
Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Isha Garg 1 Christian Koguchi 1 Eshan Verma 1 Daniel Ulbricht 1

Abstract

In this work, we study how well the learned
weights of a neural network utilize the space avail-
able to them. This notion is related to capacity,
but additionally incorporates the interaction of
the network architecture with the dataset. Most
learned weights appear to be full rank, and are
therefore not amenable to low rank decomposi-
tion. This deceptively implies that the weights are
utilizing the entire space available to them. We
propose a simple data-driven transformation that
projects the weights onto the subspace where the
data and the weight interact. This preserves the
functional mapping of the layer and reveals its
low rank structure. In our findings, we conclude
that most models utilize a fraction of the available
space. For instance, for ViTB-16 and ViTL-16
trained on ImageNet, the mean layer utilization
is 35% and 20% respectively. Our transforma-
tion results in reducing the parameters to 50%
and 25% respectively, while resulting in less than
0.2% accuracy drop after fine-tuning. We also
show that self-supervised pre-training drives this
utilization up to 70%, justifying its suitability for
downstream tasks.

1. Introduction
The notion of ‘capacity’ of a network becomes less clear
as we scale to large, deep neural networks. In practice, it
is often thought of as a function of the number of parame-
ters in the network. In this work, we shift out attention to
the concept of utilization, which we define distinctly from
model capacity in that it captures the interaction between
both the complexity of a trained network and the dataset its
trained on. We address utilization from a subspace perspec-
tive. Most learned weights appear to be full rank, suggesting
we cannot trivially perform a low rank decomposition. In
this work, we show that only a fraction of these dimensions
interact with the data the weight operates on. We study the
low rank decomposition of the input and output to the layers

1Apple. Correspondence to: Isha Garg <i_garg@apple.com>.

rather than the weights directly and find a simple modifi-
cation that preserves the layer mapping by projecting the
weight onto the subspaces of interaction. We refer to this
as the effective subspace where learning occurred, and the
dimension of this subspace as the utilized rank for that layer.
This lower dimensional subspace allows for easy decompo-
sition and efficiency by reducing the number of parameters
and FLOPs. It also allows us to compare different networks
in terms of their Mean Layer Utilization (MLU), a statistic
that is informational for studying the structure of networks.

Suppose the input and output for a given layer live on sub-
spaces S and T respectively. Then, projecting the input onto
S and the output onto T is invariant in the forward pass up
to some allowable L2 error. We show that performing these
two projections is similar to performing the forward pass
with a transformed weight matrix W , with its row space
projected onto S and its column space projected onto T .
We upper-bound the error resulting from this transforma-
tion, and show that it can be driven down by controlling the
spectral energies of the input and output subspaces. This
transformation reveals the utilized rank of W , which we
find to be far lower than the intrinsic rank of the original W .
We determine the rank for a single layer by performing a
binary search over the singular values of S and T to limit
the resulting error from this transformation on the validation
set. This allows us to find the utilized ranks of all layers
without retraining, with a predictable and bounded accuracy
drop that can easily be recovered via finetuning.

Studying the layerwise utilized rank of different network-
dataset pairs suggests that most networks do not fully uti-
lize the weight-space available to them. This means that a
straightforward low rank decomposition can significantly re-
duce the number of parameters and FLOPs. For instance, we
show that ViT variants trained on ImageNet only have 20% -
35% mean layer utilization, and can be decomposed to 25 to
48% of their original size while reducing the original FLOPs
by between 13 to 33%. The resulting drop in accuracy after
finetuning is less than 0.2%. We find that self-supervised
pretraining uses the available space better (MLU = 69%),
making it suitable for multiple downstream tasks. We also
study the effect of scaling the network and of increasing the
dataset complexity.

1



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

(a) Spectral energy spread of W and W’. The utilized rank becomes easily identifiable
when we transform W to W’

(b) Projecting W onto S resulting from trun-
cating the rank of X

Figure 1: Experiments on different layers of VGG11, CIFAR10

2. Methodology
2.1. Preliminaries: The Input and Output Subspaces

For simplicity, we consider a fully connected layer of a
neural network. Let the input be to this layer be X ∈ RB×d,
where B is the batch size and each row vector x ∈ Rd.
Let WT ∈ Rd×m be the weight that maps X from to Y ∈
RB×m . The corresponding forward pass can be written as:

Y = XWT (1)

For the first layer of a neural network, X is real data such as
images. Similarly, the output of the layer would be depen-
dent on the overlap between the input space and the column
space of W , i.e. if the columns of W and X were orthogo-
nal, the output would be zero. Generalizing to all layers, let
S be the subspace of the input to the layer, with dimension
kS . The orthogonal complement of this subspace, S⊥ is
d − kS dimensional, and contains the space of inputs or
activations not occupied by the real input. We can find this
subspace using SVD, shown below

X = UXΣXV T
X (2)

where ΣX is a diagonal matrix of the d singular values σi

and the first kS rows of V T
X represents a bases for S. We

define the spectral energy ratio as eS =
∑kS

0 σ2
i∑d

0 σ2
i

such that
we can preserve 99% of the spectral energy e.g. es = 0.99
with kS equal to the number of singular values (squared) that
contain 99% of the total energy. We construct the projection
matrix PS that projects X onto S, denoted by XS as:

VS := VX [: kS ]; VS⊥ := VX [kS :] (3)

PS = V T
S VS ; PS⊥ = V T

S⊥
VS⊥ (4)

XS = XPS XS⊥ = XPS⊥ (5)

Similarly, let the subspace of the output be T and the spectral
energy eT correspond to the utilized rank kT . Similar to
equations for S, VT contains the bases for T found from

performing the SVD on Y and gives the projection matrix
for PT ∈ Rm×m. Further details for SVD computation are
provided in appendix section 5.2.

2.2. The Weight Transformation and the Utilized Rank

In the forward pass equation 1, replacing X with XS and Y
with YT should result in the forward pass mapping remain-
ing largely unaltered. This is equivalent to modifying W by
projecting its column space onto S and its row space onto
T , resulting in a modified W ′ as shown below:

Y ≈ YT = Y PT (6)

= XWTPT (7)

≈ XPSW
TPT (8)

=⇒ Y ≈ XW ′T; where W ′ := PSW
TPT (9)

We refer to the rank of W ′ as the utilized rank since this
transformation is data-dependent and captures the sub-
space overlap between the weight-space and the data-
space. In Figure 1a, we show the spectral energy distribution
of W and W ′ for different layers of VGG11 trained on CI-
FAR10 data. From the figure, we can see that the spectral
energy of W has a wider distribution than W ′, obfuscat-
ing the true rank. Transforming W into W ′ compacts
the spectral energy and allows us to identify the utilized
rank more easily that naively applying the SVD directly.
For later layers, we note that the utilized rank is a small
fraction of the available dimensions (23/512), highlighting
the overparametrization of VGG architectures for CIFAR10.
The resulting error from replacing W by W ′ in equation 1
can be upper-bounded by choosing appropriate dimensions
for the input and output subspaces kS and kT .

∥E∥2 = ∥XWT −X(PTWPS)
T ∥2 (10)

≤ (1− eT )∥Y ∥2 + (1− eS)∥X∥2∥W∥2 (11)

The proof utilizes the fact that the Frobenius norm is the
sum of the square of singular values (see Appendix section
5.1).

2



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Figure 2: Utilization snapshots of different dataset-network pairs.The rank of the unaltered W is plotted for each layer in the
dotted line, and the rank of the transformed W as the solid line. The brackets list the parameters and accuracy of the original
and decomposed, finetuned network. FT refers to finetuning from SWAG [45], in a linear or end-to-end fashion.

How to choose kS and kT The error per layer is a func-
tion of eS and eT , and we use validation accuracy to inform
us of the maximum kS and kT we can set before suffering
a performance drop. In Figure 1b, we vary kS for a single
layer of VGG11 trained on CIFAR10 and plot the impact
on eS (black), the accuracy when we replace W by WS as
a ratio of the original accuracy (red), and the norm differ-
ence between W and WS (green). For this layer, we note
that when kS reaches ≈ 200/1024 dimensions, the trans-
formed WS does not result in an accuracy drop even though
WS differs significantly from W in norm (≈ 150). When
kS = 200 and eS = 0.8, retaining only 80% of the energy
was sufficient to achieve full accuracy. Hence, to maximize
savings, we perform a binary search on eS and eT for each
layer, while using validation accuracy drop as the signal to
inform the stopping criterion. We call the accuracy drop
tolerance for each transformation, (S or T projection for
each layer) as ϵ, and set it to 0.1 for our experiments. After
estimating kS , kT that conforms to this ϵ error for all layers,
the transformed network would have an accuracy drop =
2×#layers × ϵ%, which scales with the depth of the net-
work. However, since we largely preserve the functional
mapping of each layer, we find that finetuning is able to
recover the allocated drop. When finetuning, we decom-
pose each layer into 2 layers of reduced rank to ensure that
finetuning does not increase the searched rank.

2.3. Benefits of Studying the Utilized Ranks of Layers

Mean Layer Utilization: We describe the utilization statis-
tic for a layer as the ratio of the rank of W ′ to the maximum
rank possible. Suppose the utilized rank of a layer with
W ∈ Rm×d is r, then the layer utilization is r

min(m, d) .
The rank of W ′ is constrained to the rank of the product
of PSW

TPT , so we can calculate the rank r for a given
layer as min(kS , kT ). A utilization close to 1 implies that
the learnt column space of the weight overlaps fully with
the subspace of the input to the layer, whereas a utilization

close to 0 implies that the spaces are orthogonal, resulting
in little to no signal being passed forward. The utilized rank
depends on both the network architecture and the dataset,
allowing us to capture a notion of capacity that is more
informative than just the number of FLOPs or parameters.
We average this score over all convolutional and linear lay-
ers, and call this the MLU (mean layer utilization) score
of the network. A higher MLU reveals that the network
is well utilized, while a lower MLU allows for low-rank
decomposition for efficiency.

Savings in FLOPs and parameters: This low dimension-
ality of W results in a low rank decomposition that directly
reduces memory and compute costs if the rank r ≤ m×d

m+d .
Hence, for all layers that meet this criterion, we decompose
the layer into 2 layers with weights of shapes r × d and
m× r, respectively. This reduces the total parameters and
compute approximately by a factor of (m×d)

r(m+d) .

Utilization Snapshot: To study the layer-specific dynamics
of rank utilization, we chart the rank of the learned W , the
utilized rank r, and the maximum rank possible at each
layer as a utilization snapshot of a trained network. This can
visualize the maximum per-layer utilization across various
network and dataset combinations. We can also utilize
this to understand the effects of different pretraining and
finetuning techniques.

3. Results and Discussion
We perform experiments on VGG [44], ResNet [15], ViT
[6], DeiT [48], Swin Transformer [32], and Resnet variants
[57] on CIFAR10, CIFAR100 [28], and ImageNet [5]. We
use pretrained ViTs and ResNets from torchvision [38] and
DeiTs and SWIN transformers from TIMM [53]1. We use
Deepspeed [39] for profiling FLOPs with a batch size of

1For CIFAR, we use the architectures and hyperparameters
from github.com/bearpaw/pytorch-classification

3



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Architecture
Orig Acc

(%)
Orig MLU

(%)
Acc - Ours

(%) (∆)
True MLU

(%)
Params
Ratio

Flops
Ratio

ViTB16 80.9 94 80.7 (-0.2) 35 0.48 0.33
ViTB32 75.7 94 75.8 (+0.1) 34 0.46 0.33
ViTL16 79.5 81 79.5 (+0.0) 20 0.25 0.13
ViTL32* 76.9 92 76.2 (-0.7) 26 0.36 0.26

DeiT - Tiny† 72.1 / 75.3 98 75.0 (-0.3) 86 0.99 0.99
DeiT - Small† 79.8 / 80.1 98 80.3 (+0.2) 74 0.89 0.89
DeiT - Base† 81.8 / 82.0 98 81.5 (-0.5) 49 0.64 0.65
SWIN - Tiny 81.2 98 81.3 (+0.1) 65 0.86 0.83
SWIN - Small 83.3 98 83.4 (+0.1) 60 0.81 0.77
SWIN- Base* 85.2 98 84.5 (-0.7) 66 0.86 0.83

SWIN - Large* 86.3 98 85.3 (-1.0) 53 0.74 0.70
ResNet34 73.2 99 72.2 -(1.0) 66 0.77 0.76
ResNet50 80.1 99 79.4 (-0.7) 60 0.83 0.74
ResNet101 81.5 99 80.5 (-1.0) 47 0.66 0.59

WideResNet50_2 81.2 99 80.6 (-0.6) 43 0.68 0.58
WideResNet101_2 82.3 99 81.7 (-0.6) 33 0.51 0.44

Table 1: Results for Utilized Rank Decomposition on ImageNet. ViT [6] and ResNet [15, 57] pretrained models from
torchvision [38], DeiT [48] and SWIN[32] from TIMM [38] *implies ϵ = 0.05%, 0.1% otherwise. †Finetuning the original
DeiT models results in improved performance.

32. We define the drop per layer at ϵ = 0.1%. For ViTL-32,
Swin-Base, and Swin-Large, the finetuned accuracy drop
for ϵ = 0.1% was greater than 1%, and was reduced to
0.05%. We use SVD for calculating ranks. To rule out
very small singular values arising from numerical errors,
we assign the rank as the number of singular values that
explain 99.99% spectral energy. Finetuning is done with
each layer decomposed into two layers of reduced rank to
ensure it does not increase rank. However, when reporting
final savings, we decompose only those layers where matrix
decomposition would result in a reduction in parameters.
Finetuning hyperparameters are in Appendix section 5.4.

3.1. Utilization Statistics of Popular Networks

Studying layerwise utilization can help us understand the
suitability of the model for the dataset. In Figure 2, left, we
show the layer-utilization for VGG11 and VGG19, for the
same dataset CIFAR10. We see that they achieve similar
layer utilization, with a peak in utilization around layers 4-6
for the same task. While the original parameters grow from
9M to 20M, the utilized parameters stay stable around 2.5M.
In Figure 2, center, we evaluate the effect of increasing
dataset complexity on a static architecture to illustrate higher
network utilization for CIFAR100 than CIFAR10. Not only
is the utilization for CIFAR100 higher, but the utilization
at higher layer numbers could indicate the usage of higher
level features required to solve a more complex task.

From Tables 1 and 3, we note that the original models have

close to 100%MLU , deceptively implying that all the space
available for learning is well used. However, upon decom-
position, we find that the corresponding MLUs are quite
low, dipping to 20-35% for ViT variants on ImageNet. The
fact that ViTs are too big for ImageNet has been noted
previously, with the popularity of ‘Tiny’ variants.In fact,
DeiT-Tiny utilizes space quite well (99% true MLU com-
pared to ViTL-16’s 20%), indicating that increasing size
would indeed result in a gain in accuracy. We note that DeiT
networks show improved performance when training for
longer. For a fair comparison, we finetune DeiT pretrained
models from TIMM using the same hyperparameters as
ours, and compare against the finetuned models. Both this
original and finetuned accuracy for DeiT models is reported.

3.2. Parameter and Compute Efficiency

In Figure 3, we study the effect of rank-decomposed and
finetuned models on different architecture-dataset pairs. We
plot the number of parameters against the accuracy, with the
number of FLOPs represented by the sizes of the bubbles.
We see that most networks shrink and move towards the top
left corner when decomposed and finetuned, implying an
increase in accuracy and decrease in number of parameters
and FLOPs. From tables 1 and 3, we note that we can
significantly reduce the size and FLOPs for most networks.
For instance, VGG19 on CIFAR10 can be reduced to just
11% of the original size, consuming only 38% of the original
FLOPs. Similarly, parameters reduce to 25% and FLOPs
to 16% on ViTL-16 for ImageNet. On ImageNet, we see

4



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Figure 3: Visualizing the change in accuracy, number of parameters and FLOPs (size of bubble) of the decomposed,
finetuned model. ϵ is the accuracy drop tolerance per layer during rank search.

drops and increases in accuracy of less than 1% On CIFAR,
we note that finetuning accuracies never drop compared to
original, sometimes increasing up to 2% over the baseline.
We attribute this potentially to an increased regularization
effect from using low rank weights for small datasets.

3.3. Scaling network size and dataset complexity

We show the effect of scaling a network in the same family
for the same dataset in Figure 3, left, with numbers in Table
3. We see that VGG13, VGG16, and VGG19 all converge to
very similarly sized models on CIFAR10 with a very similar
accuracy upon decomposition, despite being different in
their original format. This indicates that a bigger network
is not necessarily beneficial for CIFAR10. However, we
note that all networks report 10-20% higher MLU when we
scale up the dataset complexity, going from CIFAR10 to
CIFAR100, also seen in in Figure 3, center. This implies
that the available capacity is being better utilized by larger
datasets. Hence, our method serves to incorporate both the
notion of capacity of the network, and its interaction with
the complexity of the dataset.

3.4. Varying the acceptable accuracy drop per layer

We set the acceptable accuracy drop per layer, ϵ, to 0.1%,
resulting in a total accuracy drop of 0.2% × #layers. In
Figure 3, we show the effect of increasing or decreasing this
hyperparameter for ViTB-16 (numbers in Appendix Table
5). Even when using a smaller drop of 0.01% per layer, we
can still reduce the network to 76% of the parameters and
58% of the FLOPs while gaining 0.4% accuracy improve-
ment, indicating that ViTB-16 is too large of a network for
ImageNet. The smallest model resulting with ϵ = 0.5%
consumes only 31% of the parameters and 20% of the orig-
inal FLOPs, and shows an accuracy drop of less than 1%.
While ϵ should be tuned for every model and dataset pair, we
find that 0.1% and 0.05% give good results across various
architectures and datasets.

3.5. Effect of pretraining on ViTs

In Figure 2, right, we evaluate the impact of weakly su-
pervised pretraining (SWAG [45]) on layer utilization on
downstream tasks. All models start close to maximum rank
shown in the dotted lines. [FT-LIN] refers to the network
that was frozen after pretraining with only a linear head
finetuned on ImageNet. The frozen weights learned from
self supervised pretrained utilize the available space to the
highest extent (MLU = 69%), reflecting its suitability for
downstream tasks. The model finetuned, end-to-end on Ima-
geNet [FT-E2E] shows a drop in layer-utilization, especially
at later layers, since it is altered for the classification task.
Training a model from random initialization [scratch] yields
a bespoke model for ImageNet and shows lower layer uti-
lization (MLU = 35%). The increase in accuracy for the
LIN-FT network using our method is an unfair comparison,
since we finetune end-to-end after finding the rank.

4. Conclusion
In this work, we proposed the mean layer utilization, a sim-
ple data-dependent metric for determining how efficiently
a neural network learns a particular dataset. We do this by
creating projection matrices for each layer to transform the
learned weights onto a compact subspace dictated by the
input and output activations with a controllable error that is
upper bounded by the spectral energy of the input and output
subspaces eS and eT . This compact representation reveals
what we call the utilized rank of a matrix, which serves as a
notion of capacity that includes both the network architec-
ture and the dataset. Lastly, decomposing the layers onto
these data-dependent subspaces naturally lend themselves
to a simple weight matrix factorization which can easily be
applied to various popular network architectures such as
ViTs and ResNets achieving significant parameter reduction
without compromising on downstream task performance.

5



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

References
[1] A. Aghajanyan, L. Zettlemoyer, and S. Gupta. Intrinsic

dimensionality explains the effectiveness of language
model fine-tuning, 2020.

[2] S. Ashkboos, M. L. Croci, M. G. do Nascimento,
T. Hoefler, and J. Hensman. Slicegpt: Compress large
language models by deleting rows and columns, 2024.

[3] N. Brown, A. Williamson, T. Anderson, and
L. Lawrence. Efficient transformer knowledge dis-
tillation: A performance review, 2023.

[4] J.-F. Cai, E. J. Candes, and Z. Shen. A singular value
thresholding algorithm for matrix completion, 2008.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. pages 248–255, 2009. doi: 10.1109/CVPR.
2009.5206848.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale, 2021.

[7] R. Feng, K. Zheng, Y. Huang, D. Zhao, M. Jordan, and
Z.-J. Zha. Rank diminishing in deep neural networks,
2022.

[8] J. Frankle and M. Carbin. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018.

[9] E. Frantar and D. Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot,
2023.

[10] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh.
Gptq: Accurate post-training quantization for genera-
tive pre-trained transformers, 2023.

[11] K. Fukushima. Visual feature extraction by a multi-
layered network of analog threshold elements. IEEE
Transactions on Systems Science and Cybernetics, 5:
322–333, 1969. doi: 10.1109/TSSC.1969.300225.

[12] I. Garg, P. Panda, and K. Roy. A low effort approach to
structured cnn design using pca. IEEE Access, 8:1347–
1360, 2020. ISSN 2169-3536. doi: 10.1109/access.
2019.2961960. URL http://dx.doi.org/10.
1109/ACCESS.2019.2961960.

[13] X. Glorot and Y. Bengio. Understanding the diffi-
culty of training deep feedforward neural networks.
In Y. W. Teh and M. Titterington, editors, Proceed-
ings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. PMLR. URL https://proceedings.
mlr.press/v9/glorot10a.html.

[14] L. Grasedyck, D. Kressner, and C. Tobler. A literature
survey of low-rank tensor approximation techniques,
2013.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition, 2015.

[16] G. Hinton, O. Vinyals, and J. Dean. Distilling the
knowledge in a neural network, 2015.

[17] E. Hoffer, R. Banner, I. Golan, and D. Soudry. Norm
matters: efficient and accurate normalization schemes
in deep networks. Advances in Neural Information
Processing Systems, 31, 2018.

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models, 2021.

[19] M. Huh, H. Mobahi, R. Zhang, B. Cheung, P. Agrawal,
and P. Isola. The low-rank simplicity bias in deep
networks, 2023.

[20] Y. Idelbayev and M. A. Carreira-Perpinan. Low-rank
compression of neural nets: Learning the rank of
each layer. pages 8046–8056, 2020. doi: 10.1109/
CVPR42600.2020.00807.

[21] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speed-
ing up convolutional neural networks with low rank
expansions, 2014.

[22] W. Johnson and J. Lindenstrauss. Extensions of lips-
chitz maps into a hilbert space. Contemporary Math-
ematics, 26:189–206, 01 1984. doi: 10.1090/conm/
026/737400.

[23] S. R. Kamalakara, A. Locatelli, B. Venkitesh, J. Ba,
Y. Gal, and A. N. Gomez. Exploring low rank training
of deep neural networks, 2022.

[24] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi.
Initialization and regularization of factorized neural
layers. arXiv preprint arXiv:2105.01029, 2021.

[25] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi.
Initialization and regularization of factorized neural
layers, 2022.

[26] H. Kim, M. U. K. Khan, and C.-M. Kyung. Efficient
neural network compression, 2019.

6

http://dx.doi.org/10.1109/ACCESS.2019.2961960
http://dx.doi.org/10.1109/ACCESS.2019.2961960
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html


Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

[27] H. Kim, M. U. K. Khan, and C.-M. Kyung. Efficient
neural network compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019.

[28] A. Krizhevsky and G. Hinton. Learning multi-
ple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario,
2009. URL https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf.

[29] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring
the intrinsic dimension of objective landscapes, 2018.

[30] Y. Li, Y. Liang, and A. Risteski. Recovery guarantee
of weighted low-rank approximation via alternating
minimization, 2016.

[31] L. Liebenwein, A. Maalouf, O. Gal, D. Feldman, and
D. Rus. Compressing neural networks: Towards deter-
mining the optimal layer-wise decomposition, 2021.

[32] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,
and B. Guo. Swin transformer: Hierarchical vision
transformer using shifted windows, 2021.

[33] R. K. Mahabadi, J. Henderson, and S. Ruder. Com-
pacter: Efficient low-rank hypercomplex adapter lay-
ers, 2021.

[34] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada,
S. Paul, and B. Bossan. Peft: State-of-the-art
parameter-efficient fine-tuning methods, 2022.

[35] V. Nair and G. E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. pages 807–814.
Omnipress, 2010. ISBN 9781605589077.

[36] M. B. Noach and Y. Goldberg. Compressing
pre-trained language models by matrix decompo-
sition. pages 884–889. Association for Compu-
tational Linguistics, 12 2020. URL https://
aclanthology.org/2020.aacl-main.88.

[37] S. Oymak, Z. Fabian, M. Li, and M. Soltanolkotabi.
Generalization guarantees for neural networks via har-
nessing the low-rank structure of the jacobian. arXiv
preprint arXiv:1906.05392, 2019.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imper-
ative style, high-performance deep learning library,
2019.

[39] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He.
Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’20, page 3505–3506, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3406703.
URL https://doi.org/10.1145/3394486.
3406703.

[40] O. Roy and M. Vetterli. The effective rank: A measure
of effective dimensionality. In 2007 15th European
Signal Processing Conference, pages 606–610, 2007.

[41] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran. Low-rank matrix factoriza-
tion for deep neural network training with high-
dimensional output targets. pages 6655–6659, 2013.
doi: 10.1109/ICASSP.2013.6638949.

[42] S. Schotthöfer, E. Zangrando, J. Kusch, G. Ceruti, and
F. Tudisco. Low-rank lottery tickets: finding efficient
low-rank neural networks via matrix differential equa-
tions. Advances in Neural Information Processing
Systems, 35:20051–20063, 2022.

[43] P. Sharma, J. T. Ash, and D. Misra. The truth is
in there: Improving reasoning in language models
with layer-selective rank reduction. In The Twelfth
International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/
forum?id=ozX92bu8VA.

[44] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition,
2015.

[45] M. Singh, L. Gustafson, A. Adcock, V. de Freitas Reis,
B. Gedik, R. P. Kosaraju, D. Mahajan, R. Girshick,
P. Dollár, and L. van der Maaten. Revisiting weakly
supervised pre-training of visual perception models,
2022.

[46] X. Suau, L. Zappella, and N. Apostoloff. Filter distil-
lation for network compression, 2019.

[47] Y. Sui, M. Yin, Y. Gong, J. Xiao, H. Phan, and B. Yuan.
Elrt: Efficient low-rank training for compact convolu-
tional neural networks, 2024.

[48] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablay-
rolles, and H. Jégou. Training data-efficient image
transformers & distillation through attention, 2021.

[49] M. Tukan, A. Maalouf, M. Weksler, and D. Feldman.
Compressed deep networks: Goodbye svd, hello ro-
bust low-rank approximation, 2020.

7

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://openreview.net/forum?id=ozX92bu8VA
https://openreview.net/forum?id=ozX92bu8VA


Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need, 2023.

[51] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma.
Linformer: Self-attention with linear complexity,
2020.

[52] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li.
Coordinating filters for faster deep neural networks,
2017.

[53] R. Wightman. Pytorch image models, 2019.

[54] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jer-
nite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush. Huggingface’s trans-
formers: State-of-the-art natural language processing,
2020.

[55] A. Yaguchi, T. Suzuki, S. Nitta, Y. Sakata, and
A. Tanizawa. Decomposable-net: Scalable low-rank
compression for neural networks. International Joint
Conferences on Artificial Intelligence Organization, 8
2021. doi: 10.24963/ijcai.2021/447. URL http://
dx.doi.org/10.24963/ijcai.2021/447.

[56] W. Yang. pytorch-classification. https:
//https://github.com/bearpaw/
pytorch-classification, 2017. Accessed:
2023-06-01.

[57] S. Zagoruyko and N. Komodakis. Wide residual net-
works, 2017.

[58] E. Zangrando, P. Deidda, S. Brugiapaglia,
N. Guglielmi, and F. Tudisco. Neural rank col-
lapse: Weight decay and small within-class variability
yield low-rank bias, 2024.

[59] G. Zhang, C. Wang, B. Xu, and R. Grosse. Three
mechanisms of weight decay regularization. In
International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/
forum?id=B1lz-3Rct7.

[60] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization, 2018.

[61] Y. Zhang, E. Chuangsuwanich, and J. Glass. Extract-
ing deep neural network bottleneck features using low-
rank matrix factorization. pages 185–189, 2014. doi:
10.1109/ICASSP.2014.6853583.

8

http://dx.doi.org/10.24963/ijcai.2021/447
http://dx.doi.org/10.24963/ijcai.2021/447
https://https://github.com/bearpaw/pytorch-classification
https://https://github.com/bearpaw/pytorch-classification
https://https://github.com/bearpaw/pytorch-classification
https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7


Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

5. Appendix
5.1. Upper-bounding the error from transforming W to W ′

We note that the projection matrices are symmetric since PT
S = (V T

S VS)
T = PS . We use these to express the error from

transforming W to W ′ in terms of the perpendicular spaces.

E = XWT −XW ′T (12)

= XWT −X(PTWPS)
T (13)

= XWT − (XPS)W
TPT (14)

= XWT −XSW
TPT (15)

= XWT − (X −XS⊥)W
TPT (16)

= (XWT −XWTPT ) +XS⊥W
TPT (17)

= (Y − YT ) +XS⊥(PTW )T (18)

= YT⊥ +XS⊥W
T
T (19)

Since the Frobenius norm of a matrix, squared, is the sum of its singular values, squared, our definition of S, T implies the
following relations:

X = XS +XS⊥ ; Y = YT + YT⊥ ; (20)

∥XS∥2 = eS∥X∥2; ∥YT ∥2 = eT ∥Y ∥2; (21)

∥XS⊥∥2 = (1− eS)∥X∥2; ∥YT⊥∥2 = (1− eT )∥Y ∥2 (22)

where all norms refer to Frobenius norm. Additionally, we know that ∥A+B∥2F = Tr
(
(A+B)T (A+B)

)
= ∥A∥2F +

∥B∥2F +2Tr(ATB). Since trace is invariant to cyclic permutation and transpose), we have Tr(ATB) = Tr(ABT ). Putting
all this together, we can upper bound the error in equation 19 as follows.

∥E∥2 = ∥YT⊥∥2 + ∥XS⊥W
T
T ∥2 + 2Tr(YT⊥WTX

T
S⊥

) (23)

= ∥YT⊥∥2 + ∥XS⊥W
T
T ∥2 + 2Tr(Y PT⊥PTWXT

S⊥
) (24)

= ∥YT⊥∥2 + ∥XS⊥W
T
T ∥2 + 2Tr(Y (PT⊥PT )X

T
S⊥

) (25)

= ∥YT⊥∥2 + ∥XS⊥W
T
T ∥2 + 0 (26)

= ∥YT⊥∥2 + ∥XPS⊥W
T
T ∥2 (27)

≤ ∥YT⊥∥2 + ∥XS⊥∥2∥WT
T ∥2 (28)

≤ ∥YT⊥∥2 + ∥XS⊥∥2∥WT ∥2 (29)

= (1− eT )∥Y ∥2 + (1− eS)∥X∥2∥W∥2 (30)

The trace in equation 26 reduces to zero since we multiply two matrices in orthogonal spaces, resulting in zero. The last
inequality in equation 29 arises from applying triangle inequality on W .

W = WT +WT⊥ (31)

∥W∥2 = ∥WT ∥2 + ∥WT⊥∥2 + 2Tr(WTWT⊥) (32)

∥W∥2 = ∥WT ∥2 + ∥WT⊥∥2 + 0 (33)

∥W∥2 ≥ ∥WT ∥2 (34)

9



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

5.2. Details of SVD to find bases

For computational ease, we perform the SVD of XTX , which directly gives us the bases and the square of the singular
values. This only require storing the sum of XTX at each layer, which can be parallelized over multiple batches of forward
passes. We do not need to store the outputs of a layer, since we can find TTT from pre and post multiplying the saved XTX
with WT and W respectively, and then performing SVD on this smaller matrix. For CIFAR datasets, we use the entire
training dataset to perform PCA, and for ImageNet, we choose 200 samples per class, resulting in 20,000 samples. Because
this computation is parallelizable across batches and requires only forward passes, the cost of finding bases and ranks of a
space is negligible. Note The same analysis will hold for bias/convolutional layer with the input being the flattened patches
convolved into the filters. The addition of bias back into the analysis also does not alter the subspaces under consideration,
since we only look at each layer’s input and output in isolation from all other layers.

5.3. Computational Overhead of Binary Search for Rank

There are three main overheads: performing SVD at each layer, weight transformation and binary search on dimensions. We
perform highly parallelized SVD on the entire training dataset of CIFAR, or 20,000 samples for ImageNet, and performing
SVD for all layers takes lesser time than a training epoch in most cases. Each choice of eS and eT results in an analytical
weight transformation from just 2 matrix multiplications, and we only need to perform a validation pass for each level of
binary search to find the direction of binary search. There are a few hyperparamters that can be optimized to speed this
up, such as size of data to perform SVD on, maximum levels of binary search, and conditions to quit search on, such as
acceptable accuracy drop and limiting the change in dimensions between consecutive iterations.

The most expensive part of our computation is the validation accuracy checks for binary search for rank. Let the weight
matrix at a layer be m× d dimensional, with L layers in the network. For the first projection on S, we perform SVD on a
d× d matrix, and a binary search on the resulting d singular values. Each level of binary search performs one projection to
get W ′ and one validation accuracy check. This means that we have O(log d) validation accuracy check. Similarly for the
output, we have O(log m) accuracy checks, bringing the total to L×O(m× d) accuracy checks. For ViTB-16, the largest
layers are 768× 3072, and there are approximately 50 linear layers. This means that we perform ∼ 1000 valiation accuracy
checks for this network. It took us 7.5 hours on a machine with 8 A100 GPUs to calculate the utilized rank of all layers via
this binary search.

5.4. Hyperparameters for Finetuning

After performing binary search on all layers of the network, we decompose each linear and convolutional layer into two
consecutive layers (without non-linearity in between) so that we can finetune while preserving the searched rank. We
initialize the two layers to the left and right matrices arising from SVD on the weight (with either one appropriately scaled
by the singular values). We then perform a grid search on the following parameters for finetuning: learning rate, weight
decay and EMA (exponential moving average) decay. When we use EMA, we start averaging the model for EMA from the
beginning of finetuning. For all other hyperparameters, we used the same as the base repository that we took the model from.

ViTs, SWINs, DeiTs
on ImageNet

ResNets
on ImageNet

All architectures
on CIFAR

Optimizer adamW
SGD, LR decayed
by 0.1 at 30 and 60

SGD, LR decayed
by 0.1 at 50, 100, 130

Batch Size 512 32 32
Epochs 300 90 200

Learning Rate [0.0003,0.0001] [0.1, 0.01, 0.001] [0.1,0.01,0.001]
Weight Decay [0.3,0] [0,0.0001] [50, 100, 130]
EMA Decay [0.85, 0.9, 0.95] NA NA

Table 2: Hyperparameters for finetuning the decomposed models.

10



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

5.5. CIFAR Results

Here we present the numbers corresponding to the graphs in Figures 3 for CIFAR10 and CIFAR100 on VGG and ResNet
architecutre variants. All results correspond to networks decomposed and finetuned to respect the rank found from binary
search.

Orig Acc
(%)

Orig MLU
(%)

Acc - Ours
(%) (∆)

True MLU
(%)

Params
Ratio

Flops
Ratio

VGG11 91.5 98 92.5 (+1.0) 47 0.34 0.60
VGG13 92.9 98 93.5 (+0.6) 47 0.24 0.60
VGG16 93.2 99 93.6 (+0.4) 44 0.18 0.54
VGG19 92.7 99 93.6 (+0.9) 32 0.11 0.38

ResNet18 90.9 95 91.4 (+0.5) 80 0.86 0.92
ResNet50 92.8 96 93.1 (+0.3) 64 0.78 0.78

C
IF

A
R

10

ResNet101 93.2 96 94.1 (+0.9) 51 0.73 0.64
VGG11 66.9 99 67.4 (+0.5) 64 0.78 0.72
VGG13 70.2 99 71 (+0.8) 68 0.76 0.77
VGG16 70.2 99 71.4 (+1.2) 62 0.61 0.71
VGG19 70.2 99 71.8 (+1.6) 51 0.38 0.68

ResNet18 66.0 96 67.8 (+1.8) 90 0.98 0.99
ResNet50 71.4 96 73.5 (+2.1) 80 0.93 0.92

C
IF

A
R

10
0

ResNet101 72.2 96 73.5 (+1.3) 63 0.87 0.77

Table 3: Results for Utilized Rank Decomposition on CIFAR dataset for different architectures.

5.6. Pretraining on ViTB-16

Here, we present the results of analyzing VitB-16 architecture trained from scratch on ImageNet and finetuned from a model
pretrained in a self-supervised fashion [45]. All results correspond to networks decomposed and finetuned to respect the
rank found from binary search.

Orig Acc
(%)

Orig ALU
(%)

Proj Acc
(%) (∆)

True ALU
(%)

Params
Ratio

Flops
Ratio

ViTB16 - scratch 80.9 94 80.7 (-0.2) 35 0.48 0.33
ViTB16, FT, Lin 81.7 97 84.0† 69 0.87 0.74
ViTB16, FT, E2E 85.3 97 85.1 (-0.2) 57 0.79 0.54

Table 4: Results for Utilized Rank Decomposition for ViTB-16 trained with and without self supervised training [45] † The
increase in accuracy for linear models after finetuning with decomposed layers is an unfair comparison since the original
network only finetuned the linear head.

5.7. ViTB-16 with different accuracy drop tolerance, ϵ

Here, we present the results of analyzing ViTB-16 architecture trained from scratch with varying accuracy drop tolerance
per layer, per transformation. All results correspond to networks decomposed and finetuned to respect the rank found from
binary search.

11



Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Acc

(%)

ALU

(%)

Params

Ratio

Flops

Ratio

ViTB16: Original 80.9 93.8 1.00 1.00

ViTB16: ϵ = 0.01 81.2 57.9 0.76 0.58

ViTB16: ϵ = 0.05 80.8 38.7 0.54 0.37

ViTB16: ϵ = 0.1 80.7 34.6 0.48 0.33

ViTB16: ϵ = 0.5 79.9 22.5 0.31 0.20

Table 5: ViTB-16 pretrained network from torchvision, analyzed for dimensions with varying ϵ (percentage accuracy drop
tolerance per transformation per layer ).

5.8. Literature Review

Determining the rank of learning subspaces has garnered a lot of interest due to its theoretical implications on capacity
and generalization of neural networks and its application to model compression. Theoretically rigorous works that find the
rank of learning subspaces often show results on small networks and are unable to scale due to computational intractability
[29, 37]. On large-scale networks, the low rank nature is assumed and empirically shown to give good results. Many of
them exploit the low rank nature of weight matrices to reduce the number of parameters in neural networks by factoring the
learned weights in each layer into products of low rank matrices [58, 7, 19, 55, 21, 23, 31, 33, 12, 46, 61].

Different approaches define intrinsic rank differently. Most works find the rank of the weight matrices using matrix
factorizations like the SVD [55, 21]. Some works constrain this rank statically based on the singular values of the W
matrix [27, 24, 23, 31, 19, 26], while others learn the rank as part of the optimization procedure [20, 42, 52]. Rather than
predefining the rank via a factorization, another technique that has been used is to construct approximate low rank projection
matrices by leveraging the distributional Johnson-Lindenstrauss lemma [22, 51] via random projections. These approaches
differ from ours in that we project our weights onto the subspaces produced from the input and output activations, which
is a architecture-dependent and data-dependent approach. Low rank projection based approaches have been applied to
transformers [50] in the past by projecting the weights onto a low rank subspace such as in Linformer [51] which sought to
reduce the O(n2) self-attention complexity or SliceGPT [2] which uses PCA projections to prune large language models.

LoRA [18] has become the de-facto standard of finetuning large models on downstream tasks. It assumes that the weight
updates are low rank and can be restricted to a low-dimensional subspace. It does not restrict the rank of the final, fused
weights. We differ from LoRA in that we study and limit the rank of the weights. Our formulation remains compatible with
LoRA finetuning on downstream tasks. In parallel, there are many works that achieve efficiency by quantization, pruning,
and knowledge distillation [10, 9, 16, 3]. In this work, we focus on efficiency via low rank decompositions, and expect that
our resulting networks to remain compatible with many of these techniques.

12


	Introduction
	Methodology
	Preliminaries: The Input and Output Subspaces
	The Weight Transformation and the Utilized Rank
	Benefits of Studying the Utilized Ranks of Layers

	Results and Discussion
	Utilization Statistics of Popular Networks
	Parameter and Compute Efficiency
	Scaling network size and dataset complexity
	Varying the acceptable accuracy drop per layer
	Effect of pretraining on ViTs

	Conclusion 
	Appendix
	Upper-bounding the error from transforming W to W'
	Details of SVD to find bases
	Computational Overhead of Binary Search for Rank
	Hyperparameters for Finetuning
	CIFAR Results
	Pretraining on ViTB-16
	ViTB-16 with different accuracy drop tolerance, 
	Literature Review


