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Abstract

Multimodal learning can benefit from the rep-001
resentation power of pretrained Large Lan-002
guage Models (LLMs). However, state-of-003
the-art transformer based LLMs often ignore004
negations in natural language and there is no005
existing benchmark to quantitatively evaluate006
whether multimodal transformers inherit this007
weakness. In this study, we present a new008
multimodal question answering (QA) bench-009
mark adapted from labeled music videos in Au-010
dioSet (Gemmeke et al., 2017) with the goal of011
systematically evaluating if multimodal trans-012
formers can perform complex reasoning to rec-013
ognize new concepts as negation of previously014
learned concepts. We show that with stan-015
dard fine-tuning approach multimodal trans-016
formers are still incapable of correctly inter-017
preting negation irrespective of model size.018
However, our experiments demonstrate that019
augmenting the original training task distri-020
butions with negated QA examples allow the021
model to reliably reason with negation. To do022
this, we describe a novel data generation proce-023
dure that prompts the 540B-parameter PaLM024
model to automatically generate negated QA025
examples as compositions of easily accessible026
video tags. The generated examples contain027
more natural linguistic patterns and the gains028
compared to template-based task augmenta-029
tion approach are significant.030

1 Introduction031

Large language models (LLMs) have difficulty032

understanding negation in natural language. Pre-033

trained LLMs often ignore negation in cloze ques-034

tions and give same prediction for negated ("Birds035

cannot [MASK]") and non-negated ("Birds can036

[MASK]") queries (Kassner and Schütze, 2019;037

Hosseini et al., 2021). Hossain et al. (2022) ana-038

lyzed the training corpora of state-of-the-art LLMs039

and found that negation is rarely present, leading040

to the poor handling of negation at inference time.041

State-of-the-art multimodal learning leverages 042

pretrained LLMs for fusing different modalities (Jia 043

et al., 2021; Radford et al., 2021; Oncescu et al., 044

2021; Kilgour et al., 2022; Nagrani et al., 2022). 045

Will the fine-tuned LLMs intended for multimodal 046

applications inherit the negation problem? Huang 047

et al. (2022) showed that the zero-shot performance 048

on the text query based audio retrieval task de- 049

grades when the text query includes negation cues, 050

e.g., "no vocals". Yu et al. (2022) showed that the 051

text-to-image model generates items that are men- 052

tioned in the text prompt, even when the prompt 053

suggests the absence of the item. However, there 054

is no benchmark for quantitatively evaluation of 055

how well negation patterns in the text are handled 056

in such multimodal settings. 057

In this study, we created MAQA, a binary music 058

audio question answering benchmark, to evaluate 059

how well the multimodal transformers understand 060

negation in music related questions. This bench- 061

mark is created from labeled videos in the music- 062

related portion of AudioSet (Gemmeke et al., 2017). 063

While the original benchmarks focus on probing 064

the musical knowledge of an audio model and only 065

contains a handful of examples including negation, 066

the proposed benchmark MAQA features a signifi- 067

cant portion of negated questions that are generated 068

programmatically from the original audio labels. 069

Our goal is to evaluate if multimodal transformer 070

can be fine-tuned to understand new concepts, e.g., 071

“no vocals” as negation of the previously learned 072

concept, e.g., “vocals” through compositional gen- 073

eralization. 074

The main contributions of the paper are: (1) 075

A compositional generalization experiment that 076

demonstrates standard fine-tuning prevents our 077

baseline model, a multimodal transformer modi- 078

fied from the multilingual T5 (MT5) (Raffel et al., 079

2019; Xue et al., 2021) from generalizing to new 080

concepts that are negation of learned concepts. (2) 081

A PaLM-based data generation approach that au- 082
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tomatically generate negated QA examples from083

easily access video tags. (3) Two task augmenta-084

tion strategies that lead to a significant boost of the085

model performance on portion of MAQA with text086

negation.087

The rest of this paper is organized as follows.088

Section 2 provides relevant background and related089

work on negation, compositional generalization090

and multimodal learning. Section 3 provides an091

overview of the MAQA dataset and its statistics.092

Section 4 details how we create the benchmark093

through data generation. Section 5 describes the094

experiment design to measure compositional gen-095

eralization. The models and experiment results are096

presented in Section 6 and 7. The paper closes with097

a discussion on the limitations, implications of our098

results and future work.099

2 Related Works100

Negation. Despite improvements of LLMs in101

many NLP tasks such as natural language under-102

standing, reading comprehension, zero-shot text103

generation, negation remains a challenge for pre-104

trained LLMs (Kassner and Schütze, 2019; Hos-105

seini et al., 2021). Data augmentation has been106

used to tackle negation in the NLP literature. For107

example, modification of the natural language un-108

derstanding corpora by adding negation to the verb109

or adjective and reversing the labels was proposed110

in (Hossain et al., 2020), and an unlikelihood loss111

for the span corruption pre-training tasks was pro-112

posed in (Hosseini et al., 2021). Negation is also113

addressed in the meta-learning literature (Murty114

et al., 2021), where it is treated as one of the rea-115

soning categories that requires additional few-shot116

classification tasks to augment the original task117

distribution.118

Compositional Generalization. Compositional119

Generalization refers to the ability to under-120

stand novel concept as compositions of previously121

learned concept or atoms. Negation can be thought122

as a form of composition. In the field of semantic123

parsing, several benchmarks have been proposed124

to evaluate compositional generalization (Lake and125

Baroni, 2018; Keysers et al., 2020; Kim and Linzen,126

2020), which have encouraged development of127

techniques and architectures to make LLMs bet-128

ter at solving compositional tasks (Furrer et al.,129

2020; Ontanon et al., 2022; Csordás et al., 2021;130

Qiu et al., 2022). Several multimodal benchmarks131

have shown visually grounded LLMs often struggle132

with compositional generalization in visual reason- 133

ing tasks (Johnson et al., 2017), visual grounded 134

command following tasks (Ruis et al., 2020), text- 135

to-image matching (Zhang et al., 2021), etc. Our 136

study focus on evaluating audio grounded LLMs 137

on compositional tasks involves negation. 138

Multimodal QA. Multimodal question answering 139

benchmarks are used to probe the multimodal mod- 140

els to evaluate their perception and reasoning capa- 141

bility on different modalities. Visual Question An- 142

swering benchmarks (Zhang et al., 2015; Agrawal 143

et al., 2015) commonly consist of triplets of (image, 144

a natural language question about the image, an- 145

swer), and the task is to answer the question based 146

on the visual cue in the image. In the field of au- 147

dio perception, audio QA benchmarks (Fayek and 148

Johnson, 2020) are less common than audio clas- 149

sification benchmarks (Gemmeke et al., 2017). In 150

the music domain, most benchmarks are music in- 151

formation retrieval tasks (Law and Von Ahn, 2009), 152

where the text labels are usually in the format of 153

short form music tags. 154

Multimodal Transformers. A series of 155

Transformer-based multimodal models (Sun et al., 156

2019; Tan and Bansal, 2019; Lu et al., 2019), re- 157

ferred to as “Multimodal Transformers” in this 158

study, explored using Transformer encoder as a 159

join encoder for multimodal fusion achieve state- 160

of-the-art results on a range of multimodal QA 161

tasks. Changpinyo et al. (2022) proposed a multi- 162

modal version of T5 (Raffel et al., 2019). Given 163

the image and the question in a VQA example, 164

the multimodal T5 takes the global and regional 165

image features generated by a pre-trained visual en- 166

coder and text tokens of the question as inputs, and 167

solves a classification problem with pre-defined 168

classes of answers for the VQA task. The param- 169

eters of the visual encoder are frozen during T5 170

fine-tuning. We follow the same approach but use 171

pre-trained audio encoders (Gemmeke et al., 2017; 172

Huang et al., 2022) to extract global representation 173

of the music audio. A detailed survey of audio 174

representation can be found in Huang et al. (2022). 175

3 Music Audio Question Answering 176

(MAQA) 177

To evaluate the ability of multimodal models to 178

reason with negation, we create a music audio QA 179

benchmark (MAQA) which emphasizes on correct 180

understanding of text negation. The music audio 181

QA pairs are generated programmatically from the 182
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music related portion of AudioSet (Gemmeke et al.,183

2017), which contains music audio clips annotated184

with music attributes and an ontology describing185

their relationship. There are 388, 262 and 4, 497186

unique music audio clips in the train and evaluation187

split, respectively. Each clip is labeled with one or188

more music tags out of the 141 unique music at-189

tributes covering music genres, music roles, music190

instruments and music moods.191

Table 1 presents an example in MAQA, which192

consists of four QA pairs generated from an ex-193

ample of music attribute labeled audio clip in Au-194

dioSet. Q1 and Q2 are questions generated from195

the same seed attribute, and essentially probe about196

the same musical skill, i.e., listen to a music au-197

dio and try to identify if a bass guitar is played.198

Q2 is a negated form of Q1. If a model answer199

Q1 correctly and fail on its negated counterpart200

Q2, it suggests that the model does not understand201

the negation logic in the question and unable to202

perform compositional generalization.203

MAQA contains two evaluation sets ASBaseE-204

val and ASNegationEval and two training sets AS-205

BaseTrain and ASNegationTrain as shown in Ta-206

ble 2 with balanced binary label distribution. AS-207

BaseTrain / ASBaseEval contains non-negated QA208

pairs about music audio recordings. ASNegation-209

Train / ASNegationEval is a superset of ASBase-210

Train / ASBaseEval, and it also includes their211

negated counterparts of the QA pairs. A multi-212

modal model with strong music audio understand-213

ing capabilities should score high on ASBaseEval.214

Moreover, to demonstrate its ability of reasoning215

about negation logic, it has to also score high on216

ASNegationEval.217

4 Data Generation218

Since music descriptive text that involves negation219

rarely occur in the standard text corpora (Hossain220

et al., 2022), we propose the following 3-step ap-221

proach to programmatically generate binary audio222

QA pairs that involve text negation: 1. For each223

music audio-attribute pair in the original dataset,224

we sample a negative attribute that is not associated225

with the audio clip. 2. Convert the positive and226

the negative audio-attribute pair into a binary AQA227

example in the format of a triplet (audio clip, ques-228

tion on the attribute, True / False label). 3. Perform229

a text negation on the question and flip the binary230

label simultaneously to create negated audio QA231

pairs. As a first attempt we curate MAQA from Au-232

dioSet with this method, however it can be applied 233

to other datasets containing annotated music audios. 234

Next, we discuss the details of how we followed 235

the 3 steps to create MAQA from AudioSet. 236

Negative Attribute Sampling. We adopt neg- 237

ative sampling to create a balanced binary label 238

distribution. In particular, we sample hard negative 239

attributes using sibling nodes in the ontology tree 240

and assign False label to the derived audio QA pair. 241

Consider the example in Table 1, the audio clip is 242

tagged with Bass guitar and Acoustic guitar, which 243

are both under the parent node Guitar. We sam- 244

ple hard negative attributes steel guitar and slide 245

guitar from the sibling nodes, to create a negative 246

audio-attribute pair. This hard negative sampling 247

approach encourages the model to differentiate re- 248

lated but different music concepts. 249

Question Generation. We explore the follow- 250

ing two approaches to generate questions from the 251

audio-attribute pair sampled from the first step, 252

which help us to create the base QA dataset, i.e., 253

ASBaseEval and ASBaseTrain. The first approach 254

is template based, and it takes advantage of the 255

AudioSet ontology, where each music attribute is 256

associated with one of the four attribute types: gen- 257

res, roles, instruments, and moods. We use type- 258

specific templates to convert attributes into a true- 259

or-false question, e.g., “The [Attribute Type] of the 260

song is [Attribute Value].”. For example, the at- 261

tribute Bass Guitar is a type of musical instrument 262

according to the AudioSet ontology. The question 263

generated by the template-based approach is “The 264

[musical instrument] of the song is [Bass Guitar].”. 265

The second approach leverages the few-shot text 266

generation capability of PaLM (Chowdhery et al., 267

2022) to improve the diversity of generated ques- 268

tions. Similar to GPT-3 (Brown et al., 2020), when 269

prompted with an instruction, e.g., “Generate a 270

sentence about music given the music attribute”, 271

PaLM learns from a few demonstrations and gen- 272

erates questions on unseen attributes. Example 273

questions generated by PaLM are shown in Table 1. 274

We explored different combinations of text prompts 275

and model hyper-parameters (e.g., temperature) to 276

control the diversity of generated texts. 277

Task Augmentation with Negation. For each 278

QA pair generated from the last step, we negate 279

the question and reverse its binary answer to cre- 280

ate a negated audio QA pair. By augmenting the 281

ASBaseEval and ASBaseTrain with their negated 282

counterparts, we create ASNegationEval and AS- 283

3



NegationTrain. If this negation augmentation step284

is applied to the training data then we refer to it285

as Task Augmentation. Again we explore both286

template-based and PaLM-based approaches for287

text negation.288

The template-based approach convert a question289

to the negation form by inserting a modifier not290

before the noun, i.e., “The [Attribute Type] of the291

song is not [Attribute Value].” and the binary label292

is flipped. One of the limitation of this approach is293

that it is attribute type specific and only modifies294

nouns. PaLM based method overcomes such limi-295

tation with few shot text generation, which allows296

the model to generate different negation patterns by297

modifying both nouns and verbs. For example, the298

negation patterns associated with the instrument299

attribute “guitar” include “no guitar”, “guitar is not300

played”, and “the song does not feature guitar”. For301

each music attribute, we use PaLM to generate a302

few question candidates and manually pick the best303

one. Row 2 and 4 in Table 1 are example questions304

generated in this way. The text prompts to PaLM305

can be found in Appendix C.306

5 Compositionality Experiment Design307

To evaluate model’s ability to generalize composi-308

tionally so that it can understand composed music309

concepts like “no vocals” that involve negation, we310

split the data into train and test sets following the311

design recommended by (Keysers et al., 2020). In312

our setup, music attributes are the the basic knowl-313

edge structures or atoms, and all the generated314

music-related questions or the compounds are the315

results of applying compositional rules, e.g., nega-316

tion to these basic building blocks. The Template-317

based and Model-based data generation procedures318

detailed in Section 4 can be thought of different319

ways to compose music atoms into QA compounds.320

Consider using the question “The song is played321

with a banjo” composed by PaLM as testing exam-322

ples and “The [musical instrument] of the song is323

[banjo]” composed by templates as training exam-324

ples. Both questions are composed from the atom325

“banjo” so they evaluate the same music knowl-326

edge, but the resulted compounds are different as327

the combinations of the atoms are different. To328

prove a model is capable of compositional general-329

ization, the train and test split should have similar330

atoms distributions and different compounds distri-331

butions (Keysers et al., 2020). Therefore, by design332

the music attributes are similarly represented in the333

train and test sets (Table 2), while the test set con- 334

tains novel combinations of the atoms that are not 335

seen in the train set. 336

Compound Divergence is used to measure quan- 337

titatively how different is the compound distribu- 338

tions in the train and test split (Keysers et al., 2020). 339

Here we use Compound Divergence (CD) as a qual- 340

itative measure of how much a train-test split mea- 341

sures the compositional generalization ability of 342

the multimodal models. As shown in Table 3, we 343

define five train-test split scenarios labeled by the 344

CD type. The scenario with highest CD is the most 345

challenging case for compositional generalization. 346

Below we list the research questions we try to an- 347

swer with these experiments and analyze the results 348

in details in Section 7: 349

1. Can multimodal transformers be fine-tuned 350

to solve QA tasks with in-domain music con- 351

cepts? (Section 7.1) 352

2. Does the standard multimodal fine-tuning al- 353

low the multimodal transformer to generalize 354

to QAs composed from in-domain concepts 355

via negation? (Section 7.2) 356

3. Will task augmentation help with QA tasks 357

that require reasoning with negation? (Sec- 358

tion 7.3 and 7.4) 359

6 Multimodal Modeling 360

Following the VQA literature (Changpinyo et al., 361

2022; Zhang et al., 2015), we treat the audio QA 362

as a binary classification task. We adopt a mul- 363

timodal T5 architecture similar to that in Chang- 364

pinyo et al. (2022) to fuse the audio and text inputs, 365

and we replace T5 with its multilingual version 366

MT5 (Xue et al., 2021). Each music audio clip 367

input is represented as a 128-dimensional embed- 368

ding obtained either from VGGish (Gemmeke et al., 369

2017)1, which uses a VGG ConvNet architecture, 370

or the transformer based MuLan model (Huang 371

et al., 2022). The audio embedding and text tokens 372

are fed into the pre-trained multi-layer MT5 (Xue 373

et al., 2021) encoder as a sequence of vectors and 374

the final multimodal representation is classified into 375

the binary classes. The audio embeddings are pro- 376

jected to the text token embedding space through 377

a linear projection layer, which is initialized ran- 378

domly at the beginning of finetuning. The model is 379

1https://github.com/tensorflow/models/tree/master/research/
audioset/vggish
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Sampled Attributes Question Answer Negated
Bass guitar (+) Q1)The musical instrument played in the song is Bass guitar TRUE No
Bass guitar (+) Q2)Bass guitar is not played in the song FALSE Yes
steel guitar, slide guitar (−) Q3)The song has steel guitar or slide guitar FALSE No
steel guitar, slide guitar (−) Q4)The song does not have slide guitar or steel guitar TRUE Yes

Table 1: Examples of generated Binary Audio QA Pairs in MAQA. The original AudioSet example is a music
audio clip associated with the following tags: Bass guitar, Guitar, Acoustic guitar and Strum. Questions and their
negated counterpart are generated from the sampled attributes with the PaLM based approach. Negative attributes
steel guitar, slide guitar are sampled from the sibling nodes in the AudioSet ontology.

Label Stats # of QA Pairs # of mentions
Data Version QA Type True Negated Non-

negated
Negated Genre Mood Instrument Role

ASBaseEval PALM 50% 0% 17,028 0 5574 730 9740 984
ASNegationEval PALM 50% 50% 17,028 17,028 (32.7%) (4.3%) (57.2%) (5.8%)
ASBaseTrain TEMP/PALM 50% 0% 1,263,004 0 439,904 28,634 740,126 54,340
ASNegationTrain TEMP/PALM 50% 50% 1,263,004 1,263,004 (34.8%) (2.3%) (58.6%) (4.3%)

Table 2: Statistics on Music Audio QA (MAQA) Benchmark. Both evaluation sets ASBaseEval and ASNega-
tionEval are generated by PaLM. Each training set has a template-generated and a PaLM-generated version. All
the datasets have balanced binary label distributions. ASNegationEval contains ASBaseEval and its negated coun-
terparts. The music attributes have a simialr distribution in training and evaluation split.

warm started from the MT5 checkpoints2 without380

pre-training on other multimodal data. The multi-381

modal code is based on the Flaxformer framework3.382

Training details can be found in Appendix A.383

7 Results and Analysis384

We report experiment results on the ASBaseEval385

and ASNegationEval evaluation benchmark in Ta-386

ble 4 and Table 5 respectively. The Audio QA task387

is formulated as a binary classification problem,388

and we report the best AUC-ROC score and the cor-389

responding accuracy in the positive class. For each390

split scenario, we compare the performance of fine-391

tuned multimodal transformer with different audio392

feature extractors, as well as with different sized393

pre-trained MT5 model. Furthermore, we vary the394

types of QA pairs (template-based or PaLM-based)395

used in training and study how compound diver-396

gence affects learning negation.397

7.1 Music Understanding398

Table 4(a) shows the result for the first split sce-399

nario in Table 3 where the model is trained and400

evaluated on non-negated QA pairs generated by401

PaLM. This Low CD experiment establish a fine-402

tuning baseline on basic music concepts. The fine-403

tuned multimodal MT5 score over 90% AUC-ROC404

on the ASBaseEval benchmark that features Audio405

2https://github.com/google-research/multilingual-t5
3https://github.com/google/flaxformer

QA tasks on music styles, moods, genres, instru- 406

ments, etc. Recall the random baseline is 50% for 407

balanced binary classification tasks, this suggests 408

multimodal transformer learn to efficiently fuse au- 409

dio and text signals through fine-tuning, even it is 410

warm started from a text-only checkpoint. Probing 411

the model on different music attributes suggests 412

that music concepts like “Scary music”, “Children 413

music” and popular percussion instruments like 414

“Cowbell” are easy for the fine-tuned model to pick 415

up, while the model has a harder time to understand 416

electronic music genres such as “Drum and bass”, 417

“Trance music”. 418

We further replace the training examples gen- 419

erated by PaLM with the template-generated QA 420

examples for the second split senario, resulting in 421

a Medium CD setting (Table 3). The model scores 422

around 6% lower in the Medium CD setting (Ta- 423

ble 4(b)) compared to the Low CD setting. This 424

suggest the model can still transfer most of the 425

music knowledge learned in a different linguistic 426

context via compositional generalization. For both 427

split scenarios the best multimodal model is the 428

MT5-XL with Mulan embedding as audio features. 429

7.2 Reasoning with Negation 430

For the third split scenario we apply the same fine- 431

tuning setup as in Table 4(a) but evaluate on AS- 432

NegationEval, where the non-negated half is from 433

ASBaseEval and the other half contains their nega- 434

tion counterparts. As shown in Table 5(a), the mul- 435
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Attribute Train Examples Test Examples CD Type Eval Set
(a) Without Task Augmentation (ASBaseTrain)
Banjo The song is played with a banjo. The song is played with a banjo. Low CD ASBaseEval

(PaLM) (PaLM)
Blues The [genre] of the song is [blues]. The song is a blues song. Med CD ASBaseEval

(Temp) (PaLM)
Scary The music is scary.(PaLM) The music is scary.(PaLM) High CD ASNegationEval

The music is not scary.(PaLM)
(b) With Task Augmentation (ASNegationTrain)
Chant The music is a Chant.(PaLM) The music is a Chant.(PaLM) Low CD ASNegationEval

The music is not a Chant.(PaLM) The music is not a Chant.(PaLM)
Dance The [music role] of the song is The music is suitable for dancing. Med CD ASNegationEval
music [Dance music].(Temp) (PaLM)

The [music role] of the song is not The music is not suitable for dancing.
[Dance music].(Temp) (PaLM)

Table 3: The train and test split design of MAQA. For each of the 5 split scenarios we list a few example questions
included in the train and test split. All the QA examples or compounds are composed from the seed music attributes
or atoms via Template-based (Temp) or PaLM-based (PaLM) approach. Compound Divergence (CD) Type is used
to measure the difference between the train and test compound distribution. Task Augmentation is applied during
training for the ASNegationEval-LowCD and ASNegationEval-MedCD split scenario.

timodal MT5 fine-tuned on non-negated audio QA436

pairs (ASBaseTrain) scores only 50% on the AS-437

NegationEval benchmark in this High CD setting.438

Although the model still scores around 80% on439

the non-negated QAs (comparable to the accuracy440

on ASBaseEval in Table 4), it scores only around441

20% on their negated counterparts. The model442

does worse than the 50% random guess baseline443

on these negated questions after fine-tuning. This444

shows that while the model is trained to answer the445

non-negated questions correctly, they also learn to446

“ignore” the negation cue in the negated questions.447

We also show that increasing the model size does448

not improve the AUC-ROC score, suggesting that449

even larger model fail to generalize composition-450

ally using the standard fine-tuning approach.451

7.3 Task Augmentation452

We then apply task augmentation during training by453

augmenting ASBaseTrain with negated QA exam-454

ple generated by PaLM (AsNegationTrain-PaLM),455

which lower the compound divergence. The task456

augmentation proves to be an effective strategy457

for tackling negation. As shown in Table 5(b),458

multimodal MT5 fined-tuned with task augmenta-459

tion improves the baseline on ASNegationEval as460

shown in Table 5(a) by nearly 40%, while obtaining461

similar performance on the non-negated QA pairs462

(ASBaseEval). The AUC-ROC score and accuracy463

is on par with the scores on the non-negated Au-464

dio QA pairs (ASBaseEval), suggesting that task465

augmentation can indeed help the model to learn to466

answer the questions with negation correctly. The 467

best result on ASNegationEval is obtained by fine- 468

tuned MT5-XL with MuLan audio embedding. 469

7.4 Template versus PaLM 470

We further explore how different task augmenta- 471

tion strategy affects the learning outcome. As 472

shown in Table 5(c), we use template-based ap- 473

proach for composing QA pairs and task augmen- 474

tation, and compare with the fine-tuning results 475

with PaLM-generated QA pairs. The Template- 476

based fine-tuning scores around 10% lower in AUC 477

score compared to PaLM-based fine-tuning. The 478

observed gap can be explained by the increased 479

compound divergence between the training data 480

and the evaluation data. The accuracy difference 481

on the non-negated split is around 7% while the 482

difference on the negated split is around 10% to 483

12%. Recall that the template-based approach only 484

modifies the noun for negation while Palm-based 485

approach incorporates more variations, which can 486

explain why the template-based fine-tuning per- 487

forms worse on the negated split. This experiment 488

has highlighted the importance of composing aug- 489

mented tasks with natural linguistic variations that 490

match human language used in production environ- 491

ment. However, even Template-based task augmen- 492

tation can improve negation understanding signifi- 493

cantly, on average 30% higher than training without 494

task augmentation (Table 5(a)). 495
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Finetuning Details ASBaseEval
Model Train Data - QA Type CD Type AUC Acc

a) MT5-Base+VGGish ASBaseTrain-PaLM Low CD 0.905 0.821
MT5-XL+VGGish ASBaseTrain-PaLM Low CD 0.911 0.827
MT5-Base+MuLan ASBaseTrain-PaLM Low CD 0.913 0.828
MT5-XL+MuLan ASBaseTrain-PaLM Low CD 0.918 0.832

b) MT5-Base+VGGish ASBaseTrain-Temp Med CD 0.847 0.771
MT5-XL+VGGish ASBaseTrain-Temp Med CD 0.850 0.765
MT5-Base+MuLan ASBaseTrain-Temp Med CD 0.845 0.766
MT5-XL+MuLan ASBaseTrain-Temp Med CD 0.851 0.767

Table 4: Accuracy on ASBaseEval for two different Compound Divergence (CD) settings.

Finetuning Details ASNegationEval
Acc

Model Train Data - QA Type CD Type AUC Avg Negated Non-negated
a) MT5-Base+VGGish ASBaseTrain-PaLM High CD 0.524 0.513 0.218 0.803

MT5-XL+VGGish ASBaseTrain-PaLM High CD 0.525 0.525 0.247 0.802
MT5-Base+MuLan ASBaseTrain-PaLM High CD 0.553 0.541 0.273 0.802
MT5-XL+MuLan ASBaseTrain-PaLM High CD 0.528 0.520 0.220 0.819

b) MT5-Base+VGGish ASNegationTrain-PaLM Low CD 0.896 0.814 0.814 0.813
MT5-XL+VGGish ASNegationTrain-PaLM Low CD 0.903 0.821 0.821 0.821
MT5-Base+MuLan ASNegationTrain-PaLM Low CD 0.905 0.821 0.821 0.822
MT5-XL+MuLan ASNegationTrain-PaLM Low CD 0.907 0.825 0.825 0.825

c) MT5-Base+VGGish ASNegationTrain-Temp Med CD 0.784 0.715 0.690 0.741
MT5-XL+VGGish ASNegationTrain-Temp Med CD 0.823 0.743 0.724 0.763
MT5-Base+MuLan ASNegationTrain-Temp Med CD 0.805 0.739 0.723 0.755
MT5-XL+MuLan ASNegationTrain-Temp Med CD 0.828 0.750 0.740 0.759

Table 5: Accuracy on ASNegationEval for three different Compound Divergence (CD) settings.

8 Considerations and Limitations496

While most PaLM-generated examples generated497

can be used without modifications, we still have498

to rely on human supervision to make judgement499

on some ambiguous examples, e.g., “The song has500

a Guitar solo”, “There is a drum roll at the begin-501

ning of the song”. These generated sentences are502

consistent with the music tag, but can be correct503

or incorrect depending on the specific music audio504

context. For our experiment the number of music505

tags are small (around 100) so human supervision506

is still affordable. For large number of tags we507

still need to develop programs to automatically fil-508

ter irrelevant candidates. Furthermore, there is a509

trade-off between the diversity and reliability of510

the PaLM-generated output, which is mainly con-511

trolled via the prompts and hyper-parameters. We512

hope to see future studies on automatic prompts513

tuning so that we don’t have to design task-specific514

prompts.515

9 Conclusion516

In this work, we propose a new Binary Audio QA517

benchmark MAQA in the music domain to probe518

the state-of-the-art multimodal models on under- 519

standing negation. MAQA fills in the gap of lack- 520

ing negation-focused evaluation benchmark in the 521

multimodal setting. Our experiments show that 522

standard fine-tuning prevents the multimodal trans- 523

formers from generalizing to new concepts that 524

are negation of the learned concepts. While in- 525

creasing the model size or adopting a better audio 526

encoder doesn’t help with negation, task augmen- 527

tation allows the model to reason with negation by 528

providing more fine-tuning examples that contain 529

negation. And LLMs like PaLM can be used to 530

generate negated examples with more natural lin- 531

guistic variations, which have a significant effect 532

on the learning outcome. With the MAQA bench- 533

mark, we hope to encourage multimodal research 534

community to develop new modeling frameworks 535

or algorithms to handle complex natural language 536

instructions that involves negation. We plan to re- 537

lease the MAQA dataset on Github. 538
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Model ASBaseEval-Temp ASNegationEval-Temp
AUC Acc AUC Acc

MT5-Base + VGGish 0.907 0.822 0.505 0.502
MT5-Base + MuLan 0.909 0.827 0.505 0.504
MT5-XL + VGGish 0.907 0.826 0.514 0.509
MT5-XL + MuLan 0.916 0.833 0.515 0.506

Table 6: Fine-tuned results on ASBaseTrain without Task Augmentation on template-generated QAs.

Model ASBaseEval-Temp ASNegationEval-Temp
AUC Acc AUC Acc

MT5-Base + VGGish 0.893 0.804 0.877 0.800
MT5-Base + MuLan 0.905 0.825 0.901 0.820
MT5-XL + VGGish 0.903 0.818 0.903 0.820
MT5-XL + MuLan 0.914 0.829 0.908 0.834

Table 7: Fine-tuned results on ASNegationTrain, with Task Augmentation on template-generated QAs.

A Training Details755

For the MT5-base encoder there are 12 Transformer encoder layers and the input embedding dimension is756

768. For MT5-XL there are 24 Transformer encoder layers and the input embedding dimension is 2048.757

MT5-XL has 3.7 billion parameters and MT5-base has 580 million parameters. The batch size is 64 for758

MT5-base model and 128 for MT5-XL model. We use fixed a learning rate among {10−3, 10−4, 5−5}759

and observe 1× 10−3 works best in general. The model outputs 2-dimensional logits as the Audio QA760

task is formulated as binary classification. We train all models with data parallelism using 16 Cloud TPU761

Pods. For all experiments we run for 50, 000 steps and reports the AUCROC and Accuracy based on the762

best checkpoint measured by AUCROC. For each experiment we pick the highest AUCROC of multiple763

runs. It takes around 1 hour for MT5-Base and around 4 hours for MT5-XL.764

B Results with Template-generated QAs765

Table 6 and Table 7 shows the results on template-generated QA evaluation set. The QA pairs in both766

train and evaluation set are generated using templates. The results further reinforce the findings based on767

PaLM-generated evaluation set (Table 4 and Table 5). Table 6 shows standard fine-tuning on audio QA768

pairs prevents multimodal transformers from learning negation, and Table 7 shows task augmentation769

help with negation by reducing the compound divergence.770

C Text Prompts used for PaLM771

After a few iterations, we’ve found the text prompts shown in Table 8 works best for generating negated772

and non-negated QA pairs. The one-line instruction at the beginning of the prompt is crucial to guide773

PaLM to generate desired sentences. Table 9 shows more PaLM-generated questions. The total number of774

seed attributes used for text generation are 130, and for each attribute we pick one non-negated and one775

negated question selected from the candidate questions generated from PaLM.776

D Further Considerations777

Risk The QA examples generated by PaLM are supervised by the authors to ensure there is no offensive778

content generated, hence the risk to open source the data is low.779

Information that names or uniquely identifies individual people or offensive content Our data is780

derived from the music portion of Audio Set, which contains audio features and tags of 10s YouTube781

video clips rated by Human raters. No metadata or personal identifiable information on these YouTube782

videos have been exposed.783
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User Input (Music Tag): Trumpet

Model Input:
Generate a sentence about music and its negation given the music tag
music tag: drum
describe the music: The music is played with a drum
negate the description: drum is not played in the song
music tag: rock
describe the music: This is a rock song
negate the description: the genre for the song is not rock
music tag: happy
describe the music: The music makes one feel happy
negate the description: The mood of the song is not happy
music tag: Choir
describe the music: The song features a choir
negate the description: The song does not feature a choir
music tag: Tabla
describe the music: Tabla is played in the song
negate the description: Tabla is not played in the song
music tag: Trumpet
describe the music: <extra_id_1>
negate the description: <extra_id_2>

Model Output:
<extra_id_1>: A trumpet is played in this song
<extra_id_2>: A trumpet is not played in this song

Table 8: Text prompts used for PaLM to generate non-negated and negated sentences from a seed music attribute.
Here we show a example output for the attribute Trumpet.

Intended uses. AudioSet is made available by Google Inc. under a Creative Commons Attribution 4.0 784

International (CC BY 4.0) license, while the ontology is available under a Creative Commons Attribution- 785

ShareAlike 4.0 International (CC BY-SA 4.0) license. As all the QA examples in MAQA benchmark 786

are derived from AudioSet, it is subject to the same license as AudioSet. MAQA is intended to use for 787

research-only purposes. 788
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Seed Attribute Generated Questions Generated Negated Questions
A capella The song is sung without any musical

instruments
The song is not sung without any musical instru-
ments

Accordion The musical instrument of the song is
accordion

accordion is not played in the song

Acoustic guitar The song is played with an acoustic gui-
tar

The song is not played with an acoustic guitar

Ambient music The song is ambient music The song is not ambient music
Angry music The song makes one feel angry The mood of the song is not angry
Background music The song is background music The song is not background music
Bagpipes The musical instrument of the song is

Bagpipes
Bagpipes is not played in the song

Banjo The song is played with a banjo The song is not played with a banjo
Bass drum The musical instrument of the song is

Bass drum
Bass drum is not played in the song

Bass guitar The musical instrument of the song is
Bass guitar

Bass guitar is not played in the song

Beatboxing Beatboxing features in the song Beatboxing does not feature in the song
Bell The musical instrument of the song is

bell
bell is not played in the song

Bluegrass The genre of the song is bluegrass bluegrass is not the genre of the song
Blues The song is a blues song the song is not a blues song
Bowed string instrument The musical instrument of the song is a

bowed string instrument
The music is not played with a bowed string
instrument

Brass instrument The musical instrument of the song is
brass

brass is not played in the song

Carnatic music The music is Carnatic The music is not Carnatic
Cello The musical instrument of the song is

Cello
Cello is not played in the song

Chant The music is a chant The music is not a chant
Choir The song features a choir The song does not feature a choir
Christian music It is Christian music It is not Christian music
Christmas music The music is Christmas music The music is not Christmas music
Clarinet The song is played by clarinet clarinet is not played in the song
Classical music The music is classical The genre for the song is not classical
Country The genre of the song is Country This is not a Country song
Cowbell The song has cowbell The song does not have cowbell
Cymbal The musical instrument of the song is

Cymbal
Cymbal is not played in the song

Dance music The music is suitable for dancing The music is not suitable for dancing
Didgeridoo The music is played on a didgeridoo The music is not played on a didgeridoo
Disco The song belongs to the disco genre The song does not belong to the disco genre
Double bass The musical instrument of the song is

double bass
double bass is not played in the song

Drum and bass The music is drum and bass The song is not drum and bass

Table 9: More examples of PaLM-generated non-negated and negated questions.
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