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Abstract

In the infinite-armed bandit problem, each arm’s average reward is sampled from
an unknown distribution, and each arm can be sampled further to obtain noisy
estimates of the average reward of that arm. Prior work focuses on identifying
the best arm, i.e., estimating the maximum of the average reward distribution. We
consider a general class of distribution functionals beyond the maximum, and
propose unified meta algorithms for both the offline and online settings, achieving
optimal sample complexities. We show that online estimation, where the learner
can sequentially choose whether to sample a new or existing arm, offers no advan-
tage over the offline setting for estimating the mean functional, but significantly
reduces the sample complexity for other functionals such as the median, maxi-
mum, and trimmed mean. The matching lower bounds utilize several different
Wasserstein distances. For the special case of median estimation, we identify a
curious thresholding phenomenon on the indistinguishability between Gaussian
convolutions with respect to the noise level, which may be of independent interest.

1 Introduction
In the infinite-armed bandit problem (Berry et al., 1997), at each time instance the learner can either
sample an arm that has been previously observed, or sample from a new arm, whose average reward
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is drawn from an unknown distribution F . The learner’s goal is to identify arms with large average
reward, with the objective being achieving either small cumulative regret (Berry et al., 1997; Wang
et al., 2008; Bonald and Proutiere, 2013), or small simple regret (Carpentier and Valko, 2015). This
setting differs from the classical multi-armed bandit formulation as the number of observed arms is
not fixed a priori and needs to be carefully chosen by the algorithm.

We consider the problem of estimating some functional g(F ) of an underlying distribution F , as
is illusrated in Figure 1. From this point of view, the classical infinite-armed bandit problem can
be viewed as an online sampling algorithm to estimate the maximum of the distribution F . 1 Once
we cast the infinite-armed bandit problem in this manner, it immediately suggests several additional
questions. For example, what about offline sampling algorithms? Indeed, online sampling requires
continual interactions with the environment which may be infeasible in certain applications, and recent
work in online and offline reinforcement learning have demonstrated the significant value of both
formulations (Rashidinejad et al., 2021; Zhang et al., 2021; Schrittwieser et al., 2021). Additionally,
it is worth estimating functionals beyond the maximum: in many practical scenarios, including
mean estimation in single-cell RNA-sequencing (Zhang et al., 2020) and Benjamini Hochberg (BH)
threshold estimation in multiple hypothesis testing (Zhang et al., 2019), we are interested in the mean,
median (quantile), or trimmed mean of the underlying distribution F . The estimation of quantiles is
similar to estimation of the BH threshold, as both depend on the order statistics of the underlying
distribution. Estimating the median or trimmed mean has further applications in robust statistic for
instance, maintaining the fidelity of an estimator in the presence of adversarial corruption or outliers.
Another natural setting where such problems arise is in large-scale distributed learning (Son and
Simon, 2012). Here, a server / platform wants to estimate how much test-users like their newly
released product. Users return a noisy realization of their affinity for the product, and the platform can
decide to pay the user further to spend more time with the product, to test it further. For many natural
objectives which are robust to a small fraction of adversarial users, e.g. trimmed mean, median, or
quantile estimation, we see that our algorithm will enable estimation of the desired quantity to high
accuracy while minimizing the total cost (number of samples taken). Since sampling is expensive, it
is critical to identify the optimal method to collect samples, and identify the improvements afforded
by adaptivity. For example, do online methods offer significant gains over offline methods? Are the
fundamental limits of estimating the median and trimmed mean different from that of the maximum?

F

X1 . . . Xn

Y1,1 . . . Y1,m . . . Y1,m−1 . . . Yn,m

subsample

noise

Figure 1: Problem setting. Level 0: underlying distribution F (x). Level 1: unobserved samples
X1, . . . , Xn ∼ F (x). Level 2: noisy observations Yi,j ∼ N (Xi, 1).

In this paper we initiate the study of distribution functional estimation in both online and offline
settings and obtain both information theoretic limits and efficient algorithms for estimating the mean,
median, trimmed mean, and maximum. We propose unified meta algorithms for both offline and
online settings, and provide matching upper and lower boundsfor the sample complexity of estimating
the aforementioned functionals in Table 1.

We also reveal new insights on the fundamental differences between the offline and online algorithms,
as well as the fundamental differences between different functionals. To determine these sharp
statistical limits, we use the Wasserstein-2 distance to upper bound the KL divergence in the offline
setting, while the Wasserstein-∞ distance is applied in the online setting instead. This approach
leads to valid sample complexity lower bounds for general functionals g, which turn out to be tight
for estimating the mean and maximum. However, a curious thresholding phenomenon, which is not

1To be precise, the objectives in infinite-armed bandit works (Berry et al., 1997; Wang et al., 2008; Bonald
and Proutiere, 2013; Carpentier and Valko, 2015) are slightly different, minimizing simple or cumulative regret.
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captured by the previous approach and does not occur for the mean and maximum, appears in the
median and trimmed mean analyses: the KL divergence does not change smoothly with the noise
level and enjoys a phase transition after the noise level exceeds some threshold. This phenomenon
calls for different treatments under different estimation targets and could be of independent interest.

Functional
Offline

complexity
Online

complexity Comments

Mean Θ(ε−2) Θ(ε−2) No gain from online sampling

Median Θ(ε−3) Θ̃(ε−2.5) Holds for any quantile not on the boundary

Maximum Θ(ε−(2+β)) Θ̃(ε−max(β,2)) Depends on the tail regularity β

Trimmed mean Θ̃(ε−3) Θ̃(ε−2.5) g(F ) = E{X|X ∈ [F−1(α), F−1(1− α)]}
Table 1: Sample complexity of estimating different functionals g(F ), where F is the cumulative
distribution function (CDF) of the distribution to estimate. The trimmed mean result holds for a
fixed α ∈ (0, 1/2). Here ε is the target accuracy and we use Θ to denote the matching upper and
lower bounds up to constants not depending on ε. Additionally, we use Θ̃,≳, and ≲ to suppress
constants and logarithmic factors in ε, and εc for any fixed c arbitrarily close to zero. If h(ε) ≲ f(ε)
and f(ε) ≲ h(ε) then we denote this as f(ε) ≍ h(ε). For maximum estimation, we assume that the
distribution satisfies P(X ≥ F−1(1)− ε) ≍ εβ . Other assumptions on F are detailed in Section 3.

The rest of this paper is structured as follows. In Section 1.1 we discuss the relevant literature. We then
formulate our distribution functional estimation problem in Section 2. Our unified meta algorithms
for the offline and online settings are presented in Section 3, where we show the sample complexity
upper bounds. We present information theoretic lower bounds proofs via Wasserstein distance for the
online and offline settings in Section 4, and discuss a special thresholding phenomenon arising in
median estimation in Section 5. Section 6 concludes this work.

1.1 Related works

The field of multi-armed bandits has seen broad interest and utility since its formalization in 1985 (Lai
et al., 1985). Across clinical trials, multi-agent learning, online recommendation systems, and beyond
(Lattimore and Szepesvári, 2020), multi-armed bandits have proven to be an excellent framework
for modeling and solving complex tasks regarding exploration in an unknown environment. In the
classical multi-armed bandit setting we have a set of n distributions, where the player sequentially
pulls one arm per round and observes a sample drawn from the associated reward distribution. In the
infinite-armed bandit setting (Berry et al., 1997), the average arm reward for each arm is sampled
i.i.d. from an unknown distribution, i.e., we have infinitely many available arms. There are many
possible objectives that can be formulated in this online learning problem, from cumulative/simple
regret minimization (Wang et al., 2008; Bonald and Proutiere, 2013; Carpentier and Valko, 2015;
Li and Xia, 2017) to identification tasks (for example identifying an arm whose average reward is
ε close to the largest average reward) (Aziz et al., 2018; Chaudhuri and Kalyanakrishnan, 2017,
2019). Many works have studied best-arm identification, and we now have essentially matching
instance-dependent upper and lower bounds (Jamieson and Nowak, 2014; Kaufmann et al., 2016).
One could also use the average reward estimate of the identified best arm to estimate the maximum
of the average reward distribution in the infinite-armed bandit setting (Carpentier and Valko, 2015;
Aziz et al., 2018; Chaudhuri and Kalyanakrishnan, 2017, 2019).

From a statistical perspective, the sample complexity in the offline setting is closely related to
deconvolution distribution estimation (Cordy and Thomas, 1997; Wasserman, 2004; Hall and Lahiri,
2008; Delaigle et al., 2008; Dattner et al., 2011). Nevertheless, these previous works mainly focus
on the expected L2 difference between the underlying distribution function and its estimation. This
simplified setting does not allow for consideration of the trade-off inherent in our setting between
the number of points and the (variable) number of observations per point. Additionally, these past
works did not calculate the specific sample complexity for more general functionals like quantile
and trimmed mean. Since the noise is treated as fixed and uniform, there has been no study of the
online setting where adaptive resampling can enable dramatic sample complexity improvements. In
particular, the challenge is that we have noisy observations, which makes deriving lower bounds even
in offline cases a significant challenge that has not been dealt with in the past, let alone analyzing
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the online case. The dramatic performance gains afforded by adaptive resampling for functional
estimation, combined with its lack of formal study, motivates the focus of this work.

2 Problem formulation
We are interested in estimating the distribution functional g(F ) ∈ R of an underlying distribution
with cumulative distribution function (CDF) F . We study a class of indicator-based functionals g
defined as follows.
Definition 1 (Indicator-based functionals). The functional g can be represented as

g(F ) = E [X|X ∈ S(F )] (1)

for some set S(F ), where X ∼ F . The set S(F ) is defined as follows:

S(F ) = [F−1(α1), F
−1(α2)], 0 ≤ α1 ≤ α2 ≤ 1. (2)

We denote S(F ) by S throughout this work when F is clear from context. This class encompasses
many natural functionals of interest, which we formulate in Table 2. In Appendix ??, we discuss
extending our results to more general functionals, and show that our approach can extend to smooth
reweighting functions h(X) and more complex sets S.

Functional g(F ) α1 α2 Comment
Mean E[X] 0 1

Quantile F−1(α) α α α ∈ (0, 1), e.g. α = 1/2 for median
Maximum F−1(1) 1 1 α1 = α2 = 0 for minimum

Trimmed mean E[X|F (X) ∈ [α1, α2]] α 1− α α ∈ (0, 1/2)

Table 2: Indicator-based functionals.

As in the infinite-armed bandit setting, we only have access to noisy observations of samples drawn
from the distribution with CDF F . We can either choose to sample from a point X which we already
have some noisy observations of, or draw a new point X from F . We then observe Y = X + Z,
where Z ∼ N (0, 1) is independent of everything observed so far.

In this paper we characterize the online and offline sample complexities of these problems, and in
Section 3 propose online and offline algorithms achieving them. For ε > 0 and δ ∈ (0, 1), we call an
estimator Ĝ an (ε, δ)-PAC approximation of g(F ) if P(|Ĝ− g(F )| > ε) ≤ δ.

3 Offline and online algorithms

3.1 Offline estimation algorithms

We study a special class of offline algorithms, which uniformly obtain observations of the points
following the underlying distribution. To be precise, based on prior information regarding the
distribution in question, F , it will choose an appropriate number of points n and number of samples
per point m to obtain an (ε, δ)-PAC approximation of g(F ). Specifically, the latent variables
X1, . . . , Xn are drawn from F , and our observations {Yi,j}mj=1 are drawn i.i.d. from N (Xi, 1),
independently for each i. For i ∈ [n], denote X̂i = m−1

∑m
j=1 Yi,j as the empirical mean of the

observations for arm i. Then, we can write X̂i = Xi + Ẑi where Ẑi ∼ N (0, 1/m), independent
across i. Define Sn ≜ {i : X(⌊α1n⌋) ≤ Xi ≤ X(⌊α2n⌋)} as the set of arms relevant for estimating
the functional g, and define our n sample estimate of g as gn(X̂1, . . . , X̂n) ≜ |Sn|−1

∑
i∈Sn

X̂i.
Here X(i) denotes the i-th order statistic, that is the i-th smallest entry in X1, . . . , Xn. Then,
Gn,m = gn(X̂1, . . . , X̂n), where each Xi has been sampled m times, serves as a natural estimator
for g(F ) from the noisy observations. With this, we can state the following theorem:
Theorem 1 (Offline PAC sample complexity). An (ε, δ)-PAC offline uniform-sampling-based algo-
rithm for estimating g(F ) requires Θ(nm) samples where n,m depend on ε, δ, the functional g, and
information about F , with orderwise dependence on ε detailed in Table 3.
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For the rest of this section, we discuss in greater detail our assumptions on the underlying distribution.
We defer the proofs and calculations for n and m to ??, as well as discussion regarding the trimmed
mean to ??.

Functional m n
Mean Θ(1) Θ(ε−2)

Median Θ(ε−1) Θ(ε−2)
Maximum Θ(ε−2) Θ(ε−β)

Trimmed mean Θ
(
ε−1 log

(
ε−1
))

Θ(ε−2)
Table 3: Choice of (m,n) for estimating different functionals to accuracy ε.

3.1.1 Mean

To guarantee that the empirical mean is a good estimator for the true mean, we impose assumptions
on the tail of the distribution F :
Assumption 1. The distribution F satisfies VarX∼F [X] ≤ c.

Assumption 1 ensures that estimation of the mean of the distribution can be accomplished with finite
samples. The following proposition gives the sample complexity of the offline algorithm.
Proposition 1. Suppose that Assumption 1 is satisfied. By choosing m = 1 and n ≥ δ−1(1 + c)ε−2,
the estimator Gn,m is an (ε, δ)-PAC approximation of g(F ). Thus, the offline algorithm requires
O(ε−2) samples.

3.1.2 Median

For median estimation we require different assumptions than the mean, as listed below.
Assumption 2. There exist constants c1, c2 > 0 such that

• F ′(x) ≥ c1 for |x−median(F )| ≲ ε.

• |F ′′(x)| ≤ c2 for |x−median(F )| ≲
√
ε.

The first assumption ensures that the median of F is unique. The second assumption precludes the
distribution from being dumbbell-shaped (very little mass near the median), in which case estimating
the true median is meaningless and can be arbitrarily difficult. The following proposition gives a
suitable choice of (n,m) for providing an (ε, δ)-PAC approximation of g(F ).
Proposition 2. Suppose that Assumption 2 holds. Then, by choosing m ≥ 4(c2 + 1)/(c1ε) and
n ≥ 28 log(1/δ)/(c1ε)

2, the estimator Gn,m is an (ε, δ)-PAC approximation of g(F ). Thus, the
offline algorithm requires O(ε−3) samples.

3.1.3 Maximum

For maximum estimation, we require an assumption on the tail of F as is common in the infinite-armed
bandit literature.
Assumption 3. There exist constants 0 < c1 < c2 and β > 0 such that

• 1− F (F−1(1)− t) ∈ [c1t
β , c2t

β ], for all 0 ≤ t ≲ ε.

This assumption is also known as the β-regularity of F around F−1(1), see (Wang et al., 2008). We
present a suitable choice of (n,m) in the following proposition.

Proposition 3. Suppose that Assumption 3 holds. By choosing n ≥ c−1
1 2βε−β log(2/δ) and m ≥

4ε−2 log(2n/δ), the estimator Gn,m is an (ε, δ)-PAC approximation of g(F ). Therefore, the offline
algorithm requires O(ε−β−2) samples.

3.2 Online estimation algorithm

We now present our general algorithm (Algorithm 1), an elimination-based (ε, δ)-PAC algorithm that
efficiently estimates g(F ), where g is a known input functional and F is an unknown distribution
from which we are able to sample Xi independently, and observe noisy observations Yi,j of Xi.
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Algorithm 1 Meta Algorithm
1: Input: target accuracy ε, error probability δ, functional g parameterized by (α1, α2)
2: Compute (n,m) for (ε/2, δ/2)-PAC estimation of g(F ) based on Theorem 1
3: Construct active set A1 = [n], and define b0 = 1 and t0 = 0
4: for r = 1, 2, . . . do
5: Define br = 2−r and tr = min(m, ⌈8b−2

r log(16n log(m)/δ)⌉)
6: Pull each arm in Ar for tr − tr−1 times, construct µ̂(r)
7: Compute Ar+1 =

{
i : |µ̂i(r)− µ̂(⌊α1n⌋)(r)| ≤ br or |µ̂i(r)− µ̂(⌊α2n⌋)(r)| ≤ br

}
8: if tr ≡ m then
9: Break, exit For loop

10: end if
11: end for
12: Construct Ŝn = {i : µ̂(⌊α1n⌋)(r) ≤ µ̂i(r) ≤ µ̂(⌊α2n⌋)(r)}
13: if α1 ≡ α2 then
14: return 1

|Ŝn|

∑
i∈Ŝn

µ̂i(r)

15: else
16: Draw one observation from each i ∈ Ŝn, construct µ̃i

17: return 1
|Ŝn|

∑
i∈Ŝn

µ̃i

18: end if

In order to exploit the Bayesian nature of the problem, we analyze the algorithm in two parts. First,
we use the fact that our arms are drawn from a common distribution to find some n,m as in Theorem 1
such that the plug-in estimator Gn,m will be an (ε/2, δ/2)-PAC approximation of g(F ). Second,
we show that our adaptive algorithm is an (ε/2, δ/2)-PAC approximation of Gn,m, but is able to
accomplish this using significantly fewer than n×m samples.

Notationally, we denote by µ̂(r) the estimated mean vector of all arms at round r, and denote the
i-th entry of this vector by µ̂i(r). We have that with high probability each arm’s mean estimate stays
within its width br = 2−r confidence interval for each round r. To analyze our algorithm, we denote
µuni
1 , . . . , µuni

n as the estimates of X1, . . . , Xn generated by the offline algorithm after sampling each
arm m times. Then, we see that for the offline algorithm the arms relevant for the estimation task and
the corresponding n sample estimator are

Sn =
{
i : µuni

(⌊α1n⌋) ≤ µuni
i ≤ µuni

(⌊α2n⌋)

}
, Gn,m =

1

|Sn|
∑
i∈Sn

µuni
i . (3)

Here Sn indicates the arms that the offline algorithm believes are in S. We show that our online
algorithm is able to efficiently estimate the set Sn as Ŝn, determining whether or not arms are in
Sn, sampling these arms in Sn sufficiently, and returning a plug-in estimator. By construction each
arm is only pulled by the adaptive algorithm at most m times, as we know from the analysis of
the offline algorithm that for the utilized n,m, if each arm is pulled m times then the output is an
(ε/2, δ/2)-PAC estimate of g(F ). Thus, the online algorithm’s objective is essentially emulating the
output of the offline algorithm, for which it only needs to sample any arm at most m times.

Note that when α1 ̸= α2, we have many samples Xi that are within S, with |Sn| ≥ ⌊n(α2 − α1)⌋.
In order to avoid issues of dependence, we discard all previous samples (as arms in Ŝn will have been
sampled different numbers of times), and see that since we have Θ(n) arms in Ŝn we can construct a
sufficiently accurate estimate by sampling each arm in Ŝn once. Algorithmically, we denote this as
obtaining one fresh observation and constructing µ̃i.

To upper bound the sample complexity of our algorithm, we see that each arm only needs to be
sampled to determine whether it is in Sn or not. As we show in ??, the number of samples N(i)
needed for point Xi satisfies

N(i) ≤ min

m,
256 log

(
16n logm

δ

)
[
dist(Xi, ∂ Conv({µuni

i : i ∈ Sn}))
]2
 , (4)

with probability at least 1− δ/4 for all arms simultaneously, where ∂A denotes the boundary of a
set A, Conv(A) denotes the convex hull of a set A, and dist(X,A) = mina∈A |X − a|. In the limit
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as ε → 0 we show that µuni
(⌊α1n⌋) → F−1(α1) (similarly with µuni

(⌊α2n⌋)). This allows us to state the
following theorem regarding the expected sample complexity of Algorithm 1 with respect to the
distribution’s relevant set of values S rather than the estimated indices Sn.
Theorem 2 (Meta algorithm). For a functional g satisfying Definition 1, Algorithm 1 provides an
(ε, δ)-PAC estimate of g(F ) with M samples when given the requisite inputs. Here m and n are
calculated as in Theorem 1, and the number of samples M required satisfies

E[M ] = O

(
nE

[
min

(
m,

log(n/δ)

[dist(X, ∂S)]
2

)])
. (5)

The proof of this Theorem is deferred to ??.

Evaluating this expression for different functionals under their corresponding assumptions yields the
stated sample complexity upper bounds, as we show in ??.

4 Lower bounds via Wasserstein distance

In this section we derive general lower bounds on the sample complexity of functional estimation for
both offline and online algorithms, where two different Wasserstein distances play important roles.
These Wasserstein-based lower bounds yield tight results for mean and maximum estimation.

4.1 General lower bounds based on Wasserstein distance

A classical technique for proving minimax lower bounds is Le Cam’s two-point method (Le Cam
et al., 2000): let F1 and F2 be two distributions with |g(F1)− g(F2)| ≥ 2ε, and let pπ,F1 and pπ,F2

be the probability distributions of all observations queried by policy π under the true population
distributions F1 and F2, respectively. One version of Le Cam’s two-point lower bound (Tsybakov,
2009, Theorem 2.2) gives

inf
ĝ

sup
F∈{F1,F2}

PF (|ĝ − g(F )| ≥ ε) ≥ 1

4
exp (−DKL(pπ,F1∥pπ,F2)) .

Consequently, to construct a lower bound on the PAC sample complexity of estimating g(F ),
it suffices to find the largest ε such that there exist F1, F2 with |g(F1) − g(F2)| ≥ 2ε while
DKL(pπ,F1∥pπ,F2) = O(1).

A key step in the above analysis is to upper bound the KL divergence DKL(pπ,F1
∥pπ,F2

), which
differs significantly between offline and online algorithms. For offline algorithms, the learner samples
n arms i.i.d. from F with average rewards X1, · · · , Xn ∼ F , and each arm is pulled m times with
Gaussian observations. Consequently, pπ,F == (F ∗ N (0, 1/m))⊗n, where p⊗n denotes the n-fold
product distribution and ∗ denotes the convolution operation. The following lemma presents an upper
bound on the KL divergence for offline algorithms.
Lemma 1. For any offline algorithm π defined in Section 3.1, it holds that

DKL(pπ,F1∥pπ,F2) ≤
mn

2
W2

2 (F1, F2),

where W2(P,Q) is the Wasserstein-2 distance defined as W2
2 (P,Q) = infγ∈Γ E(X,Y )∼Γ[(X −Y )2],

with Γ being the class of all couplings between P and Q.

For online algorithms the distribution pπ,F is no longer a product distribution as actions can depend
on past observations. As a result, the KL divergence becomes larger, but still enjoys an upper bound
based on another Wasserstein distance.
Lemma 2. For any online algorithm π which queries T samples, it holds that

DKL(pπ,F1∥pπ,F2) ≤
T

2
W2

∞(F1, F2),

where W∞(P,Q) is the Wasserstein-∞ distance: W∞(P,Q) = infγ∈Γ esssup(X,Y )∼Γ|X − Y |,
with Γ being the class of all couplings between P and Q.
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As W2(P,Q) ≤ W∞(P,Q), the upper bound of Lemma 2 is no smaller than that of Lemma 1,
showing the stronger power of online algorithms. The following corollary is then immediate from
Lemmas 1 and 2.
Corollary 2.1. The sample complexity of (ε, .1)-PAC estimation of g(F ) is

Ω(1/min{W2
2 (F1, F2) : F1, F2 ∈ F , |g(F1)− g(F2)| ≥ 2ε})

for offline algorithms, and is

Ω(1/min{W2
∞(F1, F2) : F1, F2 ∈ F , |g(F1)− g(F2)| ≥ 2ε})

for online algorithms.

In the remainder of this section, we show that Corollary 2.1 leads to tight lower bounds for mean and
maximum estimations for both offline and online settings.

4.2 Lower bounds for mean estimation

Consider two distributions F1 and F2 which are Dirac masses supported on 1/2 − ε and 1/2 + ε,
respectively. Clearly W2(F1, F2) = W∞(F1, F2) = 2ε, which is the best possible as W2(F1, F2) ≥
|mean(F1)−mean(F2)| ≥ 2ε. Corollary 2.1 gives the following lower bounds.
Corollary 2.2. The (ε, .1)-PAC sample complexity for mean estimation is Ω(ε−2) for both offline
and online algorithms.

4.3 Lower bounds for maximum estimation

For maximum estimation, the Wasserstein distances W2 and W∞ behave differently, as summarized
in the following lemma. Let Fβ be the class of densities satisfying Assumption 3.
Lemma 3. For ε ∈ (0, 1/2), it holds that

min{W2(F1, F2) : F1, F2 ∈ Fβ , |max(F1)−max(F2)| ≥ 2ε} = O(εβ/2+1);

min{W∞(F1, F2) : F1, F2 ∈ Fβ , |max(F1)−max(F2)| ≥ 2ε} = O(ε);

min{DKL(F1∥F2) : F1, F2 ∈ Fβ , |max(F1)−max(F2)| ≥ 2ε} = O(εβ).

Note that we have included another term DKL(F1∥F2) in Lemma 3 as it can provide a better lower
bound than using W∞ if β ≥ 2, as DKL(pπ,F1

∥pπ,F2
) ≤ T ·DKL(F1∥F2) always holds due to the

data-processing inequality (i.e. assuming that all arm rewards are independent). Consequently, we
have the following corollary on the sample complexity of maximum estimation.

Corollary 2.3. The (ε, .1)-PAC sample complexity for maximum estimation over Fβ is Ω(ε−(β+2))

for offline algorithms, and Ω(ε−max{β,2}) for online algorithms.

5 Lower bounds via thresholding phenomenon

Although the Wasserstein distance-based approach in Section 4 provides general lower bounds
for both offline and online algorithms, and these lower bounds are tight for mean and maximum
estimation, sometimes this approach can be loose. For example, Lemma 3 shows that using the W∞
distance might be looser than using the original KL divergence for maximum estimation. This section
provides tight lower bounds for median estimation, revealing a curious thresholding phenomenon.

5.1 Thresholding phenomenon for offline algorithms

Let F denote the set of distributions satisfying Assumption 2. To use Le Cam’s two-point method to
prove lower bounds for offline algorithms for median estimation, the key quantity is:

KLσ(ε) ≜ min{DKL(F1 ∗ N (0, σ2)∥F2 ∗ N (0, σ2)) : F1, F2 ∈ F , |F−1
1 (1/2)− F−1

2 (1/2)| ≥ 2ε}.

Its inverse KL−1
σ (ε) is referred to as the modulus of smoothness of the median with respect to the KL

divergence under Gaussian convolution. The Wasserstein-based approach to upper bound KLσ(ε)
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in Lemma 1 is the following: let W2,σ(ε) be the counterpart of the above quantity with the KL
divergence replaced by the Wasserstein-2 distance, Lemma 1 shows that

KLσ(ε) ≤
W2,σ(ε)

2

2σ2
= Θ

(
ε2.5

σ2

)
, (6)

an upper bound decreasing continuously with σ, where the proof of the last identity is presented in
the Appendix. However, this upper bound is not tight, as shown in the following lemma.

Lemma 4. For ε ∈ (0, 1/4), KLσ(ε) can be characterized as follows:

KLσ(ε)

{
∈ [C1ε

2, C2ε
2] if σ ≤ cε1/2,

≤ C(θ, κ)εκ if σ ≥ ε1/2−θ,

where θ ∈ (0, 1/4), κ ∈ N are arbitrary fixed parameters, and c, C1, C2, C(θ, κ) are absolute
constants with the last one depending only on (θ, κ).

Lemma 4 shows a thresholding phenomenon as follows: when σ increases from 0 to 1, the quantity
KLσ(ε) stabilizes at Θ(ε2) whenever σ ≲ ε1/2; however, when σ exceeds this threshold slightly
(i.e. σ ≳ ε1/2−θ for any constant θ > 0), this quantity immediately drops to o(εκ) for every
possible κ. The main intuition behind this thresholding phenomenon is that, if σ = O(ε1/2), the
“bandwidth” of F1 − F2 exceeds that of N (0, σ2), and the convolution is effectively using N (0, σ2)
as a Gaussian kernel (which preserves polynomials up to order 2) for smoothing F1 − F2 (which
is second-order differentiable). In contrast, when σ ≫ ε1/2, the “bandwidth” of F1 − F2 could
be smaller than N (0, σ2), and the convolution is effectively using F1 − F2 as a kernel (which
could preserve polynomials up to any desired order) for smoothing N (0, 1) (which is infinitely
differentiable). Approximation theory tells us that the latter approximation error could be much
smaller than the former, leading to the thresholding phenomenon. We remark that this phenomenon
is not captured by using the W2 distance.

This thresholding behavior has an important consequence for median estimation. By Lemma 4 with
σ = 1/

√
m, PAC learning requires that m = Ω(ε2θ−1) for any offline algorithm, as otherwise the

KL divergence could be made arbitrarily small. When m is large enough, the first line of Lemma 4
then requires n = Ω(ε−2) to result in a large KL divergence for PAC learning, which comes from the
idendity that

DKL(P
⊗n∥Q⊗n) = nDKL(P∥Q).

Consequently, we have the following corollary for median estimation using offline algorithms.

Corollary 2.4. Fix any θ > 0. The (ε, .1)-PAC sample complexity for median estimation is Ω(ε−3+θ)
for any offline algorithm.

5.2 Thresholding phenomenon for online algorithms

To prove the PAC lower bound for online algorithms, one first wonders if the same observation in
Lemma 4 could still work. However, a close inspection of the proof reveals an issue: the optimizers
(F1, F2) in the definition of KLσ(ε) are different under the regimes σ = O(ε1/2) and σ = Ω(ε1/2−θ).
An online learning algorithm could first identify the right scenario and then choose a proper sample
size to tackle the problem, and thus the above lower bound arguments break down.

To resolve this issue, we aim to choose a proper pair of distributions (F1, F2) with |median(F1)−
median(F2)| ≥ 2ε, and investigate the behavior of DKL(F1 ∗N (0, σ2)∥F2 ∗N (0, σ2)) as a function
of σ with (F1, F2) fixed along the line. The following lemma shows that, even for some fixed pair
(F1, F2), a similar thresholding phenomenon still holds for the KL divergence.

Lemma 5. Fix any ε, θ ∈ (0, 1/4), and κ ∈ N. There exist two distributions F1, F2 ∈ F with
|median(F1)−median(F2)| ≥ 2ε, and

DKL(F1 ∗ N (0, σ2)∥F2 ∗ N (0, σ2))

{
∈ [C1ε

3/2, C2ε
3/2] if σ ≤ cε1/2,

≤ C(θ, κ)εκ if σ ≥ ε1/2−θ,

where c, C1, C2, C(θ, κ) are absolute constants with the last one depending only on (θ, κ).
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Compared with Lemma 4, Lemma 5 still shows a similar thresholding phenomenon for the KL
divergence when σ ≫ ε1/2, but the KL divergence becomes larger for small σ due to the additional
constraint that (F1, F2) is held fixed. Under the choice of (F1, F2) in Lemma 5, each arm should be
pulled at least Ω(ε2θ−1) times, while Ω(εθ−3/2) arms need to be pulled in view of the first line. The
following theorem makes the above intuition formal.

Theorem 3. The (ε, .1)-PAC sample complexity for median estimation is Ω(ε−5/2+θ) for any fixed
θ > 0 and any online algorithm.

The formal proof of Theorem 3 is more complicated and requires an explicit computation of the KL
divergence DKL(pπ,F1∥pπ,F2). We relegate the full proof to ??. This thresholding phenomenon of
the noise level also applies to the case of trimmed mean, which is discussed further and an analogous
result is proved in Appendix ??.

6 Conclusion

In this work we formulated and studied offline and online algorithms for estimating functionals of
distributions. We developed unified algorithms for estimating the mean, median, maximum, and
trimmed mean, providing sample complexity upper bounds. We additionally proved information
theoretic lower bounds in these settings, which show that our algorithms are optimal up to εc

where c is a fixed constant arbitrarily close to zero. We used different Wasserstein distances to
construct information theoretic lower bounds for mean and maximum estimation, and showed how
fundamentally different techniques are required for median and trimmed mean estimation. The lower
bounds for median and trimmed mean estimation elucidate an interesting thresholding phenomenon
of the noise level to distinguish two distributions after Gaussian convolution, which may be of
independent interest. Interesting directions of future work include extending our analysis to non-
indicator-based functionals, such as the BH threshold and analyzing the limiting behavior as δ → ∞.
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