

to our analysis. To derive the generalization guarantee, we need to upper-bound the expected loss
discrepancy D -(P; \).

Proposition 1 (Bound for D}, ,.(P; \)). For any v > 0, and under the assumption that the prior
distribution P over the classification function family H is defined, we establish a bound for the

domain discrepancy measure Dg,/:,%(P; A). Specifically, we have the following inequality:

DYF (PN <O | 3 37 AKX ") — (ATXT);[5+ > Y IXP-XTIB). @

ieVs jevT ieVSs jevT

4 THE PROPOSED METHODOLOGY

In this section, we propose a novel GDA method with attribute-driven alignment (GAA), which first
minimizes graph attribute divergence. The overall framework of GAA is shown in Figure2. The
main components of the proposed method include the specific attribute convolution module and the
attribute-driven alignment module. We will detail the proposed GAA in the following subsections.
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4.1 SPECIFIC ATTRIBUTE CONVOLUTION MODULE

Inspired by Proposition 1, we design an attribute-driven GDA model by using topology graph
and feature graph. Our model mainly contains attribute-driven alignment that directly minimize
discrimination in attribute and topology between source and target graph.

Feature Graph Merely using node attribute information through X is unstable (Fang et al., 2022).
A natural idea would be to utilize graph node attribute by fully making use of the information through
feature space propagation (Wang et al., 2020). Therefore we introduce feature graph into our work.

To represent the structure of nodes in the feature space, we build a kNN graph G based on the
feature matrix X . To be precise, a node similarity matrix SM is computed using the cosine similarity

formula:
X X;

| Xl - |1 X1
where SM;; is the similarity between node feature X; and node feature X;. We derivate feature

graph G = {fo VAKX, Y}, which shares the same X with G, but has a different adjacency

matrix. Therefore, topology graph and feature graph refer to G and G respectively. Then for
each node we choose the top k nearest neighbors and establish edges. In this way, we construct a

feature graph in attribute view for the source graph G5 = {VS JES AS XS YS } and target graph
GT = {VT, ET AT, XT}.

SM;; = &)

Feature Extraction Module To extract meaningful features from graphs, we adopt GCN that is
comprised of multiple graph convolutional layers. With the input graph G, the (I + 1)-th layer’s
output H+1) can be represented as:

HUY = ReLU(D 2 AD z HOW®) (©6)

where ReLU is the Relu activation function (ReLU (-) = max(0,-)), D is the degree matrix of A,
W® is a layer-specific trainable weight matrix, H?) is the activation matrix in the I-th layer and
H© = X In our study we use two GCNs to exploit the information in topology and feature space.
For source graph, output node embedding is donated by Z° generated from G and Z }9 generated

from G*5. Similarly, for the target graph, the output node embedding is donated by Z T generated
from G* and Z7 generated from G

4.2 SOURCE CLASSIFIER LOSS

The source classifier loss Lg ( fs (Z S ) VS ) is to minimize the cross-entropy for the labeled data
node in the source domain:

1 &
Ls (fs (ZS) ,YS) = —N75 Zyzs log (gzs) @
=1

where y; denotes the label of the i-th node in the source domain and §; are the classification
prediction for the i-th source graph labeled node v € V.

4.3 ATTRIBUTE-DRIVEN ALIGNMENT

To make the attribute view fully learnable, we design the attention attribute module to dynamically
utilize the important attribute. Specifically, we design learnable domain adaptive models for alignment
embeddings in topology and attribute views.

Attention-based Attribute To guide the network to take more attention to the important node
attributes and make attributes learnable, we design attention-based embedding models. Specifically,
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we map the node attributes into three different latent spaces. By given an example in source graph
. . T T T

attribute embedding: Q = Wqu , K = Wka , M = WUZ]*? , where W, € R4 W, €

R¥*e W, € R4*9 are the learnable parameter matrices. And Q € RN K € RN and M €

RI*N denotes the query matrix, key matrix and value matrix, respectively.

The attention-based attribute matrix att? can be calculated by:

K'Q
tt3 = soft M7 8
atty = sof maz( Nz ) ®)

Likewise, we can obtain a similar objective of each learnable graph embedding att®, att? and att”.
Cross-view Similarity Matrix Refinement

Subsequently, the cross-view similarity matrix S represents the similarity between the source
attribute and topology graph. S7 represents the similarity between the target attribute and topology
graph. S* as formulated:

75 . (z5)"
§5 = L ( )S ©)
NZF 12 - 11Z25]]2
Likewise, we can obtain a similarity matrix of the target graph by:
77 . (z7)"
T — 1{ ( )T (10)
Zg 12 - 1127 |2

where S and ST is the cross-view similarity matrix, and (-) is the function to calculate similarity.
Here, we adopt cosine similarity. The proposed similarity matrix S and S” measures the similarity
between samples by comprehensively considering attribute and structure information. The connected
relationships between different nodes could be reflected by S° and ST Therefore, we utilize S” and
59 to refine the structure in augmented view with Hadamard product, att? can be formulated as:

attS = atts © §° (1)

Similarly we can get att by att] © S5, att] by att} © ST, att” by att” © ST, which respectively
represent source graph and target graph in both topology view and attribute view embedding.

Attribute-Driven Domain Adaptive

The proposed framework follows the transfer learning paradigm, where the model minimizes the
divergence of the two views. In detail, GAA jointly optimizes two views of GDA alignment. To be
specific, £ 4 is the Mean Squared Error (MSE) loss between the source graph att® and att}s and the
target graph att” and att?, which can be formulated as:

La=—(|latt® — att™||3 + |latt] — att}||3) (12)

We adapt the domain in two views, domain classifier loss in the topology view is Hatt? — att}"| |2
enforces that the attribute graph node representation after the node feature extraction and similarity
matrix refinement from source and target graph G]Sc and G?. Similarly, we get ||att® — attT||3
from G¥ and GT. And ||att® — attT||3 corresponds to the first item of Proposition 1, which
is [|(AX9); — (ATXT),||3 means minimizing structural distribution shift. In attribute view is
||att? - att?”% trying to discriminate corresponds to the second term || X — XT||3 of Proposition
1, which means minimizing attribute distribution shift.
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4.4 TARGET NODE CLASSIFICATION

We use Gradient Reversal Layer (GRL) (Ganin et al., 2016) for adversarial training. Mathematically,

we define the GRL as Q»(z) = z with a reversal gradient%ﬂf‘r) = —AI. Learning a GRL

is adversarial in such a way that: on the one side, the reversal gradient enforces fs(Z7) to be
maximized; on the other side, fp is optimized by minimizing the cross-entropy domain classifier
loss:

1 Ns+Nr
Lp = NN ; m;log (m;) + (1 — m;) log (1 — ;) (13)

where m; € {0, 1} denotes the groundtruth, and /72; denotes the domain prediction for the i-th node
in the source domain and target domain, respectively. To utilize the data in the target domain, we use
entropy loss for the target classifier fr :

1 X
Lr (fr (Z27)) = N > 45 10g (47) (14)
=1

where ¢! are the classification prediction for the i-th node in the target graph v;. Finally, by
combining L 4, Lg, Lp and L, the overall loss function of our model can be represented as:

L=La+als+BLp+TLT (15)

where «, 8 and T are trade-off hyper-parameters. The parameters of the whole framework are updated
via backpropagation.

5 EXPERIMENT

5.1 DATASETS

To prove the superiority of our work on domain adap-

tation node classification tasks, we evaluate it on four

R . " o Types Datasets #Node #BEdge | #Label
types of datasets, including Airport dataset (Ribeiro ypes| | | ge |

et al., 2017), Citation dataset (Wu et al., 2020), So- . UsA 1,190 13,599
. . . Airport Brazil 131 1,038 4
cial dataset (Liu et al., 2024a) and Blog dataset (Li Europe 399 5995

et al., 2015). The airport dataset involves three coun-

tries’ airport traffic networks: USA (U), Brazil (B), ACMvO 2,360 15,556

Citation | Citationv] 8,935 15,098 5

and Europe (E), in which the node indicates the air- DBLPv7 5,484 8,117
port and the edge indicates the routes between two Bloel 2300 | 33471
airports. The citation dataset includes three differ- ~ Social Blogz 2896 | 53836 6

ent citation networks: DBLPvS (D) , ACMv9 (A), G 9298 | 153138
ermany R )

and Citationv2 (C), in which the node indicates the Social B 2
X L. L. N ngland 7,126 35,324
article and the edge indicates the citation relation be-
tween two articles. As for social networks, we choose US 132,558 | 697,450
. . CN 101,952 | 285,561
Twitch gamer networks and Blog Network, which DE 43.032 | 126.683
are collected from Germany(DE) and England(EN). ~ MAG P 37.498 | 90.944 20
Two disjoint Blog social networks, Blogl (B1) and RU 32,833 | 67,994
Blog2 (B2), which are extracted from the BlogCata- FR 29,262 | 78,222
log dataset. extracted from the BlogCatalog dataset.
Because these four groups of dataset ingredients are Table 1: Dataset Statistics.

generated from different data sources, their distri-
butions are naturally diverse. For a comprehensive
overview of these datasets, please refer to Tab 5.

5.2 BASELINES

We choose some representative methods to compare. GCN  (Kipf & Welling, 2016) further solves
the efficiency problem by introducing first-order approximation of ChebNet. kNN-GCN (Wang
et al., 2020) use the sparse k-nearest neighbor graph calculated from feature matrix as the input graph
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| Methodss | U—+B U—=E B—U B—E E—U E—B|DE—EN EN-DE |
GCN 0.366 0.371 0.491 0.452 0.439 0.298 0.673 0.634
kKNN-GCN | 0.436 0.437 0.461 0.478 0.459 0.464 0.661 0.623

| DANN | 0.501 0.386 0.402 0.350 0.436 0.538 | 0512 0.528
DANE 0.531 0.472 0.491 0.489 0.461 0.520 0.642 0.644
UDAGCN 0.607 0.488 0.497 0.510 0.434 0.477 0.724 0.660
ASN 0.519 0.469 0.498 0.494 0.466 0.595 0.550 0.679
EGI 0.523 0.451 0.417 0.454 0.452 0.588 0.681 0.589
GRADE-N | 0.550 0.457 0.497 0.506 0.463 0.588 0.749 0.661
JHGDA 0.695 0.519 0.511 0.569 0.522 0.740 0.766 0.737
SpecReg 0.481 0.487 0.513 0.546 0.436 0.527 0.756 0.678
GIFI 0.636 0.521 0.493 0.535 0.501 0.623 0.719 0.705
PA 0.679 0.557 0.528 0.562 0.547 0.529 0.677 0.760

| GAA | 0.704 0.563 0.542 0.573 0.546 0691 | 0779 0.751

Table 2: Cross-network node classification on the Airport network.

| Methods |A—=D D—A A—=C C—A C—=D D—C|Bl—+B2 B2-BI |
GCN 0632 0578 0675 0635 0666  0.654 | 0408 0.451
KNN-GCN | 0.636 0587 0672  0.648 0668 0426 | 0531 0.579

| DANN | 0488 0436 0520 0518 0518 0465 | 0.409 0419
DANE 0.664  0.619 0642 0653 0661 0709 | 0464 04234
UDAGCN | 0684 0623 0728 0663 0712 0645 | 0471 0.468
ASN 0729 0723 0752 0678 0752 0754 | 0732 0.524
EGI 0647 0557 0676 0598 0662 0652 | 049 0516
GRADE-N | 0701 0660 0736  0.687 0722 0687 | 0567 0.541
JHGDA 0755 0737 0814 0756 0762 079 | 0.619 0.643
SpecReg | 0762  0.654 0753 0680 0768 0727 | 0.661 0.631
GIFI 0751 0737 0793 0755 0739 0751 | 0653 0.642
PA 0752 0751 0804 0768 0755 0780 | 0.662 0.654

| GAA | 0789 0754 0824 0782 0771 0.798 | 0.681 0.679

Table 3: Cross-network node classification on the Citation, Blog and Social network.

| Methods | US—CN US—DE US—JP US—RU

US—FR CN—US

CN—-DE CN—=JP CN—RU CN-—FR |

GCN 0.042 0.168 0.219 0.147 0.182 0.193 0.064 0.160 0.069 0.067
kNN-GCN 0.092 0.189 0.269 0.186 0.213 0.210 0.133 0.201 0.105 0.102
| DANN | 0242 0.263 0.379 0.218 0.207 0.302 0.134 0.214 0.119 0.107
DANE 0.272 0.250 0.280 0.210 0.186 0.279 0.108 0.228 0.170 0.184
UDAGCN OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
ASN 0.290 0.272 0.291 0.222 0.199 0.268 0.121 0.207 0.189 0.190
EGI OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRADE-N 0.304 0.299 0.306 0.240 0.217 0.258 0.137 0.210 0.178 0.199
JHGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SpecReg 0.237 0.267 0.377 0.228 0.218 0.317 0.134 0.199 0.109 116
PA 0.400 0.389 0.474 0.371 0.252 0.452 0.262 0.383 0.333 0.242
| GAA | 0410 0.401 0.492 0.372 0.2881 0.453 0.302 0.400 0.351 0.293

Table 4: Cross-network node classification on MAG datasets.

of GCN and name it kNN-GCN. DANN (Ganin et al., 2016) use a 2-layer perceptron to provide
features and a gradient reverse layer (GRL) to learn node embeddings for domain classification
DANE (Zhang et al., 2019) shared distributions embedded space on different networks and further
aligned them through adversarial learning regularization. UDAGCN (Wu et al., 2020) is a dual
graph convolutional network component learning framework for unsupervised GDA, which captures
knowledge from local and global levels to adapt it by adversarial training. ASN (Zhang et al.,
2021) use the domain-specific features in the network to extract the domain-invariant shared features
across networks. EGI (Zhu et al., 2021) through Ego-Graph Information maximization to analyze
structure-relevant transferability regarding the difference between source-target graph. GRADE-
N (Wu et al., 2023) propose a graph subtree discrepancy to measure the graph distribution shift
between source and target graphs. JHGDA (Shi et al., 2023) explore information from different
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levels of network hierarchy by hierarchical pooling model. SpecReg (You et al., 2022) achieve
improving performance regularization inspired by cross-pollinating between the optimal transport
DA and graph filter theories . GIFI (Qiao et al., 2024) uses a parameterized graph reduction module
and variational information bottleneck to filter out irrelevant information. PA (Liu et al., 2024b)
mitigates distribution shifts in graph data by recalibrating edge influences to handle structure shifts
and adjusting classification losses to tackle label shifts.

5.3 EXPERIMENTAL SETUP

The experiments are implemented in the PyTorch platform using an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz, and GeForce RTX A5000 24G GPU. Technically, two layers GCN is built and we
train our model by utilizing the Adam (Kingma & Ba, 2015) optimizer with learning rate ranging
from 0.0001 to 0.0005. In order to prevent over-fitting, we set the dropout rate to 0.5. In addition, we
set weight decay € {le —4,--- ,5e —3} and k € {1,---,10} for kNN graph. For fairness, we use
the same parameter settings for all the cross-domain node classification methods in our experiment,
except for some special cases. For GCN, UDA-GCN, and JHGDA the GCNs of both the source and
target networks contain two hidden layers (L = 2) with structure as 128 — 16. The dropout rate for
each GCN layer is set to 0.3. We repeatedly train and test our model for five times with the same
partition of dataset and then report the average of ACC.

5.4 CROSS-NETWORK NODE CLASSIFICATION RESULTS

The results of experiments are summarized in Table 2 and 4, where the best performance is highlighted
in boldface. Some results are directly taken from (Shi et al., 2023; Pang et al., 2023). We have the
following findings: It can be seen that our proposed method boosts the performance of SOTA methods
across most evaluation metrics on four group datasets with 16 tasks, which proves its effectiveness.
Particularly, compared with other optimal performances in all datasets, GAA achieves a maximum
average improvement of 1.80% for ACC. This illustrates that our proposed model can effectively
utilize node attribute information. Our GAA achieves much better performances than SpecReg and
JHGDA on all of the metrics in a dataset of Airport and most of the metrics in a dataset of Citation.
This can be explained by our method’s use of attribute and topology structure. In most cases, GAA
produces better performance than GRADE- N (Wu et al., 2023) and JHGDA (Shi et al., 2023), which
were published in 2023. This verifies the advantage of our approach. On most occasions, the feature
graph produces a better result than the original graph. For example, in airport data, kNN-GCN
performance averages better than 5.30% to GCN, and in citation datasets, performance averages
better than 0.60% to GCN. Our findings affirm that the observed discrepancy in node attributes
surpasses that of the topological misalignment, thus suggesting that the alignment of node attributes
holds potential for yielding more substantial enhancements.

5.5 ABLATION STUDY

To validate the effectiveness of different components in our model, we compare GAA with its three
variants on Citation and Airport datasets.

* GAA;: GAA without cross-view similarity matrix Refinement to show the importance of
comprehensive attribute and structure information.

* GAA;: GAA without £ 4 to show the impact of attribute benefit alignment.

* GAAj;: GAA without £ 4 and remove channel feature graph

According to Figure??, we can draw the following conclusions: (1) The results of GAA
are consistently better than all variants, indicating the rationality of our model. (2) Both
topology and feature information are crucial to domain adaptation. (3) The cross-view
similarity matrix can improve performance by enhancing and integrating feature information,
benefiting the synergistic refinement of both attribute and topology.

5.6 PARAMETER ANALYSIS

In this section, we analyze the sensitivity of the parameters of our method on the Airport
dataset and Citation dataset. As shown in Figure.4 in Subfigure (4), the accuracy usually
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Figure 3: The influence of parameters «, 5, 7 and k on Citation and Airport dataset.

peaks at 2— 3 with k. This is reasonable since increasing £ means more high-order proximity
information is incorporated. On the other hand, extremely large &k could also introduce noise
that will deteriorate the performance. From Figure.4 Subfigure (1) (2) (3), we can see GAA
has competitive performance on a large range of values, which suggests the stability of our
method.

6 CONCLUSION

In this paper, we propose GAA framework to solve the GDA problem in cross-network
node classification tasks.

Comprehensive experiments verify
the superiority of our approach. In the future, we may strive to design new frameworks for
other cross-network learning tasks, including link-level and graph-level. We will also deep
into graph domain adaptation theory for developing more powerful models.
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A PROOF OF PROPOSITION |

To facilitate the analysis, we adopt the following data assumption:

Definition 1. The generated nodes consist of two disjoint sets, denoted as cy and c1. Each
node feature x is sampled from N (u;, 0;) for i € {0,1}.

Each set c; corresponds to the source graph and target graph compositions, respectively:
C,ES) and C,ET). The class distribution is balanced, such that P(Y = ¢y) = P(Y = ¢1).

Theorem 2. For nodes s € Vg and t € Vi with aggregated features f = GNN(x), the
following inequality holds:

S
IP(y = colfu) — P(yo = colf)|| < O(fu — £l + |16, — 87| + 1, — $7])). (16)
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Proof. The conditional probability of class ¢ given the aggregated feature f can be ex-
pressed using Bayes’ theorem:

IEJ)(f8|ys = CO)P(ys = CO)

P(y, = colf.) = .an
4 olfs) P(fslys = co)P(ys = co) + P(fslys = c1)P(ys = 1)
Under the assumption P(y = ¢y) = P(y = ¢1), we simplify this to:
P(f =
(fslys = co) (18)

P s = fs - ’
(yk CO‘ ) ]P)(fs|ys = Co) + ]P)(fslys = C])

Substituting in the expressions for the Gaussian distributions:

(S)
exp <—(f“ _;‘20 )2>
P(ys = colfs) = (19)

(8) )2\
exp <_<f—u>> - (_<f—u>>

IP(yu = colfu) = P(yo = colfy)ll

|| P(fsb’s = CO) _ P(ﬂ)b’v = CO) H
IFJ(fs|ys = CO) + P(fs|ys = Cl) IP(ﬂ)'Yv = CO) + P(fv‘YU = Cl) (20)
|[P(fs]ys = co)P(fu]yw = c1) = P(fu|yw = co)P(fs|ys = c1)l|

[]P)(fs|YS = CO) + ]P(fs|YS = Cl)] [P(fvb’v = CO) + IED(fv|yv = Cl)].

Noting that the denominator is bounded, we substitute the probabilities of the Gaussian
distributions into the expression:

Thus, we have:

||P(Yu = CO|fu) - P(Yv = CO|fv)||

f,— (S)y2 £, — (T)y2 f,— (S)y2 £, — (T)y2
|| exp <_(:20)>exp (_( £ ) )_eXp (_( by ) )exp (_( by ) )”

exp(—A)
2n
This leads us to:

1 T 5 s T T S
B (yu = colfu) ~B(yo = eolfo)l| < 516" —p16™) 2humpag” =g )= (i =) (26— o

(22)
This simplifies to:

IP(yu = colfu) — P(yo = colf)l] < O|If — £l + 126, — p{® — p{7[]).  23)

O
. . T s
(a) We note that %) = ||u{” — || and A% = ||t — ||,
Proposition 2 (Bound for D} ,.(P;\)). For any v > 0, and under the assumption that
the prior distribution P over the classification function family H is defined, we establish a

bound for the domain discrepancy measure Dg{%(P; A). Specifically, we have the following
inequality:

DYF(PiN) <O | 37 ST IASX®) — (ATXT) 1R+ Y 3 (1XF - XTI
iEVS jeVT ieVs jevT
(24)

13

T
).
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Proof. For notational simplicity, let h; = h;(X,G)for any i € Vg U Vp. De-
fine nx(i) = Pr(y;=k]|¢(X,G)) for k € {0,1}, andlet LV(h;,y;) =
1{hilys] < v + maxpzy, hilk]]

We can express the difference in the loss functions as follows:

L;/z(h) — LL(h) = Z £,y | - i Z LY (hi,yi ]
jGVT s i€Vs
1
<———F L£Y2(h — L7 (hi, i
= max(Ng, Np) ¥7¥" 1;;5 EZVT i) (he> 1)

Using Definition 1, we derive:

Y201\ _ Y I 1 Y o
£r=(h) /:S(h)_max(Ns,NT) ; Nrp j;:TEij’Y (s y) = By, L7 (i, yi)
1
v /o |
~ max(Ng, N7) EZVSNT J;wzk:(nk J)L=(hj, k) — Pr(y; k)m(hz,k))
1
- / _
= max(NS7NT EZ Nr EZVT;(WIC LY (hjvk) Ny (4 );C’Y(hz,k))
= /2 _ N _
_maxNS,NT Z EVZT%:(% (ﬁ” (hj, k) — ﬁ”(h“k))jt(nk(y) (1)) £7 (hs,
(25)
1
- - /2 (12
S (v, V) 2 TKZVT§(£” (hyo k) = £ (has k) + ) = me(0)3)
(26)

The last inequality holds since both 7 (j) and L7 (h;, k) are upper-bounded by 1, and we
assume £7/2(hj, k) < L7 (h;, k).
By applying Theorem 2, we obtain:

S T S T
> Imei) (@) < 0 (18 = £l + £ — £ 13 + 1 — 803 + 16 — 1™ 13 + 116, — §13) -

Thus, we have:

ﬂ%”(h)—cg(h)_mast o Y w2 Y ) - m@B

GVs jGVT k

S T S T
ST U= £l 1 — pSVE 1 — w03 1 — 83+ 11— pS713

i€Vs jeVr
<O D D IASXS) = (ATXT)l5+ > Y IX%i— XT3
i€Vs jeVr i€Vs jeVr

O

B DEFINITION OF AVERAGE FEATURE VALUE

We hope to quantitatively compare the differences in feature values between topology
view and attribute view. Similarly, for the purpose of convenient comparison, we decided
to calculate the average of their feature values. Specifically, we first obtain a topology
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view matrix through topology filtering, multiplying A and X to F. Similarly, we perform
attribute filtering by multiplying A and X to F to obtain a matrix of attribute view. So
our topology average value is Fetuare; = Z?:1 Ef\il |F] /(d = N) and attribute feature

value is Features = 2?21 SN Ffl /(dx N).

C DESCRIPTION OF ALGORITHM GAA

Algorithm 1: The proposed algorithm GAA

Input: Source node feature matrix X °; source original graph adjacency matrix A°; Target node
feature matrix X 7'; Target original graph adjacency matrix A7 source node label matrix
Y®¥; maximum number of iterations 7
1 Compute the feature graph topological structure A5 and AT according to X and X7 by
running kNN algorithm.
2 for it =1tondo

s | Z5=GCN(A%,X%)

4 Z;? = GC’N(AS, X?%)// embedding of source graph

5 ZT =GCN(AT, XT)

6 ZJ? = GCN(AT, XT)// embedding of target graph

7 | Z% and Z{ through cross-view similarity matrix refinement to get 5.
8 ZT and Z]? through cross-view similarity matrix refinementto get S7.
9 Attribute-Driven domain adaptive between S° and S”// adaptive in two views
1 | Domain Adaptive Learning between Z° and Z7

11 {7 constrained byy: and ¢ constrained by}

12 Calculate the overall loss with Eq.(15)

13| Update all parameters of the framework according to the overall loss

o

4 Predict the labels of target graph nodes based on the trained framework.
Output: Classification result Y7

D HYPERPARAMETER TUNING DETIAL

D.1 PARAMETER ANALYSIS

a, 3, and T are chosen from the set {0.005,0.01,0.1,0.5,1,5}. These values provide
flexibility for adjusting the relative importance of different loss terms. & (the number of
neighbors for £-NN graph construction) is typically k& € {1,--- , 10} . The optimal value
for k depends on the density and connectivity of the graph. Due to extremely large k could
also introduce noisy that will deteriorate the performance. Usually our largest & will be 5.

Airport Dataset: Often contains transportation networks with fewer nodes but complex edge
relationships. Given the sparsity of this dataset, «, 3 and 7 should be set relatively higher
to emphasize topology alignment and capture key structural relationships. «, 5 and 7 is
selected from {0.1,0.5}. A smaller k could be more effective due to the sparser nature of
these networks. We select k from {3,4}.

Citation Dataset: This dataset often has a higher node count and diverse structural character-
istics. In such datasets, balance the impact of node attributes and topology. «, 3 and 7 is
selected from {0.1,0.5}. A moderate value of k to capture relevant local structures could
work well for this dataset. We select k from {4,5}.

Social Network Dataset (Blog and Twitch): Social networks often contain a large number of
nodes with rich attribute information but high variance in structural patterns. Emphasize
attribute alignment since social networks tend to have highly distinctive attributes. Thus,
attribute shifts are more sensitive to the values of «, 3 and 7, which are selected from the set
{0.01,0.1,0.5}. Small k is recommended due to the dense connections in social networks.
We select k from {3,4}.
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Figure 4: The influence of parameters «, 3, 7 and k on two social datasets.

| Types | Datasets | o | 8 | 7 | k|
U—B 0.5 0.5 001 | 4

U—E 0.1 0.1 0.01 | 2

Airport B—U 0.1 0.1 001 | 4
B—E 0.5 0.1 0.1 3

E—U 0.5 0.5 0.1 4

E—B 0.5 0.5 0.1 4

A—D 0.1 0.1 0.1 3

D—A 0.1 0.1 0.01 | 4

Citation A—C 0.5 0.5 001 | 4
C—A 0.1 0.1 0.1 3

C—D 0.1 0.1 0.1 4

D—C 0.1 0.1 0.1 4

Blog B1—B2 0.1 0.1 0.1 2
B2—Bl1 0.1 0.1 0.1 3

Twitch DE—EN | 0.1 0.1 001 | 2
EN—DE | 0.1 0.5 0.5 2

US—CN | 0.5 0.1 0.1 5

US—DE | 0.1 0.1 0.1 5

US—JP | 0.1 0.5 001 | 6

MAG | ysru |01 | 01 | 05 |5
US—FR | 0.1 0.1 0.1 6

CN—US | 0.1 0.1 001 | 6
CN—DE | 0.1 0.1 0.5 6

CN—JP 0.1 0.1 001 | 5

CN—RU | 0.5 0.1 0.1 5

CN—FR | 0.1 | 0.01 0.1 6

Table 5: Experiment hyperparameter setting Value.

MAG Dataset: The MAG dataset is large and diverse, containing losts of classes with various
relationships and rich metadata. Structural and attribute alignment are key factors. In this
context, attribute shifts are both important to the values of «,3 and 7 which are selected
from the set {0.1,0.5}. The parameter k& works well in this context, enabling the model
to capture high-level local and global structural information within the graph. We select k&
from {4, 5}.
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(a) UDAGCN (b) JHGDA (c) GRADE (d) SpecReg (e) GAA

Figure 5: Visualization of learnt representations of different methods on D-A task of dataset.

E T-SNE SAMPLE

F TIGHTNESS OF BOUNDS

To evaluate the tightness of our bounds, we conduct additional experiments to verify the
effects of node attribute divergence and topology divergence independently. The following
experimental detail settings are designed to verify these divergences.

F.1 ATTRIBUTE DIVERGENCE

To evaluate the impact of graph attribute discrepancy on GDA, we designed an experiment
for this purpose. In this experiment, we provide node classification tasks across different
graphs under different attribute discrepancy with same topology structure. In this procedure,
we aim to generate a collection of graph datasets, where each graph is characterized by a
fixed adjacency matrix A, consisting of 100 nodes with an average degree of 0.3, and node
attribute matrices X randomly simulated from Gaussian-distributed samples. The specific
steps are as follows: Each graph G; = (A, X;) shares the same fixed adjacency matrix
A, representing the same graph topology. A is predetermined and defines the connectivity
between nodes, remaining consistent across all generated graphs. Node attributes X; for each
graph GG; are generated using "'make-blobs’ function from scikit-learn. Parameters for *make-
blobs’: Number of nodes: ngmples = 100, representing the total number of nodes in the
graph. Number of clusters: centers = 2, corresponding to two distinct classes. ngeares = 10,
meaning each node is described by a 10-dimensional feature vector. cluster_std is a variable
parameter uniformly sampled from the range [0, 2], determining the dispersion of node
features within each cluster. We construct a dataset of 1000 graphs, {G; = (A, X;)}129°,
where: A: the adjacency matrix, remains fixed across all graphs, representing the structural
relationships between nodes. X;: the feature matrix, varies between graphs. The variance of
the node features is determined by cluster_std, which is uniformly sampled for each graph
to introduce diversity in the node attributes. GAA is trained for 100 epochs on a fixed source
graph and target graphs with different attribute variances. After training, we reports three
key metrics for each dataset: the bound value, £ 4 (loss value), and the target graph accuracy.
To ensure that the bound value and loss value are on the same scale, we normalize the bound
value by dividing it by the number of nodes, i.e., 100. As illustrated in Figure 6(a), both
the bound value and the loss value of the model increase as the attribute discrepancy grows.
Conversely, the classification performance declines with increasing attribute discrepancy,
highlighting that the bound attribute component is closely related to the GDA performance.

F.2 TOPOLOGY DIVERGENCE

This procedure involves generating 1000 graphs by Stochastic Block Model (SBM), a prob-
abilistic model for community-structured graphs. Each graph consists of different adjacency
matrix A with uniformly distributed edge weights and a node attribute matrix X with fixed-
dimensional feature vectors. The generation process is detailed below: The graph G; =
(A;, X;) for each instance is generated using the SBM. SBM parameters are as follows: com-
munity contain 100 nodes( num_nodes = 100): sizes = [%‘“’dﬁ num_nodes — M]

where the graph is divided into two communities of approximately equal size, which can be

seen as 2 classes. Inter- and Intra-community connection probabilities: probs = [ ﬁ 1}?] ,
10
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where p = 0.8 denotes the probability of edges forming within a community and # = 0.08
denotes the probability of edges forming different communities. To incorporate variability
in edge strengths, the weights of edges in the adjacency matrix A; are drawn from a uniform
distribution. Nonexistent edges are assigned a weight of 0, thereby preserving the sparsity
structure dictated by the Stochastic Block Model (SBM). Each adjacency matrix A;, repre-
senting graph G;, is a symmetric n x n matrix. Additionally, each graph G is associated
with a node attribute matrix X;, where X; contains n rows, corresponding to the attributes
of the n nodes. Each nodes is a fixed 10-dimensional vector, ensuring consistent node
attribute dimensionality across all graphs. All elements of X; are set to a constant value of 1,
ensuring uniform node attributes across the dataset. The dataset comprises 1000 graphs, each
containing 100 nodes, represented as {G; = (A;, X;) 129, In this representation: A; varies
between graphs, following the Stochastic Block Model (SBM) with uniform edge weights,
while X; is a fixed matrix where each of its 10-dimensional elements is set to 1. GAA is
trained for 100 epochs on a fixed source graph and target graphs with different topology
variances. After training, we reports three key metrics for each dataset: the bound value,
L 4 (loss value), and the target graph accuracy. Similarly, we normalize the bound value by
dividing it by the number of nodes, i.e., 100. As illustrated in Figure 6(b), both the bound
value and the loss value of the model increase as the attribute discrepancy grows. Conversely,
the classification performance declines with increasing topology discrepancy, emphasizing
that the bound’s topology component is also closely linked to the GDA performance.

2.00 100
1.75 % Bound Value . Target Accuracy
: 3& Loss Value iy
1.50 e 95
1.25 2 g
[} >
=1.00 % 8
> S
0.75 o
85 <
0.50
0.25 80
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
attribute value diveraence
(a) Attribute component
2.00
. 100
1.75 f{g Bound Value . Target Accuracy
' «ﬁ%pss Value 95
1.50 B . .
B BRI A -
e, NS o) 3
1.25 BN . L e R s
I oS o IR >
= 1.00 N : . 85 ®
© o ; ©
> ek e >
0.75 'g~,: 80 g
0.50 i TN
0.25 :
70

0.0 0.5 1.0 1.5 2.0 2.5 3.0
topoloayv value diveraence

(b) Topology component

Figure 6: Visualization of bound value and £ 4 value.

G MODEL EFFICIENT EXPERIMENT

To further investigate the efficiency of GAAo, Table?? reports the running time comparison
across various algorithms. We also compared the training time and GPU memory usage
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| Dataset |

Method | Training Time (Normalized w.r.t. UDAGCN) | Memory Usage (Normalized w.r.t. UDAGCN) | Accuracy(%) |

UDAGCNB 1 1 0.607
JHGDA 1314 1414 0.695

. PA 0.498 0.517 0.679
GAA, 0.504 0.514 0.697

GAA 1.063 1113 0.704

UDAGCNB 1 ! 0.488

JHGDA 1.423 1513 0.519

PA 0.511 0.509 0.557

U=E | qaa, 0.507 0.513 0.556
GAA 1.109 1.098 0.563

UDAGCNB 1 1 0.510

JHGDA 1311 1.501 0.569

L PA 0.502 0.497 0.562
GAA, 0.507 0.503 0.566

GAA 1.048 1107 0.573

Table 6: Comparison of Training Time, Memory Usage, and Accuracy on Airport datset.

of common baselines UDAGCN and a recent SOTA method, JHGDA, which aligns graph
domain discrepancy hierarchical levels. As shown in Table, the evaluation results on airport
dataset further demonstrate that our method achieves superior performance with tolerable
computational and storage overhead.
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