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Abstract
We propose a scheme for auditing differentially
private machine learning systems with a single
training run. This exploits the parallelism of be-
ing able to add or remove multiple training ex-
amples independently. We analyze this using the
connection between differential privacy and sta-
tistical generalization, which avoids the cost of
group privacy. Our auditing scheme requires min-
imal assumptions about the algorithm and can
be applied in the black-box (i.e., central DP) or
white-box (i.e., federated learning) setting. We
demonstrate the effectiveness of our framework
by applying it to DP-SGD, where we can achieve
meaningful empirical privacy lower bounds by
training only one model, where standard methods
would require training hundreds of models.

1. Introduction
Differential privacy (DP) (Dwork et al., 2006) provides a
quantifiable privacy guarantee by ensuring that no person’s
data significantly affects the probability of any outcome.
Formally, a randomized algorithm M satisfies (ε, δ)-DP if,
for any pair of inputs x, x′ differing only by the addition or
removal of one person’s data and any event S, we have

P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S] + δ. (1)
A DP algorithm is accompanied by a mathematical proof
giving an upper bound on the privacy parameters ε and δ. In
contrast, a privacy audit provides an empirical lower bound
on the privacy parameters. Privacy audits allow us to assess
the tightness of the mathematical analysis (Jagielski et al.,
2020; Nasr et al., 2023) or, if the lower and upper bounds
are contradictory, to detect errors in the analysis or in the
algorithm’s implementation (Ding et al., 2018; Bichsel et al.,
2018; Tramer et al., 2022).

Typically, privacy audits obtain a lower bound on the pri-
vacy parameters directly from the DP definition (1). That
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is, we construct a pair of inputs x, x′ and a set S and we
estimate the probabilities P [M(x) ∈ S] and P [M(x′) ∈ S].
However, estimating these probabilities requires running M
hundreds of times. This approach to privacy auditing is com-
putationally expensive. Can we perform privacy auditing
using a single run of the algorithm M?

1.1. Our Contributions
Our approach: The DP definition (1) considers adding
or removing a single person’s data to or from the dataset.
We consider multiple people’s data and the dataset indepen-
dently includes or excludes each person’s data point. Our
analysis exploits the parallelism of multiple independent
data points in a single run of the algorithm in lieu of multi-
ple independent runs. This approach is commonly used as
an unproven heuristic in prior work (Malek Esmaeili et al.,
2021; Zanella-Béguelin et al., 2022).

Our auditing procedure operates as follows. We identify m
data points (i.e., training examples or “canaries”) to include
or exclude and we flip m independent unbiased coins to
decide which of them to include or exclude. We then run the
algorithm on the randomly selected dataset. Based on the
output of the algorithm, the auditor “guesses” whether or not
each data point was included or excluded (or it can abstain
from guessing for some data points). We obtain a lower
bound on the privacy parameters from the fraction of guesses
that were correct. Intuitively, if the algorithm is (ε, 0)-DP,
then the auditor can correctly guess each inclusion/exclusion
coin flip with probability ≤ eε

eε+1 . Thus DP implies a high-
probability upper bound on the fraction of correct guesses
and, conversely, the fraction of correct guesses implies a
high-probability lower bound on the privacy parameters.

Our analysis: Naı̈vely, analyzing the addition or removal
of multiple data elements would rely on group privacy;
but this does not exploit the fact that the data items were
included or excluded independently. Instead, we leverage
the connection between DP and generalization (Dwork et al.,
2015b;a; Bassily et al., 2016; Rogers et al., 2016; Jung et al.,
2019; Steinke & Zakynthinou, 2020). Our main theoretical
contribution is an improved analysis of this connection that
is tailored to yield nearly tight bounds in our setting.

Informally, if we run a DP algorithm on i.i.d. samples from
some distribution, then, conditioned on the output of the
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algorithm, the samples are still “close” to being i.i.d. sam-
ples from that distribution. There is some technicality in
making this precise, but, roughly, we show that including or
excluding m data points independently for one run is almost
as good as having m independent runs (for small δ).

Our results: As an application of our auditing framework,
we audit DP-SGD training on a WideResNet model, trained
on the CIFAR10 dataset across multiple configurations. Our
approach successfully achieves an empirical lower bound
of ε ≥ 1.8, compared to a theoretical upper bound of ε ≤ 4
in the white-box setting – i.e., we assume the adversary has
access to intermediate updates, as is the case in federated
learning. The m examples we insert for auditing (known
in the literature as “canaries”) do not significantly impact
the accuracy of the final model (less than a 5% decrease in
accuracy) and our procedure only requires a single end-to-
end training run. Such results were previously unattainable
in the setting where only one model could be trained.

2. Our Auditing Procedure
Algorithm 1 Auditor with One Training Run

1: Data: x ∈ Xn consisting of m auditing examples
(a.k.a. canaries) x1, · · · , xm and n −m non-auditing
examples xm+1, · · · , xn.

2: Parameters: Algorithm to audit A, number of exam-
ples to randomize m, number of positive k+ and nega-
tive k− guesses.

3: For i ∈ [m] sample Si ∈ {−1,+1} uniformly and
independently. Set Si = 1 for all i ∈ [n] \ [m].

4: Partition x into xIN ∈ XnIN and xOUT ∈ XnOUT accord-
ing to S, where nIN + nOUT = n. Namely, if Si = 1,
then xi is in xIN; and, if Si = −1, then xi is in xOUT.

5: Run A on input xIN with appropriate parameters, out-
putting w.

6: Compute the vector of scores Y =
(SCORE(xi, w) : i ∈ [m]) ∈ Rm.

7: Sort the scores Y . Let T ∈ {−1, 0,+1}m be +1 for
the largest k+ scores and −1 for the smallest k− scores.
(I.e., T ∈ {−1, 0,+1}m maximizes

∑m
i Ti ·Yi subject

to
∑m
i |Ti| = k+ + k− and

∑m
i Ti = k+ − k−.)

8: Return: S ∈ {−1,+1}m indicating the true selection
and the guesses T ∈ {−1, 0,+1}m.

We present our auditing procedure in Algorithm 1. We
independently include each of the first m examples with
50% probability and exclude it otherwise. When applied
to DP-SGD, our approach is applicable to both “white-box”
auditing, where the adversary can access to all intermedi-
ate values of the model weights, and “black-box” auditing,
where the adversary only sees the final model weights (or
can only query the final model). In both cases we simply
compute a “score” for each example and “guess” whether
the example is included or excluded based on these scores.
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Figure 1. Lower bound on the privacy parameter ε of Theorem 3.1
with 95% confidence as the number of correct guesses changes.
The total number of examples and guesses is 100. For comparison,
we plot the ideal ε that gives 100 · eε

eε+1
correct guesses.

Specifically, we guess that the examples with the k+ highest
scores are included and the examples with the k− lowest
scores are excluded, and we abstain from guessing for the
remaining m− k+ − k− auditing examples.

Note that we only randomize the first m examples
x1, · · · , xm (which we refer to as “auditing examples” or
“canaries”); the last n−m examples xm+1, · · · , xn are al-
ways included and, thus, we do not make any guesses about
them. To get the strongest auditing results we would set
m=n, but we usually want to set m<n. For example, com-
puting the score of all n examples may be computationally
prohibitive, so we only compute the scores of m examples.
We may wish to artificially construct m examples to be
easy to identify (i.e., canaries), but also include n−m “real”
examples to ensure that A still produces a useful model.

The score function is arbitrary and will depend on the ap-
plication. For black-box auditing, we use the loss of the
final model w on the example xi – i.e., SCORE(xi, w) =
−loss(w, xi). For white-box auditing, SCORE(xi, w) =∑`
t

〈
wt−1 − wt,∇wt−1 loss(wt−1, xi)

〉
is the sum of the

inner products of updates with the (clipped) gradients of the
loss on the example. In federated learning settings, a realis-
tic adversary should be assumed to have access to many (if
not all) of the intermediate model weights wt. Intuitively,
the vector of scores Y should be correlated with the true
selection S, but too strong a correlation would violate DP.
The auditor computes T from Y which is a “guess” at S.
By postprocessing, T is a DP function of S.

3. Theoretical Analysis
To obtain a lower bound on the DP parameters we show that
DP implies a high-probability upper bound on the number of
correct guesses W :=

∑m
i max{0, Ti · Si} of our auditing

procedure (Algorithm 1). The observed value of W then
yields a high-probability lower bound on the DP parameters.
To be more precise, we have the following guarantee.

Theorem 3.1 (Main Result). Let (S, T ) ∈ {−1,+1}m ×
{−1, 0,+1}m be the output of Algorithm 1. Assume the
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Figure 2. Lower bound on the privacy parameter ε given by The-
orem 3.1 with 95% confidence as the number of correct guesses
changes. The total number of examples and guesses is 1000 (with
no abstentions). Here we plot the ideal ε on the horizontal axis, so
that the number of correct guesses is 1000 · eε

eε+1
.

algorithm to auditA satisfies (ε, δ)-DP. Let r := k++k− =
‖T‖1 be the number of guesses. Then, for all v ∈ R,

P

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ P

[
W̌ ≥ v

]
+δ·m·α, (2)

where W̌ ← Binomial
(
r, eε

eε+1

)
and

α = max
i∈[m]

2

i
· P
[
v > W̌ ≥ v − i

]
. (3)

If we ignore δ for the moment, Theorem 3.1 says that the
number of correct guesses is stochastically dominated by
Binomial

(
r, eε

eε+1

)
, where r = k+ + k− is the total num-

ber of guesses. This binomial distribution is precisely the
distribution of correct guesses we would get if T was ob-
tained by independently performing (ε, 0)-DP randomized
response on r bits of S. In other words, the theorem says that
(ε, 0)-DP randomized response is the worst-case algorithm
in terms of the number of correct guesses. In particular, this
means the theorem is tight (when δ = 0)

The binomial distribution is well-concentrated. In particular,
for all β ∈ (0, 1), we have

P
W̌←Binomial(r, eε

eε+1 )

W̌ ≥ r · eε

eε+1
+

√
1

2
·r·log( 1

β )︸ ︷︷ ︸
=v

≤β.
(4)

There is an additional O(δ) term in the guarantee (2). The
exact expression (3) is somewhat complex. It is always
≤ 2mδ, but it is much smaller than this for reasonable
parameter values. In particular, for v as in Equation 4 with
β ≤ 1/r4, we have α ≤ O(1/r).

Theorem 3.1 gives a hypothesis test: If A is (ε, δ)-DP, then
the number of correct guesses W is ≤ r·eε

eε+1 +O(
√
r) with

high probability. Thus, if the observed number of correct
guesses v is larger than this, we can reject the hypothesis that
A satisfies (ε, δ)-DP. We convert this hypothesis test into a
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Figure 3. Effect of the number of auditing examples (m) in the
white-box setting. By increasing the number of the auditing ex-
amples we are able to achieve tighter empirical lower bounds.

confidence interval (i.e., a lower bound on ε) by finding the
largest ε that we can reject at a desired level of confidence.

Proof of Theorem 3.1: Due to space limitations, the proof
is deferred to the full version. But we outline the main
ideas: First note that S ∈ {−1,+1}m is uniform and T
is a DP function of S. Consider the distribution of S con-
ditioned on T = t. If A is pure (ε, 0)-DP, then we can
easily analyze the conditional distribution using Bayes’ law
to conclude that each guess has probability≤ eε

eε+1 of being
correct. Furthermore, this holds even if we condition on the
other guesses, which allows us to inductively prove that the
number of correct guesses is stochastically dominated by
Binomial

(
r, eε

eε+1

)
. Handling approximate DP (δ > 0) in-

troduces additional complexity – some outputs T are “bad”
in the sense that the conditional distribution of Si could
be arbitrary. Fortunately, such bad outputs are rare (Ka-
siviswanathan & Smith, 2014). What we can show is that
the number of correct guesses is stochastically dominated by
W̌+F (T ), where W̌←Binomial

(
r, eε

eε+1

)
is as before and

F (T ) ∈ {0, 1, · · · ,m} indicates how many bad events hap-
pened. We do not know the exact distribution of F (T ), but
we do know E [F (T )]≤ 2mδ, which suffices to prove our
result. Equation 3 comes from looking for the worst-case
F (T ); essentially the worst case is P [F (T )= i] = 2mδ/i
and P [F (T )=0]=1−2mδ/i for some i∈ [m].

4. Experiments
We rely on the experimental setup of Nasr et al. (2023). We
run DP-SGD on the CIFAR-10 dataset with Wide ResNet
(WRN-16) (Zagoruyko & Komodakis, 2016). Our experi-
ments reach 76% test accuracy at (ε = 8, δ = 10−5)-DP,
which is comparable with the state-of-the-art (De et al.,
2022). Unless specified otherwise, all lower bounds are
with 95% confidence. We use Algorithm 1 to audit DP-
SGD and we convert the results into lower bounds on the
privacy parameters using Theorem 3.1.
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Figure 4. Effect of the number of additional examples (n−m) in
the white-box setting. Importantly, adding additional examples
does not impact the auditing results in the white-box setting.
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Figure 5. Effect of number of iterations in the white-box setting.
Increasing the number of the steps (while incresing noise to keep
overall privacy fixed) will not affect the auditing results.
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Figure 6. Effect of the number of auditing examples (m) in the
black-box setting. Black-box auditing is very sensitive to the
number of auditing examples.
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Figure 7. Effect of the number of additional example on auditing
(n − m) in the black-box setting. By increasing the number of
additional examples, the auditing results get significantly looser.

Following Nasr et al. (2023), we consider both gradient and
input attacks. In the white-box setting, we consider gradient
attacks, which injects artificial gradients; to compute the
score, we use the inner product between the gradient update
and auditing gradient. In the black-box setting, we inject
different types of injected examples – either randomly mis-
labelled examples or in-distribution examples; we use the
loss of the input example as the score. We evaluate different
values of k+ and k− and report the best auditing results.

Figures 3, 4, 5, 6, and 7 summarize our experimental results.

5. Discussion
Our main contribution is showing that we can audit the dif-
ferential privacy guarantees of an algorithm or federated
learning system with a single run. In contrast, prior meth-
ods require hundreds – if not thousands – of runs, which
is computationally prohibitive. Our experimental results
demonstrate that our methods are able to give meaningful
lower bounds on the privacy parameter ε.

In the idealized setting where the fraction of guesses that
are correct is fixed at eε

eε+1 , then the auditing lower bound
approaches the true ε as the number of guesses increases.
E.g., if ε = 4 in this setting, then, with 10,000 guesses, we
get ε ≥ 3.87 with 95% confidence.

Limitations: However, for realistic mechanisms – i.e.,
those based on the Gaussian mechanism (e.g., DP-SGD)
– the fraction of correct guesses is not simply eε

eε+1 ; it de-
pends on the number of guesses versus abstentions. And
both the upper and lower bounds on ε depend on δ. Thus we
cannot get tight bounds using our method. If we audit the
Gaussian mechanism (i.e., adding N (0, 1) to a sensitivity-1
value) for δ = 10−5 with m = 105 auditing examples, we
get a lower bound of ε ≥ 2.675 versus an upper bound of
ε = 4.38. This limitation is inherent because the worst-
case mechanisms for which Theorem 3.1 is tight do not
correspond to realistic mechanisms.
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