Magic Pyramid: Accelerating Inference with
Early Exiting and Token Pruning

Anonymous ACL submission

Abstract

Pre-training and then fine-tuning large lan-
guage models is commonly used to achieve
state-of-the-art performance in natural lan-
guage processing (NLP) tasks. However, most
pre-trained models suffer from low inference
speed. Deploying such large models to applica-
tions with latency constraints is challenging. In
this work, we focus on accelerating the infer-
ence via conditional computations. To achieve
this, we propose a novel idea, Magic Pyramid
(MP), to reduce both width-wise and depth-
wise computation via token pruning and early
exiting for Transformer-based models, partic-
ularly BERT. The former manages to save the
computation via removing non-salient tokens,
while the latter can fulfill the computation re-
duction by terminating the inference early be-
fore reaching the final layer, if the exiting condi-
tion is met. Our empirical studies demonstrate
that compared to previous state of arts, MP
is not only able to achieve a speed-adjustable
inference, but also to surpass token pruning
and early exiting by reducing up to 70% giga
floating point operations (GFLOPs) with less
than 0.5% accuracy drop. Token pruning and
early exiting express distinctive preferences to
sequences with different lengths. However, MP
is capable of achieving an average of 8.06x
speedup on two popular text classification tasks,
regardless of the sizes of the inputs.

1 Introduction

In the past few years, owing to the success of
Transformer-based (Vaswani et al., 2017) pre-
trained models, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GPT2 (Radford et al.,
2019), etc., we have experienced a performance
breakthrough in natural language processing (NLP)
tasks. With a small amount of fine-tuning, the
pre-trained models can achieve state-of-the-art per-
formance across different tasks (Devlin et al., 2019;
Liu et al., 2019; Radford et al., 2019). Nevertheless,
the outperforming models are evaluated in offline

settings, and the inference latency is not assessed
or considered as a quality factor.

However, adapting and deploying such large pre-
trained models to production systems (e.g., online
shopping services) is not straightforward due to
the latency constraint and the large volume of in-
coming requests (e.g., millions of requests per sec-
ond). Prior to this work, researchers have proposed
to compress a large model via either model prun-
ing (Michel et al., 2019; Fan et al., 2019; Hou
et al., 2020) or token pruning (Wang et al., 2021;
Goyal et al., 2020; Kim et al., 2021). In addition,
compressing a large teacher model into a compact
model via knowledge distillation has been stud-
ied extensively in the past (Sanh et al., 2019; Sun
etal., 2019, 2020; Jiao et al., 2020; He et al., 2021).
Finally, another line of work targets on plugging
multiple sub-classifiers into deep neural networks
to enable a flexible computation on demand, a.k.a.,
early exiting (Teerapittayanon et al., 2016; Kaya
et al., 2019; Schwartz et al., 2020; Liu et al., 2020)

The token pruning concentrates on a width-wise
computational reduction, whereas the early exiting
succeeds in a depth-wise inference acceleration.
Our study shows that for certain tasks where the
input data is diverse (in terms of sequence length),
these two latency reduction methods perform in
the opposite direction. As illustrated in Figure 1
(a), speedup (Y-axis) achieved via early exiting
(FastBERT) decreases for long input sizes (X-axis).
However, token pruning (LTP) speedup rises as
the input size increases. We believe these two ap-
proaches are orthogonal and can be combined into
a single model to maintain the latency reduction
gain across the variable input length. In this work,
we present a novel approach, Magic Pyramid (MP),
to encourage a speed-adjustable inference. The
contribution of this paper includes:

* Our empirical study shows that token pruning
and early exiting are potentially orthogonal.
This motivates us to exploit the synergy be-
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Figure 1: Speedup of LTP (token pruning), FastBERT
(early exiting) and MP (ours) under different sequence
lengths on Yelp and AG news. X axis is sequence length,
while Y axis is speedup. short: 1-35 tokens; middle:
35-70 tokens; long: >70 tokens

tween token pruning and early exiting and
attain higher computational reduction from
width and depth perspectives.

* Compared to two strong baselines, our ap-
proach can significantly accelerate the infer-
ence time with an additional 0.5-2x speedup
but less than 0.5% degradation on accuracy
across five classification tasks.

2 Related Work

Large pre-trained models have demonstrated that
increasing the model capacity can pave the way for
the development of superior Al. However, as we
have limited resources allocated for production sys-
tems, there has been a surge of interest in efficient
inference. Previous works (Sanh et al., 2019; Sun
et al., 2019, 2020; Jiao et al., 2020; He et al., 2021)
have opened a window into an effective model com-
pression via knowledge distillation (KD) (Hinton
et al., 2015). The core of KD is to use a compact
student model to mimic the behavior or structure
of a large teacher model. As such, the performance
of the student model is as accurate as its teacher,

but consuming less computation.

Other researchers approach efficient inference
by manipulating the original model. One elegant
solution is pruning, which can reduce the computa-
tion by removing non-essential components. These
components can be either model parameters (model
pruning) (Michel et al., 2019; Fan et al., 2019; Hou
et al., 2020) or tokens (token pruning) (Wang et al.,
2021; Goyal et al., 2020; Kim et al., 2021). In ad-
dition, one can boost the speed of the numerical
operations of a model through quantization (Zafrir
et al.; Wrébel et al., 2020; Shen et al., 2020).

The aforementioned works lack flexibility in
terms of the speedup, albeit some success. To sat-
isfy varying demands, we have to train multiple
models. Since deep neural networks can be con-
sidered as a stack of basic building blocks, a list
of works introduces early exiting (Teerapittayanon
et al., 2016; Kaya et al., 2019; Schwartz et al.,
2020; Liu et al., 2020), which attaches a set of sub-
classifiers to these sub-networks to encourage an
adjustable inference within a single model, when
needed. As opposed to the prior works, which
focus on the one-dimensional speedup, this work
takes the first step to superimpose token pruning
on early exiting. Our empirical studies confirm that
these two approaches can accelerate the inference
collaboratively and significantly.

3 Methodology - Proposed Method

Prior to this work, token pruning and early exit-
ing have been proven to be effective in accelerat-
ing the inference (Wang et al., 2021; Goyal et al.,
2020; Schwartz et al., 2020; Liu et al., 2020; Kim
et al., 2021). However, as shown in Figure 1, these
approaches fall short of reducing the latency at
two ends, i.e., short sequences and long sequences.
For example, Figure 1 (a) shows that LTP (token-
pruning) provides the highest speed-up for long
input sequences. While FastBERT (early exiting)
speedup drops as the input size increases from short
to long. Therefore we propose a novel approach:
Magic Pyramid (MP), which benefits from a combi-
nation of token pruning and early exiting. Figure 2
provides a schematic illustration of MP. First of
all, MP enables to terminate an inference at any
layer when needed. Second, with the increase of
the depth of Transformer, redundant tokens can be
expelled. The detailed designs are provided in the
rest of this section.
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Figure 2: Schematic illustration of magic pyramid for a
sentiment analysis task

Transformer Owing to it outstanding perfor-
mance, Transformer (Vaswani et al., 2017) has be-
come a de facto model for NLP tasks, especially af-
ter the triumph of pre-trained language models (De-
vlin et al., 2019; Liu et al., 2019; Radford et al.,
2019). A standard Transformer is comprised of L
stacked Transformer blocks: {B;}~_,, where each
block primarily consists of a multi-head attention
module and a position-wise feedforward module'.

Token pruning The core of the Transformer
block is the MultiHead module, which is respon-
sible for a context-aware encoding of each token.
Notably, since we compute pairwise importance
among all tokens within the input via self-attention,
the complexity of MultiHead quadratically scales
w.r.t the sequence length.

Previous works (Wang et al., 2021; Kim et al.,
2021) have shown that one can leverage the at-
tention scores to remove non-salient tokens, such
that the sequence length can be gradually reduced.
Thus, we follow Kim et al. (2021), and superim-
pose a learnable token pruning on the Transformer
model as depicted in Figure 2.

The pruning process is comprised of two stages.
We first learn layer-wise threshold parameters A
to softly regulate the flow of hidden states from
the current block to the subsequent one. Then, we
freeze A and enforce a hard gating between two
consecutive blocks. Finally, the Transformer is
optimized under a hard-pruning condition. Please
refer to Appendix B and Kim et al. (2021) for the
details.

Early exiting As shown in Figure 2, in addition
to the Transformer backbone and a main classi-
fier, one has to attach an individual sub-classifier
module (subclassifier(-)) to the last layer of each

'"We omit Residual module and Layernorm module in
between for simplicity.

Transformer block B;. As such, one can choose to
terminate the computation at any layer, when a halt
value 7 is reached.

Similar to Liu et al. (2020), we leverage
a two-stage fine-tuning to enhance the perfor-
mance of sub-classifiers via knowledge distilla-
tion. Specifically, we first train the Transformer
backbone and the primary classifier through a stan-
dard cross entropy between the ground truth y
and the predictions y’. Afterward, we freeze the
backbone and the primary classifier, but train the
L — 1 subclassifier(+) via a Kullback-Leibler di-
vergence:

L-1

‘C(psp"'vpsL_ppt) = ZDKL(psiapt) (1)
=1

where ps and p; are the predicted probability dis-
tribution from the subclassifier(-) and the main
classifier respectively. Once all modules are well-
trained, we can stitch them together to achieve a
speed-adjustable inference via a halt value 7. Ap-
pendix A details the early exiting at the inference
time.

In summary, we first fine-tune the Transformer
model. After that, token pruning and early exiting
are applied to the model sequentially.

4 Experiments

To examine the effectiveness of the proposed ap-
proach, we use five language understanding tasks
as the testbed.

Data Train Test Task

AGnews 120K 7.6K topic

Yelp 560K 38K sentiment

QQP 364K 40K paraphrase

MRPC 37K 408 paraphrase

RTE 2.5K 277 language inference

Table 1: The statistics of datasets

Datasets The first two tasks are: i) AG news
topic identification (Zhang et al., 2015), and ii)
Yelp polarity sentiment classification (Zhang et al.,
2015). The last three are: i) Quora Question Pairs
(QQP) similarity detection dataset, ii) Microsoft
Research Paraphrase Corpus (MRPC) dataset and
iii) Recognizing Textual Entailment (RTE) dataset.
The datasets are summarized in Table 1.

Experimental setup We compare our approach
with four baselines: i) standard BERT (Devlin



AG news Yelp QQP MRPC RTE
Acc. GFLOPs | Acc. GFLOPs | Acc. GFLOPs | Acc. GFLOPs | Acc. GFLOPs
BERT 943 9.0(1.00x) | 95.8 17.2(1.00x) | 91.3 5.1 (1.00x) | 85.3 9.2(1.00x) | 68.6 11.2(1.00x)
distilBERT | 944 4.5(2.00x) | 95.7 8.6(2.00x) | 90.4 2.6 (2.00x) | 84.6 4.6(2.00x) | 58.8 5.6 (2.00x)
LTP 943 53(1.72x) | 94.7 7.4 (2.32x) | 90.6 3.2(1.60x) | 84.8 6.2(1.48x) | 67.8  7.5(1.50x)
FastBERT | 943 23(3.97x) | 94.8 2.8(6.18x) | 90.7 1.6(3.20x) | 84.3 4.3(2.13x) | 67.6 8.4 (1.33x)
MP (ours) | 943 1.8(4.95x) | 94.5 2.1(8.25x) | 904 1.3(4.03x) | 83.8 3.3(2.77x) | 67.5 6.5(1.72x)

Table 2: The accuracy and GFLOPs of BERT (Devlin et al., 2019), distilBERT (Sanh et al., 2019), LTP (learned
token pruning) (Kim et al., 2021), FastBERT (Liu et al., 2020) and MP (ours) on different datasets. The numbers in

parentheses are speedup.

et al., 2019), ii) distilBERT (Sanh et al., 2019),
iii) learned token pruning (LTP) (Kim et al., 2021)
and iv) FastBERT (Liu et al., 2020). Except dis-
tilBERT, all approaches are fine-tuned on uncased
BERT-base model (12 layers). We consider ac-
curacy for the classification performance and giga
floating point operations (GFLOPs) for the speedup.
The training details can be found in Appendix C.

‘ AG news ‘ Yelp
T |01 05 08 | 01 05 0.8
FastBERT | 3.97x  10.30x 11.95x | 3.15x 6.18x  8.84x
MP (ours) | 495x 10.53x  11.95x | 535x 8.25x 10.10x

Table 3: Speedup of FastBERT and MP with different
T.
For token pruning approach, previous

works (Wang et al., 2021; Kim et al., 2021)
have shown that there exits a trade-off between
accuracy and speedup. Thus, we report the perfor-
mance of models achieving smallest GFLOPs with
at most 1% accuracy drop compared to the BERT
baseline. Similarly, the speedup of FastBERT is
also controlled by the halt value 7. We select 7
obtaining a on-par accuracy with the token pruning
competitors for the sake of a fair comparison. This
selection criterion is applied to MP as well.

Table 2 demonstrates that all approaches experi-
ence loss in accuracy, when a fast inference is acti-
vated. Overall, FastBERT is superior to disilBERT
and LTP in terms of both accuracy and GFLOPs.
Under the similar accuracy, our approach manages
to have a significantly faster inference than Fast-
BERT, which leads to up to 2.13x extra speedup.
‘We notice that the speedup and accuracy also cor-
relate to the complexity of tasks and the number
of training data. Specifically, for the sentence-pair
classification tasks, since QQP has much more data
(c.f,, Table 1), it achieves 4.03x speedup with a
loss of 1% accuracy. On the contrary, RTE and
MRPC obtain at most 2.77x speedup with the same
amount of accuracy degradation. Under the same
magnitude of the training data, as AG news and

Yelp are simpler than QQP, they can gain up to
8.25x speedup after sacrificing 1% accuracy.

Gains over FastBERT In section 3, we have
claimed that MP can benefit from both token prun-
ing and early exiting. Although this claim is evi-
denced in Table 2, we are interested in investigating
whether such gains consistently hold, when tuning
T to control the speed of the inference. According
to Table 3, MP can drastically boost the speedup of
FastBERT, except for an aggressive 7, which will
cause the computation to terminate at the first two
layers.

Speedup on sequences with different lengths
Intuitively, longer sentences tend to have more re-
dundant tokens, which can confuse the lower sub-
classifiers. Consequently, longer sentences require
more computation before reaching a lower uncer-
tainty u. We bucket the Yelp and AG news dataset
into three categories: i) short sequences (1-35 to-
kens), ii) middle sequences (35-70 tokens) and iii)
long sequences (>70 tokens). Figure 1 indicates
that LTP prefers long sequences, while FastBERT
favors short sequences. Since MP combines the
early exiting with the token pruning, it can signif-
icantly accelerate both short and long sequences,
compared to the two baselines.

5 Conclusion

In this work, we introduce Magic Pyramid, which
can maintain a trade-off between speedup and ac-
curacy for BERT-based models. Since MP is pow-
ered by two outstanding efficiency-encouraging
approaches, it can yield substantially faster infer-
ence over the baselines up to additional 2x speedup.
We also found that token pruning and early exiting
falls to efficiently handle sequences under certain
length groups. In contrary, such limitations can
be alleviated by MP, thereby our approach can in-
discriminately accelerate inference for every input
data (i.e, inference request) regardless of its length.
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A Inference for Early Exiting

To enable a speed-adjustable inference, at each
layer [, we first obtain the hidden states H; from
the Transformer block B;. Then a probability py,
can be computed from subclassifier(H;). One can
use pg, to calculate the uncertainty v; via:

Sl S
_ 2D logps, )

U
: log %

where u; is bound to {0,1}. If u; < 7, we can
terminate the computation. A larger 7 suggests a
faster exit.

B Learnable Token Pruning

The core of the Transformer block is the
MultiHead module, which is responsible for a
context-aware encoding of each token. Notably,
we compute pairwise importance among all tokens
within the input via self-attention. The attention
score of each head h between x; and x; is obtained
from:

H(mi)TWqTWkH(xj)

Vd

AP (z;, ;) = softmax(
3)

where H(z;) € R? and H(z;) € R? are the hid-
den states of x; and x; respectively. W, € R xd
and W, € R X4 are learnable parameters. dy,
is set to d/Np, and Ny, is the number of heads
used in the Transformer block B. Since we have
to conduct n? such operation to acquire an atten-
tion score matrix A € R™*", the complexity of
MultiHead quadratically scales with the sequence
length. Therefore, we encounter a computational
bottleneck when working on long sequences. How-
ever, if we take the average of A along the ith
column, we notice that the different tokens have
distinctive scores as shown in Figure 3. Tokens
with large scores tend to be more salient than oth-
ers, as they receive more attention. As such, we

can prune the non-salient tokens to save the com-
putation. We formally define an importance score
of each token z; at layer [ as:

N, n
11
sh(ay) = N—hEZZA?(xi,mj) (4)
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Figure 3: An example of attention probability in a single
head. Darker color suggests a higher attention score.
The bottom heatmap is the column mean of the attention
matrix.

Before this work, researchers have proposed two
approaches to remove the unimportant tokens based
on s'(+): i) top-k based pruning and ii) threshold-
based pruning (Goyal et al., 2020; Wang et al.,
2021; Kim et al., 2021). In this work, we fol-
low (Kim et al., 2021), which leverages a layer-
wise learnable threshold to achieve a fast inference
and is superior to other works (Wang et al., 2021;
Goyal et al., 2020). We first fine-tune Transformer
parameters © on a downstream task. Then we intro-
duce a two-stage pruning scheme to seek a suitable
threshold A and ©, which can accelerate the in-
ference and maintain a decent accuracy. In the
first pruning stage, we apply a gating function o (-)
to weight the outputs H; from the current layer [,
before we pass them to the next layer [ + 1 like
this:

Iy _ Al
M (z;) = U(%) (5)
I‘i’l(l‘z) = Hj(x;) ® Ml(l‘z) (6)

where o is a sigmoid function, ® is an element-
wise multiplication, T is a temperature parameter
and A! € R is a learnable threshold at layer [. If
M (x;) approaches zero, H;(x;) will become zero



as well. As such, H;(z;) has no impact on the
subsequent layers. At this stage, since o (-) allows
the flow of the back-propagation, both © and A
can be optimized. In addition, (Kim et al., 2021)
also impose a L1 loss on M as a regularizer to
encourage the pruning operation. Please refer to
their paper for the details.

In the second pruning stage, we binarize the
mask values at the inference time via:

M) = {1, st(x) - Al'>05 o

0, otherwise
If s!(x;) is below the threshold A/, z; is subject to
the removal from layer [ and will not contribute to-
wards the final predictions. We freeze A but update
O, such that the model can learn to accurately pre-
dict the labels merely conditioning on the retained
tokens.

Datasets ‘ BERT DistilBERT LTP FastBERT MP (ours)

AG news | 3,-,-.- 3,--0 3,1,2,- 3,-,-2 3,1,2,2
Yelp 3 3,-- 3,1,2- 3,--2 3,1,22
QQP 5,55, 5,---, 52,5, 5,--.5 52,55

MRPC | 10,-,-,-, 10,-,-.-, 10,10,5.- 10,-,-,5 10,10,5,5
RTE 10,-,-,-, 10,-,-,-, 10,10,5.- 10,-,-,5 10,10,5.5

Table 4: The number of epochs used for regular training,
soft pruning, hard pruning, subclassifiers training on
different datasets. “-" indicates the corresponding stage
is inactive.

C Training Details

For training, we use a batch size of 32 for QQP,
MRPC, and RTE. We set this to 64 for AG news and
Yelp. Since different approaches adopt different
training strategies, we unify them as four steps:

1. Regular training: training a model © without
additional components;

2. Soft pruning: training a model © and thresh-
old A;

3. Hard pruning: training a model © with the
binarized mask values;

4. Sub-classifiers training: training sub-
classifiers. For MP, we also activate the
pruning operations.

We report the number of the training epochs of
different steps for all approaches in Table 4. Similar
to Kim et al. (2021), we vary the threshold of the
final layer AL from 0.01 to 0.08, and the threshold

for Al is set to A1/ L. We search the temperature
T in a search space of {1e—5,2e-5,5e-5} and vary
A from 0.001 to 0.2. We use a learning rate of 2e—5
for all experiments.



