Under review as a conference paper at ICLR 2026

CoODEPDE: AN INFERENCE FRAMEWORK FOR
LLM-DRIVEN PDE SOLVER GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) are fundamental to modeling physical systems,
yet solving them remains a complex challenge. Traditional numerical solvers rely
on expert knowledge to implement and are computationally expensive, while neural-
network-based solvers require large training datasets and often lack interpretability.
In this work, we frame PDE solving as a code generation task and introduce Code-
PDE, the first inference framework for generating PDE solvers using large language
models (LLMs). With CodePDE, we present a thorough evaluation on critical
capacities of LLM for PDE solving: reasoning, debugging, self-refinement, and
test-time scaling. CodePDE shows that, with advanced inference-time algorithms
and scaling strategies, LLMs can achieve strong performance across a range of
representative PDE problems. We also identify novel insights into LLM-driven
solver generation, such as trade-offs between solver reliability and sophistication,
design principles for LLM-powered PDE solving agents, and failure modes for
LLM on hard tasks. These insights offer guidance for building more capable and
reliable LLM-based scientific engines.

1 INTRODUCTION

Partial differential equations (PDEs) are foundational for modeling complex phenomena in science and
engineering, yet developing effective numerical solvers remains a substantial challenge. Traditional
numerical methods demand significant computational resources and deep domain expertise for
implementation. Crafting robust and efficient solvers typically involves meticulous manual tuning,
extensive debugging, and specialized numerical analysis knowledge. The success of deep learning
has motivated the development of neural PDE solvers (e.g., Raissi et al., 2019; Lu et al., 2021; Li
et al., 2022b) and multiphysics foundation models (e.g., McCabe et al., 2024; Hao et al., 2024; Shen
et al., 2024b; Herde et al., 2024) to automate PDE solving. However, training these models requires
large amounts of data, and their outputs lack transparency, making it difficult to understand how and
why a particular solution is produced.

Meanwhile, large language models (LLMs) have been increasingly applied to complex mathematical
and scientific challenges (e.g., Romera-Paredes et al., 2024; Shen et al., 2024a; Xu et al., 2024; Shen
et al., 2025; Chan et al., 2025; Sun et al., 2025; Zhou et al., 2025). Central to these advancements is
the observation that code acts as a versatile intermediary between natural language and structured
symbolic scientific computations. Inspired by this insight, a compelling alternative paradigm for PDE
solving emerges: automated generation of executable solver code directly from high-level natural
language descriptions of PDEs. This emerging paradigm raises a critical and open research question:

Can LLMs generate effective and efficient solver code for PDEs?

Despite the conceptual simplicity, naively applying LLMs to PDE solving may underutilize their
capabilities, neglecting recent progress in inference-time algorithms (Welleck et al., 2024) and scaling
strategies (Snell et al., 2025). We introduce CodePDE, an inference framework for LLM-driven
automated PDE solver generation. Given a problem description, CodePDE instructs LLMs to produce
diverse solver implementations (e.g., finite difference, spectral methods, or other novel approaches).
CodePDE further incorporates mechanisms for code repair, iterative refinement, test-time scaling, and
rigorous evaluation of accuracy, efficiency, and convergence, as depicted in Figure 1. Designed with

Under review as a conference paper at ICLR 2026

forward compatibility and modularity, CodePDE supports both local deployments and API-based
interfaces, and readily integrates with a variety of inference strategies and agentic workflows.

Deploying CodePDE with 16 strong LLMs, we conduct systematic evaluations across four core
capabilities for PDE solver generation:

* Reasoning: Generating numerically sound solvers through chain-of-thought. LLMs can explore
the combination of a wide range of methods, such as finite difference, finite volume, and spectral
methods for spatial domains, as well as Explicit Euler, Runge-Kutta, and IMEX for time integration,
yielding diverse solver strategies.

* Debugging: Identifying and autonomously correcting code errors based on runtime feedback.
The average rate of bug-free solver generation increases from 41% to 84% after applying iterative
self-debugging, demonstrating the effectiveness of automated error repair.

e Refinement: Improving solver accuracy through feedback-based improvement. We find that
enabling self-refinement consistently enhances solution quality across all tested PDEs, underscoring
the value of feedback-driven optimization.

* Test-Time Scaling: Boosting solution quality by scaling up inference compute. Using best-of-n
sampling, we observe that solution accuracy improves with increased inference budget (Figure 3),
highlighting a practical scaling law for LLM-generated solvers.

These capabilities constitute essential building blocks for LLM-powered scientific computing. Our
experiments demonstrate that LLMs, when paired with inference-time techniques—such as automated
debugging (Chen et al., 2024), self-refinement (Madaan et al., 2023), and test-time scaling (Snell
et al., 2025)—achieve performance comparable to tailored numerical solvers and specialized PDE
solving softwares. Further ablation study shows that these techniques are critical ingredients for
building highly accurate PDE-solving agentic workflows.

CodePDE also provides a platform for systematically evaluating LLMs on solver generation, uncov-
ering several key insights. For example, our analysis identifies a trade-off between solver reliability
and sophistication, where some models conservatively produce simple, robust solvers while others
explore more diverse complex methods. In addition, we find that code generation and refinement
may be distinct skills for LLMs: while advanced reasoning models like 03 and DeepSeek-R1 excel at
generating high-quality solvers from scratch, they do not consistently outperform standard models
like GPT-40 and DeepSeek-V3 in the refinement stage.

In summary, our contributions are threefold: (1) We frame PDE solving as a code generation task
and develop CodePDE, the first inference framework to combine PDE domain knowledge with
the self-improvement and test-time scaling capabilities of LLMs. (2) We show that CodePDE
unlocks the capabilities of LLM to generate high-quality PDE solvers. (3) We present the first
comprehensive study of LLM-generated PDE solvers, analyzing their accuracy, efficiency, numerical
scheme diversity, and failure modes—offering new insights into the potential and limitations of LLMs
in scientific computing.

2 RELATED WORKS: PDE SOLVING AND THE EMERGING ROLE OF LLMS

Numerical Methods. Traditional numerical solvers approximate PDE solutions via domain
discretization. Finite difference method (FDM) (LeVeque, 2007) uses grid-based differences to
estimate derivatives; finite element method (FEM) (Zienkiewicz & Taylor, 2013) approximates
solutions over mesh elements; and spectral methods (Canuto et al., 2007) represent solutions as
sums of global basis functions. These solvers offer convergence guarantees and error bounds, but
they require expert knowledge to implement and are computationally intensive, particularly for
high-dimensional problems. In recent years, a few softwares have emerged to streamline the use of
these numerical methods (Zwicker, 2020; Burns et al., 2020; Scroggs et al., 2022).

Neural PDE Solvers. Neural-network-based methods such as PINNs (Raissi et al., 2019) and neural
operators (Lu et al., 2021; Li et al., 2022b) provide data-driven alternatives. While bypassing some
traditional bottlenecks, they are often tailored to specific equations. Recent works explore diverse
architectures on PDE problems, such as Transformers (Cao, 2021; Li et al., 2022a; Shen et al., 2023),
GNNs (Li et al., 2020; Pfaff et al., 2021; Brandstetter et al., 2022), state-space models (Zheng et al.,

Under review as a conference paper at ICLR 2026

" [No

Task Specification Code Generation Debugging Evaluation Solver Refinement

def solver(...

Figure 1: An overview of CodePDE framework. Critical LLM capabilities are unlocked in the steps:
code generation leverages chain-of-thought reasoning, code repair enables autonomous debugging, evaluation
implements test-time scaling through best-of-n sampling, and solver refinement optimizes performance through
feedback-driven improvement.

2024; Buitrago et al., 2025), and other specialized networks (Marwah et al., 2023; Shen et al., 2022;
Liang et al., 2025). Pretrained multiphysics foundation models (Shen et al., 2024b; Subramanian
et al., 2023; McCabe et al., 2024) are also developed to improve generalization ability. However,
these models require expensive offline training. Their solution process is not interpretable, and they
do not take advantage of well-established numerical techniques.

LLMs for Scientific Problem Solving. LLMs have shown strong performance in generating
executable code for tasks in chemistry (e.g., Bran et al., 2023; Guo et al., 2023; Shen et al., 2024c),
physics (e.g., Arlt et al., 2024), mathematics (e.g., Hong et al., 2024; Wang et al., 2023), and
computational biology (e.g., Tang et al., 2024; Haase et al., 2024; Cheng et al., 2024). Agentic
workflows further enhance capabilities through planning and iterative refinement (e.g., Romera-
Paredes et al., 2024; Ma et al., 2024). For example, FunSearch (Romera-Paredes et al., 2024) uses
self-prompting with an evolutionary algorithm for mathematical discovery. AIDE (Jiang et al., 2025)
performs tree search over solution strategies for machine learning engineering. Another very recent
work, PDE-Controller (Soroco et al., 2025), uses LLMs to control systems governed by PDEs. In
contrast, our work is the first to study PDE solver code generation with LLM inference algorithms
and scaling strategies and systematically evaluate LLM capabilities in this domain.

3 METHOD: CODEPDE

In this section, we present CodePDE, our inference framework for LLM-driven PDE solver generation.
We begin by introducing the problem background, followed by an overview of our five-step framework
design as visualized in Figure 1.

Preliminaries. We focus on PDEs of the general form:
Lu(@) =p(@) @e€QCRY "
Bu(x) = (&) T € 0N ’

where « is the spatial-temporal/spatial variable for a time-dependent/independent PDE, (2 denotes the
spatial-temporal/spatial domain, and £ and B are partial differential operators defining the governing
equation and boundary condition, respectively. PDEs in this form encompass Navier-Stokes, Reaction-
Diffusion, and Burgers’ Equations, as well as numerous others that describe phenomena in all sorts
of domains. These equations constitute the majority of PDE benchmarks in machine learning
research (Tu et al., 2022; Roberts et al., 2021; Takamoto et al., 2022).

Analytical solutions can only be derived for highly restricted classes of PDEs, highlighting the need
for computing numerical solutions. Numerical solvers discretize the domain into grids and output
solution values at each grid point over specified time steps.

Framework Design. CodePDE is implemented in Python, leveraging its widespread use in the
ML community and the availability of modern numerical solver libraries in Python (Takamoto et al.,
2022; Kochkov et al., 2021; Zwicker, 2020). Our full codebase is included in the supplementary
material and will be released publicly. We will also maintain a open leaderboard to support future
research. Below, we detail each step in CodePDE.

Step 1: Task Specification. Given a PDE problem of the form specified in Equation 1, we format it
into natural language descriptions so that it can be processed by LLMs. Specifically, we include the
governing equations, domain specifications, boundary conditions, and initial conditions. For example,
a Burgers Equation task is specified as follows:

Under review as a conference paper at ICLR 2026

Your task is to solve a partial differential equation (PDE) using Python. The PDE is
the Burgers equation with the periodic boundary condition, given by

i

{Btu(w,t) + s (@) = Vepu(z,t), € (0,1), t € (0,1]

u(z,0) = uo(z), z € (0,1
where v is a constant representing the viscosity.

Step 2: Code Generation. After specifying the input, we prompt models to generate complete
solver implementations alongside any necessary auxiliary functions. To facilitate evaluation and
enhance code readability, we instruct language models to implement solutions based on a predefined
function signature, which receives initial conditions and time grids and returns the predicted solution
trajectory:

def solver (u0_batch, t_coordinate, nu):
"""Solves the Burgers’ equation for all times in t_coordinate.

lutions (np.ndarray): Shape [batch_size, T+1, N].
won

TODO: Implement the so
Hint: Consider PyTorch/
return solutions

We use chain-of-thought prompting (Wei et al., 2022) to instruct the model to navigate complex
numerical algorithms. The full prompt used can be found in Appendix B.1.

for the Burgers’ equation.

with GPU acceleration for efficiency.

Step 3: Debugging. After the LLM returns a solver, we execute it to check its validity. If the
solver crashes, we feed the error traces, the original specification, and the failed code to the LLM
for it to revise its solution. This process instructs the model to diagnose root causes and produce
corrected implementations without human intervention. Debugging proceeds iteratively until the
issue is resolved or a predefined iteration limit is reached. The debugging prompt is detailed in
Appendix B.2. We quantify effectiveness by recording the debug success rate for each model on each
problem.

Step 4: Evaluation. For executable solvers, we evaluate their performance by calling the solver,
obtaining the predicted solution, and comparing it against reference solutions. We investigate three
metrics. First, we compute the error with respect to the ground truth solution. We follow prior
works (Takamoto et al., 2022; Shen et al., 2024b) and use the scale-independent normalized root
mean squared error (NRMSE), defined as:
WRMSE = £ 37 [u (@, 1) — @) (x, 1)
S [ul) (. 1)]2

where S denotes the number of examples in a PDE family. Second, we measure the quality of the
solver using a convergence test (LeVeque, 2007), which assesses how the solution error decreases
as the grid is refined. Mathematically, a solver is considered convergent if the difference between
solutions at successive resolutions decreases with finer discretization. That is, for a grid spacing h,
we test whether ||uj, — up 2|2 — 0as h — 0. This test ensures that the numerical solution remains
stable and consistent as resolution increases, even in the absence of an exact solution. Finally, we
record code execution time as a measure of computational efficiency.

@

Step 5: Solver Refinement. We supply the nRMSE obtained in step 4 along with the solver
implementation to the LLLM for further refining the solution. Models analyze execution results to
identify bottlenecks and numerical instabilities, then generate improved implementations accordingly.
The refinement prompt can be found in Appendix B.2.

We highlight that our framework is general and forward-compatible. The entire CodePDE framework
accepts both local hosting of LLMs as well as standardized APIs. When new specialized models or
agents are developed later, they can be seamlessly incorporated into our framework. The framework’s
modular design facilitates systematic analysis of LLM performance across atomic operations (e.g.,
implementation, debugging, and refinement), decomposing performance along these dimensions to
identify each model’s strengths and limitations.

Under review as a conference paper at ICLR 2026

4 EVALUATION SETUP

This section briefly introduces our experiment setup, with more details presented in Appendix B.3.

Datasets. We focus on 5 representative PDE families that are commonly employed as testbeds
for ML methods: Advection, Burgers, Reaction-Diffusion, Compressible Navier-Stokes (CNS), and
Darcy Flow. These span a range of spatial dimensions, numerical stiffness, and boundary conditions
(Saad et al., 2023). The datasets are drawn from PDEBench (Takamoto et al., 2022) and FNO
paper (Li et al., 2022b), both with MIT license. We randomly sample 100 instances for each family.

Language Models and Baseline Methods. We benchmark 16 LLMs, spanning both proprietary
models and open-weights models. The full model list can be found in Appendix Table 3. We compare
LLM-generated solvers against standard numerical solvers, including implementations based on
established PDE solving softwares (Zwicker, 2020; Burns et al., 2020) as well as manually crafted
solvers using accurate schemes. For example, we use the analytical solution for Advection, a spectral
method for Burgers, and Strang splitting for the Reaction-Diffusion Equation. The code can be found
in the supplementary materials. We also include a variety of standard neural network solvers and
foundation models (Ronneberger et al., 2015; Li et al., 2022b; Raissi et al., 2019; Ye et al., 2024;
Shen et al., 2023; 2024b). Additionally, we evaluate 2 agentic workflows which feature search and
refinement in the code space: FunSearch (Romera-Paredes et al., 2024) and AIDE (Jiang et al., 2025).

Evaluation Metrics. We use normalized root mean squared error (1(RMSE) as the primary measure
of solution quality. We also report (1) debug success rate: the proportion of generations successfully
fixed after error-driven feedback; (2) convergence rate: empirical convergence rate with increased
spatial resolution; and (3) execution time: runtime of generated solvers.

5 RESULTS AND ANALYSIS
In this section, we present our main evaluation results and discuss the key insights from a few axes.

5.1 How WELL Do LLMS GENERATE PDE SOLVERS?

We begin by examining the comparative performance of CodePDE solvers against baselines. Table 1
presents the normalized RMSE (nRMSE) across five representative PDE families. Only a subset of
LLMs are included due to space constraint. Full results are provided in Table 3 in Appendix A.

The results demonstrate that LLMs under the CodePDE framework can generate high-quality PDE
solvers that are competitive with the reference solvers. Specifically, we find that CodePDE with
refinement outperforms the hand-crafted reference solvers on 4 out of 5 evaluated tasks. Specifically,
on Burgers Equation, Gemini 2.0 Flash achieves an nRMSE of 1.06 x 10~ via refinement, compared
to the reference’s 3.55 x 10~4, representing a 70% improvement in accuracy. Neural PDE solvers,
including both task-specific models (e.g., FNO) and foundation models (e.g., UPS), generally perform
worse than the best CodePDE implementations, although they typically require training from scratch
or additional finetuning.

However, we also note limitations with LLM-generated solvers. The Reaction-Diffusion Equation
remains challenging for all LLM-generated solvers, which yield higher nRMSE values than the
reference. This difficulty arises because the task requires nuanced insights into the problem structure,
which we elaborate on in Section 5.7.

Takeaways. LLM-generated solvers, particularly those enhanced with debugging and refinement
mechanisms, hold strong promise. They demonstrate strong performance on many representative
PDE problems, but can falter when faced with subtle challenges.

5.2 CAN LLMS GENERATE EXECUTABLE CODE OR DEBUG THEIR OWN CODE?

The results in Table | are with self-debugging for up to 4 rounds, which is essential for obtaining
reliable performance from LLM solvers. Without it, many generated programs fail to run, leading
to significantly worse results. To quantify this, we measure the solver success rate, defined as the
percentage of bug-free solver implementations out of all samples. We compare two settings: single-
shot generation without debugging vs. multi-round interactions with up to 4 rounds of debugging.

Under review as a conference paper at ICLR 2026

Table 1: Normalized RMSE comparisons. “Geom. Mean” refers to the geometric mean of nRMSE values.
Neural Network baseline results are from (Takamoto et al., 2022; Li et al., 2022b; Ye et al., 2024; Shen et al.,
2023; 2024b). The best results of the “Reasoning + Debugging” and the “Reasoning + Debugging + Refinement”

settings for each problem are highlighted 'in gray cells .

nRMSE () | Advection Burgers React-Diff CNS Darcy | Geom. Mean
Reference Numerical Solvers
| 1.03x107% 3.55x107* 229%x107% 1.89x 1072 4.80x 1073 | 2.38x 1073
PDE Solving Softwares

Dedalus 6.20 x 1073 278 x 1073 5.20 x 1072 2.01 x 10~2 - -
PyPDE 2.03x107% 5.92x107% 221x107! 252x 107! - —
Neural Network & Foundation Model baselines
U-Net 5.00 x 1072 220 x10~' 6.00 x 1073 3.60 x 10! — -
FNO 770 x 1073 7.80x 1073 1.40x 1073 9.50x 1072 9.80 x 1073 | 9.52 x 1073
PINN 7.80 x 1073 850 x 10~! 8.00 x 1072 - — -
ORCA 9.80 x 1073 1.20x 1072 3.00 x 1073 6.20 x 10~2 - -
PDEformer 430 x 1073 1.46 x 102 — — - —
UPS 220 x 1073 3.73x 1072 557x1072 4.50 x 1073 — -

CodePDE: Reasoning + Debugging (best of 32)

Gemini 2.0 Flash 1.14 x 1073 297 x10~* 2.19x 107! 4.50x 1072 [480 % 1073 | 6.92 x 10~2
Gemini 2.0 Thinking | 5.54 x 1073 3.21 x 10* 2.19 x 10™' 7.56 x 1072 | 4.80 x 1072 | 1.07 x 1072
Gemini 2.5 Pro 1.01 x 1073 [1.23x10~* 149 x 107! 7.39x1072 4.89x 1073 | 5.82x 1073
Qwen-2.5-Max 497 %1073 1.35x107% 9.57x1072 236x 1071 6.76 x 1071 | 4.00 x 10~2
QwQ-Plus 1.03x 1073 3.05x107% 220x 107! 743 x1072 | 4.80x 1073 | 7.55 x 103
Claude-3.5-haiku 3.70 x 1072 3.23x107* 2.20x 107! 234 x 107! 1.00 x 10° | 3.61 x 102
Claude-3.7-sonnet | 1.32 x 1073 259 x10~% 5.19x 1072 426x 1072 | 4.80x 10~ 5.15x 103
DeepSeek-V3 737x107% 6.02x107* 218 x 107! [241 x10°2 1.00 x 10° | 2.98 x 102

DeepSeek-R1 1.05x 1073 276 x 1074 220 x 107! 7.46 x 1072 | 480 x 10=3 | 7.44 x 1073
GPT-40 1.55 x 1073 3.69 x107* [1.99 x 1072 1.81 x10~! 7.67x 107! | 1.74 x 102
GPT-4.1 1.50 x 1073 3.63x107% 144 x 107! 5.20x 1072 4.88x1073 | 7.23 x 1073

03 9.74 x107* 3.69x107% 1.98x 107" 280x1072 4.92x1073 | 6.28 x 1073

CodePDE: Reasoning + Debugging + Refinement (best of 12)

Gemini 2.0 Flash 824 x10°* 1.06x107* 1.76x1072 1.72x1072 | 478 x10~2 2.63 x 103
Gemini 2.0 Thinking | 9.74 x 107* 270 x 10~* " 1.74 X 1072 2.41 x 1072 4.80 x 1072 | 3.51 x 1073
Gemini 2.5 Pro 9.74 x 107* 3.15x107% 9.94x 1072 277 x107%2 4.92x1073 | 529 x 1073
Qwen-2.5-Max 9.74x107* 2,60 x10™* 9.13x 1072 1.49x1072 4.80x 103 | 4.40 x 1073
QwQ-Plus 9.74x107* 1.07x10™* 519x1072 1.50x 1072 4.80 x 1073 | 3.29 x 103
Claude-3.5-haiku 1.01 x 1073 2.60x 10* 5.19x 1072 1.06 x 107! 1.92x 1071 | 1.22x 1072
Claude-3.7-sonnet | 9.74 x 10~* 2.60 x 10~% 5.19x 1072 2.72x 1072 4.83x 1073 | 4.44 x 1073
DeepSeek-V3 9.74 x107* 259 x107* [1.74 x 1072 156 x 1072 4.80 x 103 | 3.18 x 103

DeepSeek-R1 9.74 x 107* 259 x 107* 1.43x 107! 1.52x 1072 4.80 x 1072 | 4.83 x 1073
GPT-40 9.74 x 107* 259 x 107* 1.76 x 1072 241 x 1072 4.80 x 1072 | 3.48 x 1073
GPT-4.1 1.01 x 1073 3.15x107% 144 x107!' 1.53x1072 4.88x1073 | 5.08 x 103

03 1.01 x 1073 3.15x107* 2.01 x 107" [1.31 x 1072 4.88 x 1073 | 5.27 x 1073
Bug-Free Rates across LLMs Bug-Free Rates across PDEs
99..

100 N] 88.4 93.3 92.7

B |nitial rate

If-
20 Self-debug

Bug-free Rate (%)
[=)]
o

20
0 X\ K oS et N L) A od \ CIIPSNCY !
) o ; > k DO _ p 3 x \
207D BT A T son e Lo Ter g et ure®® P oaC
W G2 et e 10€ Jge 2" pelr pe
e “ G Ve
Ge

Figure 2: Bug-free rate before and after introducing automated debugging. Left: Averaged across all five PDE
datasets for each model. Right: Averaged across all LLMs for each PDE family.

Figure 2 shows the performance difference resulting from debugging. The detailed values can
be found in Appendix Table 5 and Table 6. For single-shot generation, only 41% of solvers run
successfully on average across all PDEs. With debugging, success rates rise to 84% on average
across PDEs. Notably, frontier models such as Gemini 2.5 Pro, Claude 3.7 Sonnet, DeepSeek-R1,

Under review as a conference paper at ICLR 2026

Advection Burgers 06 React-Diff CNS Darcy
w —2.0 -3.04 o -0.61 -06
S -2.21 -3.21 —081 _
z o7 0.8 o] 1.0
o —3.41 14
= ’ —_ N —41.
8-2.6] 3] S =10 -1.2]
@ _30] —38 ~121 -1.51 22
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Sample size Sample size Sample size Sample size Sample size

Gemini 2.5 Pro QwQ-Plus = Claude-3.7 = DeepSeek-R1 — 03

Figure 3: Smoothed test-time scaling curves for representative models on each PDE family. We increase n in
the best-of-n sampling to study test-time scaling performance.

GPT-4.1, and 03 achieve > 90% bug-free rates after self-debugging. We also note that self-debugging
is particularly critical for challenging PDEs such as Compressible Navier-Stokes Equation (CNS),
on which only 16.6% of the solvers are bug-free in the single-shot generation. We further report the
average number of debug iterations in Appendix Figure 7.

Takeaways. While LLMs frequently produce non-executable code in a single attempt, they are
remarkably effective at self-debugging. This capability dramatically boosts the rate of generating
functional, bug-free solvers, making them reliable for complex scientific coding tasks.

5.3 CAN LLMS IMPROVE SOLVERS VIA SELF-REFINEMENT?

Next, we evaluate whether models can refine their solver implementations using nRMSE as the
feedback signal. For each PDE, we select the five most accurate solvers generated in the “reasoning
+ debugging” stage as “seed” programs for refinement. Each LLM generates 12 refined programs
and we report the best nRMSE. As shown in Table [, refinement yields substantial improvements. In
particular, without refinement, the best LLM generated solver on CNS Equation obtains an nRMSE
of 2.41 x 1072, underperforming the reference solver, which has an nRMSE of 1.89 x 10~2. After
refinement, more than half of the LLMs are able to surpass reference performance. Overall, our
results show that LLMs can effectively use coarse feedback signals to optimize solvers.

Interestingly, while advanced reasoning models (e.g., 03 and DeepSeek-R1) typically lead to better
solvers in the “reasoning + debugging” stage, they are not necessarily better than standard ones
(e.g., GPT-40 and DeepSeek-V3) in the refinement stage. This divergence suggests that the current
post-training strategies for reasoning models may lack coverage on the skills required for refinement.

Takeaways. LLMs can improve code for better accuracy using simple performance feedback.
Interestingly, the best models at generating code are not always the best at refining it, suggesting
these are two different skills.

5.4 DOES SOLUTION QUALITY IMPROVE WITH SCALING TEST-TIME COMPUTE?

Finally, we study the impact of scaling test-time compute. Similar to prior works (Brown et al., 2024;
Wu et al., 2025; Snell et al., 2025), we vary n € [4, 32] for the best-of-n sampling strategy. The
candidate with the lowest nRMSE is selected. The test-time scaling curves for the top-performing
models in each family are presented in Figure 3. In general, solution quality generally improves with
increasing sample count n, with the most significant gains observed between n = 4 and n = 16.
Beyond this point, returns diminish, suggesting that moderate sampling budgets often suffice to reach
near-optimal performance. Note that because the absolute scale of nRMSE varies across models and
tasks, some curves may appear flatter despite meaningful error reductions. To help interpretation, we
include per-model plots in Appendix Figure 11.

Takeaways. Test-time scaling is critical for generating high-quality numerical solvers from LLMs.

5.5 CONVERGENCE ANALYSIS

To assess numerical correctness, we conduct convergence tests that measure how solution error
diminishes with increasing grid resolution. A solver is considered convergent if the error decreases at
an expected rate as the grid is refined. Figure 4 reports both the failure rate of the convergence test
and the distribution of convergence orders across different LLMs and PDE families, where higher
orders imply faster convergence.

Under review as a conference paper at ICLR 2026

Convergence Rate Comparisons across LLMs/PDEs
Fail-21.0% 25.6% 12.7% 27.1% 19.5% 28.1% 17.9% 17.3% 23.6% 8.6% 23.6%20.3%13.9% - 0.0% 13.8% 1.5% 22.5% |75%

Order 1 -£E8:47 62.9%/58.2%| 67.9%|63.3%(69.4% 81.9%64.7%(52.4%} % &:37) 88.0%|53.6%|63.5%|c[W 42/148.2

Order 2-20.3%26.7%23.1% 9.1% 28.7% 2.7% 14.9% 10.7%30.6% 6.5% 9.8% 25.9%29.2% - 3.3% 31.0% 34.1% 0.3% 21.6% 25%
i o

50%

Order=3-2.9% 3.5% 12% 5.7% 6.8% 1.3% 3.8% 2.6% 2.5% 3.1% 1.9% 14% 15.1% -8.6% 1.6% 0.8% 2.5% 7.7%
' -0%
0 ot oS £ s off S
0;\ e \4\“%169(@ V’\"\)N AN el Soa“zee\c\] ee\L?\AO qe‘ N W2 o
“\\(\7' 12 O o™ Qe alNee 35751 20 cet™ e
Ge \\\ C\a“c\a“d oe

\ o 3
et © po e ‘a\ﬂ

Figure 4: Empirical convergence rate comparisons across LLMs and PDEs. “Fail” represents the failure rate
on the convergence test. Higher orders imply faster convergence.

Table 2: Ablation study on CodePDE and evaluation of existing agentic workflows. All results are based on
Claude-3.7-sonnet for a consistent comparison. Full results on 16 LLMs are provided in Appendix Table 4.

nRMSE (]) \ Advection Burgers React-Diff CNS Darcy \ Geom. Mean
CodePDE Ablation

CodePDE 9.74 x107* 2.60x107* 5.19x 1072 272x 1072 4.83x 1073 | 444 x 1073

w/o refine 1.32x 1073 259x107% 5.19x1072 4.26x 1072 4.80x 1072 | 5.15 x 103

w/o refine+scale 1.37 x 1073 4.60 x 1073 4.26 x 107! 3.02x 107! 6.06 x 107! | 8.68 x 102
wio refine+scale+debug | 2.16 x 1072 1.00 x 1072 7.12x 107! 6.62x 107! 7.16 x 107! | 1.49 x 107!

Evaluation of Existing Agentic Workflows

FunSearch 984 x107* 259 x107* 512x1072 3.79x 1072 4.80x 1073 | 4.73x 1073
AIDE 1.03x 1073 1.05x10™* 5.07x1072 577x1072 4.78 x 1073 | 4.33 x 1073

The results reveal a trade-off between solver reliability and sophistication. For example, GPT-40 mini
achieves a very low failure rate (8.6%) by conservatively defaulting to simple first-order methods. In
contrast, Gemini 2.5 Pro and 03 demonstrate a more advanced capability, generating a significantly
higher proportion of higher order methods while maintaining reasonably low failure rates.

From the problem perspective, the CNS Equation proves challenging with a high average failure
rate of 60.5%. The result underscores that single-shot generation can be insufficient for complex
problems, reinforcing the need for test-time compute scaling (Section 5.4).

Takeaways. A low failure rate alone is not a sufficient measure of a model’s capability; the ability
to generate diverse, high-order numerical methods is also critical. For challenging PDEs where
single-shot generation generations are prone to failure, test-time scaling is essential for obtaining
diverse, correct, and robust solvers.

5.6 INGREDIENTS FOR ACCURATE PDE SOLVING: INSIGTS INTO AGENT DESIGNS

To quantitatively understand the key drivers of performance in LLM-driven PDE solver generation
framework, we conduct an ablation study on the core components of CodePDE. The results are
presented in Table 2.

The ablation study clearly demonstrates that each component-refinement, scaling, and debugging—is
critical for achieving high accuracy. Removing these components progressively degrades performance
of the full CodePDE. A naive prompting approach that lacks all three components yields an overall
nRMSE of 1.49 x 10~! and leads to unusable solvers, especially for challenging PDEs. This result
confirms the value of a well-designed inference framework.

We further investigate whether these components are universally beneficial by adapting two recent
agentic workflows to our tasks, FunSearch (Romera-Paredes et al., 2024) and AIDE (Jiang et al.,
2025). FunSearch employs an evolutionary search that naturally incorporates refinement and scaling;
we augment it with a debugging mechanism. AIDE implements a tree search and already features
all three capabilities. As shown in Table 2, once equipped with these essential components, both
FunSearch (4.73 x 10~2) and AIDE (4.33 x 10~?) achieve performance comparable to CodePDE.
This suggests that the presence of these core functionalities is more important than the specific
high-level search strategy.

Takeaways. There is a substantial performance gap between naive prompting and using a structured
inference framework. The combination of self-refinement, test-time scaling, and automated debugging
is essential for LLM-driven PDE solving workflow/agent designs.

Under review as a conference paper at ICLR 2026

Spatial Discretization Distribution

(O ' v NN A o _.AO hY 3 aoh ol Ao
20 (’\?\0s o) VA(‘Q 5‘?‘\1 N\?(‘) W ?\\3 o a’\:* “:")See QSee\Lv'\(o ot 6\,—(_b¢ o OX_((\\ 0,5‘«\\ OB"“\\
\\ N2 e(“ 10e e- e
e Ao G eV o
W Finite Difference W Finite Volume Spectral

Figure 5: Distributions of the spatial discretization schemes employed by each LLM.

Proportion

ANO (O oF vo ') \|3 0 o _AO A A 0> o aoh an
10?\2{,1“\“ ¥ \1"?‘\1 AN 5 508 o psee oot 80 O e g e
e a6l e qu Qeud®uee 0o oe &
e

mmm Explicit Euler RK2 mmm RK3-SSP RK4 IMEX W= Others

Figure 6: Distributions of the time integration schemes employed by each LLM. “RK2”, “RK3-SSP”, “RK4”,
and “IMEX” refers to Runge-Kutta 2rd order, Runge-Kutta 3rd order (strong stability preserving), Runge-Kutta
4th order, and Implicit-Explicit schemes, respectively.

5.7 AVENUES FOR INTERPRETABILITY: INSIGHTS INTO THE GENERATED SOLVERS

In this subsection, we investigate the generated solvers and make a few observations.

Numerical scheme diversity. We conduct a detailed analysis of the numerical schemes employed
in the generated solvers for Burgers Equation. Figures 5 and 6 illustrate the distribution of spatial
discretization and time integration methods. Overall, the results show a reasonably broad coverage of
different schemes, although most LLMs predominantly adopt simple finite difference and explicit
Euler methods. Notably, DeepSeek-R1 diverges from this trend, favoring spectral discretization and
IMEX integration. We also find that 03 exhibits the most diversity in its scheme choices, indicating
better exploration ability. More detailed discussions, as well as the distributions of convective flux
schemes and time-stepping strategies, are provided in Appendix C.

Understanding the failure on Reaction-Diffusion Equation. Despite strong overall performance,
all LLMs and agentic methods consistently struggle with the Reaction-Diffusion Equation (Tables 1
and 2). Upon inspection of the LLM generated code and the reference implementation, we identify a
key distinction: LLM-generated solvers typically apply finite-difference schemes to the reaction term,
whereas the reference solver exploits the existence of an analytical solution for this component. We
provide detailed comparisons and include relevant solver code in Appendix D (Table 7).

This analysis highlights an advantage of LLM-driven PDE solver generation: solver transparency and
interpretability. Unlike neural solvers, LLMs produces human-readable code that exposes the model’s
reasoning. This interpretability enables us to diagnose errors—such as incorrect discretizations,
improper boundary conditions, or unstable time integration—and opens the door to human-in-the-
loop corrections or targeted model refinement.

6 CONCLUSIONS

We introduces CodePDE, an inference framework for LLM-driven PDE solving. The investigation
reveals key insights into the capabilities of LLMs for scientific computing. We find that a structured
inference framework with the combination of automated debugging, refinement, and test-time scaling
is essential. We also uncover a trade-off between solver reliability and sophistication and show that
frontier models can balance solver correctness and diversity in their exploration, a desired property
for effective test-time scaling and even scientific discovery. We believe these insights pave the way
for developing more capable LLMs and agents for scientific computing.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The implementation details of our experiments are presented in Appendix B. Our code is included in
the supplementary materials.

REFERENCES

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3—-family.

Soren Arlt, Haonan Duan, Felix Li, Sang Michael Xie, Yuhuai Wu, and Mario Krenn. Meta-designing
quantum experiments with language models, 2024. URL https://arxiv.org/abs/2406.
02470.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Ricardo Buitrago, Tanya Marwah, Albert Gu, and Andrej Risteski. On the benefits of memory
for modeling time-dependent PDEs. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=09kga5K3tB.

Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown. Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review Research,
2(2):023068, 2020.

Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and Thomas A Zang. Spectral methods:

evolution to complex geometries and applications to fluid dynamics. Springer Science & Business
Media, 2007.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924-24940, 2021.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-
bench: Evaluating machine learning agents on machine learning engineering. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=6s5uXNWGIh.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIgPiq.

Wenduo Cheng, Junhong Shen, Mikhail Khodak, Jian Ma, and Ameet Talwalkar. L2g: Re-
purposing language models for genomics tasks. bioRxiv, 2024. doi: 10.1101/2024.12.09.
627422. URL https://www.biorxiv.org/content/early/2024/12/11/2024.
12.09.627422.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bing-Li Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jun-Mei Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,

10

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2406.02470
https://arxiv.org/abs/2406.02470
https://openreview.net/forum?id=o9kqa5K3tB
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=KuPixIqPiq
https://www.biorxiv.org/content/early/2024/12/11/2024.12.09.627422
https://www.biorxiv.org/content/early/2024/12/11/2024.12.09.627422

Under review as a conference paper at ICLR 2026

Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shao-Ping Wu, Shengfeng Ye, Shirong Ma,
Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wen-Xuan Yu, Wentao Zhang, X. Q. Li, Xiangyu Jin, Xianzu Wang, Xiaoling Bi, Xiaodong
Liu, Xiaohan Wang, Xi-Cheng Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao
Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K.
Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yao Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yi Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yi-Bing Ma, Yiyuan Liu, Yongqiang
Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun
Zha, Yunfan Xiong, Yunxiang Ma, Yuting Yan, Yu-Wei Luo, Yu mei You, Yuxuan Liu, Yuyang
Zhou, Z. F. Wu, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang,
Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong
Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An
Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. ArXiv,
abs/2412.19437, 2024.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li Wang,
Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo
Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, M. Tang, Meng
Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi
Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu
Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie,
Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo,
Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen
Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu
Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability
in llms via reinforcement learning. ArXiv, abs/2501.12948, 2025.

Google. Gemini 2.0 flash thinking, 2025. URL https://deepmind.google/
technologies/gemini/flash—-thinking/.

Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. What can large language models do in chemistry? a comprehensive
benchmark on eight tasks. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=
IngbR3SZHW.

11

https://deepmind.google/technologies/gemini/flash-thinking/
https://deepmind.google/technologies/gemini/flash-thinking/
https://openreview.net/forum?id=1ngbR3SZHW
https://openreview.net/forum?id=1ngbR3SZHW

Under review as a conference paper at ICLR 2026

Robert Haase, Christian Tischer, Jean-Karim Hériché, and Nico Scherf. Benchmarking large lan-
guage models for bio-image analysis code generation. bioRxiv, 2024. doi: 10.1101/2024.04.
19.590278. URL https://www.biorxiv.org/content/early/2024/04/25/2024.
04.19.590278.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for
large-scale PDE pre-training. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=X7UnDevHOM.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Képpeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances in
Neural Information Processing Systems, 37:72525-72624, 2024.

Pengfei Hong, Navonil Majumder, Deepanway Ghosal, Somak Aditya, Rada Mihalcea, and Sou-
janya Poria. Evaluating llms’ mathematical and coding competency through ontology-guided
interventions, 2024. URL https://arxiv.org/abs/2401.09395.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning—accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021. ISSN 0027-8424. doi: 10.1073/pnas.2101784118. URL
https://www.pnas.org/content/118/21/e2101784118.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022b.

Weixin Liang, Junhong Shen, Genghan Zhang, Ning Dong, Luke Zettlemoyer, and Lili Yu. Mixture-
of-mamba: Enhancing multi-modal state-space models with modality-aware sparsity, 2025. URL
https://arxiv.org/abs/2501.16295.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218-229, 2021.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiging Sun, Joshua B. Tenenbaum, Daniela
Rus, Chuang Gan, and Wojciech Matusik. Llm and simulation as bilevel optimizers: A new
paradigm to advance physical scientific discovery. ArXiv, abs/2405.09783, 2024. URL https:
//api.semanticscholar.org/CorpusID:269790814.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=S37h0OerQLB.

Tanya Marwah, Ashwini Pokle, J Zico Kolter, Zachary Chase Lipton, Jianfeng Lu, and Andre;j
Risteski. Deep equilibrium based neural operators for steady-state PDEs. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=v6YzxwJ1Qn.

12

https://www.biorxiv.org/content/early/2024/04/25/2024.04.19.590278
https://www.biorxiv.org/content/early/2024/04/25/2024.04.19.590278
https://openreview.net/forum?id=X7UnDevHOM
https://arxiv.org/abs/2401.09395
https://www.pnas.org/content/118/21/e2101784118
https://arxiv.org/abs/2501.16295
https://api.semanticscholar.org/CorpusID:269790814
https://api.semanticscholar.org/CorpusID:269790814
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=v6YzxwJlQn
https://openreview.net/forum?id=v6YzxwJlQn

Under review as a conference paper at ICLR 2026

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, Mariel
Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining for
spatiotemporal surrogate models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=DKSI3bULiZ.

OpenAl. Gpt-40, 2024a. URL https://openai.com/index/hello-gpt-40/.
OpenAl. Openai 03-mini, 2024b. URL https://openai.com/index/openai-o3-mini/.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=roNgYLO_XP.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707, 2019.

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang Tao, Linhang Cai,
Shuaicheng Niu, Jianyu Heng, Hongyang Qin, Minwen Deng, Johannes Hog, Alexander Pfefferle,
Sushil Ammanaghatta Shivakumar, Arjun Krishnakumar, Yubo Wang, Rhea Sanjay Sukthanker,
Frank Hutter, Euxhen Hasanaj, Tien-Dung Le, Mikhail Khodak, Yuriy Nevmyvaka, Kashif Rasul,
Frederic Sala, Anderson Schneider, Junhong Shen, and Evan R. Sparks. Automl decathlon: Diverse
tasks, modern methods, and efficiency at scale. In Neural Information Processing Systems, 2021.
URL https://api.semanticscholar.org/CorpusID:265536645.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468—475, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. ArXiv, abs/1505.04597,2015. URL https://api.semanticscholar.
org/CorpusID:3719281.

Nadim Saad, Gaurav Gupta, Shima Alizadeh, and Danielle C. Maddix. Guiding continuous operator
learning through physics-based boundary constraints. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
gfWNItGOESS.

Matthew W Scroggs, Igor A Baratta, Chris N Richardson, and Garth N Wells. Basix: a runtime finite
element basis evaluation library. Journal of Open Source Software, 7(73):3982, 2022.

Junhong Shen, Mikhail Khodak, and Ameet Talwalkar. Efficient architecture search for diverse
tasks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
1d=TEmARO13VK.

Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and Ameet
Talwalkar. Cross-modal fine-tuning: align then refine. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

Junhong Shen, Atishay Jain, Zedian Xiao, Ishan Amlekar, Mouad Hadji, Aaron Podolny, and Ameet
Talwalkar. Scribeagent: Towards specialized web agents using production-scale workflow data,
2024a. URL https://arxiv.org/abs/2411.15004.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. UPS: Efficiently building foundation models
for PDE solving via cross-modal adaptation. Transactions on Machine Learning Research, 2024b.
ISSN 2835-8856. URL https://openreview.net/forum?id=0r9mhjRv1E.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolo Fusi. Tag-
LLM: Repurposing general-purpose LLMs for specialized domains. In Forty-first International
Conference on Machine Learning, 2024c. URL https://openreview.net/forum?id=
LlgphyBdeT.

13

https://openreview.net/forum?id=DKSI3bULiZ
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o3-mini/
https://openreview.net/forum?id=roNqYL0_XP
https://api.semanticscholar.org/CorpusID:265536645
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:3719281
https://openreview.net/forum?id=gfWNItGOES6
https://openreview.net/forum?id=gfWNItGOES6
https://openreview.net/forum?id=TEmAR013vK
https://openreview.net/forum?id=TEmAR013vK
https://arxiv.org/abs/2411.15004
https://openreview.net/forum?id=0r9mhjRv1E
https://openreview.net/forum?id=LlqphyBdeT
https://openreview.net/forum?id=LlqphyBdeT

Under review as a conference paper at ICLR 2026

Junhong Shen, Kushal Tirumala, Michihiro Yasunaga, Ishan Misra, Luke Zettlemoyer, Lili Yu, and
Chunting Zhou. Cat: Content-adaptive image tokenization, 2025. URL https://arxiv.org/
abs/2501.03120.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

Mauricio Soroco, Jialin Song, Mengzhou Xia, Kye Emond, Weiran Sun, and Wuyang Chen. Pde-
controller: Llms for autoformalization and reasoning of pdes. arXiv preprint arXiv:2502.00963,
2025.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.

Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language model
agents in algorithm search for combinatorial optimization. arXiv preprint arXiv:2504.04310, 2025.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596-1611, 2022.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark Gerstein. Biocoder: A
benchmark for bioinformatics code generation with large language models, 2024. URL https:
//arxiv.org/abs/2308.16458.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gwen2.5/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://gwenlm.github.io/blog/quwg-32b/.

Renbo Tu, Nicholas Roberts, Mikhail Khodak, Junhong Shen, Frederic Sala, and Ameet Talwalkar.
NAS-bench-360: Benchmarking neural architecture search on diverse tasks. In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.
URL https://openreview.net/forum?id=xUXTbg6gWsB.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in 1lms for enhanced
mathematical reasoning, 2023. URL https://arxiv.org/abs/2310.03731.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=eskQMcIbMS. Survey Certification.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=VNckp7JEHn.

14

https://arxiv.org/abs/2501.03120
https://arxiv.org/abs/2501.03120
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2308.16458
https://arxiv.org/abs/2308.16458
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b/
https://openreview.net/forum?id=xUXTbq6gWsB
https://arxiv.org/abs/2310.03731
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn

Under review as a conference paper at ICLR 2026

Zongzhe Xu, Ritvik Gupta, Wenduo Cheng, Alexander Shen, Junhong Shen, Ameet Talwalkar, and
Mikhail Khodak. Specialized foundation models struggle to beat supervised baselines, 2024. URL
https://arxiv.org/abs/2411.02796.

Zhanhong Ye, Xiang Huang, Leheng Chen, Hongsheng Liu, Zidong Wang, and Bin Dong. PDEformer:
Towards a foundation model for one-dimensional partial differential equations. In ICLR 2024
Workshop on Al4DifferentialEquations In Science, 2024. URL https://openreview.net/
forum?id=GLDMCwdhTK.

Jianwei Zheng, LiweiNo, Ni Xu, Junwei Zhu, XiaoxuLin, and Xiaoqin Zhang. Alias-free mamba
neural operator. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=gUEBXGV8JM.

Lianhao Zhou, Hongyi Ling, Keqiang Yan, Kaiji Zhao, Xiaoning Qian, Raymundo Arréyave, Xi-
aofeng Qian, and Shuiwang Ji. Toward greater autonomy in materials discovery agents: Unifying
planning, physics, and scientists. arXiv preprint arXiv:2506.05616, 2025.

0O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: Its Basis and Fundamentals. The
Finite Element Method. Butterworth-Heinemann, 2013. ISBN 9780080951355. URL https:
//books.google.com/books?id=7UL5Ls9h0OF8C.

David Zwicker. py-pde: A python package for solving partial differential equations. Journal of Open
Source Software, 5(48):2158, 2020.

15

https://arxiv.org/abs/2411.02796
https://openreview.net/forum?id=GLDMCwdhTK
https://openreview.net/forum?id=GLDMCwdhTK
https://openreview.net/forum?id=gUEBXGV8JM
https://books.google.com/books?id=7UL5Ls9hOF8C
https://books.google.com/books?id=7UL5Ls9hOF8C

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 DETAILED RESULTS ON TEST ERROR

In Table 3, we present the full results measured in normalized root mean squared error (nRMSE) for
all the inference strategies and agentic approaches that we study in our evaluation.

A.2 DETAILED RESULTS ON CODE CORRECTNESS AND DEBUGGING SUCCESS RATE

In Tables 5 & 6, we present detailed bug-free rates for each LLM on each PDE. For each LLM and
each PDE problem, we generate 32 i.i.d. samples (i.e., solvers), and the rates are computed based on
these samples.

In Figure 7, we present the average numbers of debugging iterations required for the language models
to generate executable code free from numerical issues.' For the solvers that are executable upon the
initial generation, we treat their numbers of debugging iterations as 0.

A.3 DETAILED RESULTS ON SCALING TEST-TIME COMPUTE

In Figure 3, we compare the test-time scaling curves via repeated sampling among different models.
Here, we additionally present the test-time scaling curve for each model on each problem individually
in Figure 11.

A.4 ADDITIONAL VISUALIZATION ON CONVERGENCE RATES

In Figures 8, we present visualizations on the convergence rates and solver libraries, in addition to
Figures 4 in the main paper.

A.5 ANALYSIS ON EXECUTION TIME

Section 5.5 presents analysis on solver convergence rates. To further the analysis, we measure average
code runtime as another proxy for computational efficiency. Figure 12 shows average code execution
time across PDEs/LLMs as an aggregated metric. Its left panel shows that execution times vary
significantly across models, with Gemini 2.5 Pro generating the most efficient code on average.
However, LLMs can occasionally introduce redundant operations or inefficient looping structures,
which leads to slower execution. According the right panel of Figure 12, CNS solvers tend to run
slower among the tested PDE families, likely due to its complexity. The finer-grained average code
execution time for each LLM on each PDE family can be found in Figure 13.

A.6 ANALYSIS ON SOLVER LIBRARY USAGE

CodePDE allows LLMs to flexibly select solver libraries (e.g., PyTorch, JAX). We analyze the
Python libraries utilized in the generated solvers, with summary statistics shown in Figures 9 & 10.
We observe that Gemini 2.5 Pro most frequently employs PyTorch and JAX with GPU acceleration,
which may partially account for its superior solver efficiency.

IThis analysis considers only solvers that successfully execute within 4 debugging iterations. Solvers that
fail to execute after 4 iterations are excluded from the average.

16

Under review as a conference paper at ICLR 2026

Table 3: Normalized RMSE comparisons. Geom. Mean refers to the geometric mean of nRMSE
values. Gemini 2.0 Thinking is short for Gemini 2.0 Flash Thinking. Neural Network baseline results
are from (Takamoto et al., 2022; Li et al., 2022b).

nRMSE () | Advection Burgers React-Diff CNS Darcy | Geom. Mean
Reference Numerical Solvers

| 1.03x107% 355x107* 229x107% 1.89x1072 4.80x 1073 | 2.38x 1073

PDE Solving Softwares
Dedalus 6.20 x 1073 278 x 1073 5.20 x 1072 2.01 x 1072 — —
PyPDE 2.03x 1073 5.92x107* 221 x10"' 2.52x 107! — -
Neural Network & Foundation Model baselines

U-Net 5.00 x 1072 2.20 x 10~' 6.00 x 10~% 3.60 x 107! 6.98 x 1072
FNO 770 x 1073 7.80 x 1072 1.40 x 1073 9.50 x 1072 9.80 x 103 | 9.52 x 1073
PINN 7.80 x 1072 8.50 x 107! 8.00 x 1072 8.09 x 1072
PDEformer 4.30 x 1073 4.60 x 1073 4.45 x 1073
UPS 220 x 1073 3.73x 1072 5.57x 1072 4.50 x 1073 1.20 x 1072
ORCA 9.80 x 1073 1.20 x 1072 3.00 x 103 6.20 x 1072 1.22 x 1072

CodePDE: Reasoning + Debugging (best of 32)

Gemini 2.0 Flash 1.14x 1073 297 x10™* 2.19x 107! 4.50x 1072 [480 %103 | 6.92 x 1073
Gemini 2.0 Thinking | 5.54 x 1072 3.21 x 10™% 2.19x 107! 7.56 x 1072 | 4.80 x 1072 | 1.07 x 1072
Gemini 2.5 Pro 1.01 x 1073 [1.23 %1074 1.49x 107! 7.39x 1072 4.89x 1073 | 5.82 x 1073
Qwen-2.5-Max 497 x107% 1.35x107% 957 x 1072 236x 107! 6.76 x 107! | 4.00 x 1072
QwQ-Plus 1.03 x 1073 3.05 x 107* 220x 107! 7.43x1072 [480 %103 | 7.55 x 1073
Claude-3.5-haiku | 3.70 x 1073 323 x 107* 220x 107! 234 x 107! 1.00 x 10° | 3.61 x 1072
Claude-3.7-sonnet | 1.32 x 1073 259 x 107% 5.19x 1072 4.26x 1072 | 480 x 10~2 5.15x 103
DeepSeek-V3 7.37x 1072 6.02x107% 218 x 107! [241 x 1072 1.00 x 10° | 2.98 x 1072

DeepSeek-R1 1.05x 1073 2.76 x 1074 2.20 x 1071 7.46 x 1072 | 4.80 x 1073 | 7.44 x 1073
GPT-40 mini 541 %1073 9.93 x 107! 3.07x 107! 236 x10"' 1.00 x 10° | 2.08 x 107!
GPT-40 1.55x 1073 3.69 x 107* [1.99 x 1072 1.81 x 10~! 7.67x 107! | 1.74 x 1072
GPT-4.1 1.50 x 1073 3.63 x10~* 144 x 1071 520x 1072 4.88x 1073 | 7.23x 1073
03 9.74 x107* 3.69x107* 1.98x 1071 280x 1072 4.92x 1073 | 6.28 x 1073
ol-mini 6.45 x 107% 340 x107% 1.55x 107! 236 x10~' 8.20 x 107! | 3.66 x 102
03-mini 1.05x 1073 276 x 107* 210 x 107! 448 x 1072 4.83x 1073 | 6.67 x 103
o4-mini 1.21 x 1072 3.37x107* 144 x107' 6.11 x1072 4.92x 1073 | 1.12x 1072

CodePDE: Reasoning + Debugging + Refinement (best of 12)

Gemini 2.0 Flash | 824 x 107* 1.06 x 100* 1.76 x 1072 1.72x 1072 [478 x 1072 2.63x 1073
Gemini 2.0 Thinking | 9.74 x 107* 2.70 x 1074 "1.74 x10°2 2.41 x 1072 4.80 x 1072 | 3.51 x 1073
Gemini 2.5 Pro 9.74x 107% 3.15x107% 994x 1072 2.77x1072 4.92x 1072 | 5.29 x 1073
Qwen-2.5-Max 9.74 x 107* 2,60 x 10™* 9.13 x 1072 1.49x 1072 4.80 x 1073 | 4.40 x 1073
QwQ-Plus 9.74x 107% 1.07x10™* 519x1072 1.50x 1072 4.80 x 10~ | 3.29 x 1073
Claude-3.5-haiku 1.01 x 1073 2,60 x 107% 5.19x 1072 1.06 x 107! 1.92 x 107! | 1.22 x 102
Claude-3.7-sonnet | 9.74 x 1074 2.60 x 1074 519 x 1072 2.72x 1072 4.83x 1073 | 4.44 x 1073

DeepSeek-V3 9.74 x 107* 259 x 1074 [1.74 x 1072 1.56 x 1072 4.80 x 1072 | 3.18 x 1073
DeepSeek-R1 9.74 x 10™* 259 x10~* 143 x 107! 1.52x 1072 4.80 x 103 | 4.83 x 103
GPT-40 mini 1.32x 1073 260 x10™* 1.76 x 1072 4.41 x1072 4.80x 1073 | 4.18 x 1073
GPT-40 9.74 x107* 259 x10™* 1.76 x 1072 241 x 1072 4.80 x 103 | 3.48 x 103
GPT-4.1 1.01 x 1073 3.15x10™* 144 x107' 153 x 1072 4.88x 1073 | 5.08 x 1073
03 1.01 x 1073 3.15x107% 2.01x107' [1.31 x1072 4.88x 1073 | 527 x 1073
ol-mini 9.74 x 107* 3.15x107% 9.07x 1072 833 x107%2 4.92x1073 | 6.48 x 1073
03-mini 9.74 x 107* 259 x107% 5.19x1072 157x10"2 4.80x 1073 | 3.97x 103
o4-mini 9.94 x107* 3.15x107% 2.01 x107! 235x1072 4.92x1073 | 5.92x 1073

17

Under review as a conference paper at ICLR 2026

Table 4: Normalized RMSE comparisons. Geom. Mean refers to the geometric mean of nRMSE
values. Gemini 2.0 Thinking is short for Gemini 2.0 Flash Thinking. Neural Network baseline results
are from (Takamoto et al., 2022; Li et al., 2022b).

Reference Numerical Solvers

| 1.03x107% 355 x107% 229x107% 1.89x 1072 4.80x107% | 2.38 x 107

PDE Solving Softwares
Dedalus 6.20 x 1073 278 x 1073 5.20 x 1072 2.01 x 1072 - -
PyPDE 2.03%x 1073 592x107% 221x107% 252x 1072 - -
Neural Network & Foundation Model baselines

U-Net 5.00x 1072 2.20x 10~* 6.00 x 1073 3.60 x 10~* - 6.98 x 1072
FNO 770 x 1073 7.80 x 1073 1.40 x 1073 9.50 x 1072 9.80 x 1073 | 9.52 x 1073
PINN 7.80 x 1072 850 x 10~' 8.00 x 1072 - - 8.09 x 1072
PDEformer 4.30%x 1073 4.60 x 1073 - - - 4.45 x 1073
UPS 220%x 1073 3.73x 1072 557x1072 4.50x 1073 — 1.20 x 1072
ORCA 9.80 x 1073 1.20x 1072 3.00 x 1073 6.20 x 1072 - 1.22 x 1072

FunSearch-PDE

Gemini 2.0 Flash 1.06 x 1073 2,97 x 10~* 2.06 x 1071 4.51 x 1072 2.21 x 107! | 1.45 x 1072
Gemini 2.0 Thinking | 1.17 x 1073 1.00 x 10° 2.19 x 10~' 1.00 x 10° 4.80 x 1073 | 6.57 x 10~2
Gemini 2.5 Pro 1.05 x 1073 [113 %X 107* 3.72x 1072 6.86 x 1072 4.78 x 1073 | 4.29 x 103
Qwen-2.5-Max 117 x 1073 3.32x107% 3.47x1072 252x 107! 3.01 x 107! | 1.59 x 1072
QwQ-Plus 1.05x 1073 275 x107* 220x10°' 7.31x 1072 4.80x 1072 | 7.41 x 1073
Claude-3.5-haiku | 4.30 x 1073 1.39 x 1073 5.19x 1072 249 x 10! 1.00 x 10° | 3.78 x 102
Claude-3.7-sonnet | 9.84 x 10~% 259 x 107% 5.12x 1072 [3.79x 1072 4.80x 1073 | 4.73 x 1073
DeepSeek-V3 227 x107% 1.30x 1073 3.79x 1072 1.00 x 10° 1.00 x 10° | 4.07 x 10~2

DeepSeek-R1 1.05 x 1073 276 x 107% 3.77 x 1072 7.36 x 1072 4.83 x 1073 | 5.22 x 1073
GPT-40 mini 541 x107% 993 x 107! 5.92x 107! 252x 1071 1.00 x 10° | 2.40 x 10~*
GPT-40 1.55x 1073 299 x10~* [1.97 x 1072 9.54 x 10~ 1.00 x 10° | 2.44 x 102
GPT-4.1 1.05 x 1073 2.22x107% 1.68x10~! 1.00 x 10° 4.78 x 1073 | 1.13 x 102
03 1.03x 1073 274 x107* 220 x 1071 4.40 x 1072 [4.65 x 1072 | 6.61 x 1073
ol-mini 1.05x 1073 276 x 10~* 1.14x107' 9.36x 1072 6.76 x 10~! | 1.84 x 102
03-mini 1.05 x 1073 258 x 107% 2.20x 107! 4.57x 1072 4.78 x 1073 | 6.65 x 103
o4-mini 9.60 x 10°* 2.66 x 107* 2.09x 107! 6.11x1072 4.80 x 1073 | 6.91 x 1073
AIDE-PDE

Gemini 2.0 Flash | 6.24 x 107' 290 x 107% 1.00 x 10° 1.00 x 10° 9.97 x 10~ | 1.78 x 10~!
Gemini 2.0 Thinking | 6.24 x 1071 2.90 x 10=* 1.00 x 10° 1.00 x 10° 1.00 x 10° | 1.78 x 10~!
Gemini 2.5 Pro 1.05x 1073 276 x 107* 1.73x 107" 7.47x 1072 4.78 x 1072 | 7.09 x 1073
Qwen-2.5-Max 1.03 %1072 3.92x107*% 221 x107' 1.00x10° 1.00 x 10° | 3.89 x 102
QwQ-Plus 1.05 x 107° 275 x107% 221 x 107t 252 x 107! 491 x1073 | 9.53 x 103
Claude-3.5-haiku 2,95 x 1073 856 x 1072 1.03x 107! 255 x10"1 1.00 x 10° | 9.21 x 102
Claude-3.7-sonnet | 1.03 x 1073 1.05 x 10°* 5.07 x 1072 577 x 1072 4.78 x 1073 | 433 x 103

DeepSeek-V3 1.06 x 1072 1.05 x 107* 221 x10~' 1.00 x 10° 1.00 x 10° | 3.01 x 102
DeepSeek-R1 1.03 x 1073 4.08 x107* 9.68x 1072 1.24 x 10! 4.80x 1073 | 7.53 x 103
GPT-40 mini 541 x107% 1.00 x 10° 592 x 107! 252x10"' 1.00 x 10° | 2.41 x 10!
GPT-40 541 x 1073 7.29x10™* 5.92x 107! 251 x107' 1.00 x 10° | 5.67 x 1072
GPT-4.1 1.17x 1073 326x107% 1.59%x 107! [4.65x 1072 4.78 x 1073 | 6.69 x 103
03 1.05x 1073 2,60 x 107* 5.19x 1072 7.53x 1072 [3.73 x10°2 | 5.25 x 1073
ol-mini 9.27x 1073 361 x107* 1.87x10"!' 9.95x10"' 3.61 x 107! | 4.68 x 10~2
03-mini 1.34 x 1072 323x107% 218 x 107! 1.00 x 10° 4.79x 1073 | 2.14 x 102
o4-mini 1.05 x 1073 2.69x107% 2.00x 10"t 7.24 x 1072 4.67x1073 | 7.18 x 1073

18

Under review as a conference paper at ICLR 2026

Table 5: Bug-Free Rates in the initial round of code generation.

Advection Burgers React-Diff ~ CNS Darcy Flow Average
Gemini 2.0 Flash 87.50% 62.50% 18.75% 0.00% 21.88% 38.13%
Gemini 2.0 Thinking 93.75% 43.75% 43.75% 6.25% 25.00% 42.50%
Qwen-2.5-Max 56.25% 9.38% 43.75% 12.50% 6.25% 25.63%
QwQ-Plus 46.88% 59.38% 43.75% 28.13% 40.63% 43.75%
Claude-3.5-haiku 65.63% 28.13% 9.38% 43.75% 31.25% 35.63%
Claude-3.7-sonnet 90.63% 78.13% 37.50% 3.13% 59.38% 53.75%
DeepSeek-V3 87.50% 15.63% 21.88% 0.00% 25.00% 30.00%
DeepSeek-R1 93.75% 71.88% 59.38% 34.38% 59.38% 63.75%
GPT-40 mini 84.38% 15.63% 31.25% 25.00% 12.50% 33.75%
GPT-40 78.13% 9.38% 28.13% 0.00% 0.00% 23.13%
03-mini 96.88% 34.38% 90.63% 3.13% 75.00% 60.00%
Average 80.11% 38.92% 38.92% 14.20% 32.39% 40.91%
Table 6: Bug-Free Rates after up to 4 iterations of self-debugging.
Advection Burgers React-diff CNS Darcy Flow Average
Gemini 2.0 Flash 96.88% 93.75% 96.88% 50.00% 62.50% 80.00%
Gemini 2.0 Thinking 100.00% 96.88% 93.75% 34.38% 84.38% 81.88%
Qwen-2.5-Max 93.75% 68.75% 96.88% 75.00% 34.38% 73.75%
QwQ-Plus 100.00% 96.88% 96.88% 78.13% 100.00% 94.38%
Claude-3.5-haiku 100.00% 93.75% 90.63% 93.75% 96.88% 95.00%
Claude-3.7-sonnet 100.00% 93.75% 96.88% 68.75% 100.00% 91.88%
DeepSeek-V3 100.00% 87.50% 81.25% 62.50% 68.75% 80.00%
DeepSeek-R1 100.00% 96.88% 100.00% 50.00% 100.00% 89.38%
GPT-40 mini 100.00% 100.00% 90.63% 87.50% 62.50% 88.13%
GPT-40 100.00% 68.75% 78.13% 40.63% 37.50% 65.00%
03-mini 100.00% 87.50% 100.00% 34.38% 90.63% 82.50%
Average 99.15% 89.49% 9290% 61.36% 76.14% 83.81%

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Average Number of Debugging Iterations Comparisons across LLMs/PDEs

Figure 7: We report the average number of debug iterations. Left: Averaged across all five PDE
datasets for each model. Right: Averaged across all LLMs for each PDE family.

Solver Convergence Comparisons across LLMs/PDEs

\as QA 5?<o N\avt ?\\)5 2 (\“e \13 9\\, “\“\ Ay o2 “\\“\ “\\“\‘“\\“
me % Qde‘35e31 .50 936 956?1 S el
oot
- Fail 0% Order 1 m Order 2 Order=3

Wt
el
poy

ge(zaci‘d‘“ o g

Ul

Figure 8: The distribution of solver convergence rates for each model and PDE dataset.

Library Usage Comparisons across LLMs/PDEs

PyTorch= 2.7% ELEGA --31 7%- 57.7%)| 85.1%|76.1% [48:4% WX LT3 50.0%| 64. 1%55 o%
75%

JAX- 0.0% 0.0% 5.0% 105% 6.3% 2.5% 0.0% 9.6% 6.0% 0.0% 0.0% 6.3% 5.8% 6.2% 7.4% 3.5%
50%

SciPy-18.7% 13.0% 0.0% 13.9% 1.9% 30.8% 22.1% 18.4% 3.1% 8.3% 13.4% 0.0% - 0.2% 1.0% 8.3% 1.1%
25%

NumPy- o.0% -10 7% 31. z%-u 0% 2.0% .6% - -29 o%--15.4%
' -0%

0 ot o A0 Ad s ot o
0(—\6" “\(\\L\ ?\\7_ ‘?\‘N PN \’\“5 \,\a\“ (\“Q‘,Dee\k‘ﬂ,'e‘«‘k G"" gra> o3 p\d‘led—\ %\“qe‘ N N G

W20 OF Q
Geﬁc‘:“ a2 et \a\,dez‘ OQe 0e®

Figure 9: The solver libraries picked by each model or used on each PDE problem.

100%- Solver Library Usage Distribution Comparisons across LLMs/PDEs

80%

60%

40%

Proportion

20%

0%

«m“%aﬁﬁﬁ’“wﬁﬁov“ﬁ ﬂ@ o‘\“"'e,e,‘#\I3
oWV QW

N ?"Aoc,?"‘A'\' o3 eC‘.‘O“?;\)‘inaC‘D\« o oot

0?\ 0,(\(\\ Q 3 psee P'd\‘

(,e“c‘:“ \“\’L C\a\lde\ \)de' 06
mmm PyTorch [JAX S s SciPy NumPy

Figure 10: Distributions of the solver libraries used by selected LLMs.

20

Under review as a conference paper at ICLR 2026

Test-time scaling of Gemini 2.5 Pro

Advection Burgers React-Diff CNS 6 Darcy
w -1
g —2.985 -3.6
x -0.751 -1 -1.8
£c:>3—2.990 . ~1.124 -2.0
o -3 -0.801
0 _ -2.2
8 2.995 —1.13]
51015202530 51015202530 51015202530 51015202530 51015202530
Sample size Sample size Sample size Sample size Sample size
Test-time scaling of QwQ-Plus
Advection Burgers React-Diff CNS Darcy
w
wn -0.6 -
= -2.94 32 —0.645 1>
c _
2 -2.96 -0.6501 0.8
2 -3.4 -2.0
0 _2.08 : —0.655+ -1.0
g-2
51015202530 51015202530 51015202530 51015202530 51015202530
Sample size Sample size Sample size Sample size Sample size
Test-time scaling of Claude-3.7
Advection Burgers React-Diff CNS Darcy
w —3.41
g —2.61 -11 -1.0
x -0.8 , '
—-2.71 -1
~3.51 -1.5
S 3.5 -1.0
= —2.84 -1.3 -2.0
g -1.2
51015202530 51015202530 51015202530 51015202530 51015202530
Sample size Sample size Sample size Sample size Sample size
Test-time scaling of DeepSeek-R1
Advection Burgers React-Diff CNS Darcy
w20
0 _32 -0.6565 -1.122
o
c 0.6570 1124 -1.5
o =25
] -3.4 0.6575
o -1.126 -2.0
4, 0.6580
o -3.0
51015202530 51015202530 51015202530 51015202530 51015202530
Sample size Sample size Sample size Sample size Sample size
Test-time scaling of 03
3010 Advection Burgers React-Diff CNS Darcy
“-‘é : -3.0 -0.6981 —1.2] =05
4 0.700 -1.0
c _ 4
- -3.2 '
8 3.011 4\ 141 15
o -0.7021
$ —-3.4 2.0
M -3,012
51015202530 51015202530 51015202530 51015202530 51015202530
Sample size Sample size Sample size Sample size Sample size

Figure 11: Smoothed test-time scaling curves for each representative models on each PDE family. We
increase 7 in the best-of-n sampling to study test-time scaling performance.

Average Code Execution Time Comparisons across LLMs/PDEs

O

v 360

£

: 240 175.84 144.69

o 3 137.73
2120

@

Z 0

PO LM\ & <°

z«;\(\\ '6\7’9« N Q \)6@:5 N ! Oee oee
¢ & ¥ o e

Figure 12: Code execution time comparisons. Left: Average code execution time across PDEs for each model.
Right: Average code execution time across LLMs for each PDE family.

21

Under review as a conference paper at ICLR 2026

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144 N
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155 9
1156 Average Code Execution Time for CNS Equation
1157 1024.54

1158
1159
1160
1161
1162 \36\“ _\"_\(\g .(_)Q(o 6_\]@* 03\69 x\,é\‘é“ (\(\?"' N e\‘_,?:\ 0«(\‘(\ ?,(,D‘O ,‘,b‘:\
1163 & oW & T At a” 0F P
1160 & & @

1165
1166
1167
1168
1169
1170
1171
1172 29
1173 Oe‘d\‘\\l\(i\”" o
1174
1175
1176
1177
1178
1179
1180 N IR U N N O SN I\ &0 @
1181 0 e e of Lo Q(peé“ &ee\“ &ho“‘ ST
1182 6'\\(\\ & o Oe((‘ o o’a\)ée'c\b\)éeﬁ R Iy
1183 ®

1184
1185
1186
1187

Average Code Execution Time for Advection Equation
32.69

28.13

w
o

N
o

6(\((\ o>

NN
e o
€ e((\\

Average Code Execution Time for Burgers Equation
221.04

66.71 62.65

18.98 10.40 553

O 0’5
N
oY

(pep)é ee"'\‘" < o,y((\
eQ oeeQ 0?

AR CVNCINE S Y SR ©
0 <« & OQ‘ ob"«\

1000

768.06 696.84

625.31

530.39
5001 359,07

Average Running Time (s)

>

<
oY

& .\({\
A
& N

Average Code Execution Time for Darcy Flow Equation

417.81

366.76

304.29

115.86 84.74 118.78

44.95

R IR ST NV N SN LIS SR\ Py C RN R S S &
QTR N R o° N\ N eee‘{— Q'('D‘O«\ & & 0,\,,6‘ 0,,),((‘ ob"((\

- b\)(}e : 06

Average Code Execution Time for Reaction Diffusion Equation

771.39

5001 338.86 420.09 354.48 368.08

250 213.91 230.54260.22517 46238.75

103.97 127.39 113.82
37.06 5.43 1.06

Q& Q)
< <
o> o

Figure 13: The average code execution time for each LLM and each PDE family.

22

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

B.1 PDE DESCRIPTIONS

We share below the descriptions of PDEs considered in our work which are used to prompt LLMs.

Advection Equation

Your task is to solve a partial differential equation (PDE) using Python in batch mode.
The PDE is the 1D advection equation, given by

{@u(t,x) + B0,u(t,x) =0, x€(0,1), t € (0,2]
U(Oam)::ZUO(x)a T e (071)

where [3 is a constant representing the advection speed. In our task, we assume the periodic
boundary condition.

Given the discretization of ug(x) of shape [batch_size, N], where N is the number of spatial
points, you need to implement a solver to predict u(t, -) for the specified subsequent time
steps (t = t1,...,tr). The solution is of shape [batch_size, T+1, N] (with the initial time
frame and the subsequent steps). Note that although the required time steps are specified, you
should consider using smaller time steps internally to obtain more stable simulation.

In particular, your code should be tailored to the case where 5 = 0.1, i.e., optimizing it
particularly for this use case.

You will be completing the following code skeleton:

import numpy as np
def solver (u0_batch, t_coordinate, beta):

"""Solves the Advection equation for all times in t_coordinate.

Initial condition [batch_size, N]J,

is the number of different nitial conditions
the number of spatial grid points
ordinate p.ndarray) : Time ordinates of shape [T+1

It begin ith t_0=0 and follows the time steps t_1, ..., t_T.
beta (float): stant d.
Returns:
solutions (np T ize, T+1, NJ.
lution s O, gl tial conditions (u0O_batch),
solution Y] olutions at time t_coordinate[i].
won
TODO: Implement the solver for the Advection equation
Hint
1. Co der using PyTorch or JAX with GPU acceleration
2. Remember to handle data types and device placement appropriately
return solutions
_ J

23

Under review as a conference paper at ICLR 2026

Burgers Equation

Your task is to solve a partial differential equation (PDE) using Python in batch mode.
The PDE is the burgers equation, given by

Opu(x,t) + Oy (@) = vOzzu(z,t), =€ (0,1), t e (0,1]
u(z,0) = up(x), z€(0,1)

where v is a constant representing the viscosity. In our task, we assume the periodic boundary
condition.

Given the discretization of u(x) of shape [batch_size, N] where N is the number of spatial
points, you need to implement a solver to predict u(-,) for the specified subsegent time steps
(t =14, ...,t7). The solution is of shape [batch_size, T+1, N] (with the initial time frame and
the subsequent steps). Note that although the required time steps are specified, you should
consider using smaller time steps internally to obtain more stable simulation.

You will be completing the following code skeleton:

import numpy as np

def solver (u0_batch, t_coordinate, nu):

"""Solves the Bu s’ equation for all times in t_coordinate.

Args:
u0_batch (np.ndarray): Initial condition [batch_size, NJ,
where batch_size is the number of different initial conditions,
and N is the number of spatial
t_coordinate (np.ndarray) :

grid points.
r

Time cc

dinates of shape [T+1].

It begi vith t_0=0 and follows the time steps t_1, ..., t_T.
nu (float) : iscosity coefficient.
Returns:
solutions (np.ndarray): Shape [batch_size, T+1, N]J.
solutions[:, 0, :] contains the initial conditions (u0O_batch),

solutions([:, 1, :] contains the solutions at time t_coordinate[i].

nun

TODO: Implement the solver for the Burgers’ equation

Hints:

1. Consider using PyTorch or JAX with GPU acceleration

2. Remember to handle data types and device placement appropriately

return solutions

24

Under review as a conference paper at ICLR 2026

Reaction Diffusion Equation

The PDE is a diffusion-reaction equation, given by

{atu(t,x) — VOppu(t,z) — pu(l —u) =0, =z € (0,1), te (0,7
(0, z) = uo(x), z € (0,1)

where v and p are coefficients representing diffusion and reaction terms, respectively. In our
task, we assume the periodic boundary condition.

Given the discretization of ug(z) of shape [batch_size, N] where N is the number of spatial
points, you need to implement a solver to predict u(-, t) for the specified subsequent time
steps (t = t1,...,tr). The solution is of shape [batch_size, T+1, N] (with the initial time
frame and the subsequent steps). Note that although the required time steps are specified, you
should consider using smaller time steps internally to obtain more stable simulation.

In particular, your code should be tailored to the case where v = 0.5, p = 1.0, i.e., optimizing
it particularly for this use case.

You will be completing the following code skeleton provided below:

import numpy as np

def solver (uO_batch, t_coordinate, nu, rho):
"""Solves the 1D reaction diffusion equation for all times in t_coordinate.

Args:
u0_batch (np.ndarray): Initial
where batch_size is the num

condition [batch_size, N],
r of different initial conditions,

and N is the number of spati grid po S
t_coordinate (np.ndarray): Time coordinates of shape [T+1].
It begi with t_0=0 and follc the time steps t_1, ..., t_T
nu (float): The parameter nu in the equation.
rho (float): The parameter rho in the equation.
Returns:
solutions (np.ndarray): Shape [batch_size, T+1, NJ.
soluti s, ©, s] ins the initial conditions (u0O_batch)
solut s[:, 1, :] contains the solutions at time t_coordinate[i].
wnn
TODO: Implement the solver for 1D reaction diffusion equation
Hints:
1. Consider using PyTorch or JAX with GPU acceleration

2. Remember to handle data types and device placement appropriately
return solutions

=+

25

Under review as a conference paper at ICLR 2026

Compressible Navier Stokes Equation

Your task is to solve a partial differential equation (PDE) using Python in batch mode.
The PDE is the 1D compressible Navier-Stokes equations, given by

Oip + Oz (pv) =0
p(0pv + v0,v) = —0up + 1NDav + ((+1/3)04(0rv)
O {eJr%} + Oy [(eerJr "%2)’0—110’] =0

where p is the mass density, v is the velocity, p is the gas pressure, ¢ = p/(I" — 1) is the
internal energy with ' = 5/3, 0’ = ((+ %n)@wv is the viscous stress tensor, and 7, ¢ are the
shear and bulk viscosity coefficients, respectively. In our task, we assume periodic boundary
conditions. The spatial domain is Q = [—1, 1].

Given the discretization of the initial velocity, density, pressure, each of shape [batch_size,
N] where N is the number of spatial points, you need to implement a solver to predict the
state variables for the specified subsequent time steps (¢t = t1,. .., 7). The solver outputs
velocity, density, pressure, each of shape [batch_size, T+1, N] (with the initial time frame and
the subsequent steps). Note that although the required time steps are specified, you should
consider using smaller time steps internally to obtain more stable simulation.

In particular, your code should be tailored to the case where n = (= 0.1, i.e., optimizing it
particularly for this use case.

You will be completing the following code skeleton provided below:

import numpy as np

def solver (Vx0, density0O, pressure(O, t_coordinate, eta, zeta):

"""Solves the 1D compressible Navier-Stokes for all times in t_coordinate.

Args:
Vx0 (np.ndarray): Initial ve

where N is the number o
ty0 (np.ndarray):
ure0 (np.ndarray) :

eta (float)
rho (float):

Returns:
Vx_pred (np.ndarray) :
The first timeframe is
The uent timeframes are

time s
ensity_pred (np.ndarray): Shape [batch_size, T+1, NJ.
ssure_pred (np.ndarray): Shape [batch_size, T+1, NJ.

eps.

wnn
TODO: Implement the so
t Hints:

1.
"

for 1D compressible Navier-Stokes equations

ider usi acceleration

g PyTorch or JAX wi
2. Remember to handle data types and de
return Vx_pred, density_pred, pressure_pred

> placement appropriately

26

Under review as a conference paper at ICLR 2026

Darcy Flow

Your task is to solve a partial differential equation (PDE) using Python in batch mode. The
PDE is the 2D Darcy flow equation, given by:

—V - (a(x)Vu(z)) =1, z€(0,1)2
with the boundary condition:

u(z) =0, x€9(0,1)2
where () is the solution function, and a(x) is a batch of coefficient function.
Given the discretization of the coefficient function a(z) of shape [batch_size, N, N], where
N is the number of spatial grid points in each direction, you need to implement a solver
to predict u(x) for the specified subsequent time steps. The solution should be of shape
[batch_size, N, N].
You will be completing the following code skeleton provided below:

import numpy as np

def solver (a):
"""Solve the Darcy equation.

Args:

a (np.ndarray): Shape [batch_size, N, N], the coefficient in the
equation, where N denotes the number of spatial grid points in each
direction.

Returns:

solutions (np.ndarray): Shape [batch_size, N, N]
wnn

TODO: Implement the solver for Darcy equation

Hints:

1. Consider using PyTorch or JAX with GPU acceleration
3 B

2. Alternat ly, you can use NumPy or
3. Remember to hand
return solutions

iPy for CPU-based computation
ce placement appropriately

=+

> data types and dev

27

Under review as a conference paper at ICLR 2026

B.2 INSTRUCTIONS TO THE LANGUAGE MODEL

In this subsection, we present our instructions to the language model, including system prompt and
instructions for debugging and refinement.

System Prompt

You are an intelligent Al researcher for coding, numerical algorithms, and scientific comput-
ing.

Your goal is to conduct cutting-edge research in the field of PDE solving by leveraging and
creatively improving existing algorithms to maximize performances based on feedbacks.
Follow the user’s requirements carefully and make sure you understand them.

Always document your code as comments to explain the reason behind them.

Always use Markdown cells to present your code.

\ J
Example Debugging Prompt

Thank you for your implementation! When running the code, I got the following output and
error message:

Code output: {code_output}

Error message: {error_message}

Can you think step-by-step to identify the root cause of the error and provide a solution to
fix it? Please provide a detailed explanation of the error and the solution you propose. You
can refer to the code implementation you provided earlier and analyze the error message to
identify the issue.

Your response should be in the following format:

[Your rationale for debugging (think step-by-step)]

‘Y '‘python
[Your bug-free implementation]

Under review as a conference paper at ICLR 2026

Example Refinement Prompt

Your task is to solve a partial differential equation (PDE) using Python in batch mode.
{pde_description}

You will be improving the following existing code samples. The code samples are provided
below:

{code_samples}

Your tasks are:

1. Understand the above code samples. Compare their techniques and performances.

2. Identify the parts that could potentially be improved.

3. Plan on how you can improve the function.

4. Improve the function.

The goal is to get a very low nRMSE (normalized RMSE) and make the code as fast as
possible.

You must analyze the implementation and test results of the examples provided in the code
template, and think about how you can improve them to reduce the nRMSE.

If the RMSE is much higher than le-2 or becomes Nan, it is likely that there is a bug in the
implementation and you must debug it or think about completely different approaches.

If the running time is much longer than 600s, you must prioritize making it more efficient.
The convergence rate is the empirical order of convergence with respect to spatial resolution.
It is also a good indicator of the performance of the algorithm which you may consider.
You can implement auxiliary functions or add additional arguments to the function if needed.
You can use PyTorch or JAX with GPU acceleration. You can consider known techniques
and analyze their effectiveness based on existing results. You should also consider combining
existing techniques or even developing new techniques since you are doing cutting-edge
research.

Your generated code will be executed to evaluated. Make sure your ‘solver‘ function runs
correctly and efficiently. You must use print statements for to keep track of intermediate
results, but do not print too much information. Those output will be useful for future code
improvement and/or debugging.

Your output must follow the following structure:

1. Summary of the existing implementation along with their performances. Identify what
techniques work well, what could be buggy (due to high error or Nan), and what could be
further improved.

2. Rationale for the new implementation (think step-by-step) based on the summary of the
existing implementation.

3. Your python implementation (modularized with appropriate auxiliary functions):

Y 'python
[Your improved implementation]
Va

29

Under review as a conference paper at ICLR 2026

B.3 DETAILED EXPERIMENT SETUP

Datasets. We focus on 5 representative PDE families that are commonly employed as testbeds for
ML methods, including Advection, Burgers, Reaction-Diffusion, Compressible Navier-Stokes (CNS),
and Darcy Flow. These span a range of spatial dimensions, boundary conditions, and numerical
stiffness. The datasets are drawn from PDEBench (Takamoto et al., 2022) and FNO paper (Li et al.,
2022b) (MIT license). We randomly sample 100 instances for each family for testing. We also sample
another 50 instances as the development set, which is used to provides the execution feedback to
LLMs without leaking the true test data.

Models. We benchmark 16 LLMs, including proprietary models such as GPT-40 (OpenAl, 2024a),
Claude-3.5/3.7 (Anthropic, 2024), Gemini 2.0/2.5 (Team et al., 2023) Qwen-2.5-Max (Team, 2024),
and open-weights models such as DeepSeek-V3 (DeepSeek-Al et al., 2024). We also include
reasoning models such as 03 (OpenAl, 2024b), DeepSeek-R1 (DeepSeek-Al et al., 2025), QwQ-
Plus (Team, 2025), and Gemini 2.0 Flash Thinking (Google, 2025). Additionally, we evaluate 2
agentic workflows: FunSearch (Romera-Paredes et al., 2024) and AIDE (Jiang et al., 2025).

Baselines. We compare LLM-generated solvers against naive numerical solvers based on finite
difference methods with the central difference scheme (and forward Euler time integration for time-
dependent PDEs), as well as high-quality solvers based on established softwares or hand-crafted
implementations. We also include standard neural network solvers and foundation models as baselines,
including FNO (Li et al., 2022b), a spectral neural operator; U-Net (Ronneberger et al., 2015), a
convolutional architecture for solution regression; PINNs (Raissi et al., 2019), models that encode
PDE constraints into the loss; ORCA (Shen et al., 2023), a cross-modal fine-tuning approach which
extends general text/vision foundation models to specialized domains; PDEformer (Ye et al., 2024), a
graph-Transformer-based PDE foundation model; and UPS (Shen et al., 2024b), a FNO-transformer-
based PDE foundation model.

Evaluation Metrics. We use normalized root mean squared error (nRMSE) as the primary measure
of solution quality. We also report (1) debug success rate: the proportion of generations successfully
fixed after error-driven feedback; (2) convergence rate: empirical convergence rate with increased
spatial resolution; and (3) execution time: runtime of generated solvers. All solvers are evaluated on
a NVIDIA GeForce RTX 2080 Ti GPU with 11GB memory.

30

Under review as a conference paper at ICLR 2026

B.4 METHOD CONFIGURATIONS

Repeated sampling and debugging. For OpenAl’s o series models, we set the decoding tempera-
ture to 1.0 due to the API constraints that do not allow using other temperature settings. For the other
models, We set the temperature to 0.7. We sample 32 solutions from each model. If the solver runs
into an execution error or Inf/NaN values, we let the LLM debug using the prompt in Appendix B.2.

Refinement. In the refinement stage, we select the best 5 programs generated in the sampling &
debugging stage for each PDE and use them as “seed” programs for refinement. Note that we use
the same set of “seed” programs for each LLM in this stage so that we can directly compare the
LLMs’ ability on refining a given set of strong programs. We consider refinement based on 3/4/5 seed
implementations, and generate 4 samples in each setting. We then report the best solver performance
among the 12 samples.

FunSearch. FunSearch features algorithm discovery based on a program database. The program
database consists of a few “islands” of programs. In our experiment, we set the number of islands to
4 and the island reset period to 3600s. We use 2 existing programs in the prompt and instruct the
LLM to generate an improved version. We run the FunSearch process for 32 iterations. Specifically,
in the first 12 iterations, LLMs generate solvers from scratch to warm start the program database; in
the subsequent 20 iterations, LLMs improve the existing solvers following an evolutionary algorithm.
In each iteration, the language model decoding temperature is set to 0.7.

AIDE. AIDE uses tree search to explore in the space of code. We run AIDE for 96 steps. In the
search process, the max debug depth, debug probability, and number of drafts are set to 5, 0.9, and
24, respectively. Following Jiang et al. (2025), the language model decoding temperature is set to 0.5
for code generation.

31

Under review as a conference paper at ICLR 2026

C CASE STUDY ON BURGERS’ EQUATION

We present detailed analysis on the numerical schemes and time stepping strategies used in the
generated solvers for Burgers’ Equation. We investigate the solver choices from a few axes: spatial
discretization methods, numerical schemes for the convective flux term, the time integration methods,
and the time stepping strategies. We prompt OpenAl’s 03 and o4-mini models to classify solver
choices based on the code. We visualize the distribution of different methods in Figures 5, 6, 14, &
15, respectively.

Figure 5 shows the distribution of spatial discretization methods used by different LLMs for PDE
solvers. Finite Difference dominates across most models, with some variation. QWQ Plus and
DeepSeek-V3 incorporate significant Spectral method usage, while GPT-4.1 and 03 employ Finite
Volume methods more frequently than other models.

Figure 6 displays time integration method preferences across LLMs. Explicit Euler is the dominant
approach for most models. DeepSeek-R1 uniquely prefers IMEX methods, while Gemini 2.5 Pro,
Qwen-2.5-Max, and o3 utilize higher-order Runge-Kutta methods more frequently.

Figure 14 illustrates how different LLMs implement convective flux schemes. Central differencing is
the predominant method for most models, while Claude-3.7-Sonnet uniquely favors Upwind schemes.
GPT-4.1 shows the most diverse approach, and 03 heavily utilizes Lax-Friedrichs local method.

Figure 15 presents the time stepping strategies used by LLMs. Typically, strong LLMs like DeepSeek-
R1 and 03 tend to choose adaptive time steps, balancing numerical stability and efficiency.

Convective Flux Scheme Distribution
8%

Proportion

0>

09 P00 WOk QWS (¥ VR ERIVE- S S CR % W@t e
“10201\’\\““\ 7."? oW Q:\ 5“3; e,‘-,se osee\“ﬂ a0 ™ P e ™ g
W 2 0e=" e
6™ Que c\a“ o au0€
e
s Upwind Central W Lax-Friedrichs (global) Lax-Friedrichs (local) Godunov W= Others

Figure 14: Distributions of the numerical schemes for the convective flux term employed by each
LLM. “LF” in the legend refers to Lax-Friedrichs schemes, with global and local variants.

Time Step Strategz Distribution

100%
80%
=
2 60%
2
o 40%
o
20%
0% Y 0 % M W E) A A0 A > \ \
\ Al) WS \3 * o g . o O \\
’LQ?\a “\\(\\L\ “\7_5: s \'\Q Q?e 5“3,;1 ep5e t_’(,}:,\L <80 O o ol o\’.ﬁ\ 3«\\ e
Gem(\: W2 e qu oo \aﬂ"e o°
mmm Adaptive (CFL Condition based) mmm Adaptive (error control based) Fixed B Others

Figure 15: Distributions of the time stepping strategies employed by each LLM.

32

Under review as a conference paper at ICLR 2026

D CASE STUDY ON REACTION-DIFFUSION EQUATION

As discussed in Section 5.7, LLMs consistently miss the key trick that involves directly using the
analytical solution of the reaction term in the solver. In this section, we compare the best two LLM
generated solver with the hand-crafted reference solver. We first present a concise comparison in
Table 7, and then present the full implementation.

Table 7: Comparisons of Reaction-Diffusion Equation Solvers. “IMEX-ETD” is short for Implicit-Explicit
Exponential Time Differencing.

Reference Solver LLM Solver 1 LLM Solver 2

Library JAX PyTorch PyTorch
Time Integration Strang splitting Sequential splitting ~ IMEX-ETD
Reaction Term Analytical Discretized Discretized
Diffusion Term Central difference Crank-Nicolson Spectral
Time Stepping Adaptive (CFL) Fixed Fixed

Reference solver.

import numpy as np
import jax
import jax.numpy as jnp

def solver (u0_batch, t_coordinate, nu, rho):
"""Solves the 1D reaction diffusion equation for all times in t_coordinate.

u0_batch (np.n

re bat

[batch_size, NJ,

h_size is initial conditions

and N is the num
t_coordinate
It beg
nu (float): Tt
rho (float): The parameter rho in the equation.

[T+1].
) and fol
r nu in the equatio

1e paramet

Returns:

tch_size, T+1l, N
the initial condit
s the solutions at

1o

wnn
Check if JAX GPU is available
if jax.devices (’'gpu’):
print ("JAX GPU acceleration enabled")
else:
print ("JAX GPU not available, using CPU")

Convert inputs to JAX arrays
u_batch = jnp.array(u0_batch, dtype=jnp.float32)
t_coordinate = jnp.array(t_coordinate)

batch_size, N = u_batch.shape

T = len(t_coordinate) - 1
ization
Domain [0, 1]

Calculate internal time step for stability (C
dt_internal = 0.25 * dx**2 / nu

print (f"Simulating with paramet
print (f"Gric
print (f"dx={dx:.6f}

size:

h size: {batch_size}")

Initialize solutions array

solutions = np.zeros((batch_size, T + 1, N), dtype=np.float32)
solutions([:, 0, :] = np.array(u_batch)

Piecewise Exact Solution for reaction term - vectorized across batch
@jax.Jjit

def reaction_step(u_batch, dt):

nun

33

Under review as a conference paper at ICLR 2026

1782
Solves the reaction part u_t = rho * u * (1 - u) analytically
1783 for the entire batch in parallel
1784 win
Avoid division by zero with small epsilon
1785 epsilon = le-10
1786 return 1.0 / (1.0 + jnp.exp(-rho * dt) * (1.0 - u_batch) / (u_batch + epsilon)
1787

Diffusion step with periodic boundaries - vectorized across batch

1788 @jax.jit
def diffusion_step (u_batch, dt):

1789 W
1790 Solves the diffusion part u_t = nu » u_xx using central differencing
1791 with periodic boundary conditions for the entire batch in parallel
1792 # Implement periodic boundary conditions using roll along the spatial dimension
u_left = jnp.roll(u_batch, 1, axis=1)
1793 u_right = jnp.roll(u_batch, -1, axis=1)
1794
Central difference for Laplacian (vectorized across batch)
1795 laplacian = (u_right - 2*u_batch + u_left) / (dx*x2)
1796
return u_batch + dt * nu x laplacian
1797
1798 # JIT-compiled full time step with Strang splitting - vectorized across batch
@jax.Jjit
1799 def time_step (u_batch, dt):
1800 wnn
Performs one time step using Strang splitting for the entire batch:
1801 1. Half step of reaction
1802 2. Full step of diffusion
3. Half step of reaction
1803 wn
1804 # First half reaction
u_batch = reaction_step(u_batch, dt/2)
1805
1806 # Full diffusion
1807 u_batch = diffusion_step (u_batch, dt)
1808 # Second half reaction
u_batch = reaction_step (u_batch, dt/2)
1809
1810 return u_batch
1811

Process all time steps for the entire batch simultaneously
1812 for i in range(l, T + 1):
t_start = t_coordinate[i-1]

1813 t_end = t_coordinate[i]
1814 current_t = t_start
1815

Evolve to next save point using small internal steps
1816 step_count = 0
while current_t < t_end:
1817 # Make sure we don’t step beyond t_end
1818 dt = min(dt_internal, t_end - current_t)
u_batch = time_step (u_batch, dt)

1819 current_t += dt
1820 step_count += 1
1821

Print progress periodically
1822 if i % max (1, T//10) == 0 or i ==
print (f"Time step {i}/{T} completed (internal steps: {step_count})")

1823

1824 # Save solution for all batches at once
1825 solutions([:, 1, :] = np.array(u_batch)
1826 print ("Simulation completed")

1827 return solutions

1828

1509 LLM-generated solver 1. Generated by GPT-4o.

1830 import numpy as np
import torch

1831

1832 def crank_nicolson_matrix (N, dx, dt, nu):

1833 """Constructs the A and B matrices for the Crank-Nicolson method."""
r =nu x dt / (2 % dx*x2)

1834 # Identity matrix
I = torch.eye (N, device=’cuda’)

1835 verty

Off-diagonal shifts (periodic boundary)

34

Under review as a conference paper at ICLR 2026

off_diag = -r * torch.roll(I, shifts=1, dims=1)
off_diag += -r % torch.roll(I, shifts=-1, dims=1)

A and B matrices

A (1 + 2xr) = I + off_diag
B = (1 - 2+r) » I - off_diag
return A, B

def apply_reaction_term(u, rho, dt):
"""Applies the reaction term using explicit Euler."""
return u + dt * rho * u = (1 - u)

def solver (uO_batch, t_coordinate, nu, rho):
"""Solves the 1D reaction diffusion equation for all times in t_coordinate."""
Extract the dimensions
batch_size, N = u0_batch.shape
T = len(t_coordinate) - 1

Convert to torch tensors for GPU operations
u0_batch = torch.tensor (u0_batch, dtype=torch.float32, device=’cuda’)

Spatial step
dx = 1.0 / N

Internal time step for stability

dt_internal = 0.1 * dx**2 / nu

num_internal_steps = int (np.ceil ((t_coordinate[l]-t_coordinate([0]) / dt_internal)
dt_internal = (t_coordinate[l] - t_coordinate([0]) / num_internal_steps

Precompute Crank-Nicolson matrices
A, B = crank_nicolson_matrix (N, dx, dt_internal, nu)
A_inv = torch.linalg.inv(A).to(’cuda’)

Initialize solution array
solutions = torch.zeros((batch_size, T+1l, N), device=’cuda’)
solutions[:, 0, :] = ulO_batch

Time-stepping loop

for t in range(l, T+1):
u = solutions[:, t-1, :].clone()
for in range (num_internal_steps) :

u = apply_reaction_term(u, rho, dt_internal) # Apply reaction term
u = torch.matmul (B, u.T).T # Now u has shape (batch_size, N)
u = torch.matmul (A_inv, u.T).T
Apply diffusion term, maintaining correct shape
solutions[:, t, :] =u

Move result back to CPU
return solutions.cpu () .numpy ()

LLM-generated solver 2. Generated by Claude-3.7-Sonnet.

import numpy as np
import torch
from typing import Tuple

def solver (u0_batch, t_coordinate, nu=0.5, rho=1.0):
"""Solves the 1D reaction diffusion equation for all times in t_coordinate.

Args:

u0_batch (np.ndarray): Initial condition [batch_size, NJ,
where batch_size is the number of different initial conditions,
and N is the number of spatial grid points.

t_coordinate (np.ndarray): Time coordinates of shape [T+1]
It begins with t_0=0 and follows the time steps t_1, ..., t_T.

nu (float): The parameter nu in the equation. Default is 0.5.

rho (float): The parameter rho in the equation. Default is 1.0.

Returns:
solutions (np.ndarray): Shape [batch_size, T+1, NJ.
solutions[:, 0, :] contains the initial conditions (u0O_batch),
solutions[:, i, :] contains the solutions at time t_coordinate[i].
W
Check if GPU is available
device = torch.device(’cuda’ if torch.cuda.is_available() else 'cpu’)
print (f"Using device: {device}")

Convert input to PyTorch tensors and move to device

batch_size, N = u0_batch.shape
u0_tensor = torch.tensor (u0_batch, dtype=torch.float32, device=device)

35

Under review as a conference paper at ICLR 2026

1890

1891 # Set up the spatial grid and wavenumbers for spectral method
1892 dx = 1.0 / N
k = 2.0 # np.pi » torch.fft.fftfreq(N, d=dx)

1893 k = k.to(device=device, dtype=torch.float32)

1894 k2 =k « k

1895 # Linear operator L = -nu % k*2 (diffusion term in Fourier space)
1896 L = -nu x k2

1897

Use a much smaller time step for stability
1898 dt_internal = le-6 # Very conservative time step
print (f"Internal time step: {dt_internal}")

1899
1900 # Initialize solution array
solutions = torch.zeros (
1901 (batch_size, len(t_coordinate), N),
1902 dtype=torch.float32,
device=device
1903)
1904 solutions([:, 0, :] = u0_tensor # Set initial condition
1905 # Current solution state
1906 u_current = ul_tensor
current_time = 0.0
1907
1908 # Time stepping loop
for i in range(l, len(t_coordinate)):
1909 target_time = t_coordinate[i]
1910 print (£"Solving for time {target_time:.6f}")
1911 # Integrate until we reach the target time
1912 while current_time < target_time:
Adjust the last time step to exactly hit the target time if needed
1913 dt = min(dt_internal, target_time - current_time)
1914
Take a time step using a simpler, more stable method
1915 u_current = integrate_step (u_current, L, dt, rho, device)
1916
Check for NaN or Inf values
1917 if torch.isnan(u_current).any() or torch.isinf (u_current).any():
1918 print (f"Warning: NaN or Inf detected at time {current_time}"
Try to recover by clamping values
1919 u_current = torch.nan_to_num(
1920 u_current,
nan=0.5,
1921 posinf=1.0,
1922 neginf=0.0
)
1923 # Clamp to physically meaningful range
1924 u_current = torch.clamp(u_current, 0.0, 1.0)
1925 current_time += dt
1926
Store the solution at the target time
1927 solutions[:, i, :] = u_current
1928
Convert back to numpy array
1929 return solutions.cpu () .numpy ()
1930
def integrate_step(
1931 u: torch.Tensor,
1932 L: torch.Tensor,
dt: float,
1933 rho: float,
1934 device: torch.device
) —> torch.Tensor:
1935 W
1936 Take one time step using a stabilized semi-implicit method.
1937 P
1938 u (torch.Tensor): Current solution.
L (torch.Tensor): Linear operator in Fourier space.
1939 dt (float): Time step.
1940 rho (float): Reaction coefficient.
1941 device (torch.device): Device to perform computations on.
1942 Returns:
torch.Tensor: Solution after one time step.
1943 W

Transform to Fourier space

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

def

u_hat = torch.fft.fft

Apply 2/3 rule for
N = u.shape[l]

cutoff = N // 3

mask = torch.ones (N,

mask [cutoff:N-cutoff]

(u, dim=1)

dealiasing (set highest 1/3 of frequencies to zero)

dtype=torch.bool,
= False

device=device)

Evaluate nonlinear term at current time

N_u = nonlinear_term(

u, rho)

N_u_hat = torch.fft.fft(N_u, dim=1)

Apply dealiasing
N_u_hat[:, mask] = 0

Compute the exponential term for the diffusion part
Use a safer exponential calculation with clipping

exp_term = torch.exp(

L * dt)

Prevent underflow by setting very small values to zero
exp_term = torch.where (
torch.abs (exp_term) < le-15,

torch.zeros_like (
exp_term

)

Semi-implicit updat

exp_term),

e: Treat diffusion implicitly,

* u_hat + (exp_term - 1.0) / L » N_u_hat

u_new_hat = exp_term
Handle the L=0 mode separately to avoid division by zero
zero_mode = (torch.abs (L) < le-14)
if torch.any(zero_mode) :
u_new_hat[:, zero_mode] = u_hat][:,

Transform back to real space

u_new = torch.fft.ifft (u_new_hat,

Zero_|

mode] + dt x N_u_hat[:,

dim=1) .real

Ensure solution stays within physically meaningful bounds
u_new = torch.clamp(u_new, 0.0, 1.0)

return u_new

nonlinear_term(u: torch.Tensor, rho: float)

nun

—> torch.Tensor:

Compute the nonlinear reaction term rho » u x (1 - u).

Args:
u (torch.Tensor) :
rho (float): Reac

Returns:

Current solution.
tion coefficient.

torch.Tensor: Nonlinear term evaluation.

wan
Ensure u is within

u_safe = torch.clamp (
return rho * u_safe =

[0, 1] to prevent numerical issues

u, 0.0, 1.0)
(1.0 — u_safe)

37

reaction explicitly

zero_mode]

Under review as a conference paper at ICLR 2026

E ETHICS STATEMENT & LLM USAGE

Ethics Statement. Our work highlights the potential for LLMs to democratize access to scientific
computing tools. As these models improve, they could reduce the expertise barrier for implementing
numerical PDE solvers, allowing domain scientists without extensive programming or numerical
methods backgrounds to leverage computational approaches in their research.

However, this democratization also carries risks. Incorrect or numerically unstable implementations
might lead to erroneous scientific conclusions if users lack the expertise to critically evaluate the
generated solutions. Future work should focus not only on improving solution quality but also on
enhancing explainability and providing appropriate disclaimers about solution reliability.

As the capabilities of LLMs in scientific computing continue to advance, we anticipate a gradual shift
in how computational science is conducted—from writing code from scratch to specifying problems
in natural language and refining LLM-generated implementations. CodePDE provides a foundation
for measuring progress along this trajectory and identifying the areas where further research is most
needed to realize the full potential of LLMs as scientific computing agents.

LLM Usage. We use LLMs to aid writing, including correcting typos and polishing the language.

38

	Introduction
	Related Works: PDE Solving and the Emerging Role of LLMs
	Method: CodePDE
	Evaluation Setup
	Results and Analysis
	How Well Do LLMs Generate PDE Solvers?
	Can LLMs Generate Executable Code or Debug Their Own Code?
	Can LLMs Improve Solvers via Self-Refinement?
	Does Solution Quality Improve with Scaling Test-Time Compute?
	Convergence Analysis
	Ingredients for Accurate PDE Solving: Insigts into Agent Designs
	Avenues for Interpretability: Insights into the Generated Solvers

	Conclusions
	Additional Experimental Results
	Detailed results on test error
	Detailed results on code correctness and debugging success rate
	Detailed results on scaling test-time compute
	Additional visualization on convergence rates
	Analysis on execution time
	Analysis on solver library usage

	Implementation Details
	PDE Descriptions
	Instructions to the language model
	Detailed Experiment Setup
	Method configurations

	Case Study on Burgers' Equation
	Case Study on Reaction-Diffusion Equation
	Ethics Statement & LLM Usage

