
Magic Pyramid: Accelerating Inference with
Early Exiting and Token Pruning

Anonymous ACL submission

Abstract

Pre-training and then fine-tuning large lan-001
guage models is commonly used to achieve002
state-of-the-art performance in natural lan-003
guage processing (NLP) tasks. However, most004
pre-trained models suffer from low inference005
speed. Deploying such large models to applica-006
tions with latency constraints is challenging. In007
this work, we focus on accelerating the infer-008
ence via conditional computations. To achieve009
this, we propose a novel idea, Magic Pyramid010
(MP), to reduce both width-wise and depth-011
wise computation via token pruning and early012
exiting for Transformer-based models, partic-013
ularly BERT. The former manages to save the014
computation via removing non-salient tokens,015
while the latter can fulfill the computation re-016
duction by terminating the inference early be-017
fore reaching the final layer, if the exiting condi-018
tion is met. Our empirical studies demonstrate019
that compared to previous state of arts, MP020
is not only able to achieve a speed-adjustable021
inference, but also to surpass token pruning022
and early exiting by reducing up to 70% giga023
floating point operations (GFLOPs) with less024
than 0.5% accuracy drop. Token pruning and025
early exiting express distinctive preferences to026
sequences with different lengths. However, MP027
is capable of achieving an average of 8.06x028
speedup on two popular text classification tasks,029
regardless of the sizes of the inputs.030

1 Introduction031

In the past few years, owing to the success of032

Transformer-based (Vaswani et al., 2017) pre-033

trained models, such as BERT (Devlin et al., 2019),034

RoBERTa (Liu et al., 2019), GPT2 (Radford et al.,035

2019), etc., we have experienced a performance036

breakthrough in natural language processing (NLP)037

tasks. With a small amount of fine-tuning, the038

pre-trained models can achieve state-of-the-art per-039

formance across different tasks (Devlin et al., 2019;040

Liu et al., 2019; Radford et al., 2019). Nevertheless,041

the outperforming models are evaluated in offline042

settings, and the inference latency is not assessed 043

or considered as a quality factor. 044

However, adapting and deploying such large pre- 045

trained models to production systems (e.g., online 046

shopping services) is not straightforward due to 047

the latency constraint and the large volume of in- 048

coming requests (e.g., millions of requests per sec- 049

ond). Prior to this work, researchers have proposed 050

to compress a large model via either model prun- 051

ing (Michel et al., 2019; Fan et al., 2019; Hou 052

et al., 2020) or token pruning (Wang et al., 2021; 053

Goyal et al., 2020; Kim et al., 2021). In addition, 054

compressing a large teacher model into a compact 055

model via knowledge distillation has been stud- 056

ied extensively in the past (Sanh et al., 2019; Sun 057

et al., 2019, 2020; Jiao et al., 2020; He et al., 2021). 058

Finally, another line of work targets on plugging 059

multiple sub-classifiers into deep neural networks 060

to enable a flexible computation on demand, a.k.a., 061

early exiting (Teerapittayanon et al., 2016; Kaya 062

et al., 2019; Schwartz et al., 2020; Liu et al., 2020) 063

The token pruning concentrates on a width-wise 064

computational reduction, whereas the early exiting 065

succeeds in a depth-wise inference acceleration. 066

Our study shows that for certain tasks where the 067

input data is diverse (in terms of sequence length), 068

these two latency reduction methods perform in 069

the opposite direction. As illustrated in Figure 1 070

(a), speedup (Y-axis) achieved via early exiting 071

(FastBERT) decreases for long input sizes (X-axis). 072

However, token pruning (LTP) speedup rises as 073

the input size increases. We believe these two ap- 074

proaches are orthogonal and can be combined into 075

a single model to maintain the latency reduction 076

gain across the variable input length. In this work, 077

we present a novel approach, Magic Pyramid (MP), 078

to encourage a speed-adjustable inference. The 079

contribution of this paper includes: 080

• Our empirical study shows that token pruning 081

and early exiting are potentially orthogonal. 082

This motivates us to exploit the synergy be- 083

1



1.07
1.33

2.83

4.78 4.91

3.03

4.98

5.90
5.59

1.00

2.00

3.00

4.00

5.00

6.00

7.00

short middle long

Sp
ee

du
p

Sequence Length

SPEEDUP UNDER DIFFERENT LENGTH

LTP FastBERT Magic Pyramid

(a) Yelp.

1.20 1.58
2.45

9.55
10.46

9.60
9.59

10.63 10.36

0.00

2.00

4.00

6.00

8.00

10.00

12.00

short middle long

Sp
ee

du
p

Sequence Length

SPEEDUP UNDER DIFFERENT LENGTH

LTP FastBERT Magic Pyramid

(b) AG news

Figure 1: Speedup of LTP (token pruning), FastBERT
(early exiting) and MP (ours) under different sequence
lengths on Yelp and AG news. X axis is sequence length,
while Y axis is speedup. short: 1-35 tokens; middle:
35-70 tokens; long: >70 tokens

tween token pruning and early exiting and084

attain higher computational reduction from085

width and depth perspectives.086

• Compared to two strong baselines, our ap-087

proach can significantly accelerate the infer-088

ence time with an additional 0.5-2x speedup089

but less than 0.5% degradation on accuracy090

across five classification tasks.091

2 Related Work092

Large pre-trained models have demonstrated that093

increasing the model capacity can pave the way for094

the development of superior AI. However, as we095

have limited resources allocated for production sys-096

tems, there has been a surge of interest in efficient097

inference. Previous works (Sanh et al., 2019; Sun098

et al., 2019, 2020; Jiao et al., 2020; He et al., 2021)099

have opened a window into an effective model com-100

pression via knowledge distillation (KD) (Hinton101

et al., 2015). The core of KD is to use a compact102

student model to mimic the behavior or structure103

of a large teacher model. As such, the performance104

of the student model is as accurate as its teacher,105

but consuming less computation. 106

Other researchers approach efficient inference 107

by manipulating the original model. One elegant 108

solution is pruning, which can reduce the computa- 109

tion by removing non-essential components. These 110

components can be either model parameters (model 111

pruning) (Michel et al., 2019; Fan et al., 2019; Hou 112

et al., 2020) or tokens (token pruning) (Wang et al., 113

2021; Goyal et al., 2020; Kim et al., 2021). In ad- 114

dition, one can boost the speed of the numerical 115

operations of a model through quantization (Zafrir 116

et al.; Wróbel et al., 2020; Shen et al., 2020). 117

The aforementioned works lack flexibility in 118

terms of the speedup, albeit some success. To sat- 119

isfy varying demands, we have to train multiple 120

models. Since deep neural networks can be con- 121

sidered as a stack of basic building blocks, a list 122

of works introduces early exiting (Teerapittayanon 123

et al., 2016; Kaya et al., 2019; Schwartz et al., 124

2020; Liu et al., 2020), which attaches a set of sub- 125

classifiers to these sub-networks to encourage an 126

adjustable inference within a single model, when 127

needed. As opposed to the prior works, which 128

focus on the one-dimensional speedup, this work 129

takes the first step to superimpose token pruning 130

on early exiting. Our empirical studies confirm that 131

these two approaches can accelerate the inference 132

collaboratively and significantly. 133

3 Methodology - Proposed Method 134

Prior to this work, token pruning and early exit- 135

ing have been proven to be effective in accelerat- 136

ing the inference (Wang et al., 2021; Goyal et al., 137

2020; Schwartz et al., 2020; Liu et al., 2020; Kim 138

et al., 2021). However, as shown in Figure 1, these 139

approaches fall short of reducing the latency at 140

two ends, i.e., short sequences and long sequences. 141

For example, Figure 1 (a) shows that LTP (token- 142

pruning) provides the highest speed-up for long 143

input sequences. While FastBERT (early exiting) 144

speedup drops as the input size increases from short 145

to long. Therefore we propose a novel approach: 146

Magic Pyramid (MP), which benefits from a combi- 147

nation of token pruning and early exiting. Figure 2 148

provides a schematic illustration of MP. First of 149

all, MP enables to terminate an inference at any 150

layer when needed. Second, with the increase of 151

the depth of Transformer, redundant tokens can be 152

expelled. The detailed designs are provided in the 153

rest of this section. 154

2



As a visual treat , the film is almost perfect
(Layer 1; 10 tokens)

a visual treat the film is perfect
(Layer 4; 7 tokens)

a treat film is perfect
(Layer 8; 5 tokens)

film perfect
(Layer 12; 2 tokens)

As a visual treat , the film is almost perfect

is confident

is confident

is confident

pos

pos

pos

pos

No

No

No

Figure 2: Schematic illustration of magic pyramid for a
sentiment analysis task

Transformer Owing to it outstanding perfor-155

mance, Transformer (Vaswani et al., 2017) has be-156

come a de facto model for NLP tasks, especially af-157

ter the triumph of pre-trained language models (De-158

vlin et al., 2019; Liu et al., 2019; Radford et al.,159

2019). A standard Transformer is comprised of L160

stacked Transformer blocks: {Bl}Ll=1, where each161

block primarily consists of a multi-head attention162

module and a position-wise feedforward module1.163

Token pruning The core of the Transformer164

block is the MultiHead module, which is respon-165

sible for a context-aware encoding of each token.166

Notably, since we compute pairwise importance167

among all tokens within the input via self-attention,168

the complexity of MultiHead quadratically scales169

w.r.t the sequence length.170

Previous works (Wang et al., 2021; Kim et al.,171

2021) have shown that one can leverage the at-172

tention scores to remove non-salient tokens, such173

that the sequence length can be gradually reduced.174

Thus, we follow Kim et al. (2021), and superim-175

pose a learnable token pruning on the Transformer176

model as depicted in Figure 2.177

The pruning process is comprised of two stages.178

We first learn layer-wise threshold parameters ∆179

to softly regulate the flow of hidden states from180

the current block to the subsequent one. Then, we181

freeze ∆ and enforce a hard gating between two182

consecutive blocks. Finally, the Transformer is183

optimized under a hard-pruning condition. Please184

refer to Appendix B and Kim et al. (2021) for the185

details.186

Early exiting As shown in Figure 2, in addition187

to the Transformer backbone and a main classi-188

fier, one has to attach an individual sub-classifier189

module (subclassifier(·)) to the last layer of each190

1We omit Residual module and Layernorm module in
between for simplicity.

Transformer block Bi. As such, one can choose to 191

terminate the computation at any layer, when a halt 192

value τ is reached. 193

Similar to Liu et al. (2020), we leverage 194

a two-stage fine-tuning to enhance the perfor- 195

mance of sub-classifiers via knowledge distilla- 196

tion. Specifically, we first train the Transformer 197

backbone and the primary classifier through a stan- 198

dard cross entropy between the ground truth y 199

and the predictions y′. Afterward, we freeze the 200

backbone and the primary classifier, but train the 201

L − 1 subclassifier(·) via a Kullback–Leibler di- 202

vergence: 203

L(ps1 , ..., psL−1 , pt) =

L−1∑
l=1

DKL(psi , pt) (1) 204

where ps and pt are the predicted probability dis- 205

tribution from the subclassifier(·) and the main 206

classifier respectively. Once all modules are well- 207

trained, we can stitch them together to achieve a 208

speed-adjustable inference via a halt value τ . Ap- 209

pendix A details the early exiting at the inference 210

time. 211

In summary, we first fine-tune the Transformer 212

model. After that, token pruning and early exiting 213

are applied to the model sequentially. 214

4 Experiments 215

To examine the effectiveness of the proposed ap- 216

proach, we use five language understanding tasks 217

as the testbed. 218

Data Train Test Task

AG news 120K 7.6K topic
Yelp 560K 38K sentiment
QQP 364K 40K paraphrase
MRPC 3.7K 408 paraphrase
RTE 2.5K 277 language inference

Table 1: The statistics of datasets

Datasets The first two tasks are: i) AG news 219

topic identification (Zhang et al., 2015), and ii) 220

Yelp polarity sentiment classification (Zhang et al., 221

2015). The last three are: i) Quora Question Pairs 222

(QQP) similarity detection dataset, ii) Microsoft 223

Research Paraphrase Corpus (MRPC) dataset and 224

iii) Recognizing Textual Entailment (RTE) dataset. 225

The datasets are summarized in Table 1. 226

Experimental setup We compare our approach 227

with four baselines: i) standard BERT (Devlin 228

3



AG news Yelp QQP MRPC RTE
Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs Acc. GFLOPs

BERT 94.3 9.0 (1.00x) 95.8 17.2 (1.00x) 91.3 5.1 (1.00x) 85.3 9.2 (1.00x) 68.6 11.2 (1.00x)
distilBERT 94.4 4.5 (2.00x) 95.7 8.6 (2.00x) 90.4 2.6 (2.00x) 84.6 4.6 (2.00x) 58.8 5.6 (2.00x)
LTP 94.3 5.3 (1.72x) 94.7 7.4 (2.32x) 90.6 3.2 (1.60x) 84.8 6.2 (1.48x) 67.8 7.5 (1.50x)
FastBERT 94.3 2.3 (3.97x) 94.8 2.8 (6.18x) 90.7 1.6 (3.20x) 84.3 4.3 (2.13x) 67.6 8.4 (1.33x)
MP (ours) 94.3 1.8 (4.95x) 94.5 2.1 (8.25x) 90.4 1.3 (4.03x) 83.8 3.3 (2.77x) 67.5 6.5 (1.72x)

Table 2: The accuracy and GFLOPs of BERT (Devlin et al., 2019), distilBERT (Sanh et al., 2019), LTP (learned
token pruning) (Kim et al., 2021), FastBERT (Liu et al., 2020) and MP (ours) on different datasets. The numbers in
parentheses are speedup.

et al., 2019), ii) distilBERT (Sanh et al., 2019),229

iii) learned token pruning (LTP) (Kim et al., 2021)230

and iv) FastBERT (Liu et al., 2020). Except dis-231

tilBERT, all approaches are fine-tuned on uncased232

BERT-base model (12 layers). We consider ac-233

curacy for the classification performance and giga234

floating point operations (GFLOPs) for the speedup.235

The training details can be found in Appendix C.

AG news Yelp

τ 0.1 0.5 0.8 0.1 0.5 0.8

FastBERT 3.97x 10.30x 11.95x 3.15x 6.18x 8.84x
MP (ours) 4.95x 10.53x 11.95x 5.35x 8.25x 10.10x

Table 3: Speedup of FastBERT and MP with different
τ .236

For token pruning approach, previous237

works (Wang et al., 2021; Kim et al., 2021)238

have shown that there exits a trade-off between239

accuracy and speedup. Thus, we report the perfor-240

mance of models achieving smallest GFLOPs with241

at most 1% accuracy drop compared to the BERT242

baseline. Similarly, the speedup of FastBERT is243

also controlled by the halt value τ . We select τ244

obtaining a on-par accuracy with the token pruning245

competitors for the sake of a fair comparison. This246

selection criterion is applied to MP as well.247

Table 2 demonstrates that all approaches experi-248

ence loss in accuracy, when a fast inference is acti-249

vated. Overall, FastBERT is superior to disilBERT250

and LTP in terms of both accuracy and GFLOPs.251

Under the similar accuracy, our approach manages252

to have a significantly faster inference than Fast-253

BERT, which leads to up to 2.13x extra speedup.254

We notice that the speedup and accuracy also cor-255

relate to the complexity of tasks and the number256

of training data. Specifically, for the sentence-pair257

classification tasks, since QQP has much more data258

(c.f., Table 1), it achieves 4.03x speedup with a259

loss of 1% accuracy. On the contrary, RTE and260

MRPC obtain at most 2.77x speedup with the same261

amount of accuracy degradation. Under the same262

magnitude of the training data, as AG news and263

Yelp are simpler than QQP, they can gain up to 264

8.25x speedup after sacrificing 1% accuracy. 265

Gains over FastBERT In section 3, we have 266

claimed that MP can benefit from both token prun- 267

ing and early exiting. Although this claim is evi- 268

denced in Table 2, we are interested in investigating 269

whether such gains consistently hold, when tuning 270

τ to control the speed of the inference. According 271

to Table 3, MP can drastically boost the speedup of 272

FastBERT, except for an aggressive τ , which will 273

cause the computation to terminate at the first two 274

layers. 275

Speedup on sequences with different lengths 276

Intuitively, longer sentences tend to have more re- 277

dundant tokens, which can confuse the lower sub- 278

classifiers. Consequently, longer sentences require 279

more computation before reaching a lower uncer- 280

tainty u. We bucket the Yelp and AG news dataset 281

into three categories: i) short sequences (1-35 to- 282

kens), ii) middle sequences (35-70 tokens) and iii) 283

long sequences (>70 tokens). Figure 1 indicates 284

that LTP prefers long sequences, while FastBERT 285

favors short sequences. Since MP combines the 286

early exiting with the token pruning, it can signif- 287

icantly accelerate both short and long sequences, 288

compared to the two baselines. 289

5 Conclusion 290

In this work, we introduce Magic Pyramid, which 291

can maintain a trade-off between speedup and ac- 292

curacy for BERT-based models. Since MP is pow- 293

ered by two outstanding efficiency-encouraging 294

approaches, it can yield substantially faster infer- 295

ence over the baselines up to additional 2x speedup. 296

We also found that token pruning and early exiting 297

falls to efficiently handle sequences under certain 298

length groups. In contrary, such limitations can 299

be alleviated by MP, thereby our approach can in- 300

discriminately accelerate inference for every input 301

data (i.e, inference request) regardless of its length. 302

4



References303

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and304
Kristina Toutanova. 2019. Bert: Pre-training of deep305
bidirectional transformers for language understand-306
ing. In Proceedings of the 2019 Conference of the307
North American Chapter of the Association for Com-308
putational Linguistics: Human Language Technolo-309
gies, Volume 1 (Long and Short Papers), pages 4171–310
4186.311

Angela Fan, Edouard Grave, and Armand Joulin. 2019.312
Reducing transformer depth on demand with struc-313
tured dropout. In International Conference on Learn-314
ing Representations.315

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh316
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,317
and Ashish Verma. 2020. Power-bert: Accelerating318
bert inference via progressive word-vector elimina-319
tion. In International Conference on Machine Learn-320
ing, pages 3690–3699. PMLR.321

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza Haf-322
fari, and Mohammad Norouzi. 2021. Generate, an-323
notate, and learn: Generative models advance self-324
training and knowledge distillation. arXiv preprint325
arXiv:2106.06168.326

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.327
Distilling the knowledge in a neural network. arXiv328
preprint arXiv:1503.02531.329

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao330
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert331
with adaptive width and depth. Advances in Neural332
Information Processing Systems, 33.333

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao334
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.335
Tinybert: Distilling bert for natural language under-336
standing. In Proceedings of the 2020 Conference on337
Empirical Methods in Natural Language Processing:338
Findings, pages 4163–4174.339

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.340
2019. Shallow-deep networks: Understanding and341
mitigating network overthinking. In Proceedings of342
the 36th International Conference on Machine Learn-343
ing, volume 97 of Proceedings of Machine Learning344
Research, pages 3301–3310. PMLR.345

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-346
lami, Joseph Hassoun, and Kurt Keutzer. 2021.347
Learned token pruning for transformers. arXiv348
preprint arXiv:2107.00910.349

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,350
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-351
distilling bert with adaptive inference time. In Pro-352
ceedings of the 58th Annual Meeting of the Asso-353
ciation for Computational Linguistics, pages 6035–354
6044.355

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-356
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,357

Luke Zettlemoyer, and Veselin Stoyanov. 2019. 358
Roberta: A robustly optimized bert pretraining ap- 359
proach. arXiv preprint arXiv:1907.11692. 360

Paul Michel, Omer Levy, and Graham Neubig. 2019. 361
Are sixteen heads really better than one? Advances 362
in Neural Information Processing Systems, 32:14014– 363
14024. 364

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 365
Dario Amodei, Ilya Sutskever, et al. 2019. Language 366
models are unsupervised multitask learners. OpenAI 367
blog, 1(8):9. 368

Victor Sanh, Lysandre Debut, Julien Chaumond, and 369
Thomas Wolf. 2019. Distilbert, a distilled version 370
of bert: smaller, faster, cheaper and lighter. arXiv 371
preprint arXiv:1910.01108. 372

Roy Schwartz, Gabriel Stanovsky, Swabha 373
Swayamdipta, Jesse Dodge, and Noah A Smith. 374
2020. The right tool for the job: Matching model 375
and instance complexities. In Proceedings of 376
the 58th Annual Meeting of the Association for 377
Computational Linguistics, pages 6640–6651. 378

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei 379
Yao, Amir Gholami, Michael W Mahoney, and Kurt 380
Keutzer. 2020. Q-bert: Hessian based ultra low 381
precision quantization of bert. In Proceedings of 382
the AAAI Conference on Artificial Intelligence, vol- 383
ume 34, pages 8815–8821. 384

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. 385
Patient knowledge distillation for bert model com- 386
pression. In Proceedings of the 2019 Conference on 387
Empirical Methods in Natural Language Processing 388
and the 9th International Joint Conference on Natu- 389
ral Language Processing (EMNLP-IJCNLP), pages 390
4323–4332. 391

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, 392
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a 393
compact task-agnostic bert for resource-limited de- 394
vices. In Proceedings of the 58th Annual Meeting of 395
the Association for Computational Linguistics, pages 396
2158–2170. 397

Surat Teerapittayanon, Bradley McDanel, and H.T. 398
Kung. 2016. Branchynet: Fast inference via early ex- 399
iting from deep neural networks. In 2016 23rd Inter- 400
national Conference on Pattern Recognition (ICPR), 401
pages 2464–2469. 402

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 403
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 404
Kaiser, and Illia Polosukhin. 2017. Attention is all 405
you need. In Advances in neural information pro- 406
cessing systems, pages 5998–6008. 407

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat- 408
ten: Efficient sparse attention architecture with cas- 409
cade token and head pruning. In 2021 IEEE Interna- 410
tional Symposium on High-Performance Computer 411
Architecture (HPCA), pages 97–110. IEEE. 412

5

https://proceedings.mlr.press/v97/kaya19a.html
https://proceedings.mlr.press/v97/kaya19a.html
https://proceedings.mlr.press/v97/kaya19a.html
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006


Krzysztof Wróbel, Michał Karwatowski, Maciej Wiel-413
gosz, Marcin Pietroń, and Kazimierz Wiatr. 2020.414
Compression of convolutional neural network for nat-415
ural language processing. Computer Science, 21(1).416

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe417
Wasserblat. Q8bert: Quantized 8bit bert.418

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.419
Character-level convolutional networks for text classi-420
fication. Advances in neural information processing421
systems, 28:649–657.422

A Inference for Early Exiting423

To enable a speed-adjustable inference, at each424

layer l, we first obtain the hidden states Hl from425

the Transformer block Bl. Then a probability psl426

can be computed from subclassifier(Hl). One can427

use psl to calculate the uncertainty ul via:428

ul =

∑
psl log psl
log 1

N

(2)429

where ul is bound to {0, 1}. If ul ≤ τ , we can430

terminate the computation. A larger τ suggests a431

faster exit.432

B Learnable Token Pruning433

The core of the Transformer block is the434

MultiHead module, which is responsible for a435

context-aware encoding of each token. Notably,436

we compute pairwise importance among all tokens437

within the input via self-attention. The attention438

score of each head h between xi and xj is obtained439

from:440

Ah(xi, xj) = softmax(
H(xi)

TWT
q WkH(xj)√
d

)

(3)

441

where H(xi) ∈ Rd and H(xj) ∈ Rd are the hid-442

den states of xi and xj respectively. Wq ∈ Rdh×d443

and Wk ∈ Rdh×d are learnable parameters. dh444

is set to d/Nh, and Nh is the number of heads445

used in the Transformer block B. Since we have446

to conduct n2 such operation to acquire an atten-447

tion score matrix A ∈ Rn×n, the complexity of448

MultiHead quadratically scales with the sequence449

length. Therefore, we encounter a computational450

bottleneck when working on long sequences. How-451

ever, if we take the average of A along the ith452

column, we notice that the different tokens have453

distinctive scores as shown in Figure 3. Tokens454

with large scores tend to be more salient than oth-455

ers, as they receive more attention. As such, we456

can prune the non-salient tokens to save the com- 457

putation. We formally define an importance score 458

of each token xi at layer l as: 459

sl(xi) =
1

Nh

1

n

Nh∑
h=1

n∑
j=1

Ah
l (xi, xj) (4) 460

column mean

Figure 3: An example of attention probability in a single
head. Darker color suggests a higher attention score.
The bottom heatmap is the column mean of the attention
matrix.

Before this work, researchers have proposed two 461

approaches to remove the unimportant tokens based 462

on sl(·): i) top-k based pruning and ii) threshold- 463

based pruning (Goyal et al., 2020; Wang et al., 464

2021; Kim et al., 2021). In this work, we fol- 465

low (Kim et al., 2021), which leverages a layer- 466

wise learnable threshold to achieve a fast inference 467

and is superior to other works (Wang et al., 2021; 468

Goyal et al., 2020). We first fine-tune Transformer 469

parameters Θ on a downstream task. Then we intro- 470

duce a two-stage pruning scheme to seek a suitable 471

threshold ∆ and Θ, which can accelerate the in- 472

ference and maintain a decent accuracy. In the 473

first pruning stage, we apply a gating function σ(·) 474

to weight the outputs Hl from the current layer l, 475

before we pass them to the next layer l + 1 like 476

this: 477

M l(xi) = σ(
sl(xi)−∆l

T
) (5) 478

Ĥl(xi) = Hl(xi)⊗M l(xi) (6) 479

where σ is a sigmoid function, ⊗ is an element- 480

wise multiplication, T is a temperature parameter 481

and ∆l ∈ R is a learnable threshold at layer l. If 482

M l(xi) approaches zero, Ĥl(xi) will become zero 483

6



as well. As such, Ĥl(xi) has no impact on the484

subsequent layers. At this stage, since σ(·) allows485

the flow of the back-propagation, both Θ and ∆486

can be optimized. In addition, (Kim et al., 2021)487

also impose a L1 loss on M as a regularizer to488

encourage the pruning operation. Please refer to489

their paper for the details.490

In the second pruning stage, we binarize the491

mask values at the inference time via:492

M l(xi) =

{
1, sl(xi)−∆l > 0.5

0, otherwise
(7)493

If sl(xi) is below the threshold ∆l, xi is subject to494

the removal from layer l and will not contribute to-495

wards the final predictions. We freeze ∆ but update496

Θ, such that the model can learn to accurately pre-497

dict the labels merely conditioning on the retained498

tokens.499

Datasets BERT DistilBERT LTP FastBERT MP (ours)

AG news 3,-,-,- 3,-,-,- 3,1,2,- 3,-,-,2 3,1,2,2
Yelp 3,-,-,- 3,-,-,- 3,1,2,- 3,-,-,2 3,1,2,2
QQP 5,-,-,-, 5,-,-,-, 5,2,5,- 5,-,-,5 5,2,5,5

MRPC 10,-,-,-, 10,-,-,-, 10,10,5,- 10,-,-,5 10,10,5,5
RTE 10,-,-,-, 10,-,-,-, 10,10,5,- 10,-,-,5 10,10,5,5

Table 4: The number of epochs used for regular training,
soft pruning, hard pruning, subclassifiers training on
different datasets. “-" indicates the corresponding stage
is inactive.

C Training Details500

For training, we use a batch size of 32 for QQP,501

MRPC, and RTE. We set this to 64 for AG news and502

Yelp. Since different approaches adopt different503

training strategies, we unify them as four steps:504

1. Regular training: training a model Θ without505

additional components;506

2. Soft pruning: training a model Θ and thresh-507

old ∆;508

3. Hard pruning: training a model Θ with the509

binarized mask values;510

4. Sub-classifiers training: training sub-511

classifiers. For MP, we also activate the512

pruning operations.513

We report the number of the training epochs of514

different steps for all approaches in Table 4. Similar515

to Kim et al. (2021), we vary the threshold of the516

final layer ∆L from 0.01 to 0.08, and the threshold517

for ∆l is set to ∆Ll/L. We search the temperature 518

T in a search space of {1e−5,2e−5,5e−5} and vary 519

λ from 0.001 to 0.2. We use a learning rate of 2e−5 520

for all experiments. 521

7


