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Abstract

Multimodal learning can benefit from the rep-
resentation power of pretrained Large Lan-
guage Models (LLMs). However, state-of-
the-art transformer based LLMs often ignore
negations in natural language and there is no
existing benchmark to quantitatively evaluate
whether multimodal transformers inherit this
weakness. In this study, we present a new
multimodal question answering (QA) bench-
mark adapted from labeled music videos in Au-
dioSet (Gemmeke et al., 2017) with the goal of
systematically evaluating if multimodal trans-
formers can perform complex reasoning to rec-
ognize new concepts as negation of previously
learned concepts. We show that with stan-
dard fine-tuning approach multimodal trans-
formers are still incapable of correctly inter-
preting negation irrespective of model size.
However, our experiments demonstrate that
augmenting the original training task distri-
butions with negated QA examples allow the
model to reliably reason with negation. To do
this, we describe a novel data generation proce-
dure that prompts the 540B-parameter PaLM
model to automatically generate negated QA
examples as compositions of easily accessible
video tags. The generated examples contain
more natural linguistic patterns and the gains
compared to template-based task augmenta-
tion approach are significant.

1 Introduction

Large language models (LLMs) have difficulty
understanding negation in natural language. Pre-
trained LLLMs often ignore negation in cloze ques-
tions and give same prediction for negated ("Birds
cannot [MASK]") and non-negated ("Birds can
[MASK]") queries (Kassner and Schiitze, 2019;
Hosseini et al., 2021). Hossain et al. (2022) ana-
lyzed the training corpora of state-of-the-art LLMs
and found that negation is rarely present, leading
to the poor handling of negation at inference time.

State-of-the-art multimodal learning leverages
pretrained LLMs for fusing different modalities (Jia
et al., 2021; Radford et al., 2021; Oncescu et al.,
2021; Kilgour et al., 2022; Nagrani et al., 2022).
Will the fine-tuned LLMs intended for multimodal
applications inherit the negation problem? Huang
et al. (2022) showed that the zero-shot performance
on the text query based audio retrieval task de-
grades when the text query includes negation cues,
e.g., "no vocals". Yu et al. (2022) showed that the
text-to-image model generates items that are men-
tioned in the text prompt, even when the prompt
suggests the absence of the item. However, there
is no benchmark for quantitatively evaluation of
how well negation patterns in the text are handled
in such multimodal settings.

In this study, we created MAQA, a binary music
audio question answering benchmark, to evaluate
how well the multimodal transformers understand
negation in music related questions. This bench-
mark is created from labeled videos in the music-
related portion of AudioSet (Gemmeke et al., 2017).
While the original benchmarks focus on probing
the musical knowledge of an audio model and only
contains a handful of examples including negation,
the proposed benchmark MAQA features a signifi-
cant portion of negated questions that are generated
programmatically from the original audio labels.
Our goal is to evaluate if multimodal transformer
can be fine-tuned to understand new concepts, e.g.,
“no vocals” as negation of the previously learned
concept, e.g., “vocals” through compositional gen-
eralization.

The main contributions of the paper are: (1)
A compositional generalization experiment that
demonstrates standard fine-tuning prevents our
baseline model, a multimodal transformer modi-
fied from the multilingual TS (MT5) (Raffel et al.,
2019; Xue et al., 2021) from generalizing to new
concepts that are negation of learned concepts. (2)
A Pal.M-based data generation approach that au-



tomatically generate negated QA examples from
easily access video tags. (3) Two task augmenta-
tion strategies that lead to a significant boost of the
model performance on portion of MAQA with text
negation.

The rest of this paper is organized as follows.
Section 2 provides relevant background and related
work on negation, compositional generalization
and multimodal learning. Section 3 provides an
overview of the MAQA dataset and its statistics.
Section 4 details how we create the benchmark
through data generation. Section 5 describes the
experiment design to measure compositional gen-
eralization. The models and experiment results are
presented in Section 6 and 7. The paper closes with
a discussion on the limitations, implications of our
results and future work.

2 Related Works

Negation. Despite improvements of LLMs in
many NLP tasks such as natural language under-
standing, reading comprehension, zero-shot text
generation, negation remains a challenge for pre-
trained LLMs (Kassner and Schiitze, 2019; Hos-
seini et al., 2021). Data augmentation has been
used to tackle negation in the NLP literature. For
example, modification of the natural language un-
derstanding corpora by adding negation to the verb
or adjective and reversing the labels was proposed
in (Hossain et al., 2020), and an unlikelihood loss
for the span corruption pre-training tasks was pro-
posed in (Hosseini et al., 2021). Negation is also
addressed in the meta-learning literature (Murty
et al., 2021), where it is treated as one of the rea-
soning categories that requires additional few-shot
classification tasks to augment the original task
distribution.

Compositional Generalization. Compositional
Generalization refers to the ability to under-
stand novel concept as compositions of previously
learned concept or atoms. Negation can be thought
as a form of composition. In the field of semantic
parsing, several benchmarks have been proposed
to evaluate compositional generalization (Lake and
Baroni, 2018; Keysers et al., 2020; Kim and Linzen,
2020), which have encouraged development of
techniques and architectures to make LLMs bet-
ter at solving compositional tasks (Furrer et al.,
2020; Ontanon et al., 2022; Csordas et al., 2021;
Qiu et al., 2022). Several multimodal benchmarks
have shown visually grounded LLMs often struggle

with compositional generalization in visual reason-
ing tasks (Johnson et al., 2017), visual grounded
command following tasks (Ruis et al., 2020), text-
to-image matching (Zhang et al., 2021), etc. Our
study focus on evaluating audio grounded LLMs
on compositional tasks involves negation.
Multimodal QA. Multimodal question answering
benchmarks are used to probe the multimodal mod-
els to evaluate their perception and reasoning capa-
bility on different modalities. Visual Question An-
swering benchmarks (Zhang et al., 2015; Agrawal
et al., 2015) commonly consist of triplets of (image,
a natural language question about the image, an-
swer), and the task is to answer the question based
on the visual cue in the image. In the field of au-
dio perception, audio QA benchmarks (Fayek and
Johnson, 2020) are less common than audio clas-
sification benchmarks (Gemmeke et al., 2017). In
the music domain, most benchmarks are music in-
formation retrieval tasks (Law and Von Ahn, 2009),
where the text labels are usually in the format of
short form music tags.

Multimodal Transformers. A series of
Transformer-based multimodal models (Sun et al.,
2019; Tan and Bansal, 2019; Lu et al., 2019), re-
ferred to as “Multimodal Transformers” in this
study, explored using Transformer encoder as a
join encoder for multimodal fusion achieve state-
of-the-art results on a range of multimodal QA
tasks. Changpinyo et al. (2022) proposed a multi-
modal version of T5 (Raffel et al., 2019). Given
the image and the question in a VQA example,
the multimodal T5 takes the global and regional
image features generated by a pre-trained visual en-
coder and text tokens of the question as inputs, and
solves a classification problem with pre-defined
classes of answers for the VQA task. The param-
eters of the visual encoder are frozen during T5
fine-tuning. We follow the same approach but use
pre-trained audio encoders (Gemmeke et al., 2017;
Huang et al., 2022) to extract global representation
of the music audio. A detailed survey of audio
representation can be found in Huang et al. (2022).

3 Music Audio Question Answering
(MAQA)

To evaluate the ability of multimodal models to
reason with negation, we create a music audio QA
benchmark (MAQA) which emphasizes on correct
understanding of text negation. The music audio
QA pairs are generated programmatically from the



music related portion of AudioSet (Gemmeke et al.,
2017), which contains music audio clips annotated
with music attributes and an ontology describing
their relationship. There are 388,262 and 4, 497
unique music audio clips in the train and evaluation
split, respectively. Each clip is labeled with one or
more music tags out of the 141 unique music at-
tributes covering music genres, music roles, music
instruments and music moods.

Table 1 presents an example in MAQA, which
consists of four QA pairs generated from an ex-
ample of music attribute labeled audio clip in Au-
dioSet. Q1 and Q2 are questions generated from
the same seed attribute, and essentially probe about
the same musical skill, i.e., listen to a music au-
dio and try to identify if a bass guitar is played.
Q2 is a negated form of Q1. If a model answer
Q1 correctly and fail on its negated counterpart
Q2, it suggests that the model does not understand
the negation logic in the question and unable to
perform compositional generalization.

MAQA contains two evaluation sets ASBaseE-
val and ASNegationEval and two training sets AS-
BaseTrain and ASNegationTrain as shown in Ta-
ble 2 with balanced binary label distribution. AS-
BaseTrain / ASBaseEval contains non-negated QA
pairs about music audio recordings. ASNegation-
Train / ASNegationEval is a superset of ASBase-
Train / ASBaseEval, and it also includes their
negated counterparts of the QA pairs. A multi-
modal model with strong music audio understand-
ing capabilities should score high on ASBaseEval.
Moreover, to demonstrate its ability of reasoning
about negation logic, it has to also score high on
ASNegationEval.

4 Data Generation

Since music descriptive text that involves negation
rarely occur in the standard text corpora (Hossain
et al., 2022), we propose the following 3-step ap-
proach to programmatically generate binary audio
QA pairs that involve text negation: 1. For each
music audio-attribute pair in the original dataset,
we sample a negative attribute that is not associated
with the audio clip. 2. Convert the positive and
the negative audio-attribute pair into a binary AQA
example in the format of a triplet (audio clip, ques-
tion on the attribute, True / False label). 3. Perform
a text negation on the question and flip the binary
label simultaneously to create negated audio QA
pairs. As a first attempt we curate MAQA from Au-

dioSet with this method, however it can be applied
to other datasets containing annotated music audios.
Next, we discuss the details of how we followed
the 3 steps to create MAQA from AudioSet.

Negative Attribute Sampling. We adopt neg-
ative sampling to create a balanced binary label
distribution. In particular, we sample hard negative
attributes using sibling nodes in the ontology tree
and assign False label to the derived audio QA pair.
Consider the example in Table 1, the audio clip is
tagged with Bass guitar and Acoustic guitar, which
are both under the parent node Guitar. We sam-
ple hard negative attributes steel guitar and slide
guitar from the sibling nodes, to create a negative
audio-attribute pair. This hard negative sampling
approach encourages the model to differentiate re-
lated but different music concepts.

Question Generation. We explore the follow-
ing two approaches to generate questions from the
audio-attribute pair sampled from the first step,
which help us to create the base QA dataset, i.e.,
ASBaseEval and ASBaseTrain. The first approach
is template based, and it takes advantage of the
AudioSet ontology, where each music attribute is
associated with one of the four attribute types: gen-
res, roles, instruments, and moods. We use type-
specific templates to convert attributes into a true-
or-false question, e.g., “The [Attribute Type] of the
song is [Attribute Value].”. For example, the at-
tribute Bass Guitar is a type of musical instrument
according to the AudioSet ontology. The question
generated by the template-based approach is “The
[musical instrument] of the song is [Bass Guitar].”.

The second approach leverages the few-shot text
generation capability of PaLM (Chowdhery et al.,
2022) to improve the diversity of generated ques-
tions. Similar to GPT-3 (Brown et al., 2020), when
prompted with an instruction, e.g., “Generate a
sentence about music given the music attribute”,
PalLM learns from a few demonstrations and gen-
erates questions on unseen attributes. Example
questions generated by PalLM are shown in Table 1.
We explored different combinations of text prompts
and model hyper-parameters (e.g., temperature) to
control the diversity of generated texts.

Task Augmentation with Negation. For each
QA pair generated from the last step, we negate
the question and reverse its binary answer to cre-
ate a negated audio QA pair. By augmenting the
ASBaseEval and ASBaseTrain with their negated
counterparts, we create ASNegationEval and AS-



NegationTrain. If this negation augmentation step
is applied to the training data then we refer to it
as Task Augmentation. Again we explore both
template-based and PalLM-based approaches for
text negation.

The template-based approach convert a question
to the negation form by inserting a modifier not
before the noun, i.e., “The [Attribute Type] of the
song is not [Attribute Value].” and the binary label
is flipped. One of the limitation of this approach is
that it is attribute type specific and only modifies
nouns. PalLM based method overcomes such limi-
tation with few shot text generation, which allows
the model to generate different negation patterns by
modifying both nouns and verbs. For example, the
negation patterns associated with the instrument
attribute “guitar” include “no guitar”, “guitar is not
played”, and “the song does not feature guitar”. For
each music attribute, we use PaLM to generate a
few question candidates and manually pick the best
one. Row 2 and 4 in Table 1 are example questions
generated in this way. The text prompts to PaLM
can be found in Appendix C.

5 Compositionality Experiment Design

To evaluate model’s ability to generalize composi-
tionally so that it can understand composed music
concepts like “no vocals” that involve negation, we
split the data into train and test sets following the
design recommended by (Keysers et al., 2020). In
our setup, music attributes are the the basic knowl-
edge structures or atoms, and all the generated
music-related questions or the compounds are the
results of applying compositional rules, e.g., nega-
tion to these basic building blocks. The Template-
based and Model-based data generation procedures
detailed in Section 4 can be thought of different
ways to compose music atoms into QA compounds.

Consider using the question “The song is played
with a banjo” composed by PaLM as testing exam-
ples and “The [musical instrument] of the song is
[banjo]” composed by templates as training exam-
ples. Both questions are composed from the atom
“banjo” so they evaluate the same music knowl-
edge, but the resulted compounds are different as
the combinations of the atoms are different. To
prove a model is capable of compositional general-
ization, the train and test split should have similar
atoms distributions and different compounds distri-
butions (Keysers et al., 2020). Therefore, by design
the music attributes are similarly represented in the

train and test sets (Table 2), while the test set con-
tains novel combinations of the atoms that are not
seen in the train set.

Compound Divergence is used to measure quan-
titatively how different is the compound distribu-
tions in the train and test split (Keysers et al., 2020).
Here we use Compound Divergence (CD) as a qual-
itative measure of how much a train-test split mea-
sures the compositional generalization ability of
the multimodal models. As shown in Table 3, we
define five train-test split scenarios labeled by the
CD type. The scenario with highest CD is the most
challenging case for compositional generalization.
Below we list the research questions we try to an-
swer with these experiments and analyze the results
in details in Section 7:

1. Can multimodal transformers be fine-tuned
to solve QA tasks with in-domain music con-
cepts? (Section 7.1)

2. Does the standard multimodal fine-tuning al-
low the multimodal transformer to generalize
to QAs composed from in-domain concepts
via negation? (Section 7.2)

3. Will task augmentation help with QA tasks

that require reasoning with negation? (Sec-
tion 7.3 and 7.4)

6 Multimodal Modeling

Following the VQA literature (Changpinyo et al.,
2022; Zhang et al., 2015), we treat the audio QA
as a binary classification task. We adopt a mul-
timodal T5 architecture similar to that in Chang-
pinyo et al. (2022) to fuse the audio and text inputs,
and we replace TS5 with its multilingual version
MTS5 (Xue et al., 2021). Each music audio clip
input is represented as a 128-dimensional embed-
ding obtained either from VGGish (Gemmeke et al.,
2017)", which uses a VGG ConvNet architecture,
or the transformer based MuLan model (Huang
et al., 2022). The audio embedding and text tokens
are fed into the pre-trained multi-layer MTS (Xue
et al., 2021) encoder as a sequence of vectors and
the final multimodal representation is classified into
the binary classes. The audio embeddings are pro-
jected to the text token embedding space through
a linear projection layer, which is initialized ran-
domly at the beginning of finetuning. The model is

"https://github.com/tensorflow/models/tree/master/research/
audioset/vggish



Sampled Attributes Question Answer | Negated
Bass guitar (4) Q1)The musical instrument played in the song is Bass guitar | TRUE No
Bass guitar (4) Q2)Bass guitar is not played in the song FALSE Yes
steel guitar, slide guitar (—) | Q3)The song has steel guitar or slide guitar FALSE No
steel guitar, slide guitar (—) | Q4)The song does not have slide guitar or steel guitar TRUE Yes

Table 1: Examples of generated Binary Audio QA Pairs in MAQA. The original AudioSet example is a music
audio clip associated with the following tags: Bass guitar, Guitar, Acoustic guitar and Strum. Questions and their
negated counterpart are generated from the sampled attributes with the PalLM based approach. Negative attributes
steel guitar, slide guitar are sampled from the sibling nodes in the AudioSet ontology.

Label Stats # of QA Pairs # of mentions
Data Version QA Type True Negated | Non- Negated | Genre | Mood | Instrument| Role
negated
ASBaseEval PALM 50% 0% 17,028 0 5574 | 730 9740 984
ASNegationEval | PALM 50% 50% 17,028 17,028 (32.7%) (4.3%) | (57.2%) | (5.8%)
ASBaseTrain TEMP/PALM | 50% 0% 1,263,004 | 0 439,904 28,634 | 740,126 54,340
ASNegationTrain | TEMP/PALM | 50% 50% 1,263,004 | 1,263,004 (34.8%) (2.3%) | (58.6%) | (4.3%)

Table 2: Statistics on Music Audio QA (MAQA) Benchmark. Both evaluation sets ASBaseEval and ASNega-
tionEval are generated by PaLM. Each training set has a template-generated and a PalLM-generated version. All
the datasets have balanced binary label distributions. ASNegationEval contains ASBaseEval and its negated coun-

terparts. The music attributes have a simialr distribution in training and evaluation split.

warm started from the MT5 checkpoints® without
pre-training on other multimodal data. The multi-
modal code is based on the Flaxformer framework>.
Training details can be found in Appendix A.

7 Results and Analysis

We report experiment results on the ASBaseEval
and ASNegationEval evaluation benchmark in Ta-
ble 4 and Table 5 respectively. The Audio QA task
is formulated as a binary classification problem,
and we report the best AUC-ROC score and the cor-
responding accuracy in the positive class. For each
split scenario, we compare the performance of fine-
tuned multimodal transformer with different audio
feature extractors, as well as with different sized
pre-trained MT5 model. Furthermore, we vary the
types of QA pairs (template-based or PaLM-based)
used in training and study how compound diver-
gence affects learning negation.

7.1 Music Understanding

Table 4(a) shows the result for the first split sce-
nario in Table 3 where the model is trained and
evaluated on non-negated QA pairs generated by
PalLM. This Low CD experiment establish a fine-
tuning baseline on basic music concepts. The fine-
tuned multimodal MT5 score over 90% AUC-ROC
on the ASBaseEval benchmark that features Audio

Zhttps://github.com/google-research/multilingual-t5
3https://github.com/google/flaxformer

QA tasks on music styles, moods, genres, instru-
ments, etc. Recall the random baseline is 50% for
balanced binary classification tasks, this suggests
multimodal transformer learn to efficiently fuse au-
dio and text signals through fine-tuning, even it is
warm started from a text-only checkpoint. Probing
the model on different music attributes suggests
that music concepts like “Scary music”, “Children
music” and popular percussion instruments like
“Cowbell” are easy for the fine-tuned model to pick
up, while the model has a harder time to understand
electronic music genres such as “Drum and bass”,
“Trance music”.

We further replace the training examples gen-
erated by PaLM with the template-generated QA
examples for the second split senario, resulting in
a Medium CD setting (Table 3). The model scores
around 6% lower in the Medium CD setting (Ta-
ble 4(b)) compared to the Low CD setting. This
suggest the model can still transfer most of the
music knowledge learned in a different linguistic
context via compositional generalization. For both
split scenarios the best multimodal model is the
MTS5-XL with Mulan embedding as audio features.

7.2 Reasoning with Negation

For the third split scenario we apply the same fine-
tuning setup as in Table 4(a) but evaluate on AS-
NegationEval, where the non-negated half is from
ASBaseEval and the other half contains their nega-
tion counterparts. As shown in Table 5(a), the mul-



Attribute | Train Examples

| Test Examples

CD Type | Eval Set

(a) Without Task Augmentation (ASBaseTrain)

Banjo The song is played with a banjo. The song is played with a banjo. Low CD | ASBaseEval
(PaLM) (PaLM)

Blues The [genre] of the song is [blues]. | The song is a blues song. Med CD ASBaseEval
(Temp) (PaLM)

Scary The music is scary.(PaLM) The music is scary.(PaLM) High CD | ASNegationEval

The music is not scary.(PaLM)

(b) With Task Augmentation (ASNegationTrain)

Chant The music is a Chant.(PaLM) The music is a Chant.(PaLM) Low CD | ASNegationEval
The music is not a Chant.(PaLM) | The music is not a Chant.(PaLM)

Dance The [music role] of the song is The music is suitable for dancing. Med CD | ASNegationEval

music [Dance music].(Temp) (PaLM)
The [music role] of the song is not | The music is not suitable for dancing.
[Dance music].(Temp) (PaLM)

Table 3: The train and test split design of MAQA. For each of the 5 split scenarios we list a few example questions
included in the train and test split. All the QA examples or compounds are composed from the seed music attributes
or atoms via Template-based (Temp) or PaLM-based (PaLM) approach. Compound Divergence (CD) Type is used
to measure the difference between the train and test compound distribution. Task Augmentation is applied during
training for the ASNegationEval-LowCD and ASNegationEval-MedCD split scenario.

timodal MTS5 fine-tuned on non-negated audio QA
pairs (ASBaseTrain) scores only 50% on the AS-
NegationEval benchmark in this High CD setting.
Although the model still scores around 80% on
the non-negated QAs (comparable to the accuracy
on ASBaseEval in Table 4), it scores only around
20% on their negated counterparts. The model
does worse than the 50% random guess baseline
on these negated questions after fine-tuning. This
shows that while the model is trained to answer the
non-negated questions correctly, they also learn to
“ignore” the negation cue in the negated questions.
We also show that increasing the model size does
not improve the AUC-ROC score, suggesting that
even larger model fail to generalize composition-
ally using the standard fine-tuning approach.

7.3 Task Augmentation

We then apply task augmentation during training by
augmenting ASBaseTrain with negated QA exam-
ple generated by PaLM (AsNegationTrain-PaLM),
which lower the compound divergence. The task
augmentation proves to be an effective strategy
for tackling negation. As shown in Table 5(b),
multimodal MTS5 fined-tuned with task augmenta-
tion improves the baseline on ASNegationEval as
shown in Table 5(a) by nearly 40%, while obtaining
similar performance on the non-negated QA pairs
(ASBaseEval). The AUC-ROC score and accuracy
is on par with the scores on the non-negated Au-
dio QA pairs (ASBaseEval), suggesting that task
augmentation can indeed help the model to learn to

answer the questions with negation correctly. The
best result on ASNegationEval is obtained by fine-
tuned MT5-XL with MuLan audio embedding.

7.4 Template versus PalLM

We further explore how different task augmenta-
tion strategy affects the learning outcome. As
shown in Table 5(c), we use template-based ap-
proach for composing QA pairs and task augmen-
tation, and compare with the fine-tuning results
with PalLM-generated QA pairs. The Template-
based fine-tuning scores around 10% lower in AUC
score compared to PalLM-based fine-tuning. The
observed gap can be explained by the increased
compound divergence between the training data
and the evaluation data. The accuracy difference
on the non-negated split is around 7% while the
difference on the negated split is around 10% to
12%. Recall that the template-based approach only
modifies the noun for negation while Palm-based
approach incorporates more variations, which can
explain why the template-based fine-tuning per-
forms worse on the negated split. This experiment
has highlighted the importance of composing aug-
mented tasks with natural linguistic variations that
match human language used in production environ-
ment. However, even Template-based task augmen-
tation can improve negation understanding signifi-
cantly, on average 30% higher than training without
task augmentation (Table 5(a)).



Finetuning Details ASBaseEval
Model Train Data - QA Type | CD Type | AUC | Acc
a) | MT5-Base+VGGish | ASBaseTrain-PaLM Low CD | 0.905 | 0.821
MT5-XL+VGGish ASBaseTrain-PaLM LowCD | 0911 | 0.827
MT5-Base+MuLan | ASBaseTrain-PaLM LowCD | 0913 | 0.828
MT5-XL+MuLan ASBaseTrain-PaLM LowCD | 0918 | 0.832
b) | MT5-Base+VGGish | ASBaseTrain-Temp Med CD | 0.847 | 0.771
MT5-XL+VGGish ASBaseTrain-Temp Med CD | 0.850 | 0.765
MT5-Base+MuLan | ASBaseTrain-Temp Med CD | 0.845 | 0.766
MT5-XL+MuLan ASBaseTrain-Temp Med CD | 0.851 | 0.767

Table 4: Accuracy on ASBaseEval for two different Compound Divergence (CD) settings.

Finetuning Details ASNegationEval
Acc
Model Train Data - QA Type CD Type | AUC | Avg | Negated | Non-negated
a) | MT5-Base+VGGish | ASBaseTrain-PaLM HighCD | 0.524 | 0.513 0.218 0.803
MT5-XL+VGGish ASBaseTrain-PaLM HighCD | 0.525 | 0.525 0.247 0.802
MTS5-Base+MuLan | ASBaseTrain-PaLM HighCD | 0.553 | 0.541 0.273 0.802
MT5-XL+MuLan ASBaseTrain-PaLM HighCD | 0.528 | 0.520 0.220 0.819
b) | MT5-Base+VGGish | ASNegationTrain-PaLM | Low CD | 0.896 | 0.814 0.814 0.813
MT5-XL+VGGish ASNegationTrain-PaLM | Low CD | 0.903 | 0.821 0.821 0.821
MT5-Base+MuLan | ASNegationTrain-PaLM | Low CD | 0.905 | 0.821 0.821 0.822
MT5-XL+MuLan ASNegationTrain-PaLM | Low CD | 0.907 | 0.825 0.825 0.825
c) | MT5-Base+VGGish | ASNegationTrain-Temp | Med CD | 0.784 | 0.715 0.690 0.741
MT5-XL+VGGish ASNegationTrain-Temp | Med CD | 0.823 | 0.743 0.724 0.763
MT5-Base+MuLan | ASNegationTrain-Temp | Med CD | 0.805 | 0.739 0.723 0.755
MTS5-XL+MuLan ASNegationTrain-Temp | Med CD | 0.828 | 0.750 0.740 0.759

Table 5: Accuracy on ASNegationEval for three different Compound Divergence (CD) settings.

8 Considerations and Limitations

While most PalLM-generated examples generated
can be used without modifications, we still have
to rely on human supervision to make judgement
on some ambiguous examples, e.g., “The song has
a Guitar solo”, “There is a drum roll at the begin-
ning of the song”. These generated sentences are
consistent with the music tag, but can be correct
or incorrect depending on the specific music audio
context. For our experiment the number of music
tags are small (around 100) so human supervision
is still affordable. For large number of tags we
still need to develop programs to automatically fil-
ter irrelevant candidates. Furthermore, there is a
trade-off between the diversity and reliability of
the PalLM-generated output, which is mainly con-
trolled via the prompts and hyper-parameters. We
hope to see future studies on automatic prompts
tuning so that we don’t have to design task-specific
prompts.

9 Conclusion

In this work, we propose a new Binary Audio QA
benchmark MAQA in the music domain to probe

the state-of-the-art multimodal models on under-
standing negation. MAQA fills in the gap of lack-
ing negation-focused evaluation benchmark in the
multimodal setting. Our experiments show that
standard fine-tuning prevents the multimodal trans-
formers from generalizing to new concepts that
are negation of the learned concepts. While in-
creasing the model size or adopting a better audio
encoder doesn’t help with negation, task augmen-
tation allows the model to reason with negation by
providing more fine-tuning examples that contain
negation. And LLMs like PalLM can be used to
generate negated examples with more natural lin-
guistic variations, which have a significant effect
on the learning outcome. With the MAQA bench-
mark, we hope to encourage multimodal research
community to develop new modeling frameworks
or algorithms to handle complex natural language
instructions that involves negation. We plan to re-
lease the MAQA dataset on Github.
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Model ASBaseEval-Temp | ASNegationEval-Temp
AUC Acc AUC Acc
MT5-Base + VGGish | 0.907 0.822 0.505 0.502
MT5-Base + MuLan | 0.909 0.827 0.505 0.504
MT5-XL + VGGish | 0.907 0.826 0.514 0.509
MT5-XL + MuLan 0.916 0.833 0.515 0.506

Table 6: Fine-tuned results on ASBaseTrain without Task Augmentation on template-generated QAs.

Model ASBaseEval-Temp | ASNegationEval-Temp
AUC Acc AUC Acc
MT5-Base + VGGish | 0.893 0.804 0.877 0.800
MT5-Base + MuLan | 0.905 0.825 0.901 0.820
MT5-XL + VGGish | 0.903 0.818 0.903 0.820
MT5-XL + MuLan 0.914 0.829 0.908 0.834

Table 7: Fine-tuned results on ASNegationTrain, with Task Augmentation on template-generated QAs.

A Training Details

For the MT5-base encoder there are 12 Transformer encoder layers and the input embedding dimension is
768. For MT5-XL there are 24 Transformer encoder layers and the input embedding dimension is 2048.
MTS5-XL has 3.7 billion parameters and MT5-base has 580 million parameters. The batch size is 64 for
MTS5-base model and 128 for MT5-XL model. We use fixed a learning rate among {1073,10~4,57°}
and observe 1 x 10~ works best in general. The model outputs 2-dimensional logits as the Audio QA
task is formulated as binary classification. We train all models with data parallelism using 16 Cloud TPU
Pods. For all experiments we run for 50, 000 steps and reports the AUCROC and Accuracy based on the
best checkpoint measured by AUCROC. For each experiment we pick the highest AUCROC of multiple
runs. It takes around 1 hour for MT5-Base and around 4 hours for MT5-XL.

B Results with Template-generated QAs

Table 6 and Table 7 shows the results on template-generated QA evaluation set. The QA pairs in both
train and evaluation set are generated using templates. The results further reinforce the findings based on
PalLM-generated evaluation set (Table 4 and Table 5). Table 6 shows standard fine-tuning on audio QA
pairs prevents multimodal transformers from learning negation, and Table 7 shows task augmentation
help with negation by reducing the compound divergence.

C Text Prompts used for PalLM

After a few iterations, we’ve found the text prompts shown in Table 8 works best for generating negated
and non-negated QA pairs. The one-line instruction at the beginning of the prompt is crucial to guide
PalLM to generate desired sentences. Table 9 shows more PalLM-generated questions. The total number of
seed attributes used for text generation are 130, and for each attribute we pick one non-negated and one
negated question selected from the candidate questions generated from PalLM.

D Further Considerations

Risk The QA examples generated by PalLM are supervised by the authors to ensure there is no offensive
content generated, hence the risk to open source the data is low.

Information that names or uniquely identifies individual people or offensive content Our data is
derived from the music portion of Audio Set, which contains audio features and tags of 10s YouTube
video clips rated by Human raters. No metadata or personal identifiable information on these YouTube
videos have been exposed.
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User Input (Music Tag): Trumpet

Model Input:

Generate a sentence about music and its negation given the music tag
music tag: drum

describe the music: The music is played with a drum
negate the description: drum is not played in the song
music tag: rock

describe the music: This is a rock song

negate the description: the genre for the song is not rock
music tag: happy

describe the music: The music makes one feel happy
negate the description: The mood of the song is not happy
music tag: Choir

describe the music: The song features a choir

negate the description: The song does not feature a choir
music tag: Tabla

describe the music: Tabla is played in the song

negate the description: Tabla is not played in the song
music tag: Trumpet

describe the music: <extra_id_I>

negate the description: <extra_id_2>

Model Output:
<extra_id_I>: A trumpet is played in this song
<extra_id_2>: A trumpet is not played in this song

Table 8: Text prompts used for PaLM to generate non-negated and negated sentences from a seed music attribute.
Here we show a example output for the attribute Trumpet.

Intended uses. AudioSet is made available by Google Inc. under a Creative Commons Attribution 4.0
International (CC BY 4.0) license, while the ontology is available under a Creative Commons Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0) license. As all the QA examples in MAQA benchmark
are derived from AudioSet, it is subject to the same license as AudioSet. MAQA is intended to use for
research-only purposes.
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Seed Attribute Generated Questions Generated Negated Questions

A capella The song is sung without any musical | The song is not sung without any musical instru-
instruments ments

Accordion The musical instrument of the song is | accordion is not played in the song

Acoustic guitar

Ambient music
Angry music
Background music
Bagpipes

Banjo
Bass drum

Bass guitar

Beatboxing
Bell

Bluegrass
Blues
Bowed string instrument

Brass instrument

Carnatic music
Cello

Chant

Choir

Christian music
Christmas music
Clarinet
Classical music
Country
Cowbell
Cymbal

Dance music
Didgeridoo
Disco
Double bass

Drum and bass

accordion

The song is played with an acoustic gui-
tar

The song is ambient music

The song makes one feel angry

The song is background music

The musical instrument of the song is
Bagpipes

The song is played with a banjo

The musical instrument of the song is
Bass drum

The musical instrument of the song is
Bass guitar

Beatboxing features in the song

The musical instrument of the song is
bell

The genre of the song is bluegrass

The song is a blues song

The musical instrument of the song is a
bowed string instrument

The musical instrument of the song is
brass

The music is Carnatic

The musical instrument of the song is
Cello

The music is a chant

The song features a choir

It is Christian music

The music is Christmas music

The song is played by clarinet

The music is classical

The genre of the song is Country

The song has cowbell

The musical instrument of the song is
Cymbal

The music is suitable for dancing

The music is played on a didgeridoo
The song belongs to the disco genre
The musical instrument of the song is
double bass

The music is drum and bass

The song is not played with an acoustic guitar

The song is not ambient music

The mood of the song is not angry
The song is not background music
Bagpipes is not played in the song

The song is not played with a banjo
Bass drum is not played in the song

Bass guitar is not played in the song

Beatboxing does not feature in the song
bell is not played in the song

bluegrass is not the genre of the song

the song is not a blues song

The music is not played with a bowed string
instrument

brass is not played in the song

The music is not Carnatic
Cello is not played in the song

The music is not a chant

The song does not feature a choir

It is not Christian music

The music is not Christmas music
clarinet is not played in the song

The genre for the song is not classical
This is not a Country song

The song does not have cowbell
Cymbal is not played in the song

The music is not suitable for dancing

The music is not played on a didgeridoo
The song does not belong to the disco genre
double bass is not played in the song

The song is not drum and bass

Table 9: More examples of PalLM-generated non-negated and negated questions.
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