
Probabilistic Contact Mode Planning for
Multi-Finger Manipulation Using Diffusion Models

Thomas Power∗1, Abhinav Kumar∗1, Fan Yang1, Sergio Aguilera Marinovic2,
Soshi Iba2, Rana Soltani Zarrin2, Dmitry Berenson1

1 University of Michigan, 2 Honda Research Institute USA.

Abstract: Planning contact-rich interactions for multi-finger manipulation is
challenging due to the high-dimensionality and hybrid nature of dynamics.
Recent advances in data-driven methods have shown promise, but are sensitive
to the quality of training data. Combining learning with classical methods like
trajectory optimization and search adds additional structure to the problem and
domain knowledge in the form of constraints, which can lead to outperforming the
data on which models are trained. We present Diffusion-Informed Probabilistic
Contact Search (DIPS), which uses an A* search to plan a sequence of contact
modes informed by a diffusion model. Our method uses a particle filter-inspired
method to reason about variability in diffusion sampling arising from model error,
estimating likelihoods of trajectories using a learned discriminator. We show
that our method outperforms ablations that do not reason about variability and
can plan contact sequences that outperform those found in training data across
multiple tasks. We evaluate on simulated tabletop card sliding and screwdriver
turning tasks, as well as the screwdriver task in hardware to show that our
combined learning and planning approach transfers to the real world.

1 Introduction

Figure 1: DIPS plans contact interac-
tions that turn the screwdriver from a)
to b), where it is regrasped to allow for
further turning in c). Contact points are
shown in red, with empty circles for tar-
get contacts. The yellow arrows show
screwdriver turning and green show fin-
ger motion.

Multi-finger manipulation is challenging as there are
many ways in which the hand can make or break contact
with manipulated objects. Recent advances in learning
methods, specifically generative modeling [1], [2], can
be used to learn manipulation policies without requiring
strong domain knowledge of the task. However, domain
knowledge is valuable in improving task performance in
multi-finger manipulation, which has sensitive constraints
relating to contact. In addition, learning methods generate
policies similar to the data on which they are trained. In
tasks with varied possible contact interactions, a planned
contact mode sequence could yield better results than that
used in data collection.

We approach multi-finger manipulation by combining
the flexibility of learning with the constraint satisfac-
tion of model-based methods. In our method, Diffusion-
Informed Probabilistic Contact Search (DIPS), we train a
diffusion model [3] on trajectories generated by a trajectory optimizer. We then use this model to
generate trajectories corresponding to edges in an A* search over contact modes. To reason about
the variability in diffusion sampling when planning contact sequences, we use a particle-based ap-
proximation of the distribution over trajectories modeled by the diffusion. We train an additional
discriminator that assigns higher scores to more realistic trajectories to provide likelihood estimates
of particles.
8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

Figure 2: Offline, we train a diffusion model M and discriminator Ψ on dataset D collected in
simulation. Online, we plan a contact sequence C given a state st. We expand nodes in blue corre-
sponding to contact mode sequences and inform the search using a distribution pC(τ) parameterized
with a set of trajectories P in pink. We diffuse trajectories conditioned on the child node’s contact
mode and evaluate them with Ψ. The dotted lines are samples discarded in the resampling used to
update pC(τ). Given a single contact mode and st, we optimize a trajectory of length H initialized
with samples from M . We rerun the trajectory optimization every timestep. After each contact
mode, we replan C.
Our contributions are twofold. First, we present a method for planning contact mode sequences
using graph search informed by a diffusion model. Secondly, we propose an approach for reasoning
about the variability in the diffusion model sampling when planning. We show that our method can
be applied to challenging tool-use tasks and that DIPS outperforms ablations and baselines that do
not plan contact sequences and that do not reason about the variability in the diffusion model output.

2 Related Work

Several recent works have combined search and trajectory optimization. Cheng et al. propose a
hierarchical approach based on Monte-Carlo Tree Search to explore contact modes [4]. Other recent
work has used tree-based planners to explore contact modes combined with contact-implicit trajec-
tory optimization [5, 6]. There have been several recent works combining A* search with trajectory
optimization [7, 8, 9, 10]. Unlike previous work combining A* and trajectory optimization, we
accelerate our planning using a learned model to approximate trajectory optimization.

In recent years learning-based methods have been increasingly popular for solving contact-rich
tasks. These include methods that learn models for planning [11, 12], as well as methods that learn
policies using reinforcement learning [13, 14, 15, 16]. In general, these methods can solve complex
tasks when given sufficient training data but often require large amounts of training data. Imitation
learning has also been applied to dexterous manipulation, accelerating learning with demonstrations
[17, 18]. These methods are effective but rely on collecting high-quality demonstrations. Efforts
to combine learning and classical approaches have used reinforcement learning to learn mid-level
policies to sequence primitives or controllers [19, 20, 21, 22].

3 Problem Statement

We consider the problem of contact-rich manipulation with a multi-fingered hand. Our goal is to
find a sequence of robot configurations q1:T , that successfully manipulate an object from start o0 to
goal oG. We define contact mode c := {0, 1}nf , where nf is the number of fingers. c is a binary
vector specifying which finger should be in contact. Given c, we solve a trajectory optimization
problem for horizon H < T .

We denote state st, action ut, and cost and constraint functions J, h, g, which are all dependent
on the contact mode. For shorthand, we denote the trajectory τ := {s1:H ,u1:H}. To allow for
the making and breaking of contact, we split the trajectory into K segments, i.e. H = T

K , and
τ = {τ1, ..., τK}. The aim is then to find a sequence of contact modes C = c1:K , with τk being the
solution to the trajectory optimization with contact mode ck for k ∈ [1, ...,K], such that the overall
trajectory τ results in completing the task. We assume we can generate a dataset of N trajectories,
D = {τi, ci}Ni=1 consisting of solutions to the trajectory optimization problem for diverse initial
configurations.

2

4 Methods

Our method, shown in Fig. 2, uses A* to search for the contact sequence. During planning, when
expanding a potential contact mode ck, we must reason about the resulting trajectory τk. Since
solving the trajectory optimization problem in the inner loop of our planner would be prohibitively
expensive, we instead train a diffusion model on a dataset of trajectories and sample from this as
a proxy for solving the full optimization. Finally, we optimize and execute trajectories given the
planned contact sequences using the trajectory optimizer. We also use the samples from the diffusion
model to initialize the trajectory optimization.

Trajectory Optimization: Our trajectory optimization formulation is based on prior work by
Yang et al. [23]. The formulation in [23] assumes a fixed contact mode and only optimizes the
motion for fingers in contact. We extend this formulation to be conditioned on the contact mode
and additionally optimize the motion of specified fingers so they can “regrasp” i.e., make contact in
a different location. More details of the trajectory optimization are given in Appendix A. To solve
the trajectory optimization we use Constrained Stein Variational Trajectory Optimization (CSVTO)
[24]. This optimization formulation allows us to generate trajectories given a pre-specified contact
mode. We will next discuss how we use this to generate high-quality demonstrations used to train a
diffusion model for a variety of contact modes.

Diffusion Model Training: To aid in contact sequence planning, we train a diffusion model
M(c, s0). We can use M to sample from the distribution p(τ |c, s0). p(τ |c, s0) is the distribu-
tion modeling trajectories computed by the trajectory optimizer given a contact mode and initial
state. We train this model on a dataset D of trajectories and corresponding contact modes. Further
details of the diffusion model are given in Appendix B.

As we are working with complex systems with high degrees of freedom and complex constraints,
M may diffuse unrealistic trajectories. We compute weights of trajectories in our variability prop-
agation method that represent their realism to account for this. We train a discriminator Ψ(τ , c)
that takes in a trajectory and contact mode and outputs the probability that τ is “real”, or similar to
D. To train the discriminator, we use a dataset consisting of D and an equal number of trajectories
sampled from the diffusion model.

Probabilistic Contact Sequence Search: To find the contact mode sequence, we construct an A*
tree search problem where each node n in the tree corresponds to a contact mode sequence C. The
descendants of a parent node np are computed by appending an additional contact mode c′ to the
parent node’s sequence Cp. We use a set of trajectories conditioned on C to compute costs for A*
and check if oG has been achieved in the search. More details are given in Appendix C.

5 Experiments and Results

We evaluate DIPS on 3 tasks using an Allegro multi-fingered hand: A simulated task in which the
hand slides a card-like object along a table, a simulated task in which the hand turns a screwdriver,
and the screwdriver-turning task in the real world. In all tasks, the pose of the base of the hand is
fixed. Simulations are implemented in Isaac Gym [25].

We evaluate multiple ablations and baselines, running 10 trials for each method. Optimization bud-
gets are the same for DIPS and all ablations. We run 5 ablations: (1) “CSVTO-Sampled Fixed
Sequence”: We use C ∼ p(C) and initialize the trajectory optimizer as in [23]; (2) “DIPS-Sampled
Fixed Sequence”: We use C ∼ p(C) and samples from M to initialize CSVTO; (3) “DIPS-No Con-
tact Replanning”: We plan C once at the beginning of the task, executing without replanning. (4)
“DIPS-No variability Propagation”: We use DIPS with k = 1, thus removing variability propaga-
tion in the A* search; (5) “DIPS-Max likelihood”: We pick the highest-scoring sampled trajectory
when expanding. We also baseline our method against Diffusion Policy [2], trained using the same
demonstrations. More details on the tasks and results are given in Appendix D.

3

(i) Simulated Card (ii) Simulated Screwdriver

Figure 4: Simulation results over 10 trials for screwdriver turning and card experiments
Simulated Tabletop Card Manipulation: As shown in Fig. 4i(a,b), DIPS outperforms the base-
lines and ablations by avoiding unneeded regrasps. We come within .6 cm of oG compared with
2.6 cm for DIPS-Sampled Fixed Sequence and 4 cm for both CSVTO-Sampled Fixed Sequence and
Diffusion Policy. Even though the training data sequences are uniformly randomly sampled, DIPS
is still able to consistently produce useful contact sequences through the use of planning.

Figure 3: a) Simulated card and b) Sim-
ulated screwdriver environments. The
blue valve in b) is for visualization only
and has no collision geometry.

Simulated Screwdriver Turning: As shown in
Fig. 4ii(a,b), DIPS outperforms the ablations and base-
lines, turning the screwdriver 12% further than DIPS-
Sampled Fixed Sequence and 35% further than CSVTO-
Sampled Fixed Sequence. This is because our method can
perform plan contact sequences not seen in the data, such
as executing multiple turns in a row, or not performing
unnecessary regrasps. Our method can generate trajecto-
ries that outperform the data on which M is trained.

Real Screwdriver Turning: We also perform the
screwdriver turning task in the real world (shown in
Fig. 1), using the same specifications for the A* search and using the same models for M,Ψ. ot is
estimated using Aruco tags on the screwdriver. As shown in Fig. 5, DIPS outperforms the ablation,
turning 41% further. DIPS plans 25% more turning modes than the ablation, reducing unnecessary
regrasps. However, due to perception and execution error and possibly the change in CSVTO
initialization, we turn 74% as far as in simulation. These errors also lead to the ablation dropping
the screwdriver twice while DIPS does not drop it.

6 Conclusion

Figure 5: Real screwdriver manipulation re-
sults for valid executions over 10 trials. DIPS
(10/10 valid) outperforms the ablation (8/10
valid) by 41%.

We presented DIPS, a planning method for contact-
rich manipulation that combines a learned diffu-
sion model with A* search that accounts for vari-
ability in the diffusion sampling process.DIPS out-
performed ablations and baselines, including on a
challenging hardware screwdriver turning task. As
our method requires defining all considered con-
tact modes in the data generation and search, fu-
ture work could investigate methods to automati-
cally generate task-relevant contact modes.

4

References
[1] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior

synthesis, 2022.

[2] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
Policy: Visuomotor Policy Learning via Action Diffusion, 2024. arXiv:2303.04137 [cs].

[3] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.

[4] X. Cheng, S. Patil, Z. Temel, O. Kroemer, and M. T. Mason. Enhancing dexterity in robotic
manipulation via hierarchical contact exploration. RA-L, 9(1):390–397, 2024.

[5] C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg. Trajectotree: Trajectory op-
timization meets tree search for planning multi-contact dexterous manipulation. IROS, pages
8262–8268, 2021.

[6] M. Zhang, D. K. Jha, A. U. Raghunathan, and K. Hauser. Simultaneous trajectory op-
timization and contact selection for multi-modal manipulation planning. arXiv preprint
arXiv:2306.06465, 2023.

[7] R. Natarajan, H. Choset, and M. Likhachev. Interleaving Graph Search and Trajectory Opti-
mization for Aggressive Quadrotor Flight. IEEE Robotics and Automation Letters, 6(3):5357–
5364, July 2021. ISSN 2377-3766. doi:10.1109/LRA.2021.3067298. Conference Name: IEEE
Robotics and Automation Letters.

[8] R. Natarajan, G. L. Johnston, N. Simaan, M. Likhachev, and H. Choset. Torque-Limited Ma-
nipulation Planning through Contact by Interleaving Graph Search and Trajectory Optimiza-
tion. In ICRA, 2023.

[9] R. Natarajan, S. Mukherjee, H. Choset, and M. Likhachev. PINSAT: Parallelized Interleaving
of Graph Search and Trajectory Optimization for Kinodynamic Motion Planning, Mar. 2024.
arXiv:2401.08948 [cs].

[10] S. Y. C. Chia, R. H. Jiang, B. P. Graesdal, L. P. Kaelbling, and R. Tedrake. GCS*: Forward
Heuristic Search on Implicit Graphs of Convex Sets, July 2024. arXiv:2407.08848 [cs].

[11] V. Kumar, A. Gupta, E. Todorov, and S. Levine. Learning Dexterous Manipulation Policies
from Experience and Imitation, Nov. 2016. arXiv:1611.05095 [cs].

[12] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar. Deep Dynamics ModeLearning Com-
plexs for Learning Dexterous Manipulation. In Conference on Robot Learning (CoRL), 2019.

[13] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller. Data-efficient deep reinforcement learning for dexterous manipu-
lation, 2017.

[14] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous Manipulation with
Deep Reinforcement Learning: Efficient, General, and Low-Cost. In ICRA, 2019.

[15] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in Dexterous Manipulation
via Geometry-Aware Multi-Task Learning, 2021.

[16] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous Manipu-
lation from Images: Autonomous Real-World RL via Substep Guidance. In ICRA, 2023.

[17] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations, June 2018. arXiv:1709.10087 [cs].

5

http://dx.doi.org/10.1109/LRA.2021.3067298

[18] K. Shaw, S. Bahl, A. Sivakumar, A. Kannan, and D. Pathak. Learning dexterity from human
hand motion in internet videos. The International Journal of Robotics Research, 43(4):513–
532, 2024.

[19] T. Li, K. Srinivasan, M. Q.-H. Meng, W. Yuan, and J. Bohg. Learning hierarchical control
for robust in-hand manipulation. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 8855–8862, 2020.

[20] G. Khandate, C. P. Mehlman, X. Wei, and M. Ciocarlie. Dexterous in-hand manipulation by
guiding exploration with simple sub-skill controllers. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pages 6551–6557, 2024. doi:10.1109/ICRA57147.2024.
10611300.

[21] R. S. Zarrin, R. Jitosho, and K. Yamane. Hybrid learning-and model-based planning and
control of in-hand manipulation. In IROS, pages 8720–8726. IEEE, 2023.

[22] E. K. Gordon and R. S. Zarrin. Online augmentation of learned grasp sequence policies for
more adaptable and data-efficient in-hand manipulation. In ICRA, pages 5970–5976, 2023.

[23] F. Yang, T. Power, S. A. Marinovic, S. Iba, R. S. Zarrin, and D. Berenson. Multi-finger manip-
ulation via trajectory optimization with differentiable rolling and geometric constraints, 2024.

[24] T. Power and D. Berenson. Constrained stein variational trajectory optimization. IEEE Trans-
actions on Robotics, 2024.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[26] T. Power, R. Soltani-Zarrin, S. Iba, and D. Berenson. Sampling constrained trajectories us-
ing composable diffusion models. In IROS 2023 Workshop on Differentiable Probabilistic
Robotics: Emerging Perspectives on Robot Learning, 2023.

[27] J. Ho and T. Salimans. Classifier-free diffusion guidance, 2022.

A Trajectory Optimization with a Given Contact Mode

The state s consists of finger configurations {qi}
nf

i=1 and object pose o. The control vector u is
{{∆qi, fi}

nf

i=1, fe}, where fi is the contact force for the ith finger, and fe, the contact force exerted
by the environment. All contact forces are defined in the object frame. Given a contact mode
c ∈ {0, 1}nf we partition the state and control vectors into contact fingers {sc,uc} = {qi,∆qi, fi :
ci = 1}, regrasping fingers {sr,ur} = {qi,∆qi : ci = 0}, and the object and environment
{so,uo} = {o, fe}. There is no contact force for regrasping fingers, as they break contact. We
similarly partition the trajectory into τ = {τc, τr, τo}. Our trajectory optimization problem is then
written as

6

http://dx.doi.org/10.1109/ICRA57147.2024.10611300
http://dx.doi.org/10.1109/ICRA57147.2024.10611300

min
s1,s2,··· ,sH ;
u1,u1,··· ,u H

Jg(τo) + +Jr(τr, τo) + Jsmooth(τ)

s.t. qmin ≤ qt ≤ qmax

umin ≤ ut ≤ umax

fcontact(sc,t, so,t) = 0

fkinematics(sc,t, so,t, sc,t+1, so,t+1) = 0

fbalance(sc,t, so,t, sc,t+1, so,t+1uc,t,uo,t) = 0

ffriction(sc,t, so,t,uc,t) ≤ 0

fcontact(sr,t, so,t) ≤ −δ, t < H

fcontact(sr,H , so,H) = 0

qr,t +∆qr,t − qr,t+1 = 0.

(1)

The cost term Jg encourages the object to reach the goal location, Jsmooth incentivizes a smooth
trajectory, and Jr is a cost on the distance to target contact points for the regrasping fingers. The
constraints fkinematics, fcontact, fbalance, ffriction are unchanged from [23]. fcontact ≤ −δ en-
sures that the regrasping fingers avoid contact with a threshold δ up until the final time step. The
final constraint ensures that configurations and actions are consistent for the regrasping fingers that
move in freespace.

The target contact points for the regrasping can be defined based on the task. For example, if turning
a screwdriver, we can set the targets to be the initial contact points of the fingers on the screwdriver
to be able to reset fingers after turning. Other tasks may benefit from other specifications.

B Diffusion Model Details

When generating data, we use a high optimization budget for CSVTO to optimize high-quality tra-
jectories. We can then optionally use diffusion samples when executing the task to initialize CSVTO,
potentially requiring a lower optimization budget at runtime due to the higher-quality initialization.

To obtain the contact sequences used to generateD, we sample from a constructed prior p(C). p(C)
is designed to accomplish a specific task, for example, turning a screwdriver. While p(C) is useful
for generating data and should represent a reasonable attempt to solve the task, we find that our
method can plan contact sequences that outperform p(C).

We adopt the 1-D U-Net architecture used in [1, 26] for the diffusion model. We use a U-Net with
a Sigmoid activation output layer for the discriminator Ψ. We diffuse a trajectory of dimension
H × (ds + du), where ds is the dimensionality of the state, and du is the dimensionality of the
action. We use classifier-free guidance [27] to condition on a specific contact mode c. To condition
on s0, we use the same inpainting approach as [1]. At training time, we randomly sample masks
over the trajectory, emulating inpainting masks, which we find improves the inpainting performance
when sampling.

7

C Probabilistic Contact Sequence Search

Algorithm 1: propagate variability

1 Given np = (Pp, Sp, Cp), c′, M , Ψ, k, γ
2 τ̄ ← Diffuse k trajectories from M(c′,Pp

H)
3 d← depth(np)

4 S ← γd ·Ψ(τ̄ , c′) + Sp

5 S̄ ← {Si/
∑

Si∈S

Si | ∀Si ∈ S}

6 P ← k samples from τ̄ given probabilities S̄
7 C ← Cp ∪ c′

8 n = (P, S, C)
9 return n

As opposed to prior work [8] that uses a single trajectory at each node, we model a distribution
pC(τ) at each node to reason about variability in diffusion sampling. We parameterize pC(τ) with
a set of particles P where each particle is a trajectory diffused by M . Each particle has a weight,
calculated by normalizing a score S computed by the discriminator Ψ(τ , c). The full definition of a
node is n = (P, S, C). By using this particle-based representation, we can approximate p(τ |c, s0)
with pC(τ).

To expand to new nodes in the A* search and compute costs, we use our diffusion model. As
diffusion models are learned and therefore can be unreliable, it is possible to diffuse trajectories that
are unrealistic. To address this, we explicitly reason about the variability in the diffusion model
output during the planning process.

As shown in Algorithm 1, we diffuse k trajectories to construct a population τ̄ from which we
sample new particles. We sample 1 trajectory for each particle from the parent node, conditioned
on the child node’s new contact mode c′ and the endpoints of the parent trajectories Pp

H to enforce
continuity. We compute the weights S for τ̄ using Ψ. We accumulate the scores as we expand the
tree, discounted by a factor γd, where d is the depth of the node in the search tree. We sample k
trajectories from τ̄ using the normalized scores.

Costs and goal evaluations for the search are calculated using expectations over the k particles.
Combined with replanning after each contact mode is executed, explicitly reasoning about variability
allows us to reduce the stochasticity of planned contact sequences. We seek to compute a contact
sequence that leads to a minimum cost trajectory to the goal. We therefore define our cost-to-come
using the CSVTO cost J as g(pC(τ), C) = Eτ∼pC(τ)[J(τ , C)]. We take an expectation over
particles weighted by their scores and pass in C to account for mode-specific objectives.

A* uses an additional heuristic h, to guide the search and improve search speed. We design a
heuristic that focuses the search on contact sequences with high likelihood under the prior and is
biased toward trajectories that have a lower goal cost. To compute h, we compute an approximation
of the likelihood of a contact sequence under p(C) and also use a terminal cost ϕ(τ) as used in
model predictive control methods. For example, by considering distance of the terminal state to the
goal, we can encourage contact sequences that more quickly reach the goal.

We use a 1-step Markov approximation p(cn|cn−1) of p(C) as a prior to guide the search. However,
there will be contact mode transitions that may not be present in D that we wish to consider when
planning. We enforce a minimum probability pmin for transitions to address this.

In our heuristic, shown in (2), we add the first term, the expected terminal cost, to the second term,
the negative log-likelihood of C under the prior. The terms are weighted by α, β ∈ R respectively.
While not admissible, this heuristic is useful to guide our search and improve its efficiency.

h(pC(τ), c1:N) = α · Eτ∼pC(τ)[ϕ(τ)]− β ·

[
log(p(c0)) +

N∑
n=1

log(p(cn|cn−1))

]
(2)

8

D Experimental Details

For each task, we define contact modes, which specify CSVTO objectives and constraints. oG

specifies the goal of the A* planner, but the goal for a specific contact mode used in CSVTO will
differ as we are attempting to achieve oG through a series of contact interactions. We define separate
goals used with CSVTO for each contact mode. In addition, we use a timeout of 300 seconds when
running the A* search. If the search times out, we return the node that most closely reaches oG. For
all tasks, we use δ = 0.015m, k = 16, γ = .9, α = 1× 104, β = 1× 103.

D.1 Simulated Tabletop Card Manipulation

In this task, shown in Fig. 3a, the hand manipulates a card on a table. We use o = [x, y, θ], where
x, y are positions of the card in the world frame and θ is the card’s yaw angle. The goal is to use the
index and middle fingers to slide the card -6 cm along the world y-axis toward the palm to set up a
grasp. We only plan the sliding behavior, not the grasping. We report distance to the goal, also used
for ϕ(τ).

We define 4 contact modes: (a) the index finger moves the card while the middle finger regrasps,
(b) the middle finger moves the card while the index finger regrasps, (c) both fingers move the card
along the table, and (d) where both fingers regrasp. The modes differ in the goal for CSVTO. For
(a), (b), and (c), the CSVTO goal is to move the card -2 cm along the world y axis toward the palm.
For (d), the CSVTO goal is to keep the card stationary. We use a uniform prior for p(C) in which
all mode transitions are equally likely and generate 480 demonstrations, each with 5 contact modes.

We execute a maximum of 5 contact modes. We run the A* planner before each contact mode, with
a maximum depth that decreases as we execute contact modes to improve convergence to the goal.

Diffusing initializations for CSVTO takes 3.6 s on average and CSVTO takes 7 s per step, while
Diffusion policy takes 1.1 s. Each A* planning call takes 64.9 s on average for DIPS, 301.9 s for
ablation (3), 52.7 s for ablation (4), and 13.8 s for ablation (5). Expanding an edge with CSVTO
would take approximately 18x long as using M , motivating the use of M in the search.

D.2 Simulated Screwdriver Turning

In this task, shown in Fig. 3b, the hand turns a screwdriver using the thumb, index, and middle
fingers. The base of the screwdriver is attached to the table but can rotate, simulating driving a
screw in a slot. We define o as the orientation of the screwdriver, parameterized by its roll, pitch,
and yaw. The goal is to turn the screwdriver as far clockwise as possible. For the A* goal oG

and ϕ(τ), we only consider the yaw angle. Additionally, because of the overall goal of turning the
screwdriver as far as possible, we update oG before each planning call. Before planning, we set
oG to be π

3 less than the current yaw. This is based on expecting to turn approximately π
2 across 7

modes in the prior, but a search over different values led to the optimal setting of π
3 . For DIPS-No

Contact Replanning, we performed a grid search to arrive at a goal of -1.7 rad.

We define 3 contact modes: (a) all 3 fingers are in contact and the hand is turning the screwdriver,
(b) the thumb and middle finger are in contact and the index finger regrasps, and (c) the index finger
is in contact and the thumb and middle fingers regrasp. For (a), the CSVTO goal is to maintain the
same roll and pitch while reducing the yaw by π

6 . For (b) and (c), the goal is to maintain the same
screwdriver pose.

To sample from p(C), we sequence (a), followed by (b) and (c) in random order, then repeat.
This means we turn, then regrasp all fingers, randomly ordering the regrasp modes, then re-
sume turning. We calculate a Markov approximation of the prior with pmin = .1: p(c0) =
[.1 .1 .8] , p(cn|cn−1) = .1 if cn = cn−1, .45 otherwise. We generate 240 training demon-
strations, each with 7 modes. Online, we execute a maximum of 7 modes. We use the same depth
of 7 for A* throughout the task to encourage turning as far as possible.

9

Diffusing initializations for CSVTO takes 3.6 s on average and CSVTO takes 7.2 s per step, while
Diffusion policy takes 1.1 s. Average A* planning time is 46.8 s for DIPS, 13.7 s for ablation (3),
14 s for ablation (4), and 16.4 s for ablation (5). Expanding an edge with CSVTO would take
approximately 20x long as using M , motivating the use of M in the search.

D.3 Real Screwdriver Turning

For this task, we run DIPS and DIPS-Sampled Fixed Sequence for 10 trials, executing 4 modes, to
demonstrate the utility of the contact planning over the prior in the real world. Due to imperfect
modeling in our trajectory optimization and limitations of the hardware, we alter the force initializa-
tions sampled from M . Directly initializing with the diffused forces leads CSVTO to output forces
that are too low to turn the screwdriver, as part of Jsmooth is a regularization on force magnitude.
We initialize as in [23] for the thumb and middle fingers in the turn mode. The diffused trajectories
used in A* are not altered. This sim-to-real gap can be addressed through more advanced modeling
of the forces in the trajectory optimization.

Diffusing initializations for CSVTO takes 3.1 s on average, while CSVTO takes 16.1 s per step.
We use a higher CSVTO budget on hardware. Each A* planning call takes 10.1 s on average.
A* planning times are lower than in simulation as we only execute 4 contact modes. We find the
planning time can be higher for later contact modes in simulation.

10

	Introduction
	Related Work
	Problem Statement
	Methods
	Experiments and Results
	Conclusion
	Trajectory Optimization with a Given Contact Mode
	Diffusion Model Details
	Probabilistic Contact Sequence Search
	Experimental Details
	Simulated Tabletop Card Manipulation
	Simulated Screwdriver Turning
	Real Screwdriver Turning

