
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM SKILLS TO PLANS: AUTOMATIC SKILL DISCOV-
ERY AND SYMBOLIC INTERPRETATION FOR COMPOSI-
TIONAL TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning (DRL) has struggled with pixel-based control-
ling tasks that have numerous entities, long sequences, and logical dependencies.
Methods using structured representations have shown promise in generalizing to
different object entities in manipulation tasks. However, they lack the ability to
segment and reuse basic skills. Neuro-symbolic RL excels in handling long se-
quential decomposable tasks yet heavily relies on expert-designed predicates. To
address these challenges, we introduce a novel pixel-based framework that com-
bines entity-centric decision transformers with symbolic planning. Our approach
first automatically discovers and learns basic skills through experiences in simple
environments without human intervention. Then, we employ a genetic algorithm
to enhance these basic skills with symbolic interpretations. Therefore, we convert
the complex controlling problem into a planning problem. Taking advantage of
symbolic planning and entity-centric skills, our model is inherently interpretable
and provides compositional generalizability. The results of the experiments show
that our method demonstrates superior performance in long-horizon sequential
tasks and real-world object manipulation.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has been successfully applied to various fields, including
video games (Mnih, 2013), autonomous driving (Sallab et al., 2017), and robotics (Kober et al.,
2013). However, building flexible and adaptive robotic agents that can accomplish a diverse set of
tasks in novel and complex environments remains a significant challenge in DRL. Such tasks typ-
ically demand the agent to formulate long-term plans for logically dependent goals, requiring it to
combine diverse skills in complex scenarios involving multiple objects. A significant challenge of
these tasks is the need for compositional generalization. We can assess it in terms of two distinct
factors: (1) different attributes of objects than in training, and (2) different compositions of goals
and their corresponding skills, including variations in logical order (Lin et al., 2023).

To address the above challenge, several methods (Zadaianchuk et al., 2020; 2022; Mambelli et al.,
2022; Haramati et al., 2024) incorporate structured representations into the DRL algorithms of de-
cision transformers through object-centric representations (OCR). With a powerfully structured rep-
resentation, they show certain generalizability on the types and numbers of objects in object ma-
nipulation tasks. However, they cannot simultaneously learn diverse skills due to the catastrophic
forgetting problem (McCloskey & Cohen, 1989), where the new information can distort the previ-
ously learned knowledge. Besides, they cannot segment the learned integrated policy into diverse
fundamental units and reform them to achieve new objectives.

On the other hand, some researchers suggest neuro-symbolic approaches that combine planning and
DRL. These approaches aim to handle the combinatorial explosion of possible action sequences by
providing high-level abstraction and compositing learned skills. Many existing methods (Illanes
et al., 2020; Sun et al., 2020; Zhuo et al., 2021; Mao et al., 2023; Silver et al., 2023) employ a top-
down structure by specifying symbolic representation for high-level action models and using them
to guide the learning of low-level policies. However, these methods can only work with fully ob-
servable environment states and carefully hand-engineered predicates. These predefined predicates

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

hinder the agent’s flexibility, thereby restricting its applicability to real-world tasks such as object
manipulation.

In this paper, we propose a pixel-based bottom-up framework that combines the idea of entity-centric
decision transformers with planning. Our framework is capable of forming a plan that is composed
of skills for complex tasks. It learns fundamental skills from scratch by exploring simple environ-
ments through DRL algorithms (Li, 2017) without relying much on expert knowledge. Furthermore,
our approach uses genetic programming (Ahvanooey et al., 2019) to induce symbolic interpretation
for those learned skills, including their preconditions and effects. These interpretations provide the
agent with a series of fundamental understandings of its learned skills, which is critical for effective
planning. During the evaluation, given a novel and composite task, our agent decomposes the task
based on its understanding of the task and basic skills, formulating a sequential plan by search algo-
rithms (Abualigah et al., 2021). Finally, the agent executes this plan and uses its skills to generate
specific actions to achieve the final goal. We experimentally verify the efficiency and effectiveness of
our framework in two domains: Minecraft, a 2D grid-world environment (Andreas et al., 2017) that
focuses on long-horizon planning, and IssacGym (Makoviychuk et al., 2021), a simulated tabletop
robotic environment that evaluates the agent’s capacity to manage complex 3D object manipulation.
Experimental results show that our method can schedule the sequence of skills in an appropriate or-
der with symbolic interpretation. Moreover, the flexible combination of skills allows our approach
to handle environments with varying object attributes.

We summarize our key contributions below:

• End-to-End Pixel-Based Controlling. Compared to the previous work using processed
state input, our pixel-based controlling framework can directly leverage raw image data to
perform tasks instead of utilizing the actual state provided by the environment.

• Automatic Skill Discovery. Compared to previous work, our approach can automatically
discover and learn skills from the environment without any guidance of designed high-level
symbolic representations in advance, reducing the dependency on expert knowledge.

• Symbolic Interpretation. Our approach is inherently interpretable by planning with a
sequential symbolic plan composed of learned skills. By constructing each skill’s pre-
conditions and effects, our model can infer the specific task of each skill, thus having a
comprehensive understanding of the planning and alleviating the curse of dimensionality.

2 RELATED WORK

Object-Centric RL. Many recent works employed the structured representation in model-free RL
(Colas et al., 2019; Zadaianchuk et al., 2022; Mambelli et al., 2022; Zhao et al., 2022; Zhou et al.,
2022; Ferraro et al., 2023; Feng & Magliacane, 2024). Among them, methods such as SMORL
(Zadaianchuk et al., 2020) and ECRL (Haramati et al., 2024) leverage object-centric representa-
tions (Jiang et al., 2019; Francesco et al., 2020; Daniel & Tamar, 2023) in combination with goal-
conditioned attention policies to discover and learn useful skills from raw image data. However,
they cannot segment learned skills into fundamental units and reform them to solve novel and com-
plex tasks. In this work, we integrate the idea of entity-centric decision transformers into planning,
thus giving our method the ability to learn fundamental skills and understand how to compose them
when facing long-horizon tasks.

Neuro-Symbolic RL. Several works have explored utilizing symbolic methods in DRL to deal
with robotic tasks (Belta et al., 2007; Blaes et al., 2019; Illanes et al., 2020; Kokel et al., 2021;
Sehgal et al., 2023; Silver et al., 2023; Acharya et al., 2024), including planning domain definition
language (Mao et al., 2023), automata (Hasanbeig et al., 2021), Spectrl (Jothimurugan et al., 2021;
Žikelić et al., 2024). Despite the success of previous works, they often require either predefined
symbolic structures or predefined skills, limiting their compositional generalizability to complex
real-world object manipulation. Therefore, we develop a bottom-up framework to automatically
discover skills from simple environments and utilize symbolic interpretation to reform these skills
for novel and complex tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PROBLEM FORMULATION

We focus on the problem of learning a robotic agent from an environment with only fundamental
elements that can eventually achieve a novel and complex goal with learned skills. To form the
pixel-based control problem as a planning problem and handle it with the combination of skills, we
first introduce the concept of Factored Goal-Augmented Markov Decision Process (FGAMDP).
Then, we propose a novel approach to bridge the gap between MDP and planning.

3.1 FACTORED GOAL-AUGMENTED MDP

We start from a single goal-augmented MDP ⟨S,G,A,P,R, γ⟩ (Liu et al., 2022), where S is the
set of state s, G is the set of goal specification g, A is a set of actions a that the agent executes
to interact with the environment, P is the environmental transition model P : S × A → S , R is
defined as the set of reward r(st,at), and γ ∈ (0, 1] is the discount factor for future rewards. Since
the task involves manipulating multiple objects, it is natural that we want to separate them apart and
accomplish each goal of the corresponding object. Nevertheless, separating the state is not trivial
because the state depicted by the image presents a mixture of relevant and irrelevant information.
Therefore, we refine and get the structured information of the state, or entity, which is defined as:
Definition 1 (Entity). We define the set of entities e as E . Given a state s ∈ S, we then define a
mapping from real state to entity Te : S → E , s.t. ∀s ∈ S,∃e, e = Te(s) as the entity extraction
function, where the entity e = [e1, e2, . . . , em] ∈ Rk×m, where k is the dimension of the structured
representation, and m is the number of factorization.

Hence, we factorize the state set S into the individual state set of each object Si as Guestrin et al.
(2003): S = S1 × S2 × · · · × SN . Similarly, the set of goal G can also be factorized. Thus, we can
define FGAMDP:
Definition 2 (Factored Goal-Augmented MDP). The tuple ⟨S,G,A,Pm,R, γ⟩ is a Factored Goal-
Augmented MDP over a set of states S if S can be further factorized.

Given the initial state s0 ∈ S and goal g ∈ G, the agent can sample action from a parameterized
policy π(a|s, g), thus generating a sequence of actions a1,a2, . . . ,an to achieve the final goal g.

3.2 FROM MDP TO PLANNING

The complexity arising from numerous entities makes controlling on MDP challenging. Therefore,
we group entities to form meaningful features and use ground operators to convert MDP to planning.
Definition 3 (Feature). We define F as the set of features f , aggregating the environmental entities.
For every f = [f1, f2, . . . , fn] ∈ Rn, we named it as a feature state. We define the aggregation
function Tf : E → F , s.t. ∀e ∈ E ,∃f ,f = Tf (e), which maps a certain entity representation to a
feature state. We further define Fg as the set of goal features fg .
Definition 4 (Ground Operator (Kokel et al., 2021)). Let O denote the set of ground operators o
for the planning problem. Each operator o is a tuple ⟨pre(o), eff (o), β⟩, where pre(o) ∈ F is the
set of preconditions that should be satisfied before the ground operator executes, eff (o) is the set
of effect indicating the feature state change after the ground operator executes, and β ∈ Fg is the
termination state of O.

With feature states and ground operators, we can define the planning task as tuple ⟨F ,O,Pp,Fg⟩,
where Pp : F ×O → F is the set of feature state transitions. Given an initial feature state f0 ∈ F
and a final goal feature state fg ∈ Fg , a sequence of grounding operations Π = o1 → o2 → · · · →
on, known as a sequential plan, for the task can be formulated when it is possible to sequentially
apply the operation starting at f0 and eventually reach the goal state fg .

4 SKILL WITH SYMBOLIC INTERPRETATION

We formally defined the mathematical form of the skill here. We group similar operations, forming
a skill to address tasks with similar entities. The skill exhibits three key attributes: (1) it serves as
the fundamental operational unit for planning, representing a series of actions to achieve a specific

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

goal; (2) it is endowed with a logical structure comprising preconditions and effects; and (3) it
demonstrates adaptability by generating specific control actions based on varying input states.
Definition 5 (Skill). We define the skill as a tuple l(s) = ⟨s, o, πl, prel(s,f), eff l(s,f)⟩, where
s ∈ S is the environment state, o is the ground operator, and πl(a|s) : S → A is a specific policy.

In the above definition, the precondition prel(s,f) and effect eff l(s,f) are both a function of the
input state and feature, which means there are multiple legal feature states for a particular skill.
Applying the skill to different feature states would have different effects.

For a given task, we define the initial state as s and the goal state as g. We can find the initial
state in feature representation f0 = Tf (Te(s)),fg = Tf (Te(g)). Then we can form a sequen-
tial plan Π = l1(s1), l2(st+1), . . . , ln(s(n−1)∗t+1), s.t. preli(si∗t+1,fi) = preli(si∗t+1,fi−1 +

eff li−1
(s(i−1)∗t+1,fi−1)) = True . Then finally we have the trace τ = s1

a1−→ s2
a2−→ . . .

an∗t−−−→ g,
which will achieve the final goal.

5 METHOD

Our goal is to design a framework that can automatically discover and learn fundamental skills
and form a symbolic plan composed of these skills for complex tasks. The overall structure of
our framework is depicted in Figure 1. It mainly consists of three parts: Skill Learning, Symbolic
Inductive Inference, and End-to-End Pixel-Based Planning. We will elaborate on these components
in the following sections.

Figure 1: The overview of our framework. (a) The training stage of the skills. Traces are collected
through random sampling and are then classified into several sets. We train a skill for each set of
traces. (b) The induction of skills. We endow skills with symbolic interpretations by incorporating
neural guidance and symbolic regression to learn preconditions and effects respectively. (c) End-
to-end pixel-based planning. Given images of the current state and goal, our framework employs
MCTS to search for a plan satisfying the precondition and effect of each skill at every stage, from
which specific actions are generated to achieve the goal.

5.1 FEATURE EXTRACTION

Our objective is to extract a compact and disentangled OCR from raw image observations, capturing
most of the essential information. Furthermore, we can aggregate these entities and construct the
features of our environment with our feature extractor, preparing for high-level logical operations.

Entity-Centric Representation. Given a tuple of raw image observations (Is1 , . . . , I
s
N), we pro-

cess each image separately using a pre-trained Deep Latent Particles (DLP) (Daniel & Tamar, 2023)
model, extracting a set of N entities {emn }Nn=1, m indexing the number of factorization, We denote
the entity of raw image observations Isn by emn . We can also extract and represent the entity of goal
observations as {gm

n }. Details of DLP can be found in Appendix B.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Entity Aggregation. As discussed in definition 3, we aggregate entities to features for planning.
We develop an aggregation transformer inspired by the entity-centric architecture (Haramati et al.,
2024), which processes the OCR entities into the feature state of the environment. The aggregation
transformer comprises self-attention (SA) and cross-attention (CA) as its core components. SA is
intended to extract important attributes from the observation more effectively, while CA is designed
to capture the temporal difference between current state entities. The set of state entities {emn }Nn=1
are processed by a sequence of Transformer (Vaswani, 2017) blocks: SA→ CA→ SA, followed by
a MLP (Murtagh, 1991). A detailed architecture is depicted in Figure 7. The aggregation transformer
is trained to minimize the mean square loss:

LAT (f̂) =
1

N

N∑
i=1

(
fi − f̂i

)2
, (1)

where N is the total number of training data. We have the flexibility to define a relatively large
number of features that we expect to be beneficial when describing the task.

5.2 SKILL LEARNING

We aim to learn the policy πl for a skill l(s) = ⟨s, o, πl, prel(s,f), eff l(s,f)⟩ from scratch, which
relies on using the collected trace, composed of the original state, as training data. The key idea
is that we first collect traces from interaction with the environment, and then we categorize these
traces according to the feature change. Finally, we train the agent to learn the skill policy for each
collection of traces.

Trace Generation. We first collect a significant number of traces using a random policy. Instead
of struggling with the complex environments where our agent should work during evaluation, we
collect these traces from variant and simple training environments. They represent the basic units
of the task, thus usually containing only a few entities and features distilled from the interaction
between a single object and the environment.

Trace Categorization. After trace generation, we categorize the trace into different sets by their
feature, getting the offline dataset based on different feature changes. If changes are observed be-
tween two consecutive features, we segment the trace between these two features. We employ a
k-means clustering algorithm (Ahmed et al., 2020), with objective function:

argmin
T

K∑
i=1

1

|Ti|
∑

τ1,τ2∈Ti

∥τ1 − τ2∥2, (2)

where τ is the trace, Ti ⊆ T is each classified cluster, and K is the total number of clusters.

Training. It is worth noting that the training algorithm for πl is agnostic of the planning frame-
work. Here we adopt the goal-conditioned behavior cloning (GCBC) algorithm (Lynch et al., 2020)
to learn skill policy from categorized offline datasets. The network of the policy is also composed of
transformer blocks. The outline of the policy network is a composed structure of SA and CA. It can
model the relationship between the current state and the goal. We apply the GCBC loss to train each
skill that can achieve the best performance. With a sequence of entity representations {E1, ..., ET },
where Ei = [e1, ..., eN], the loss is as following:

LGCBC = −∥Et − Eg∥2 −
β

T

T∑
t=1

log(πl(at|Et, Eg)), (3)

where β is the hyperparameter which can be adjusted. The first term represents the goal-conditioned
loss, and the second on is the GCBC loss.

5.3 SYMBOLIC INDUCTIVE INFERENCE

To form a plan using the skills, we need to get a symbolic interpretation of the skill. In our skills,
symbolic interpretation is the precondition and effect of the skills. The precondition and effect are
presented in the form of a mathematical formula, which uses arithmetic operation {+,−,×,÷, >}
as the operation set; that is, we want to form all the preconditions and effects as a polynomial.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Symbolic Regression. Given a raw skill policy πl, the induction module proceeds to search for
the effect eff l(s,f) for this skill policy. As mentioned in section 4, the effect might change as the
input state changes. Here, we assume the state change can be reflected by the feature f . Then we
have f ′

final = eff (finit), which can be formulated as a symbolic regression problem.

For symbolic regression, we use the PySR (Cranmer, 2023), which is a multi-population evolution-
ary algorithm. PySR can perform feature selection and select the most significant features from
the feature vector f by providing a user-defined number of features. Moreover, it also supports
customizing the operator and the loss function. Here, we design an element-wise loss function:

LSR = ∥fpred − ftarget∥2 + complexity , (4)
where fpred is the prediction result and ftarget is the ground truth. Here, we introduce a normaliza-
tion term complexity to prioritize the effect function using a simple mathematical format.

Precondition Rule. Since the features in the environment might be complicated, determining
whether a skill can be applied in the current stage is challenging. Here, we apply a neural guid-
ance approach to find the symbolic precondition rules for a skill. We first learn a neural network
that takes in the feature vector f and outputs a boolean result. Then, we try to use an EQL network
(Sahoo et al., 2018) with a unary activation function to simulate the behavior of the neural network.
The EQL network is optimized by the distribution loss:

LEQL = −
∣∣∣∣ log πEQL(ppos|f)

πnn(ppos|f)

∣∣∣∣− ∣∣∣∣ log πEQL(pneg|f)
πnn(pneg|f)

∣∣∣∣, (5)

where ppos is the possibility of the positive result and pneg is the possibility of the negative result.

Dependency Graph. As we have precondition and effect for skill, we can construct a dependency
graph through topological generation (Manber, 1989). The preconditions are some inequations of
the skill, such as wood ≥ 0. The effects are some functions that update the feature, such as wood+1.
We define all the ground operators as vertex v of a graph. For ∀vi, vj ∈ V, vj ̸= vj , there is a directed
edge eij between vi, vj , iff prelj (s, eff li(s,f0)) = True, we denote this relation as vi ≺ vj , where
f0 is an empty feature vector, and construct a directed graph G.

5.4 END-TO-END PIXEL-BASED PLANNING

In this section, we introduce the overall process where our framework generates detailed actions
given an initial image and a goal image.

Subgoal Image Generation. Given an image of current state s and goal state g, our feature ex-
traction module can convert the pixel input into feature representation finit and fg . Additionally, we
use an image segmentation algorithm to segment the image according to its semantics, thus forming
state si and subgoal state gi.

Plan Inference. This part focuses on generating a skill composition that can fit the goal feature fg

and the input feature finit. We use Monte Carol Tree Search (MCTS) (Świechowski et al., 2023) as
the search algorithm. We define the Importance of each ground operator by its depth d, in-degree
lin, out-degree lout in the dependency graph, the number of positive feature fp and the number of
operators calls c:

Importance(l) =
d+ ln lin + ln lout + α

min(c,fp) + 1
, (6)

where α represents the hyperparameter of decay of function calls. With the Importance above, we
apply the Upper Confidence Bound to Trees (UCT):

UCT(l) = Importance(l) +

√
C × log

visited(parent(l))

visited(l)
, (7)

where Importance is the reward of taking skill l, C is a hyperparameter to balance the exploration
and exploitation, visited is a function to get the number of accessed times of skill v, and parent is
to get the previous skill of the skill v. We select the next skill with the max UCT, maxl UCT (l).
Then, we expand this skill if there are untried skills. Finally, we simulate some steps and update the
fp of each node according to the reward, the number of visits, and UCT.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Skill Execution. For each skill, we have a pixel-based input state si, which represents the current
state, and a subgoal image gi. And we set the policy a time horizon as t. A skill can execute for
consecutive t timesteps before switching to the next one. During the execution, the image segmen-
tation model segments the subgoal image for the skills, and then the skills take in the subgoal figure
ŝi and output an action πl(a|ŝi, gi). Thus, we find an approach to accomplish the whole task.

6 EXPERIMENTS

To evaluate the performance of our model, we select two different types of environments. One
is the Minecraft environment, which verifies a series of long-horizon compositional tasks. The
other is IsaacGym, a robotic arm simulation environment employed to assess the performance of
compositional generalization tasks.

Environments. Minecraft is an n × n grid world environment. It is inspired by the computer
game Minecraft and is similar to the environment in previous works (Brooks et al., 2021; Hasan-
beig et al., 2021; Kokel et al., 2021; Liu et al., 2024). An agent can move along four directions
{up,down, left, right} and interact with objects with learned skills. Different from the previous
environment, our inputs are image maps with different objects in the map. The tasks are as follows:
Make-Stick: A basic experiment that urges the agent to produce a stick.
Make-Mass-Sticks: Produce a huge number of sticks that require repeating the same skills
many times.
Pickup-Iron: Make several tools and leverage them to pick up iron.
Multiple-Goals: Collect four items in an inherent order.
Make-Enhance-Table: The most difficult long-horizon task that requires the cooperation of
many skills to accomplish.

IsaacGym (Makoviychuk et al., 2021) is a simulated tabletop robotic object manipulation environ-
ment. The environment includes a robotic arm set in front of a table with various cubes and buttons
in different colors. The agent observes the system’s state through visual input and performs actions
in the form of deltas in the end effector coordinates a = (∆x,∆y,∆z,∆g), where ∆g indicates
whether the gripper is open or close. At the beginning of each episode, both the current cube posi-
tions and the goal positions are randomly initialized on the table. The tasks are as follows:
Push: Push cubes with randomized numbers and color to the goal location.
Push-Grab-Lift: Manipulate cubes of randomized numbers and color to their goal positions by
pushing and lifting operation.
Ordered-Press: Press different buttons in an inherent order.

Figure 2: The environments used for experiments in this work.

Baselines. We extensively compare our framework to various DRL algorithms with pixel-based
decision transformers (ECRL, SMORL) learning from rewards, imitation learning methods (GAIL)
learning from demonstration, and methods that combine planning and DRL (Deepsynth, DiRL).

• SMORL (Zadaianchuk et al., 2020) adopts object-centric representations in combination
with goal-conditioned attention policies to discover and learn useful skills.

• ECRL (Haramati et al., 2024) uses object-centric representations with the entity-
interaction transformer to discover and learn useful skills.

• GAIL (Ho & Ermon, 2016) mimics expert behaviors via learning a generative adversarial
network whose generator is a policy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task Make-Stick Make-Mass-Sticks Pickup-Iron Multiple-Goals Make-Enhance-Table

SMORL 0.511 0.374 0.332 0.281 0.112

ECRL 0.462 0.358 0.371 0.297 0.187

GAIL 0.513 0.469 0.415 0.302 0.164

DiRL 0.867 0.863 0.794 0.719 0.581

DeepSynth 0.901 0.853 0.821 0.693 0.557

Ours 0.958 0.938 0.917 0.887 0.750

Table 1: Success rate of Minecraft.

• DeepSynth (Hasanbeig et al., 2021) uses an automaton to find the substructure of tasks and
execute the subtasks using the low-level controller.

• DiRL (Jothimurugan et al., 2021) uses a predefined logical specification to decompose
tasks into subtasks and then solve subtasks by DRL controller.

6.1 LONG-HORIZON SEQUENTIAL TASK

We evaluate the different methods in the Minecraft Environment to test the performance in some
long-horizon tasks. Results are presented in Table 1. For long horizon planning tasks, ECRL,
SMORL achieves a low success rate because they cannot handle temporal logic tasks. Deepsynth
uses an automaton-based high-level structure for task decomposition, so it has a relatively high
success rate in simple tasks. However, as the tasks become complex, their performance drops sharply
since the search space for the automaton is too big for the algorithm to cover.

(a) Initial State (b) Goal State (c) Plan Generation (d) Execution

Figure 3: End-to-end pixel-based planning of Make-Stick.

6.2 OBJECT MANIPULATION IN REAL-WORLD ENVIRONMENT

We evaluate different methods in the IsaacGy and present results in Table 2. Here, we mainly
demonstrate the overall success rate and the success fraction. For a single cube, the success rate
equals the success fraction. For Push, we observe that most of the structured baselines ECRL,
SMORL can achieve a high success rate. Contrarily, conventional behavior cloning GAIL performs
poorly as the number of cubes increases because of its poor compositional generalizability. Deep-
synth and DiRL uses the idea of task decomposition, however, the decompositional logic is simple
and relies on expert knowledge. Thus, they also perform poorly as the number of cubes increases.
Push-Grab-Lift and Ordered-Press have some logical dependency on their subtasks, the
performance of ECRL, SMORL is much poorer than our model because these two models have
no awareness of the temporal attributes of sub-tasks, which shows the superiority of our skills with
symbolic interpretation. Other detailed results are in Appendix D.2.

6.3 SYMBOLIC INTERPRETATION

Symbolic interpretation is an essential feature of our skills, which enables the searching algorithm
to find a feasible plan for a complex task. We have shown the symbolic interpretation of IsaacGym

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: A sample trace of an agent in real-world object manipulation Push.

Cubes 1 2 3 4 5

Push

SMORL 0.990 / 0.990 0.838 / 0.911 0.509 / 0.794 0.438 / 0.722 0.302 / 0.618
ECRL 0.973 / 0.973 0.963 / 0.981 0.838 / 0.942 0.723 / 0.912 0.570 /0.876
GAIL 0.955 / 0.955 0.750 / 0.875 0.478 / 0.706 0.438 / 0.697 0.396 / 0.646
DiRL 0.935 / 0.935 0.873 / 0.912 0.741 / 0.797 0.612 / 0.753 0.505 / 0.687
DeepSynth 0.919 / 0.919 0.861 / 0.883 0.803 / 0.877 0.635 / 0.720 0.493 / 0.579
Ours 1.000 / 1.000 1.000 / 1.000 0.875 / 0.958 0.750 / 0.922 0.688 / 0.900

Push-
Grab-
Lift

SMORL 0.250 / 0.719 0 / 0.625 0 / 0.469 0 / 0.375 0 / 0.188
ECRL 0.250 / 0.797 0 / 0.538 0 / 0.438 0 / 0.375 0 / 0.250
GAIL 0.488 / 0.670 0.348 / 0.532 0.101 / 0.329 0.031 / 0.281 0.010 / 0.157
DiRL 0.521 / 0.674 0.355 / 0.578 0.235 / 0.416 0.065 / 0.343 0.025 / 0.188
DeepSynth 0.502 / 0.755 0.330 / 0.581 0.187 / 0.453 0.083 / 0.302 0 / 0.009
Ours 0.625 / 0.875 0.500 / 0.828 0.500 / 0.863 0.156 / 0.734 0.125 / 0.643

Ordered-
Press

SMORL 0.980 / 0.980 0.686 / 0.877 0.513 / 0.797 0.372 / 0.701 0.158 / 0.629
ECRL 1.000 / 1.000 0.625 / 0.913 0.427 / 0.835 0.354 / 0.801 0.277 / 0.778
GAIL 0.971 / 0.971 0.862 / 0.905 0.697 / 0.764 0.535 / 0.712 0.328 / 0.567
DiRL 0.982 / 0.982 0.931 / 0.955 0.841 / 0.862 0.703 / 0.826 0.662 / 0.691
DeepSynth 0.925 / 0.925 0.908 / 0.934 0.803 / 0.879 0.655 / 0.784 0.535 / 0.681
Ours 0.990 / 0.990 0.938 / 0.969 0.875 / 0.958 0.813 / 0.953 0.813 / 0.950

Table 2: Success rate and success fraction of real-world object manipulation.

in Table 6 and Minecraft in Table 5, where the preconditions are the boolean formula and the effects
are in the format of a function.

Taking Make-Stick as an example, the agent first compares the initial images and goal images
demonstrating its task and is aware that it should make a stick at the workbench as shown in Figure
5. The preconditions of the last action make(stick) are wood ≥ 1 and at workbench = 1, which
means the agent should move to the workbench with a wood. The effect of move(workbench) is
at workbench = 1, thus we have move(workbench) ≺ make(stick). Similarly, the effect for
pickup(wood) is wood + 1, thus we have pickup(wood) ≺ make(stick). We can also get this
relation from the dependency graph in Figure 9. In the plan generation module, the agent induces
a symbolic plan by using MCTS, forming a sequence: pickup(wood) → move(workbench) →
make(stick). This sequence satisfies the aforementioned partial order relation and can accomplish
the task, thus forming our final plan.

6.4 COMPOSITIONAL GENERALIZATION

This section investigates our method’s ability to achieve zero-shot compositional generalization.
Specifically, we hope the agent can apply learned skills to objects with similar features. Hence, we
present some inference scenarios requiring compositional generalization. Additional results are in
Appendix D.3.

Different Color and Shape of Objects in IsaacGym. In the object manipulation environment
Isaacgym, our skills are trained with a single red cube. We try to eliminate the influence of color and
shapes on the skills by adding noise to the related entities output by the OCR. At the testing stage,
our model can operate on objects with random shapes and colors. The shapes can be chosen from
{cuboid, cylinder, star}. We test our model by the Push tasks and set the number of objects as
three. From the demonstration in Figure 6(a), we can see that our model generalizes to the objects

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Skill relation based on symbolic interpretation in Make-Stick. Expressions in the blue
box represent the precondition, and orange denotes the effect.

with unseen entities and maintains a high success rate in push tasks. Detailed results are in Appendix
Table 11.

Different Craft tasks in Minecraft. In Minecraft, skills are trained in an environment with elements
{wood, stone}. We also expect our skills, such as pick and make, can be generalized into crafting
objects with similar entity without further training. In the evaluation environment, we introduce
new objects {grass,bamboo} and the corresponding crafting tasks. We test our model on some
collecting and crafting tasks by substituting the materials in the map. The result is demonstrated in
Figure 6(b). Our model maintains the success rate on these similar tasks. The complete results are
in Appendix Table 12.

(a) Push three cuboids. (b) Pickup grass.

Figure 6: Rollout of an agent train on some objects, then provide goal image with objects of slightly
different entities. The agent finishes the new tasks without additional training, which shows the
ability to perform compositional generalization.

7 CONCLUSION

We present a model combining a planning framework with DRL to solve pixel-based control chal-
lenges. Our model can autonomously acquire basic skills through interaction with the environ-
ment, minimizing the need for expert knowledge. Moreover, by providing symbolic interpretations
for skills, we can form a sequential plan for long-horizon tasks through search algorithms such as
MCTS. Additionally, our model leverages composable skills and a transformer-based action policy,
which provides compositional generalizability to tasks that share similar features. Our model has
shown great performance on long-horizon, pixel-based control problems based on this superiority.

Limitation. Our model requires a pre-trained image segmentation model. While basic image seg-
mentation models have achieved promising results in our experiments, more complex tasks may
require further advancements and refinements in image semantic segmentation techniques. Ad-
ditionally, the approach using discrete features as an interface may induce some inaccuracy and
inflexibility. Some states with slight differences may share the same feature representation.

Future Work. For future work, one interesting direction is to explore more advanced ways for
automatic skills generation. Currently, the skill generation relies on classifying the collected traces.
We can further improve it with reward-based or entropy-based methods in the future. Another
possible direction is to employ generative models, such as diffusion models, to replace the current
image segmentation approach to generate sub-goal images.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Laith Abualigah, Mohamed Abd Elaziz, Abdelazim G Hussien, Bisan Alsalibi, Seyed Moham-
mad Jafar Jalali, and Amir H Gandomi. Lightning search algorithm: a comprehensive survey.
Applied Intelligence, 51:2353–2376, 2021.

Kamal Acharya, Waleed Raza, Carlos Dourado, Alvaro Velasquez, and Houbing Herbert Song.
Neurosymbolic reinforcement learning and planning: A survey. IEEE Transactions on Artificial
Intelligence, 5(5):1939–1953, 2024. doi: 10.1109/TAI.2023.3311428.

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

Milad Taleby Ahvanooey, Qianmu Li, Ming Wu, and Shuo Wang. A survey of genetic programming
and its applications. KSII Transactions on Internet and Information Systems (TIIS), 13(4):1765–
1794, 2019.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International conference on machine learning, pp. 166–175. PMLR, 2017.

Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J. Pap-
pas. Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robotics
& Automation Magazine, 14(1):61–70, 2007. doi: 10.1109/MRA.2007.339624.

Sebastian Blaes, Marin Vlastelica Pogančić, Jiajie Zhu, and Georg Martius. Control what you can:
Intrinsically motivated task-planning agent. Advances in Neural Information Processing Systems,
32, 2019.

Ethan Brooks, Janarthanan Rajendran, Richard L Lewis, and Satinder Singh. Reinforcement learn-
ing of implicit and explicit control flow instructions. In International Conference on Machine
Learning, pp. 1082–1091. PMLR, 2021.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer. Cu-
rious: intrinsically motivated modular multi-goal reinforcement learning. In International con-
ference on machine learning, pp. 1331–1340. PMLR, 2019.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Tal Daniel and Aviv Tamar. Ddlp: Unsupervised object-centric video prediction with deep dynamic
latent particles. arXiv preprint arXiv:2306.05957, 2023.

Fan Feng and Sara Magliacane. Learning dynamic attribute-factored world models for efficient
multi-object reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Focus: Object-centric world
models for robotics manipulation. arXiv preprint arXiv:2307.02427, 2023.

Locatello Francesco, Weissenborn Dirk, Unterthiner Thomas, Mahendran Aravindh, Heigold Georg,
Uszkoreit Jakob, Dosovitskiy Alexey, and Kipf Thomas. Object-centric learning with slot atten-
tion. Advances in Neural Information Processing Systems, 33:11525–11538, 2020.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algo-
rithms for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
ulation from pixels. arXiv preprint arXiv:2404.01220, 2024.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and
Daniel Kroening. Deepsynth: Automata synthesis for automatic task segmentation in deep rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7647–7656, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. Symbolic plans as high-level
instructions for reinforcement learning. In Proceedings of the international conference on auto-
mated planning and scheduling, volume 30, pp. 540–550, 2020.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
models with scalable object representations. arXiv preprint arXiv:1910.02384, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026–10039, 2021.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, and Prasad Tadepalli.
Reprel: Integrating relational planning and reinforcement learning for effective abstraction. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 31,
pp. 533–541, 2021.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Baihan Lin, Djallel Bouneffouf, and Irina Rish. A survey on compositional generalization in appli-
cations. arXiv preprint arXiv:2302.01067, 2023.

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, and Tian-Li Yu. Integrating planning and deep
reinforcement learning via automatic induction of task substructures. In The Twelfth International
Conference on Learning Representations, 2024.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end
neuro-symbolic reinforcement learning with textual explanations. In Forty-first International
Conference on Machine Learning.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–
1132. PMLR, 2020.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Davide Mambelli, Frederik Träuble, Stefan Bauer, Bernhard Schölkopf, and Francesco Locatello.
Compositional multi-object reinforcement learning with linear relation networks. arXiv preprint
arXiv:2201.13388, 2022.

Udi Manber. Introduction to algorithms: a creative approach. Addison-Wesley Longman Publishing
Co., Inc., 1989.

Jiayuan Mao, Tomás Lozano-Pérez, Joshua B Tenenbaum, and Leslie Pack Kaelbling. Pdsketch:
Integrated planning domain programming and learning. arXiv preprint arXiv:2303.05501, 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

V Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6):
183–197, 1991.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. Pmlr, 2018.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.

Atharva Sehgal, Arya Grayeli, Jennifer J Sun, and Swarat Chaudhuri. Neurosymbolic grounding for
compositional world models. arXiv preprint arXiv:2310.12690, 2023.

Tom Silver, Ashay Athalye, Joshua B Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Learning neuro-symbolic skills for bilevel planning. In Conference on Robot Learning, pp. 701–
714. PMLR, 2023.

Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. Program guided agent. In International Conference
on Learning Representations, 2020.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
learning with object-centric representations. arXiv preprint arXiv:2011.14381, 2020.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals. In Conference on Robot Learning, pp. 384–394. PMLR,
2022.

Linfeng Zhao, Lingzhi Kong, Robin Walters, and Lawson LS Wong. Toward compositional gener-
alization in object-oriented world modeling. In International Conference on Machine Learning,
pp. 26841–26864. PMLR, 2022.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

Hankz Hankui Zhuo, Shuting Deng, Mu Jin, Zhihao Ma, Kebing Jin, Chen Chen, and Chao Yu.
Creativity of ai: Hierarchical planning model learning for facilitating deep reinforcement learning.
arXiv preprint arXiv:2112.09836, 2021.

Dorde Žikelić, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee, and Thomas Henzinger.
Compositional policy learning in stochastic control systems with formal guarantees. Advances in
Neural Information Processing Systems, 36, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ALGORITHM

We outline the algorithm of our end-to-end pixel-based framework below. Lines 2 to 15 detail the
preprocessing of traces, involving categorizing them into distinct groups for subsequent training.
Lines 16 to 24 describe the process of skill formation through symbolic interpretation of the traces.
Lines 25 to the end encompass the planning and execution of different tasks.

Algorithm 1: The whole training and evaluation of the framework.
Input: The total trace collecting step N . The evaluation task Teval.

1 Randomly initialize some simple environment ei;
2 for j ← 0 to N do
3 Interact with simple environment with random policy πrandom;
4 Collect the trace τori;
5 end
6 for τori ∈ T do
7 p← 0, q ← 0;
8 while Tf (Te(sp)) = Tf (Te(sq)) do
9 q++;

10 end
11 Segment the trace τori[p : q];
12 Insert the trace to a trace set Strace;
13 p = q;
14 end
15 Classify the trace using cluster algorithm;
16 for trace cluster Si ∈ Strace do
17 Randomly initialize policy πi;
18 Training policy πi with GCBC algorithm;
19 end
20 for i← 0 to |Strace| do
21 Find the effect of πi through PySR;
22 Find the precondition of πi through neural guidance algorithm;
23 Form a skill with symbolic interpretation l(s) = ⟨s, o, πl, prel(s,f), eff l(s,f)⟩;
24 end
25 Get the initial state sinit and goal state g of Teval;
26 Get the initial feature finit and goal feature fg;
27 Using MCTS to find a path l1 → l2 → · · · → ln from finit to fg;
28 for j ← 0 to n do
29 for t← 0 to volley do
30 Get the action a = πi(sj×volley+t) ;
31 Interact with the environment sj×volley+t+1 = Teval(a);
32 end
33 end

B IMPLEMENTATION DETAILS

B.1 PRE-TRAINED MODELS

Object-Centric Representation. Our OCR algorithm is based on the DLP algorithm. DLP
(Daniel & Tamar, 2023) is an unsupervised object-centric model for images based on variational
autoencoder (VAE) (Kingma, 2013). It provides the latent representation for all the particles.

The foreground representation e = [ec, es, ed, et, ef] ∈ R11 is a disentangled latent variable includ-
ing the following learned attributes: spatial coordinate ec ∈ R3, scale es ∈ R2, depth ed ∈ R,
transparency et ∈ R, and visual features ef ∈ R4. Here we set the number of entities as 24.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Aggregation Function. We design an aggregation transformer inspired by entity-centric architec-
ture (Haramati et al., 2024), which processes the OCR entities into the feature state of the envi-
ronment. An architecture outline is presented in Figure 7. The aggregation transformer comprises
self-attention (SA) and cross-attention (CA) as its core components. The self-attention tries to grab
the relation of entities in a single object. It transforms the input vector, grouping all the entities of a
single object. At the CA layer, the transformer network tries to figure out the relation between dif-
ferent objects. After passing the SA and CA network, we let the model pass another (SA) network
again. This network considers the result from the previous steps and forms these two steps together,
placing self-attention calculation on the overall computing result. Finally, we get the output result,
which is a feature vector.

Figure 7: The architecture of the aggregation transformer.

B.2 SKILL TRAINING

It is worth mentioning that our framework is agnostic of the skill policy. We have tried several
RL algorithms and finally chose GCBC (Lynch et al., 2020) since it has the best performance. We
use GCBC to train the policy πl for the skill. This method extracts goal-conditioned policies using
self-supervision on top of raw unlabeled data.

As mentioned in the section 5.2, we collect traces from interaction with the simple environment.
Taking the IssacGym environment as an example, we set the object number to be one, the object
type to be a cube, and the object color to be red. The agent can operate its gripper to interact with
the only object that appeared on the table. Thus, it can collect a tremendous amount of data.

Figure 8 shows the learning curves of the skills, the y-axis is the success rate during the training
process. The names and functions of skills are not specified in advance. We name the skill according
to its effect.

(a) Pickup in Minecraft (b) Push in IssacGym

Figure 8: The curves of mean success rate during the skill learning process under 96 random goals
in IssacGym and Minecraft environments. Notice that the names and functions of skills are not
specified in advance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 EFFECTS OF SKILL

We use PySR (Cranmer, 2023) for the implementation of the symbolic regression part of the skills,
generating the mathematical form of effect. In PySR, we can use specific parameters to control the
generation of the formula. The parameter settings for the regressor are in Table 3.

Here we assume that all the effects of skills on features can be characterized by some polynomial
expression. Then, we use the binary operation and the constants to form such a relation. We treat
the initial feature and final feature of a sequence as the input and output of a function. Then we fit
the relationship between tuples of input and output.

Parameters Value

Number of Iterations 40

Complexity 5

Binary Operators {+,−,×,÷}
Unary Operator {>}
fractionReplaced 0.1

shouldOptimizeConstants True

maxsize 20

procs 4

Table 3: The Parameter Setting of PySR

B.4 PRECONDITIONS OF SKILL

The precondition is a little different from the effect. The precondition is composed of some boolean
expressions. It maps from a feature vector to a boolean output, indicating whether a skill can be
adopted under the current stage.

Here we use a similar method as Luo et al. to find the preconditions. We use an EQL network
with depth 2. The EQL network takes in an input vector h and output g = Wh + b in each layer,
where W and b are learnable parameters. Its activation function in the last layer can be customized
according to our needs. For the activation function, we choose the function listed in Table 4. The
last three functions are specifically designed for the boolean output since we expect our output to be
a boolean. Since the EQL network is shallow and the activation function is given, we can extract the
final preconditions to some simple expressions, which are listed in Table 5 and Table 6.

Parameter Value

Activation Function 1 x

Activation Function 2 c

Activation Function 3 x2

Activation Function 4 2x

Activation Function 5 x > 0

Activation Function 6 x < 0

Activation Function 7 x = c

Table 4: The Activation Function for Learning Precondition

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C TEST ENVIRONMENTS

C.1 BASELINE REIMPLEMENTATION

SMORL. We reimplemented SMORL (Zadaianchuk et al., 2020), substituting its original visual
model SCALOR (Jiang et al., 2019) with DLP. Additionally, the low-level controller within the
SMORL framework was replaced with the same controller used in our proposed method.

ECRL. The original version of ECRL was used directly in our experiments.

GAIL. GAIL (Ho & Ermon, 2016) was reimplemented with several modifications. We integrated
DLP to process image input and replaced the actor with the same controller used in our frame-
work. Furthermore, the critic and discriminator networks within GAIL were updated to employ a
transformer architecture.

DeepSynth. We reimplement DeepSynth (Hasanbeig et al., 2021), with the original image seg-
mentation algorithm replaced by DLP. We directly implement the automaton synthesis algorithm
based on the DLP result. For the low-level controller in DeepSynth, we also use the same controller
as our framework to substitute the controller in DeepSynth to ensure a fair comparison.

DiRL. DiRL (Jothimurugan et al., 2021) was reimplemented as a baseline model, incorporating
domain-specific knowledge. Rules such as ”pick after push” and ”pick up wood before going to
the craft table” were established to provide high-level guidance for the low-level policy. The policy
within DiRL was also replaced with the same controller used in our framework for a more credible
comparison.

C.2 MINECRAFT

We design the features to extract as follows:

• at wood: A boolean variable representing whether the agent’s position is at wood.

• at stone: A boolean variable representing whether the agent’s position is at stone.

• at iron: A boolean variable representing whether the agent’s position is at iron.

• at gem: A boolean variable representing whether the agent’s position is at gem.

• at sheep: A boolean variable representing whether the agent’s position is at sheep block.

• at workbench: A boolean variable representing whether the agent’s position is at the work-
bench.

• at toolshed: A boolean variable representing whether the agent’s position is at the toolshed.

• wood: The number of wood in the agent’s bag.

• stone: The number of stones in the agent’s bag.

• iron: The number of iron in the agent’s bag.

• gem: The number of gems in the agent’s bag.

• stick: The number of sticks in the agent’s bag.

• stone pickaxe: The number of stone pickaxes in the agent’s bag.

• iron pickaxe: The number of iron pickaxes in the agent’s bag.

• scissors: The number of scissors in the agent’s bag.

• paper: The number of paper in the agent’s bag.

• wool: The number of wool in the agent’s bag.

• enhance table: The number of enhanced tables in the agent’s bag.

• bed: The number of beds in the agent’s bag.

• jukebox: The number of jukeboxes in the agent’s bag.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As we have form skills with symbolic interpretation, we can use a graph to describe the dependency
relation between different skills. A detailed dependency graph of all the skills in Minecraft is shown
in Figure 9.

Figure 9: Dependency graph of Minecraft.

C.3 ISSACGYM

We design the features of IssacGym to extract as follows:

• num objects: The number of objects on the table captured by cameras that provide front
view and side view.

• xy goal: The number of objects reaching their goals on the table.

• z goal: The number of objects reaching their goals in the air lifted by the gripper.

• is grab: A boolean variable representing whether the gripper grabs the object.

• color 1, . . . , color 5: A boolean variable representing whether a color exists. It can record
at most five colors.

• next color: It is an integer that stands for the next color that should be controlled. It guar-
antees the ordered operation of objects following the color sequence, which is red, green,
blue, yellow, and purple in our case.

C.4 EVALUATION METRICS

We mainly evaluate the performance of different methods based on the success rate and success
fraction. Apart from these two results, we also record more detailed information in the experiment,
including color success, color success fraction, action success, and action success fraction.

• Success Rate. The success rate describes the final success rate of the whole task.

• Success Fraction. The success fraction is the portion of accomplished subtasks, so this
metric is usually higher than the success.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Skill Object Preconditions Effects

move
workbench at workbench = 0

at wood = 0, at stone = 0,
at iron = 0, at gem = 0,
at wool = 0, at workbench = 1,
at toolshed = 0

toolshed at toolshed = 0

at wood = 0, at stone = 0,
at iron = 0, at gem = 0,
at wool = 0, at workbench = 0,
at toolshed = 1

pickup

wood at wood = 1 wood + 1
stone at stone = 1 stone + 1
grass at grass = 1 grass + 1
bamboo at bamboo = 1 bamboo + 1
iron at iron = 1, stone pickaxe ≥ 1 iron + 1
gem at gem = 1, iron pickaxe ≥ 1 gem + 1
wool at wool = 1, scissors ≥ 1 wool + 1

make

stick at workbench = 1,wood ≥ 1 stick + 1,wood− 1
grass stack at workbench = 1, grass ≥ 1 grass stack + 1, grass− 1
bamboo fence at workbench = 1,bamboo ≥ 1 bamboo fence + 1,bamboo− 1

stone pickaxe
at toolshed = 1,
stick ≥ 2, stone ≥ 3

stone pickaxe + 1,
stick− 2, stone− 3

iron pickaxe
at toolshed = 1,
stick ≥ 2, iron ≥ 3

iron pickaxe + 1,
stick− 2, iron− 3

scissors at workbench = 1, iron ≥ 2 scissors + 1, iron− 2

paper
at workbench = 1,
scissors ≥ 1,wood ≥ 1

paper + 1,wood− 1

bed
at toolshed = 1,
wood ≥ 3,wool ≥ 3

bed + 1,wood− 3,
wool− 3

jukebox
at workbench = 1,
wood ≥ 3, gem ≥ 1

jukebox + 1,wood− 3,
gem− 1

enhance table
at workbench = 1, stone ≥ 1,
paper ≥ 2, gem ≥ 1

enhance table + 1, stone− 1,
paper− 2, gem− 1

Table 5: Learned ground operators of the Minecraft environment.

Skill Object Preconditions Effects

push cube xy goal + 1

approach cube is grab = 0 is grab = 1

lift cube is grab = 1 xy goal + 1, z goal + 1

press button next color < num objects next color + 1

Table 6: Learned ground operators of the IssacGym environment.

• Color Success. The color success gives out each color’s success rate.

• Color Success Fraction. The color success fraction indicates the percentage of completed
subtasks in each color.

• Action Success. The action success reflects the success rate of each action.

• Action Success Fraction. The action success fraction represents the percentage of accom-
plished subtasks in each action.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D SUPPLEMENTARY RESULTS

D.1 DETAILED RESULTS FOR MINECRAFT TASKS

The plans for different tasks generated by the MCTS algorithm are as follows:

• Pickup-Mass-Grass: move(workbench)→ pickup(grass)

• Pickup-Mass-Banboo: move(workbench)→ pickup(bamboo)

• Make-Grass-Stack: pickup(grass) → move(toolshed) → move(workbench) →
make(grass stack)

• Make-Bamboo-Fence: pickup(bamboo) → move(toolshed) →
move(workbench)→ make(bamboo fence)

• Make-Mass-Sticks: move(workbench) → pickup(wood) → move(workbench) →
make(stick) → pickup(wood) → pickup(wood) → pickup(wood) →
pickup(wood) → move(workbench) → make(stick) → pickup(wood) →
move(workbench) → make(stick) → make(stick) → make(stick) →
pickup(wood) → move(workbench) → pickup(wood) → pickup(wood) →
move(workbench) → make(stick) → make(stick) → make(stick) → make(stick) →
pickup(wood) → pickup(wood) → pickup(wood) → move(workbench) →
make(stick)

• Pickup-Iron: pickup(wood) → move(workbench) → pickup(wood) →
pickup(wood) → move(toolshed) → move(workbench) → make(stick) →
make(stick) → pickup(stone) → pickup(stone) → pickup(stone) →
pickup(stone) → move(toolshed) → make(stone pickaxe) → move(workbench) →
pickup(iron)

• Multiple-Goals: pickup(stone) → move(workbench) → move(toolshed) →
pickup(stone) → pickup(wood) → pickup(stone) → pickup(stone) →
pickup(stone) → move(workbench) → make(stick) → pickup(wood) →
move(workbench) → make(stick) → pickup(stone) → move(toolshed) →
make(stone pickaxe) → pickup(iron) → pickup(iron) → pickup(wood) →
move(workbench)→ make(scissors)→ move(toolshed)→ pickup(wool)

• Make-Enhance-Table: pickup(stone) → pickup(wood) → pickup(stone) →
pickup(stone) → move(workbench) → make(stick) → pickup(wood) →
pickup(wood) → move(workbench) → make(stick) → move(toolshed) →
make(stone pickaxe) → pickup(iron) → pickup(iron) → move(workbench) →
make(scissors) → make(paper) → move(toolshed) → pickup(wool) →
pickup(wood) → move(workbench) → make(stick) → pickup(stone) →
pickup(wood) → pickup(wool) → pickup(wool) → pickup(wood) →
pickup(iron) → move(workbench) → make(stick) → make(paper) →
pickup(iron) → pickup(iron) → move(toolshed) → make(iron pickaxe) →
pickup(gem)→ move(toolshed)→ make(enhance table)

D.2 DETAILED RESULTS FOR ISSACGYM TASKS

The plans for different tasks generated by the MCTS algorithm are as follows:

• Push-n: push(obj1)→ push(obj2)→ · · · → push(objn).

• Push-Grab-n: push(obj1)→ push(obj2)→ · · · → push(objn)→ grab(objn).

• Push-Grab-Lift: push(obj1) → push(obj2) → · · · → push(objn) →
grab(objn)→ lift(objn).

• Ordered-Press: press(obj1)→ press(obj2)→ · · · → press(objn).

The superscripts of Ordered-Press represent that press should follow the sequence.

We list some detailed results of the tasks in IssacGym. Table 7, table 8, and table 9 demonstrate the
detailed metrics of Push, Push-Grab-Lift, and Ordered-Press, respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Additionally, we construct an experiment called Push-Grab. Its difficulty is between Push and
Push-Grab-Lift since we expect the agent to use two skills to complete the task. The agent is
required to push the cubes to their goal positions and grab one of the specified cubes. We show the
detailed results under different numbers of cubes in table 10.

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000, 1.000 1.000 1.000

3 0.875 0.958 0.958 0.938, 0.938,
1.000 0.958 0.875

4 0.750 0.922 0.922 1.000, 0.875,
0.938, 0.875 0.922 0.750

5 0.688 0.900 0.900
0.938, 0.875,
0.938, 0.938,

0.813
0.900 0.688

Table 7: Push. The sequence of color success fractions follows red, green, blue, yellow, and purple.

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.625 0.875 0.625 0.625 0.875 1.000, 0.9375,
0.688

2 0.500 0.828 0.719 0.500, 0.938 0.771 0.938, 0.875,
0.500

3 0.500 0.863 0.792 0.563, 0.938,
0.875 0.771 0.750, 0.938,

0.625

4 0.063 0.698 0.609 0.188, 0.938,
0.750, 0.563 0.479 0.438, 0.625,

0.375

5 0.125 0.643 0.575
0.3125, 0.5625,

0.5, 0.75,
0.75

0.438 0.1875, 0.625,
0.5

Table 8: Push-Grab-Lift. The sequence of color success follows red, green, blue, yellow, and
purple. The sequence of action success follows push, approach, and lift.

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.990 0.990 0.990 0.990 0.990 0.990

2 0.938 0.969 0.969 0.969, 0.969 0.938 0.938

3 0.875 0.958 0.958 0.938, 1.000,
0.938 0.875 0.875

4 0.813 0.953 0.975 0.875, 1.000,
1.000, 0.938 0.875 0.8125

5 0.813 0.950 0.950 0.875, 1.000, 1.000,
0.938, 0.938 0.813 0.875

Table 9: Ordered-Press. The sequence of color success follows red, green, blue, yellow, and
purple.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.938 0.969 0.938 0.938 0.969 1.000, 0.9375

2 0.938 0.979 0.969 0.875, 1.000 0.969 0.938, 0.938

3 0.563 0.859 0.813 0.688, 0.875,
0.875 0.750 0.688, 0.813

4 0.438 0.838 0.828 0.688, 0.875,
0.875, 0.875 0.656 0.625, 0.688

5 0.250 0.792 0.763
0.688, 1.000,
0.688, 0.688,

0.750
0.531 0.3125, 0.75

Table 10: Push-Grab. The sequence of color success follows red, green, blue, yellow, and purple.
The sequence of action success fractions follows push and approach.

D.3 COMPOSITIONAL GENERALIZATION

For the experiments measuring compositional generalization, we provide some demonstration re-
sults in the main paper. Here, we list some of the additional results. The results are listed in Table
11 and Table 12. For the Minecraft environment, we introduce some new objects {grass,bamboo}
and the corresponding crafting tasks. For IsaacGym Environment we add some new type of ob-
jects {cuboid, cylinder, star,T-block} in the environment. We can find that in most of the test
cases, our model can maintain the success rate without fine-tuning the model. Also, we provide
another demonstration of the experiment result in Figure 10, which is pushing the star and crafting
the bamboo.

(a) Push three stars. (b) Pickup bamboo.

Figure 10: Compositional generalization in IssacGym and Minecraft environments.

Shape Cuboid Cylinder Star T-Block

Ours 0.375 / 0.750 0.250 / 0.729 0.625 / 0.833 0.250/0.667

Table 11: Success rate of Push on objects with different shape.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Tasks Pickup-Mass-Grass Pickup-Mass-Banboo Make-Grass-Stack Make-Bamboo-Fence

Ours 0.969 0.927 0.865 0.791

Table 12: Success rate of Minecraft tasks on new materials.

D.4 VISUALIZATION OF DLP RESULTS

We demonstrate the object reconstruction visualization of DLP in the IssacGym and Minecraft en-
vironments.

Figure 11 and figure 12 present lists of 32 images reconstructed by DLP respectively. In the Issac-
Gym environment, We find that DLP focuses on objects with different colors and the gripper, while
in Minecraft, object blocks and agents are clearly shown in the grid.

Figure 13 and figure 14 present a comparative analysis of the original image with various trans-
formed versions. These include images with different key points, reconstructed images, extracted
foregrounds and backgrounds, and images with different types of bounding boxes. The first row de-
picts the original image. Key points are marked on the original image in the second row. The third
row showcases the reconstructed images, which exhibit a high degree of similarity to the originals.
In the fourth row, predicted key points are superimposed on the original image, with many aligning
closely with objects. The fifth row highlights the top 10 key points that the agent prioritizes, which
are predominantly concentrated on meaningful objects rather than empty regions. The sixth and
last rows display the extracted foregrounds and backgrounds, respectively. The foreground images
effectively isolate individual objects, while the backgrounds are clean and devoid of objects. The
seventh and eighth rows demonstrate the application of bounding boxes to each object using two
different methods: non-maximum suppression alone and non-maximum suppression in conjunction
with transparency.

Figure 11: Object Reconstruction of DLP in IssacGym.

Figure 12: Object Reconstruction of DLP in Minecraft.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: Visualization of DLP in IssacGym.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: Visualization of DLP in Minecraft.

25

	Introduction
	Related Work
	Problem Formulation
	Factored Goal-Augmented MDP
	From MDP to Planning

	Skill with Symbolic Interpretation
	Method
	Feature Extraction
	Skill Learning
	Symbolic Inductive Inference
	End-to-End Pixel-Based Planning

	Experiments
	Long-Horizon Sequential Task
	Object Manipulation in Real-World Environment
	Symbolic Interpretation
	Compositional Generalization

	Conclusion
	Algorithm
	Implementation Details
	Pre-trained Models
	Skill Training
	Effects of Skill
	Preconditions of Skill

	Test Environments
	Baseline Reimplementation
	Minecraft
	IssacGym
	Evaluation Metrics

	Supplementary Results
	Detailed Results for Minecraft Tasks
	Detailed Results for IssacGym Tasks
	Compositional Generalization
	Visualization of DLP Results

