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ABSTRACT

Empirically, it has been observed that adding momentum to Stochastic Gradient
Descent (SGD) accelerates the convergence of the algorithm. However, the lit-
erature has been rather pessimistic, even in the case of convex functions, about
the possibility of theoretically proving this observation. We investigate the pos-
sibility of obtaining accelerated convergence of the Stochastic Nesterov Acceler-
ated Gradient (SNAG), a momentum-based version of SGD, when minimizing a
sum of functions in a convex setting. We demonstrate that the average correla-
tion between gradients allows to verify the strong growth condition, which is the
key ingredient to obtain acceleration with SNAG. Numerical experiments, both in
linear regression and deep neural network optimization, confirm in practice our
theoretical results.

1 INTRODUCTION

Supervised machine learning tasks can often be formulated as the following optimization prob-
lem (Hastie et al., 2009):

f∗ = min
x∈Rd

f(x), with f(x) :=
1

N

N∑
i=1

fi(x) (FS)

where for all i ∈ {1, . . . , N}, fi : Rd → R is associated to one data. As there is often no closed
form solution to problem (FS), optimization algorithms are commonly used. Considering high di-
mensional problems, first order algorithms such as gradient descent, namely algorithms that make
use of the gradient information, are popular due to their relative cheapness, e.g. compared to second
order methods which involve the computation of the Hessian matrix. In the case of problem (FS), the
gradient itself may be computationally heavy to obtain when N is large, i.e. for large datasets. This
is the reason why, instead of the exact gradient, practitioners rather use an average of a subsampled
set of several ∇fi, resulting in algorithms such as Stochastic Gradient Descent (SGD) (Robbins &
Monro, 1951) or ADAM algorithm (Kingma & Ba, 2015). Although an estimation of the gradient is
used, SGD performs well in practice (Goyal et al., 2017; Schmidt et al., 2021; Renaud et al., 2024).

Interpolation One of the key points that explain the good performance of SGD is that large ma-
chine learning models, such as over parameterized neural networks, are generically able to perfectly
fit the learning data (Cooper, 2021; Allen-Zhu et al., 2019; Nakkiran et al., 2021; Zhang et al.,
2021). From an optimization point of view, this fitting phenomenon translates into an interpolation
phenomenon (Assumption 1).

Assumption 1 (Interpolation). ∃x∗ ∈ argmin f, ∀1 ≤ i ≤ N, x∗ ∈ argmin fi.

Strikingly, under this assumption, theoretical results show that SGD performs as well as determinis-
tic gradient descent (Ma et al., 2018; Gower et al., 2019; 2021).

Momentum algorithms: hopes and disappointments Within the convex optimization realm, it is
well known that a first order momentum algorithm, named Nesterov Accelerated Gradient (NAG),
outperforms the gradient descent in term of convergence speed (Nesterov, 1983; 2018). A natu-
ral concern is thus whether, assuming interpolation and convexity, a stochastic version of NAG,
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Stochastic Nesterov Accelerated Gradient (SNAG), can be faster than SGD. Unfortunately, exist-
ing works has expressed skepticism about the possibility of acceleration via momentum algorithms,
even assuming interpolation (Assumption 1). Devolder et al. (2014); Aujol & Dossal (2015) indicate
that momentum algorithms are very sensitive to errors on the gradient, due to error accumulation.
Also, the choice of parameters that offers acceleration in the deterministic case can make SNAG
diverge (Kidambi et al. (2018); Assran & Rabbat (2020); Ganesh et al. (2023)).

What keeps us hopeful Firstly, in the case of linear regression, depending on the data, SNAG can
accelerate over SGD (Jain et al., 2018; Liu & Belkin, 2020; Varre & Flammarion, 2022). Unfor-
tunately the methods used in those works are hardly generalizable outside of the linear regression
case. On the other hand, in a convex setting, Vaswani et al. (2019) show that under an assumption
over the gradient noise, named the Strong Growth Condition (SGC), SNAG can be stabilized, and
it could accelerate over SGD. However, it is not clear which functions satisfy this assumption, and
in which cases acceleration occurs.

On the convexity assumption For many machine learning models, such as neural networks, the
associated loss function is not convex (Li et al., 2018). However, even in the convex setting, there
is still work to do concerning the possibility of accelerating SGD with SNAG. For example, up to
our knowledge, characterizing convex smooth functions that satisfy SGC has not been addressed
yet. Finally, note that our core results about gradient correlation (Propositions 1-2) do not assume
convexity, and thus could be used in future works beyond the convex setting.

Can SNAG accelerate over SGD in a convex setting ?

Contributions (i) We give a new characterization of the Strong Growth Condition (SGC) constant
by using the correlation between gradients, quantified by RACOGA (Propositions 1-2), and we
exploit this link to study the efficiency of SNAG. (ii) Using our framework, we study the theoretical
impact of batch size on the algorithm performance, depending on the correlation between gradients
(Theorem 5). (iii) We complete convergence results of Vaswani et al. (2019); Gupta et al. (2023)
with new almost sure convergence rates (Theorem 4). (iv) We provide numerical experiments that
show that RACOGA is a key ingredient to have good performances of SNAG compared to SGD.

2 BACKGROUND

For a function f : Rd → R, continuously differentiable, we introduce the following definitions.

Definition 1. Let L > 0. f : Rd → R is L-smooth if∇f is L-Lipschitz.

Definition 1 implies that ∀x, y ∈ Rd, f(x) ≤ f(y)+⟨∇f(y), x− y⟩+ L
2 ∥x−y∥

2 (Nesterov, 2018)
and it ensures that the curvature of the function f is upper-bounded by L.

Definition 2. f : Rd → R is µ-strongly convex if there exists µ > 0 such that: ∀x, y ∈ Rd, f(x) ≥
f(y) + ⟨∇f(y), x− y⟩+ µ

2 ∥x− y∥
2. f : Rd → R is convex if it verifies this property with µ = 0.

Definition 2 implies that the curvature of the function f is lower-bounded by µ ≥ 0. Convex
functions are very convenient for optimization and widely studied (Nesterov, 2018; Beck, 2017).
For instance, a critical point of a convex function is the global minimum of this function.

Assumption 2 (smoothness). Each fi in (FS) is Li-smooth. We note L(K) := maxB
1
K

∑
i∈B Li

where B ⊂ {1, . . . , N}, Card(B) = K and we note Lmax := L(1) = max
1≤i≤N

Li.

Assumption 2 implies that f is L-smooth with L ≤ 1
N

∑N
i=1 Li≤ L(K) ≤ Lmax, and will be used

for the convergence results for SGD (Theorems 1-2).

SGD The stochastic gradient descent (Algorithm 1) is widely used despite its simplicity. It can be
viewed as a gradient descent where the exact gradient is replaced by a batch estimator

∇̃K(x) :=
1

K

∑
i∈B

∇fi(x), (1)
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where B is a batch of indices of size K sampled uniformly in {B ⊂ {1, . . . , N} | Card(B) = K}.
Note that ∇̃K(x) is a random variable depending on K, f and x.

Algorithm 1 Stochastic Gradient Descent
(SGD)

1: input: x0 ∈ Rd, s > 0
2: for n = 0, 1, . . . , nit − 1 do
3: xn+1 = xn − s∇̃K(xn)
4: end for
5: output: xnit

Algorithm 2 Stochastic Nesterov Accelerated
Gradient (SNAG)

1: input: x0 = z0 ∈ Rd, s > 0, β ∈ [0, 1],
(αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN

+
2: for n = 0, 1, . . . , nit − 1 do
3: yn = αnxn + (1− αn)zn
4: xn+1 = yn − s∇̃K(yn)

5: zn+1 = βzn + (1− β)yn − ηn∇̃K(yn)
6: end for
7: output: xnit

SNAG The Nesterov accelerated gradient algorithm (Algorithm 7 in Appendix B.1) allows to
achieve faster convergence than gradient descent when considering L-smooth functions that are
convex or strongly convex, see Nesterov (1983; 2018). Intuitively, a momentum mechanism accel-
erates the gradient descent. As proposed in Nesterov (2012), a stochastic version of the Nesterov
accelerated gradient algorithm can be developed, see Algorithm 2. Note that there exists several
ways to write it (see Appendix B.2).

Strong Growth Condition To our knowledge, this assumption was introduced in Polyak (1987),
and further used by Cevher & Vu (2019) as a relaxation of the maximal strong growth condition
(Tseng, 1998; Solodov, 1998).

Definition 3. The function f , with a gradient estimator ∇̃K (Equation 1), is said to verify the Strong
Growth Condition if there exists ρK ≥ 1 such that

∀x ∈ Rd, E
[
∥∇̃K(x)∥2

]
≤ ρK∥∇f(x)∥2. (SGC)

ρK quantifies the amount of noise: the larger ρK , the higher the noise. In some sense, the strong
growth condition allows to replace the norm of the stochastic gradient by the norm of the exact
gradient, up to a degrading constant ρK . We will see in Section 3 that it allows to recover similar
convergence results as for the deterministic case.

Example 1. Vaswani et al. (2019) show that if the function f is strongly convex and verifies As-
sumptions 1 and 2, then f verifies the strong growth condition with ρK =

L(K)

µ .

Remark 1. The SGC implies interpolation (Assumption 1) if each fi is convex, see Remark 11 in
Appendix H.3. However in the following results (Theorems 1-4), as we will only assume that the
sum of fi is convex, SGC will not enforce interpolation. It will imply instead that minimizers of f
are critical points of all fi.

Remark 2. Considering linear regression, one can choose functions such that the SGC is verified
only for arbitrary large values of ρK (see Appendix D.1). Worse, if we discard the convexity as-
sumption, then one can construct examples such that ρK does not exist (see Appendix D.2). Finding
classes of functions such that the SGC is verified for an interesting ρK is thus not an obvious task.

3 CONVERGENCE SPEED OF SNAG AND COMPARISON WITH SGD

In this section, we present convergence results for SNAG (Algorithm 2) under the Strong Growth
Condition (SGC). Before doing so, we introduce convergence results for SGD (Algorithm 1) in order
to compare the performance of these two algorithms. All the results introduced in this section are
summarized in Table 1.
For ε > 0, we say that an algorithm {xn}n reaches an ε-precision at rank νε ∈ R+ if

∀n ≥ νε, E [f(xn)− f∗] ≤ ε. (2)

3
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Algorithm Assumption over f Convergence

SGD convex E, ε solution O
(

L(K)

ε

)
, Thm 1

strongly convex E, ε solution O
(

L(K)

µ log
(
1
ε

))
, Thm 1

convex a.s., c.r o
(
1
n

)
, Thm 2

strongly convex a.s., c.r o
(
(1− µ

L + ε′)n
)
, Thm 2

SNAG Convex E, ε solution O
(
ρK

√
L
ε

)
, Thm 3

Strongly Convex E, ε solution O
(
ρK

√
L
µ log

(
1
ε

))
, Thm 3

Convex a.s., c.r o
(

1
n2

)
, Thm 4

Strongly a.s., c.r o
(
(1− 1

ρK

√
µ
L + ε′)n

)
, Thm 4

Table 1: Summary of all the convergence results presented in Section 3. Results stated as ϵ-solution
refer to convergence results of the form of Equation (2). c.r. stands for convergence rate. These
results are stated as an upper bound of the form f(xn) − f∗ = O (ψn), where ψn is a sequence
decreasing to 0.

We denote by Ω the set of realization of the noise. We say that an algorithm {xn}n converges almost
surely with a rate negligible compared to an ∈ RN

++, denoted by f(xn)− f∗
a.s.
= o (an), if and only

if ∃A ⊂ Ω, such that P(A) = 1 and ∀ω ∈ A, ∀ϵ > 0, ∃n0 ∈ N, such that ∀n ≥ n0,

|f(xn(ω))− f∗| ≤ ϵan. (3)

3.1 CONVERGENCE RESULTS FOR SGD

First, we state convergence results of SGD (Algorithm 1), in expectation and almost surely. The
two following theorems are variations of Gower et al. (2019) and Gower et al. (2021) (results in
expectation) and Sebbouh et al. (2021) (result almost surely). The difference is that our setting does
not assume the convexity of each fi in (FS), but rather only the convexity of the sum.

Theorem 1. Under Assumptions 1 and 2, SGD (Algorithm 1) guarantees to reach an ε-precision (2)
at the following iterations:

• If f is convex, s = 1
2L(K)

,

n ≥ 2
L(K)

ε
∥x0 − x∗∥2. (4)

• If f is µ-strongly convex, s = 1
L(K)

,

n ≥ 2
L(K)

µ
log

(
2
f(x0)− f∗

µε

)
. (5)

For the convex case, the bound is of the order O
(

L(K)

ε

)
, while for the strongly convex case the key

factor is L(K)

µ that may be very large for ill conditioned problems. These results are very similar to
those obtained in a deterministic setting, see Appendix B.1.
Additionally, almost sure convergence gives guarantees that apply to a single run of SGD.

Theorem 2. Under Assumptions 1 and 2, SGD (Algorithm 1) guarantees, in the sense of (3), the
following asymptotic results, :

• If f is convex, s = 1
2L(K)

,

f(xn)− f∗
a.s.
= o

(
1

n

)
. (6)
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• If f is µ-strongly convex, s = 1
L(K)

,

f(xn)− f∗
a.s.
= o ((q + ε′)n) , (7)

for all ε′ > 0, where q := 1− µ
L(K)

, x0 = x0 and xn+1 = 2
n+1xn + n−1

n+1xn.

Note that in the convex case, there is a need of averaging the trajectory along iterations. Proofs of
Theorem 1 and Theorem 2 are in Appendix E.1.

3.2 CONVERGENCE IN EXPECTATION FOR SNAG

We now state the convergence speed of SNAG in expectation under the Strong Growth Condition
(SGC) and we compare it with the convergence speed of SGD.

Theorem 3. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. Then the SNAG
(Algorithm 2) allows to reach an ε-precision (2) at the following iterations:
• If f is convex, s = 1

LρK
, ηn = 1

Lρ2
K

n+1
2 , β = 1, αn =

n2

n+1

2+ n2

n+1

,

n ≥ ρK
√

2L
ε ∥x0 − x

∗∥. (8)

• If f is µ-strongly convex, s = 1
LρK

, ηn = η = 1
ρK

√
µL
, β = 1− 1

ρK

√
µ
L , αn = α = 1

1+ 1
ρK

√
µ
L

,

n ≥ ρK
√

L
µ log

(
2 f(x0)−f∗

ε

)
. (9)

Theorem 3 is a variation of Vaswani et al. (2019); Gupta et al. (2023), see Appendix C.3. Indeed, our
proof (Appendix G) leads to the same convergence result as Vaswani et al. (2019), although resulting
in a slightly simpler formulation of the algorithm, as we do not have intermediate sequences of
parameters, see Appendix C. Note that we only use the L-smoothness of f and the SGC instead of
Assumptions 1-2 because SGC allows us to make weaker assumptions.

Theorem 3 indicates that the performance degrades linearly with ρK . For the special case ρK = 1,
bounds of Theorem 3 are the same as in the deterministic case (see Appendix B.1).
Remark 3. According to Theorem 3 and Theorem 1, SNAG (Algorithm 2) is faster than SGD (Al-
gorithm 1) when ρK is small enough, more precisely when

• ρK <

√
2L2

(K)

εL ∥x0 − x
∗∥ if f convex.

• ρK < 2

√
L2

(K)

µL if f µ-strongly convex, ignoring the differences between logarithm terms.

If f is convex and the required precision ε small enough, SNAG is faster than SGD. It is not neces-
sarily the case if f is µ-strongly convex, as the dependence on ε disappears. In particular, the bound
ρK ≤

L(K)

µ offered by strong convexity (see Example 1) does not guarantee acceleration.

Remark 4. In our comparison, we neither considered a convergence result for SGD (Algorithm 1)
that assumes the SGC, nor considered a result for SNAG (Algorithm 2) that does not assume SGC.
In both cases, doing so would lead to misleading comparisons, see summary in Remark 9.

3.3 ALMOST SURE CONVERGENCE FOR SNAG

We provide new asymptotic almost sure convergence results for SNAG (Algorithm 2). Almost sure
convergence has already been addressed in Gupta et al. (2023) without convergence rates.

Theorem 4. Assume f is L-smooth , and that ∇̃K verifies the SGC for ρK ≥ 1. Then SNAG
(Algorithm 2) guarantees, in the sense of (3), the following asymptotic results:
• If f is convex, s = 1

ρKL , ηn = 1
4

n2

n+1 , β = 1, αn =
n2

n+1

4+ n2

n+1

,

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (10)

5
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• If f is µ-strongly convex, s = 1
ρKL , ηn = η = 1

ρK

√
µL

, β = 1− 1
ρK

√
µ
L , αn = α = 1

1+ 1
ρK

√
µ
L

,

f(xn)− f∗
a.s.
= o ((q + ε′)n) (11)

for all ε′ > 0, where q := 1− 1
ρK

√
µ
L .

See proofs in Appendix G. These bounds are asymptotically better than the finite time bounds, with
o( 1

n2 ) compared to O( 1
n2 ) (Theorem 3) for instance in the convex setting. A similar asymptotic

speedup phenomenon happens in the deterministic setting (Attouch & Peypouquet, 2016).
Remark 5. Theorem 4 states that in the convex case, the parameter ρK has a negligible impact
on the asymptotic convergence, and thus SNAG always asymptotically outperforms SGD. For the
strongly convex case, we need to ensure that ρK <

√
L2
(K)/µL to have SNAG faster than SGD.

The possibility of acceleration of SNAG over SGD is highly depending on the SGC constant ρK .
We need to investigate for a fine characterization of ρK to ensure acceleration in realistic contexts.

4 CHARACTERIZING CONVERGENCE WITH STRONG GROWTH CONDITION
AND GRADIENT CORRELATION

Although general bounds on the constant ρK are difficult to obtain (see Remark 2), Example 2 shows
that the characterization of the SGC constant given in Example 1 can be improved.

Example 2 (Motivating example). Consider the function f(x) = 1
2

(
µ
2 ⟨e1, x⟩

2 + L
2 ⟨e2, x⟩

2
)

, with
0 < µ < L and e1, e2 standard basis vectors. This function satisfies Assumption 1, Assumption
2 with Lmax = L, and it is µ

2 -strongly convex. Following Example 1, f satisfies the SGC with
ρ1 = 2L

µ , which can be arbitrary large. However, by developing ∥∇f(x)∥2, we get that the SGC is
actually verified for ρ1 = 2 < 2L

µ .

Example 2 motivates to seek for new, eventually tighter, characterizations of the SGC constant.

4.1 AVERAGE POSITIVE CORRELATION CONDITION

In this section, we show how we can exploit the finite sum structure of f to exhibit a condition that,
if verified, allows for a new computation of ρK .
Proposition 1. Considering batches of size K, we have

∥∇f(x)∥2 =
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (12)

Proposition 1 is proved in Appendix H.1. Without any assumption on f , Proposition 1 splits the
norm of ∇f into two terms. One relies on the gradient estimator, while the other one involves the
average correlation of gradients. From Proposition 1, we deduce the following consequence.
Corollary 1. Considering batches of size K, f satisfies the SGC with ρK = N

K if its gradients are,
on average, positively correlated, i.e. if we have

∀x ∈ Rd,
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≥ 0. (PosCorr)

Using condition PosCorr, Corollary 1 ensures that f verifies a SGC for a constant ρK only depending
on N and the batch size K, and not on geometrical parameters of f , e.g. µ or L.
Example 3. Assume fi(x) = Φ(⟨x, ui⟩), for some Φ : R → R that are non necessarily convex,
and some orthogonal basis {ui}i. We have ∇fi(x) = Φ′(⟨x, ui⟩)ui. Then, condition PosCorr is
verified, and f satisfies the SGC with ρK = N

K . Note that the upper-bound ρK ≤
L(K)

µ given
in Example 1 can be arbitrary large independently of N and K (see Example 2), meaning that
eventually N

K ≪ L(K)

µ . Thus, the new upper-bound for ρK (Corollary 1) can be much tighter,
resulting in improved convergence bounds for SNAG (Theorem 3-4).

6
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In some cases, condition PosCorr could be too restrictive (see Appendix I). In the following section,
we show how to ensure the SGC with a relaxed version of PosCorr, named RACOGA.

4.2 RACOGA: RELAXING THE POSCORR CONDITION

We introduce a new condition named RACOGA which is related, but not the same as two other
conditions named gradient diversity (Yin et al., 2018) and gradient confusion (Sankararaman et al.,
2020). We discuss these different conditions in Appendix C.
Definition 4. We say that f verifies the Relaxed Averaged COrrelated Gradient Assumption
(RACOGA) if there exists c ∈ R such that the following inequality holds:

∀x ∈ Rd\X ,
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≥ c, (RACOGA)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}.

RACOGA is a generalisation of the condition PosCorr which allows to quantify anti correlation
(c < 0) or correlation (c > 0) between gradients.
Proposition 2. Assume RACOGA holds with c > − 1

2 . Then, considering batch of size 1, f verifies
the SGC with ρ1 = N

1+2c .

Proposition 2 is proved in Appendix H.2. Note that RACOGA is always verified with c = − 1
2 , and

we have c ≤ N−1
2 (Appendix H.5).

Remark 6. Proposition 2 creates a direct link between RACOGA and SGC. It indicates that the
more correlation between gradients there is, the lower is the SGC constant, which results in im-
proved convergence bounds for SNAG, see Theorems 3-4. Importantly if the gradients are too anti
correlated, Proposition 2 could only be verified with c arbitrary close to − 1

2 , resulting in a bound
for ρ1 increasing to +∞.

Remark 7. It is well known that considering high dimensional vectors drawn uniformly on the unit
sphere, they will be pairwise quasi orthogonal with high probability (Milman & Schechtman, 1986).
Sankararaman et al. (2020) show theoretically and empirically that considering neural networks
with data drawn uniformly on the unit sphere, under some assumptions, linked to over parameter-
ization, each scalar product ⟨∇fi(x),∇fj(x)⟩ is not too negative. In this case, RACOGA is thus
verified for a c that is at worst close to zero.

4.3 THE STRONG GROWTH CONDITION WITH BATCH SIZE 1 DETERMINES HOW THE
PERFORMANCE SCALES WITH BATCH SIZE

In this section, we build over Proposition 2, which only covers batches of size 1, to take into account
bigger batches.
Lemma 1. Assume that for batches of size 1, f verifies the SGC with constant ρ1. Then, for batches
of size K, f verifies the strong growth condition with constant ρK where

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (13)

Lemma 1 is proved in Appendix H.3. It shows that if the SGC is verified for batches of size 1, it is
verified for any size of batch K and we can compute an estimation of ρK .

Strikingly, Lemma 1 allows to study the effect of increasing batch size K on the number of ∇fi
evaluations we need to reach a ε-solution. We only consider the convex case, as the same reasoning
and results hold for strongly convex functions.

Theorem 5. Assume f is convex and L-smooth, and that ∇̃1 verifies the SGC with ρ1 ≥ 1. Then,
SNAG (Algorithm 2) with batch size K allows to reach an ε-precision (2) at this amount of ∇fi
evaluations:

∆K .ρ1

√
2L

ε
∥x0 − x∗∥, (14)
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where ∆K :=
(

N−K
N−1 + N

ρ1

K−1
N−1

)
, and ρ1

√
2L
ε ∥x0 − x

∗∥ is the number of∇fi evaluations needed
to reach an ε-precision when using batches of size 1 according to Theorem 3.

Compared to the theorems of section 3, Theorem 5 gives a bound on the number of ∇fi we have to
evaluate, not the number of iterations of the algorithm, see the proof in Appendix H.4.

Theorem 5 indicates that using batches of size K, we need ∆K times the number of ∇fi that is
needed when using batches of size 1 to reach an ϵ-precision. Note also that it assumes the knowledge
of ρ1, that can be determined using RACOGA, see Proposition 2.

Remark 8. From Theorem 5, we distinguish 3 regimes, among which the orthogonality of gradients
is a critical state.

1. ρ1 = N . This is notably true when the gradients are orthogonal. ∆K = 1 for any value of
K, and the number of∇fi evaluations is exactly the same independently of batch size.

2. ρ1 < N . The gradients are in average positively correlated, i.e. RACOGA is verified
with c > 0. ∆K > 1, and increasing batch size leads to an increasing amount of ∇fi
evaluations. So, increasing batch size will make parallelization sublinearily efficient, a
phenomenon known as performance saturation, see Ma et al. (2018); Liu & Belkin (2020).

3. ρ1 > N . The gradients are in average negatively correlated, i.e. RACOGA is verified with
c < 0. ∆K < 1 and larger batches leads to a decreasing amount of∇fi evaluations.

Theorem 5 and Remark 8 state that, considering convergence speed, replacing the exact gradient by
a stochastic approximation is not necessarily cheaper, in term of number of∇fi we evaluate.

5 NUMERICAL EXPERIMENTS

Our theory indicates that the correlation between gradients, evaluated through RACOGA is needed
to have SNAG (Algorithm 2) outperforming SGD (Algorithm 1). We provide numerical experiments
to validate this statement by running SNAG to optimize classic machine learning models such as
linear regression (Section 5.1) or classification neural network (Section 5.2). We also compare its
performance with its deterministic version NAG (Algorithm 7), together with GD (Algorithm 6).

RACOGA in practice We introduced the RACOGA as an inequality that holds over all the space.
However, in practice, one only needs to consider the RACOGA values along the optimization path.
So this quantity will be computed only along this path.

Performance metrics Our interest will be how the algorithms make the training loss function
decrease. In order to make a fair comparison between algorithms, our x-axis is the number of ∇fi
evaluations, not nit, the number of iterations of the algorithms.

5.1 LINEAR REGRESSION

For a dataset {ai, bi}Ni=1 ∈ Rd×R, we want to solve a linear regression formulated as Problem LR.

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

1

2
(⟨ai, x⟩ − bi)2. (LR)

We consider the overparameterized case, i.e. d > N . Note that the linear regression problem is con-
vex and smooth, so we are in the theoretical setting of this paper. Moreover, we can directly compute
the parameters involved in the algorithms except for a parameter λ that replaces the unknown ρK
constant in the case of SNAG, see details in Appendix A.1.

An interesting characteristic of linear regression is that as∇fi(x) = (⟨ai, x⟩ − bi)ai, we have

⟨∇fi(x),∇fj(x)⟩︸ ︷︷ ︸
gradient correlation

= (⟨ai, x⟩ − bi)(⟨aj , x⟩ − bj) ⟨ai, aj⟩︸ ︷︷ ︸
data correlation

. (15)
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The pairwise correlation between the gradients depends explicitly on the pairwise correlation inside
the data. Therefore, we expect the correlation inside data to impact on the RACOGA values, and
thus on the performance of stochastic algorithms such as SNAG (Algorithm 2).

To validate this intuition experimentally, we build two different datasets with N = 100 and d =
1000. The first set of {ai}Ni=1 is generated uniformly onto the d-dimensional sphere, such that the
data are fewly correlated. The second one is generated by a Gaussian mixture law with ten modes,
which induces correlation inside data. In both cases, the {bi}Ni=1 are generated by a Gaussian law.

(a) Low correlation within data (b) High correlation within data

Figure 1: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch
size 1), NAG (Algorithm 7) and SNAG (Algorithm 2, batch size 1) on a linear regression prob-
lem, together with an histogram distribution of RACOGA values along the iterations of SNAG.
Stochastic algorithms results are averaged over ten runs. On the left, data are generated by a law
that make them fewly correlated, while on the right the data are generated by a gaussian mixture,
leading to higher correlation. The λ parameter replaces the unknown SGC constant in the algorithm,
see Appendix A.1. Note that the data correlation results in better performance of SNAG, whereas
uncorrelated data lead to smaller RACOGA values, reducing the benefit of using SNAG.

SGD vs SNAG Comparing right parts of Figure 1a and Figure 1b, we observe that the lack of
correlation inside data leads to smaller values of RACOGA. In the case of Figure 1a, these lower
RACOGA values coincide with SGD being faster than SNAG. On the other hand we see on Figure 1b
that the presence of correlation inside the data makes the optimization path crosses areas with higher
RACOGA values, allowing SNAG to be faster than SGD. These experimental results support our
theoretical findings.

Deterministic vs stochastic Strikingly, one can also observe that the lack of correlation results in
poor performance of all the stochastic algorithms, especially compared to NAG (Figure 1a). Con-
versely, presence of correlation results in the opposite phenomenon (Figure 1b). These observations
are consistent with our theoretical findings of Section 4.3, which indicate that is some cases, stochas-
tic algorithms are not necessarily cheaper to use than their deterministic counterparts in term of∇fi
evaluations.

Role of λ In the case of SNAG (Algorithm 2), the choice of parameters from Theorem 3 involves
the ρK constant, that we do not know. We thus replace ρK by a parameter λ. The higher the
RACOGA are, the smaller ρK is, and the smaller λ can be chosen which results to more aggressive
steps of the algorithm, as s = 1

Lλ . See details in Appendix A.1.

5.2 NEURAL NETWORKS

In this second experiment, we aim to test if the crucial role of correlation inside data observed for
linear regression (Section 5.1) extend to more general models.

For a dataset {ai, bi}Ni=1 ∈ Rd × R, we consider a classification problem tackled with a neural
network model with the cross-entropy loss. Importantly, this problem is not convex, so we are not
anymore in the setting of our theoretical results.

We use the SNAG version implemented in Pytorch (Algorithm 3), that is equivalent to Algorithm 2,
see Appendix B.2
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As for the linear regression problem, we use two different datasets. The first one, CIFAR10
(Krizhevsky & Hinton, 2009), is composed of images and serves as the correlated dataset. The
second one, generated onto the d-dimensional sphere with 2 different labels according to which
hemisphere belongs each data (see details in Appendix A.2), serves as the uncorrelated dataset. For
the CIFAR10 experiment, we use a Convolutional Neural Network (CNN, LeCun et al. (1998)), and
for the sphere experiment we use a Multi Layer Perceptron (MLP, Rumelhart et al. (1986)).

(a) SPHERE - MLP (b) CIFAR10 - CNN

Figure 2: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch
size 64), NAG (Algorithm 3, full batch) and SNAG (Algorithm 3, batch size 64) averaged over 10
different initializations, together with an histogram distribution of RACOGA values taken along the
optimization path, averaged over 10 different initialisations, where the x-axis scale is logarithmic.
On the left, we use a MLP to classify data sampled from a law such that they are fewly correlated. On
the right we use a CNN to classify CIFAR10 images. Note that contrarily to Figure 1, the presence
of correlation within data no longer influence the RACOGA values, that remains high in both cases,
resulting in better performances of SNAG.

Strikingly, it appears on Figures 2a and 2b that the correlation inside data has no longer direct impact
on the RACOGA values along the iterations path. In each case the RACOGA values are high, which
results is SNAG outperforming other algorithms. In particular, both deterministic algorithms are
significantly less efficient.

These experiments indicate that neural networks offer high RACOGA values, that SNAG can take
advantage of to converge faster.

6 CONCLUSION

In this paper, we introduced RACOGA to help us to understand in which case the Stochastic Nes-
terov Accelerated Gradient algorithm (SNAG) allows to outperform the Stochastic Gradient Descent
(SGD) for convex or strongly convex functions, as it happens for the deterministic counterparts of
these algorithms. We demonstrate theoretically and empirically that large RACOGA values al-
lows to accelerate SGD with momentum. RACOGA may be the, up to now, missing ingredient
to understand the acceleration possibilities offered by SNAG in this setting, outside of the linear
regression problems.
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SUPPLEMENTARY MATERIAL

These supplements contain additional details on the numerical experiments, proofs of our theoret-
ical results, and some additional insights. In Supplement A, we present additional details about
numerical experiments and supplementary experiments. In Supplement B, an optimization back-
ground is provided for completeness. In Supplement C, we present and comment related works.
In Supplement D, we provide simple examples of functions that do not verify SGC, or verify it
for a large constant. In Supplement E, we provide convergence proofs for SGD (Algorithm 1). In
Supplement F, we introduce new convergence results for SNAG (Algorithm 2) without assuming
that the SGC holds. In Supplement G, we present convergence proof for SNAG (Algorithm 2). In
Supplement H, we provide the proof of the results presented in Section 4. Finally in Supplement I,
we give deeper explanations concerning the link between RACOGA and algorithms considered in
this paper when applied to the problem of linear regression.

REPRODUCTIBILITY STATEMENT

Source code used in our experiments can be found in supplementary material. It contains a
README.md file that explains step by step how to run the algorithm and replicate the results of
the paper. We detail our datasets, network architectures and parameter choices in Section A.2. The-
oretical results presented in the paper are proved in the appendices.

IMPACT STATEMENT

The present paper, from an optimization point of view, aims to strengthen our understanding of the
theory of machine learning. A good comprehension of the tools that are broadly used is important
in order to quantify their impacts on the world. Moreover, considering environmental impact, it is
crucial to understand the process that makes learning more efficient, especially accelerate current
optimization algorithms, without necessarily using huge models.

A ADDITIONAL EXPERIMENTS AND DETAILS

This section presents additional details on the experiments for the sake of reproducibility. We also
provide additional experiments for a deeper analysis.

A.1 LINEAR REGRESSION

Algorithms and parameters For the problem LR, we can explicitly compute geometrical con-
stants. Indeed, f is L-smooth with L = 1

N λmax

(∑N
i=1 aia

T
i

)
, and each fi is Li-smooth

with Li = λmax

(
aia

T
i

)
. In the overparametrized case i.e. N < d, f is not µ-strongly con-

vex. However, up to a restriction to the vectorial subspace V spanned by {a1, . . . , aN}, f V is
µ = 1

N λmin

(∑N
i=1 aia

T
i

)
-strongly convex. Therefore in our experiments, in order to run GD,

SGD and NAG (respectively Algorithms 6, 1 and 7), we chose the parameters respectively accord-
ing to Theorem 6, 1 and 7. In the case of SNAG (Algorithm 2), in order to apply Theorem 3, we
also need to know the SGC constant ρK , where K is the selected batch size. However this constant
is hard to compute. The knowledge of RACOGA along iterates would be sufficient, but we do not
know this path before launching the algorithm. Thus, we run SNAG with this choice of parameters

s =
1

Lλ
, η =

1√
µLλ

, β = 1− 1

λ

√
µ

L
, α =

1

1 + 1
λ

√
µ
L

(16)

where λ ≥ 1. In order to achieve better performance, provided that the iterates cross areas with
higher RACOGA values, λ can be chosen more aggressively, i.e. λ smaller, as on Figure 1b. De-
creasing the λ parameter leads to a more aggressive, or less safe algorithm, because it will increase
s and η in Equation (16). Taking a glance at Algorithm 2, we see that it results in making larger
gradient steps. Recall that larger gradients steps allows the trajectory to move faster, and eventually
to converge faster, but steps that are too big will make the algorithm diverge.
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(a) Isotropic data (b) Correlation within data

Figure 3: Illustration of the convergence speed of GD (Algorithm 6), NAG (Algorithm 7), SGD
(Algorithm 1) and SNAG (Algorithm 2) with varying batch sizes K, applied to a linear regression
problem, together with an histogram distribution of RACOGA values along the iterations of SNAG.
The stochastic algorithms results are average on ten runs. On the left, data are generated by a law
such that they are fewly correlated, while on the right the data are generated by a gaussian mixture,
such that some of the data are highly correlated. Note that the presence of correlation in data results
in a decrease of performance for SNAG (Algorithm 2) when increasing too much the batch size,
whereas uncorrelated data results in an improvement of performance when increasing batch size.

Algorithm 3 Stochastic Nesterov Accelerated Gradient - Machine learning version (SNAG ML)

1: input: x0, b0 ∈ Rd, s > 0, p ∈ [0, 1], (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: bn ← pbn−1 + ∇̃K(xn−1)

4: xn ← xn−1 − s
(
∇̃K(xn−1) + pbn

)
5: end for
6: output: xnit

Batch size influence In Section 5.1, we observed that contrarily to data generated uniformly onto
the sphere, the presence of correlation inside data coincides with high RACOGA values and good
performance of SNAG (Algorithm 2) with batch size 1 compared to other algorithms. Now in the
same experimental setting, we study the impact of varying batch size. According to Remark 8, in the
case of correlated data, we should observe a decrease of the performance up to a certain batch size.
On Figure 3b, we observe this phenomenon. We see that we can multiply the batch size by a factor
10, and keeping the same performance. If performing parallelization, this results in 10 times faster
computations. However, when increasing batch size from 10 to 25, we lose performance, inducing
paralellization will not results in 2.5 times faster computation. This phenomenon is often referred
to as performance saturation, see Ma et al. (2018); Liu & Belkin (2020). On Figure 3a, we observe
that conversely, increasing batch size improve the performance. Figure 3 is thus consistent with our
theoretical findings, see Remark 8.

A.2 NEURAL NETWORKS

For a dataset {ai, bi}Ni=1 ∈ Rd × R, we want to solve a classification problem formulated as Prob-
lem C.

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

CROSS(x; ai, bi). (C)

Where CROSS() is a cross entropy loss, as it is implemented in Pytorch with the function
nn.CrossEntropyLoss().

Classification problem In Section 5.2, we considered two classification problems. The first one
involves the classic CIFAR10 dataset (Krizhevsky & Hinton, 2009), that contains 60000 color im-
ages (dimension 32 × 32) with 10 different labels. See Figure 4a to see a data visualisation of the
dataset, taken from Balasubramanian et al. (2022). This dataset serves as our correlated dataset.
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For the second classification problem, we generated data drawn uniformly onto the d-dimensional
sphere, where d is the same dimension as the image of CIFAR10, i.e. 3∗32∗32 = 3072. We created
2 different labels depending on the positivity of the first coordinate of each data, which remains to
associate a different label depending on which hemisphere belong each data, see Figure 4b for a 3d
visualisation. This dataset is named SPHERE.

(a) CIFAR10 data vizualisation (b) Sphere classification problem

Figure 4: Illustration of the two classification problems we consider in Section 5.2. On the left part,
wee see a 2D vizualisation of CIFAR10 data set, proposed by Balasubramanian et al. (2022). On
the right, we illustrate SPHERE dataset on the 3d-sphere, where each hemisphere correspond to a
different label.

Network architecture For the classification problem involving the CIFAR10 dataset, we use a
Convolutionnal Neural Network (CNN, LeCun et al. (1998)). For the classification problem involv-
ing the spherical data, we use a Multi Layer Perceptron (MLP, Rumelhart et al. (1986)). CNN are
efficient architecture when it comes to image classification, at is exploit local information of the
images. However, this architecture makes less sense for our classification problem on the sphere.
This model indeed performed poorly in our experiment, and so our choice of a MLP architecture.
We detail the architectures on Figure 5.

(a) MLP - 401,730 parameters (b) CNN - 98,730 parameters

Figure 5: Scheme of the architecture of the MLP and the CNN used in our experiments.

Algorithms and parameters We ran the experiments using the Pytorch library. We used the
Pytorch implementation to run the optimization algorithms, through the function torch.optim.SGD.
This function contains a nesterov = True argument, which allows to run Algorithm 3. Note that this
is indeed a formulation of the Nesterov algorithm, see Appendix B.2. The detailed parameters used
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to run the experiment, determined by grid search, are displayed on Figure 2 are presented on Table 2,
together with the final test accuracy, averaged over 10 initialisations.

MLP (SPHERE) CNN (CIFAR10)
s p Accuracy test(%) s p Accuracy test(%)

GD 3 - 49.72 4 - 17.54
SGD 0.3 - 80.6 0.3 - 65.40
NAG 2 0.9 50.02 2 0.7 17.07
SNAG 0.1 0.9 88.73 0.05 0.9 70.88

Table 2: Parameters (the learning rate s and the momentum p) used to run the experiments presented
in Section 5.2, together with the final accuracy test in percent averaged over 10 different initial-
izations. For precise formulation of the algorithms, see Algorithm 6 (GD), Algorithm 1 (SGD),
Algorithm 8 (NAG) and Algorithm 3 (SNAG).

Single run and RACOGA along iterations As a complement, we display on Figure 6 a slightly
different view of Figure 2. On the left part of Figure 6a-Figure 6b, we display the typical behaviour
of one single run of optimization algorithms, namely without averaging for several initialisations.
As we can expect, we observe a higher variability, although the general behaviour remains similar.
On the right part of Figure 6a-Figure 6b, we displayed the evolution of RACOGA values along the
iterations, instead of the histogram distribution of Figure 2, which does not keep any temporal infor-
mation. For correlated data, we observe that RACOGA values decrease when iterations converge.
This phenomenon can be interpreted as the convergence of the iterations to a minimum with low
curvature which is related to a low RACOGA value (see Appendix I for more details).

(a) SPHERE-MLP (b) CIFAR10-CNN

Figure 6: Illustration of the convergence speed of on run of GD (Algorithm 6 batch size N ), SGD
(Algorithm 1, batch size 64), NAG (Algorithm 7) and SNAG (Algorithm 2, batch size 64), together
with a display of the RACOGA values taken along the path, averaged over 5 different initializations.
On the left, we use a MLP, and data are generated by an isotropic law and are fewly correlated. On
the right we use a CNN, and the dataset used is CIFAR10.

Algorithm 4 Root Mean Square Propagation (RMSprop)

1: Input: α, β, ϵ > 0, x0 ∈ Rd

2: for n = 0, . . . , nit − 1 do
3: gn = ∇̃K(xn)
4: vn+1 = βvn + (1− β)g2n
5: xn+1 = xn − α gn√

vn+1+ϵ

6: end for

Comparison with ADAM and RMSprop RMSprop (Hinton, 2012) (Algorithm 4) and ADAM
(Kingma & Ba, 2015) (Algorithm 5) are popular algorithms when it comes to optimize neural net-
works. RMSprop is similar to gradient descent, at the difference that, grossly, it divides component-
wise the gradient by an average of the squared norm of the past gradients. There exists a variant of
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Algorithm 5 Adaptive Moment Estimation (ADAM)

1: Input: α, β1, β2, ϵ > 0, initial parameters x0 ∈ Rd, m0 = v0 = 0
2: for n = 0, . . . , nit do
3: gn = ∇̃K(xn)
4: mn+1 = β1mn + (1− β1)gn
5: vn+1 = β2vn + (1− β2)g2n
6: m̂n+1 = mn+1

1−βn+1
1

7: v̂n+1 = vn+1

1−βn+1
2

8: xn+1 = xn − α m̂n+1√
v̂n+1+ϵ

9: end for

RMSprop that incorporates momentum. Adam combines both techniques of RMSprop and momen-
tum, plus other mechanisms such as bias corrections.

On Figure 7, compared to Figure 2, we add the training convergence curve and RACOGA values
of RMSprop and ADAM. On the CIFAR10 dataset, both algorithms do not converge faster than
SNAG, and share similar RACOGA values. Interestingly for the SPHERE dataset, both algorithms
are significantly faster than others. We observe that all the algorithms are, at the begining of the
optimization process, stuck in a tray. SNAG steps out of this tray faster than SGD, and RMSprop
and ADAM step out of it even faster. One may think that the normalization by the average of
squared gradients induces larger stepsize and boost the convergence speed, as in this tray the gradient
values are low. The average test accuracy at the end of the training for ADAM (Algorithm 5) is
93.73% for MLP, 69.12% for CNN. The average test accuracy at the end of the training for RMSprop
(Algorithm 4) is 94.02% for MLP, 67.31% for CNN.

(a) SPHERE (b) CIFAR10

Figure 7: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch size
64), NAG (Algorithm 3, full batch) and SNAG (Algorithm 3, batch size 64), ADAM (Algorithm 5)
and RMSprop (Algorithm 4) averaged over 10 different initializations, together with an histogram
distribution of RACOGA values taken along the optimization path, averaged over 10 different ini-
tialisations. On the left, we use a MLP to classify fewly correlated data sampled from an isotropic
law. On the right we use a CNN to classify CIFAR10 images. Note that if ADAM and RMSprop are
both better than other algorithms for the SPHERE experiment, they are not faster than SNAG in the
CIFAR10 experiment.

Computation time Using the Python library time, the computation time needed to choose the best
parameters for our two models (CNN for CIFAR10 and MLP for SPHERE) have been saved. More-
over, the computational time needed to generate Figures 1, 2, 3 and 7 is added to our computational
budget. We saved the computation time needed to train the models and to compute the RACOGA
values, 10 times per algorithms (due to the 10 initializations) and for both networks. Note that for
the stochastic algorithms, RACOGA was computed only every 100 iterations, because of the heavy
computation time it demands. The experiments for the linear regression problem take less than one
minute of computation. Experiments with SNAG, NAG, SGD and GD took approximately 4 hours.
Additional experiments with ADAM and RMSprop took approximately 8 hours. Note that ADAM
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requires to tune 3 hyperparameters with the grid search, making this step significantly longer. The
total computation time needed for all these experiments is approximately 12 hours of computation
on a GPU NVIDIA A100 Tensor Core.

Additional datasets results On Figure 8, we present the convergence curves and RACOGA values
for SGD and SNAG on various datasets, including hand-written numbers (MNIST), pictures of
clothes (FashionMNIST Xiao et al. (2017)) and Kuzushiji characters (KMNIST Clanuwat et al.
(2018)) and hand-written characters (EMNIST Cohen et al. (2017)). The used learning rate for SGD
is 0.1 for MNIST and EMNIST and 0.25 for FashionMNIST and KMNIST. The learning rate of
SNAG is 0.05 for MNIST and EMNIST and 0.1 for Fashion MNIST and KMNIST. The momentum
of SNAG (Algorithm 3) is 0.8 for MNIST and FashionMNIST, and 0.9 for KMNIST and EMNIST.
These quantities have been chosen after a grid search to find the parameters that maximize the test
accuracy of the learned model. There were 3 epochs for the training.

Note that the RACOGA values are large for all these training paths. Moreover, in all these scenarios,
we observe that the convergence of SNAG is faster than the convergence of SGD, although it is less
clear for KMNIST. These additional experimental validations support our theoretical results.

(a) MNIST (b) FashionMNIST

(c) KMNIST (d) EMNIST

Figure 8: Illustration of the convergence speed of SGD (Algorithm 1 and SNAG (Algorithm 3,
batch size 64), averaged over 10 different initializations, together with an histogram distribution of
RACOGA values taken along one optimization path. We use a CNN described on Figure 5b, only
changing the input layer with the dimension of images 1× 28× 28. Note that SNAG is faster than
SGD, although it is less clear for KMNIST, and the RACOGA values are large for all these datasets.

B BACKGROUND : CONVEX OPTIMIZATION AND THE NESTEROV
ALGORITHM

In this section, we give the reader some optimization background for completeness of our paper.
First, we expose known results related to the convergence of the deterministic counterparts of SGD
and SNAG, and then we exhibit different forms of the Nesterov algorithm that can be found in the
literature.
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B.1 PERFORMANCE OF GD AND NAG

We present the speed of convergence of GD (Algorithm 6) and NAG (Algorithm 7). The two fol-
lowing theorems are well known results demonstrated by Nesterov (1983; 2018).

Algorithm 6 Gradient Descent (GD)

1: input: x0 ∈ Rd, s > 0
2: for n = 0, 1, . . . , nit − 1 do
3: xn+1 = xn − s∇f(xn)
4: end for
5: output: xnit

Algorithm 7 Nesterov Accelerated Gradient (NAG)

1: input: x0, z0 ∈ Rd, s > 0, β ∈ [0, 1], (αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: yn ← αnxn + (1− αn)zn
4: xn+1 ← yn − s∇f(yn)
5: zn+1 ← βzn + (1− β)yn − ηn∇f(yn)
6: end for
7: output: xnit

Theorem 6. Let f : Rd → R be L-smooth, {xn}n∈N be generated by Algorithm 6 with stepsize
s = 1

L . Let νϵ ∈ N the smallest integer such that ∀n ≥ νϵ, f(xn)− f∗ ≤ ε.

1. If f is convex, we have

νϵ ≤
L

2

∥x0 − x∗∥2

ε
. (17)

2. If f is µ-strongly convex, we have

νϵ ≤
L

µ
log

(
f(x0)− f∗

ε

)
. (18)

The result for convex f can be found in Garrigos & Gower (2023).
Theorem 7. Let f : Rd → R be L-smooth, {xn}n∈N be generated by Algorithm 7 with stepsize
s = 1

L . Let νϵ ∈ N the smallest integer such that ∀n ≥ νϵ, f(xn)− f∗ ≤ ε.

1. If f is convex, choosing αn = n−1
n+1 , β = 1, ηn = 1

L
n+1
2 , we have

νϵ ≤
√
2L
∥x0 − x∗∥√

ε
. (19)

2. If f is µ-strongly convex, choosing αn = 1

1+
√

µ
L

, β = 1−
√

µ
L , ηn = 1√

µL
, we have

νϵ ≤

√
L

µ
log

(
2(f(x0)− f∗)

ε

)
. (20)

By comparing the convergence speed for convex functions given by Theorems 6 and 7, NAG is
faster than GD as long as the desire precision ϵ is small enough. As L ≥ µ, considering µ-strongly
convex functions NAG is always at least as good as GD. In practice, in particular for ill-conditioned
problems, we can have µ≪ L. In theses cases, NAG is a significant improvement over GD.

Optimality of NAG Note that NAG (Algorithm 7) not only outperforms GD (Algorithm 6). It
also offers bounds that are optimal among first order algorithms when minimizing strongly or non
strongly convex functions, in the sense that it is possible to find examples of functions within these
classes such that these bounds are achieved up to a constant (Nemirovskij & Yudin, 1983).
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B.2 THE DIFFERENT FORMS OF NESTEROV ALGORITHM

There exists several ways of writing Nesterov momentum algorithm, that can be linked together (see
e.g. Defazio (2019) for 6 different forms in the strongly convex case). Different research fields are
used to their own typical formulation. In this section, we present formulations that can be found
in the optimization and machine learning communities. Within the optimization community NAG
(Algorithm 7) (Zhu & Orecchia, 2017; Hinder et al., 2020) or NAG 2S (Algorithm 9) (Su et al.,
2016; Aujol et al., 2023; 2024) are often used. The machine learning community is rather used to
the formulation of NAG ML (Algorithm 8). In fact, this last algorithm is the version implemented in
Pytorch with the function torch.optim.SGD() with the argument nesterov = True, up to the condition
that τ = 0.

Algorithm 8 Nesterov Accelerated Gradient - Machine Learning version (NAG ML)

1: input: x0, b0 ∈ Rd, s > 0, p ∈ [0, 1], τ ∈ R, (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: bn ← pbn−1 + (1− τ)∇f(xn−1)
4: xn ← xn−1 − s (∇f(xn−1) + pbn)
5: end for
6: output: xnit

Algorithm 9 Nesterov Accelerated Gradient - Two Sequences version (NAG 2S)

1: input: x0 ∈ Rd, s > 0 , (an)n∈N ∈ [0, 1]N, (bn)n∈N ∈ [0, 1]N

2: for n = 0, 1, . . . , nit − 1 do
3: yn ← xn + an(xn − xn−1) + bn(xn − yn−1)
4: xn+1 ← yn − s∇f(yn)
5: end for
6: output: xnit

The links between the several forms have been studied previously (Defazio, 2019; Lee et al., 2021).
As our results are related to the three points version of NAG (Algorithm 7), we state now results that
allow to generate the same optimisation scheme than Algorithm 7 with Algorithms 8-9.
Proposition 3 (Hermant et al. (2024)). Consider (xn)n∈N and (yn)n∈N generated by NAG (Algo-
rithm 7). The same sequences are generated by Algorithm 9 with choice of parameters

an =
1− αn

1− αn−1
αn−1βn−1, bn = (1− αn)

(
ηn−1

s
− αn−1βn−1

1− αn−1
− 1

)
. (21)

Note that Algorithm 8 have constant parameters in the Pytorch implementation. The link between
Algorithm 7 and Algorithm 8 can be deduced from Defazio (2019) in the case when τ = 1 for Algo-
rithm 8. We demonstrate a generalisation of this result for τ ̸= 1 and we present it in Proposition 4
Proposition 4. Consider (yn)n∈N generated by Algorithm 7. The sequence (xn)n∈N generated by
Algorithm 8 is the same as (yn)n∈N with choices of parameters

p = αβ, τ =
s(1 + α(β − 1))− (1− α)η

αβs
. (22)

Proof. Our strategy is to write both algorithms in a one point form algorithm to compare the param-
eters.

(i) Algorithm 8. By the line 4 of Algorithm 8, we have the relation

bn =
xn−1 − xn

ps
− 1

p
∇f(xn−1). (23)

Now we can replace the bn and bn−1 in line 3 of Algorithm 8, thereby

xn−1 − xn
ps

− 1

p
∇f(xn−1) = p

(
xn−2 − xn−1

ps
− 1

p
∇f(xn−2)

)
+ (1− τ)∇f(xn−1). (24)
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We multiply both sides by −ps, and rearrange

xn = xn−1 + p(xn−1 − xn−2)− s∇f(xn−1) + ps∇f(xn−2)− ps(1− τ)∇f(xn−1) (25)
= xn−1 + p(xn−1 − xn−2)− s∇f(xn−1)− ps (∇f(xn−1)−∇f(xn−2)) + τps∇f(xn−1)

(26)

Interestingly, we recognize with the three first terms on the right hand side Polyak’s Heavy Ball
(HB) equation (Polyak, 1964)

xn = xn−1 + p(xn−1 − xn−2)− s∇f(xn−1). (HB)

The −ps (∇f(xn−1)−∇f(xn−2)) term is often referred as a gradient correction term (Shi et al.,
2022), and is characteristic of the difference between Polyak’s Heavy Ball and Nesterov’s algorithm.
The last +τps∇f(xn−1) is considered as a damping term, and is often needed to obtain the tightest
convergence results (Kim & Fessler, 2016), also to achieve accelerated convergence outside of the
deterministic convex realm (Hermant et al., 2024).

(ii) Algorithm 7 We set that ∀n ∈ N, αn = α ∈ [0, 1], and ηn = η > 0. First, combining lines 3 and
4 of Algorithm 7, we have:

yn = αxn + (1− α)zn = α(yn−1 − s∇f(yn−1)) + (1− α)zn (27)

Hence:

zn =
yn − αyn−1 + αs∇f(yn−1)

1− α
. (28)

Now we inject this expression in line 5 of the Algorithm 7

yn+1 − αyn + αs∇f(yn)
1− α

= β

(
yn − αyn−1 + αs∇f(yn−1)

1− α

)
+ (1− β)yn − η∇f(yn). (29)

Then, multiply both sides by 1− α and rearrange to get

yn+1 = αyn − αs∇f(yn) + βyn − βαyn−1 + αβs∇f(yn−1) (30)
+(1− α)(1− β)yn − (1− α)η∇f(yn). (31)

By simplifying and regrouping terms, we get

yn+1 = yn + αβ(yn − yn−1)− s∇f(yn)− αβs (∇f(yn)−∇f(yn−1))

+ s∇f(yn) + αβs∇f(yn)− αs∇f(yn)− (1− α)η∇f(yn) (32)
= yn + αβ(yn − yn−1)− s∇f(yn)− αβs (∇f(yn)−∇f(yn−1))

+ [s(1 + α(β − 1))− (1− α)η]∇f(yn). (33)

By comparing, Equation 26 and Equation 33, we can identify the different parameters

p = αβ (34)
τps = s(1 + α(β − 1))− (1− α)η (35)

So, we have the correspondence

p = αβ (36)

τ =
s(1 + α(β − 1))− (1− α)η

αβs
(37)

Extension to Stochastic Nesterov algorithms Proposition 3 and Proposition 4 can be extended to
the stochastic versions of NAG (Algorithm 7), NAG ML (Algorithm 8) and NAG 2S (Algorithm 9),
where the ∇f terms are replaced by ∇̃K . The same correspondence between parameters of these
algorithms holds.
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C RELATED WORKS

C.1 GRADIENT CORRELATION CONDITIONS

In this paper, we introduce two assumptions related to the average correlations of the gradients of
the functions that form the sum in problem (FS), namely

∀x ∈ Rd,
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≥ 0. (PosCorr)

∀x ∈ Rd\X ,
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≥ −c, (RACOGA)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}. PosCorr is a special case of RACOGA,
with the choice c = 0. The key role of correlation between gradients has been already observed in
previous works, through related but different assumptions.

Gradient diversity (Yin et al., 2018) Gradient diversity is defined at a point x ∈ Rd as the
following ratio

∆(x) =

∑N
i=1∥∇fi(x)∥2

∥
∑N

i=1∇fi(x)∥2
. (GradDiv)

This quantity is closely related to the SGC condition. Indeed, for batch size 1, we clearly have

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ N sup
x∈Rd

∆(x)∥∇f(x)∥2. (38)

Thus, assuming supx∈Rd ∆(x) < +∞, f verifies SGC with ρ1 ≤ N supx∈Rd ∆(x). The authors
show that increasing batch size is less efficient with a ratio depending on the values thatN∆(·) takes
along the optimization path. The smaller these quantities (high correlation), the smaller this ratio.
Conversely, the higher it is (low or anti correlation), the higher the ratio is, inducing a large gain
with parallelization of large batches. GradDiv is another measure to quantify gradient correlation.
Indeed by developing the squared norm, we have the relation

∆(x)−1 = 1 + 2

∑
1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N

i=1∥∇fi(x)∥2
(39)

However, RACOGA appears naturally in our study of the SGC, and is a direct measure of the
correlation between gradients.

Gradient confusion (Sankararaman et al., 2020) f has gradient confusion η ≥ 0 at a point
x ∈ Rd if

⟨∇fi(x),∇fj(x)⟩ ≥ −η, i ̸= j ∈ {1, . . . , j}. (GradConf)
The authors show that for some classes of functions and considering SGD, satisfying this assumption
allows to reduce the size of the neighbourhood of a stationary point towards which the algorithm
converges. Also, they study theoretically and empirically how the gradient confusion behaves when
considering neural networks. They show that practices that improve the learning, such as increasing
width, batch normalization and skip connections, induce a lower gradient confusion at the end of
the training, i.e. GradConf is verified with a small η. In other words, well tuned neural networks
avoid anti-correlation between gradients. However, compared to RACOGA, GradConf asks for a
uniform bound over the correlation of each pair of gradients, which can be much more restrictive.

C.2 LINEAR REGRESSION ACCELERATION RESULTS

We mentioned in the introduction of this paper that there exists positive results concerning the pos-
sibility of acceleration considering the linear regression problem (Jain et al., 2018; Liu & Belkin,
2020; Varre & Flammarion, 2022). However, our setting is a bit different. Indeed, we consider the
finite sum setting, while they consider the following problem

min
x∈Rd

P (x), P (x) := E(a,b)∼D

[
1

2
(⟨a, x⟩ − b)2

]
. (40)
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They assume that they have access to a stochastic first order oracle, that returns the quantity
∇̃P (x) = (⟨a, x⟩ − b)a (41)

where (a, b) ∼ D. NotingH = E(a,b)∼D[aa
T ], they denoteR2 and κ̃ the smallest positive constants

such that
E(a,b)∼D[∥a∥2aaT ] ⪯ R2H, E(a,b)∼D[∥a∥2H−1aaT ] ⪯ κ̃H. (42)

Finally, they note µ the smallest eigenvalue of H which is assumed to be invertible, and κ := R2

µ . In
this setting, there is interpolation if there exists x∗ ∈ Rd such that almost surely, b = ⟨x∗, a⟩. Under
Assumption 1, noting nit the algorithm iterations, the convergence speed of GD (Algorithm 6) is
of the order O(e−

nit
κ ), while momentum style algorithms allow to have a O(e−

nit√
κκ̃ ) convergence

(Jain et al., 2018; Liu & Belkin, 2020). The acceleration is data dependant. In particular, fixing
the distribution to be uniform over the orthonormal basis {e1, . . . , ed}, one have κ = κ̃ and there
is no acceleration. Our results (Example 3 + Theorem 5) extend outside linear regression this non-
acceleration result, to the case of convex functions with orthogonal gradients. However, the ideas
behind those results and ours are different, and κ̃ is not a correlation measure. According to Jain
et al. (2018), κ̃ measure the number of ai we need to sample such that the empirical covariance is
close to the Hessian matrix, H .

C.3 SGC RELATED CONVERGENCE RESULTS

The linear convergence of SGD under a variation of SGC, for smooth convex and strongly convex
functions, has been addressed in (Schmidt & Roux, 2013). Later, convergence of SNAG type algo-
rithms under strong growth condition, for functions that are convex or strongly convex, also attracted
interest. In this section, we discuss how these works relate to Theorems 3-4.

Vaswani et al. (2019) As mentioned in Section 3, the bounds of Theorem 3 were already achieved
by (Vaswani et al., 2019). It was achieved with a quite unusual formulation of the SNAG algorithm,
which is equivalent, to the following one

Algorithm 10 (Vaswani et al., 2019))

1: input: x0 = z0 ∈ Rd, s > 0, β ∈ [0, 1], (αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN
+ , gn(.) stochastic

approximation of ∇f(.) at iteration n.
2: for n = 0, 1, . . . , nit − 1 do
3: yn = αnxn + (1− αn)zn
4: xn+1 = yn − sgn(yn)
5: zn+1 = βzn + (1− β)yn − γnsgn(yn)
6: end for
7: output: xnit

For f L-smooth, and such that SGC is verified with constant ρ, the bounds of Theorem 3 are verified
considering SNAG (Vaswani et al., 2019) with the following parameters:

• If f µ-strongly convex:

γn =
1
√
µsρ

, βn = 1−
√
µs

ρ
, bn+1 =

√
µ(

1−
√

µs
ρ

)(n+1)/2
,

an+1 =
1(

1−
√

µs
ρ

)(n+1)/2
, αn =

γnβnb
2
n+1s

γnβnbnn+1s+ a2n
, s =

1

ρL
.

• If f convex:

γn =

1
ρ +

√
1
ρ2 + 4γ2n−1

2
, an+1 = γn

√
sρ,

αn =
γns

γns+ a2n
, s =

1

ρL
.
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In the strongly convex case, intermediate sequences of parameters (an) and (bn) appear. In the
convex case, the sequence (γn) is defined with a recursive formula. Our different proof of Theorem 3
does not make these features appear.

Gupta et al. (2023) Another line of research leads to a similar expectation result to ours, using
AGNES (Algorithm 11), and so with a different proof. The authors of Gupta et al. (2023) also get
almost sure convergence, nevertheless without convergence rates contrarily to our Theorem 4.

Algorithm 11 Accelerated Gradient descent with Noisy EStimators (AGNES), Gupta et al. (2023)

1: input:f (objective/loss function), x0 (initial point), α = 10−3 (learning rate), η = 10−2 (cor-
rection step size), ρ = 0.99 (momentum), N (number of iterations)

2: v0 ← 0
3: for n = 0, 1, . . . , N do
4: gn ← ∇xf(xn) (gradient estimator)
5: vn+1 ← ρ(vn − gn)
6: xn+1 ← xn + αvn+1 − ηgn
7: end for
8: gN ← ∇xf(xN )
9: xN ← xN − ηgN

10: output: xN

D SOME EXAMPLES WITH CRITICAL STRONG GROWTH CONDITION
CONSTANT

In this section, we show that even for some simple examples, the SGC constant can be very large or
not existing, justifying that finding interesting characterizations of it is a challenging problem.

D.1 LARGE ρ1 WITH LINEAR REGRESSION

We consider the function

f(x) =
1

2
(
1

2
⟨e1, x⟩2︸ ︷︷ ︸
:=f1(x)

+
1

2
⟨a, x⟩2︸ ︷︷ ︸
:=f2(x)

),

where e1 = (1, 0), a = (1, ε). We have ∇f1(x) = ⟨e1, x⟩e1 and ∇f2(x) = ⟨a, x⟩a. Assume
x0 = (− ε

2 , λ). We have

∇f(x0) = −
ε

4
(1, 0) +

ε

2
(λ− 1

2
)(1, ε) (43)

=
ε

2
(λ− 1, (λ− 1

2
)ε). (44)

Thus we obtain

∥∇f(x0)∥2 =
ε2

4
((λ− 1)2 + (λ− 1

2
)2ε2), (45)

whereas

E[∥∇̃1(x0)∥2] =
ε2

8
+
ε2

2
(λ− 1

2
)2(1 + ε2). (46)

Simply note that with the choice λ = 1, we have ∥∇f(x0)∥2 = ε4

16 , while E[∥∇̃1(x0)∥2] = ε2 1
4 +

o(ε2). Thus
E[∥∇̃1(x0)∥2]
∥∇f(x0)∥2

≈ 1

ε2
. (47)

So the strong growth condition can be arbitrarily large as ε vanishes.
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D.2 NON CONVEX FUNCTIONS SUCH THAT ρ1 DOES NOT EXIST

We consider:
f(x) =

1

2
(f1(x) + f2(x))

where x = (x1, x2) ∈ R2, f1(x) = 1
2 (x1 − tanh(x2))

2, f2(x) = 1
2 (x1 + tanh(x2))

2. We have:

∇f1(x) = (x1 − tanh(x2),−(x1 − tanh(x2))(1− tanh2(x2))) (48)

∇f2(x) = (x1 + tanh(x2), (x1 + tanh(x2))(1− tanh2(x2))) (49)

Consider the line y = (0, y0), y0 ∈ R. We have:

∇f1(y) = (− tanh(y0), tanh(y0)(1− tanh2(y0))) (50)

∇f2(y) = (tanh(y0), tanh(y0)(1− tanh2(y0))). (51)

Then:

∇f(y) = 1

2
(∇f1(y) +∇f2(y)) = (0, tanh(y0)(1− tanh(y0)

2) →
|y0|→+∞

(0, 0). (52)

However, we have ∇f1(y) → (−1, 0) and ∇f2(y) → (1, 0) as y0 → +∞. Thus, for any ρ1 > 0,
the SGC condition is not verified when considering the whole space R2.

E CONVERGENCE OF SGD

In this section, we prove convergence results of SGD (Algorithm 1) stated in Section 3, namely
Theorem 1 and Theorem 2. Also, in Subsection E.2 we present a convergence result for SGD under
SGC and we justify that it is not a relevant result in order to compare the convergence speed of SGD
and SNAG (Algorithm 2).

E.1 PROOFS OF THEOREM 1 AND THEOREM 2

We can deduce Theorem 1-Theorem 2 by respectively adapting the proof from Garrigos & Gower
(2023) and Sebbouh et al. (2021). We can not directly apply their original results because their
setting is slightly different: in problem (FS) their convexity assumption holds for each fi, while in
our case it solely holds over the whole sum. In both expectation and almost sure cases, the core
Lemma is to bound E

[
∥∇̃K(x)∥2

]
, which bounds the variance of the estimator. It is Lemma 6.7 in

Garrigos & Gower (2023), and Lemma 1.3 in Sebbouh et al. (2021). These two lemmas do not hold
in our setting. We will use instead the following result.
Lemma 2. Under assumptions (1)-(2), we have

E
[
∥∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (53)

Proof. Let x ∈ Rd. Consider a fixed batch B with |B| = K. We note fB(x) = 1
K

∑
i∈B fi(x),

∇fB(x) := 1
K

∑
i∈B ∇fi(x). We first show that fB is

∑
i∈B Li

K -smooth.

∀x, y ∈ Rd, ∥∇fB(x)−∇fB(y)∥ ≤
1

K

∑
i∈B

∥∇fi(x)−∇fi(y)∥ (54)

≤ 1

K

∑
i∈B

Li∥x− y∥ (55)

=

∑
i∈B Li

K
∥x− y∥. (56)

The first inequality uses triangular inequality, the second inequality uses the assumption that each fi
is Li-smooth, i.e. ∥∇fi(x) −∇fi(y)∥ ≤ Li∥x − y∥. Now, it is well known that if fB is

∑
i∈B Li

K -

smooth, fixing x∗ ∈ argmin f we have ∥∇fB(x)∥2 ≤ 2
∑

i∈B Li

K (fB(x) − fB(x∗)), see Nesterov
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(2018) page 30. We upper bound this quantity uniformly in the constants Li over all the batches.

∥∇fB(x)∥2 ≤ 2

∑
i∈B Li

K
(fB(x)− fB(x∗) ≤ 2L(K)(fB(x)− fB(x∗). (57)

where L(K) := maxB′,|B′|=K

(
1
K

∑
i∈B′ Li

)
. Now, we get back to the random variable ∇̃K(·), we

take the expectation over all the batches of size K, and we get

E
[
∥∇̃K(x)∥2

]
≤ 2L(K)E

[∑
i∈B

1

K
(fi(x)−min fi)

]
. (58)

Note that E
[
1
K

∑
i∈B fi(x)

]
= f(x). By interpolation (Assumption 1), there exists x∗ ∈ argmin f

such that x∗ ∈ argmin fi for all 1 ≤ i ≤ N , which implies

E

[
1

K

∑
i∈B

min fi

]
= E

[
1

K

∑
i∈B

fi(x
∗)

]
= f(x∗) := f∗. (59)

Proof of Theorem 1 Now to prove Theorem 1, note that the same proof as for Theorem 6.8 and
Theorem 6.12 from Garrigos & Gower (2023) holds, replacing their Lemma 6.7 by our Lemma 2,
setting in their proof σ∗

b = 0 (Assumption 1) and replacing their 2Lb by L(K), allowing in our case
to take a stepsize s ≤ 1

2L(K)
, instead of their 1

4Lb
in the convex case, and s ≤ 1

L(K)
instead of their

1
2Lb

in the strongly convex case. Note that for the convex case, the ε-precision is actually reach with

the sequence xn := 1
n

∑N−1
i=0 xi, i.e. we get a number of iterations such that E [f(xn)− f∗] ≤ ε.

Proof of Theorem 2 For the case of a convex function, the almost sure result from Sebbouh et al.
(2021) follows from a decrease in expectation. It is obtained in our case replacing their Lemma 1.3
by our Lemma 2. As for the result in expectation, Lemma 2 allows us to choose s ≤ 1

L(K)
. The

rest of the proof follows as in theirs, as no supplementary assumption is needed in the interpolated
case (Assumption 1). For the case of strongly convex functions, we apply the same proof as for
Proposition 6, fixing En = ∥xn − x∗∥2, where x∗ ∈ argmin f with s = 1

L(K)
.

E.2 CONVERGENCE OF SGD WITH STRONG GROWTH CONDITION

Theorem 1 states a convergence result for SGD (Algorithm 1) without making use of the strong
growth condition. It is however possible, as done in Gupta et al. (2023). In Theorem 8 we give a
very similar result.

Theorem 8. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. Then SGD (Algo-
rithm 1) with stepsize s = 1

ρKL allows to reach an ε-precision (2) at the following iterations

n ≥ ρK
2

L

ε
∥x0 − x∗∥2 (f convex), (60)

n ≥ ρK
L

µ
log

(
2
f(x0)− f∗

ε

)
(f µ-strongly convex). (61)

Proof. These results can be obtained by adapting Theorem 3.4 and Theorem 3.6 from Garrigos &
Gower (2023). Indeed, the two equations from their Lemma 2.28 can be adapted to our case in the
following way, ∀x ∈ Rd

E
[
f(x− s∇̃K(x))− f(x)

]
≤ −s

(
1− ρKsL

2

)
∥∇f(x)∥2. (62)

Then, we can reuse their proof just replacing the condition s ≤ 1
L by s ≤ 1

ρKL . The conclusion
proceeds fixing s = 1

ρKL from their Corollaries 3.5 and 3.8.
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It is straightforward to compare these bounds with those of Theorem 3. This comparison indicates
that the bounds of SNAG always outperform the bounds of SGD. The only exception that could
occur is in the convex case if ∥x0 − x∗∥ ≪ 1, i.e. if we start close from the minimum.
Making such conclusions would be misleading. Indeed in some cases, the characterization of Theo-
rem 8 is suboptimal compared to the one of Theorem 1. Consider the strongly convex bounds: we
then compare ρK L

µ log
(
2 f(x0)−f∗

ε

)
(Theorem 8) with 4Lmax

µ log
(
2 f(x0)−f∗

µε

)
(Theorem 1). Now,

the question is:

How do we compare ρKL with Lmax?

We recall the example of Section D.1, that is

f(x) =
1

2
(
1

2
⟨e1, x⟩2︸ ︷︷ ︸
:=f1(x)

+
1

2
⟨a, x⟩2︸ ︷︷ ︸
:=f2(x)

). (63)

where e1 = (1, 0), a = (1, ε), ε > 0. We already computed the gradient, that is

∇f(x) = 1

2
⟨e1, x⟩ e1 +

1

2
⟨a, x⟩ a. (64)

One can check that the Hessian matrix is

∇2f(x) =
1

2

(
2 ε
ε ε2

)
. (65)

The L-smoothness constant is the larger eigenvalue, that is 1
4

((
ε4 + 4

) 1
2 + ε2 + 2

)
= 1 + o(ε).

Moreover, L(1) = Lmax = 1 + ε2. Now, we saw in Section D.1 that ρK is at least of the order
O
(

1
ε2

)
. Thereby, for small values of ε, we have ρKL≫ L(1), inducing the bound of Theorem 8 is

significantly suboptimal. Therefore, Theorem 1 is more relevant than Theorem 8 to compare SGD
and SNAG convergence speeds.

F CONVERGENCE OF SNAG WITHOUT STRONG GROWTH CONDITION

In this Section, we derive a finite time convergence result in expectation for SNAG (Algorithm 2)
without assuming SGC. In this case, as for Theorems 1-2, the bound over the noise is derived from
the geometrical properties of the functions.
Lemma 3. Assume f is such that assumptions (1)-(2) hold.

If f is µ-strongly convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2(L(K) − µ)(f(x)− f∗). (66)

If f is convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (67)

We prove Lemma 3 in Appendix F.3. We note L the smoothness constant of f . Under assump-
tion (2), we have L ≤ 1

N

∑N
i=1 Li ≤ L(K).

Theorem 9. Under Assumptions 1 and 2, SNAG (Algorithm 2) with batch size K guarantees to
reach an ε-precision (2) at the following iterations:

• If f is convex, sn = 1
2L(K)

1
n+1 , αn = n

n+2 , ηn = 1
4

1
L(K)

, β = 1,

n ≥ 4L(K)

ε ∥x0 − x∗∥2. (68)

• If f is µ-strongly convex, s = 1
16

µ
(L(K)−µ)2 , β = 1 − 1

8
µ

(L(K)−µ) , η = 1
4

1
(L(K)−µ) , α =

1
1+ 1

4
µ

(L(K)−µ)

,

n ≥ 8
L(K)−µ

µ log
(

2(f(x0)−f∗)
ε

)
. (69)

In this Section, we denote Fn the σ-algebra generated by the n + 1 first iterates {xi}ni=0 generated
by SNAG (Algorithm 2), i.e. Fn = σ(x0, . . . , xn). Also, we note En[·] the conditional expectation
with respect to Fn.
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Comparison with the bounds of Theorem 1 on SGD (Algorithm 1)

• f convex. In this case, the bound for SGD of Theorem 1 is

n ≥ 2
L(K)

ε
∥x0 − x∗∥2.

This bound for SGD is always better than the bound of SNAG from Theorem 9. However
this comparison would be misleading, as Theorems 3 show that in the convex case, if
aiming for a small enough precision ε, SNAG’s bound can always be smaller than the one
of SGD.

• f strongly convex. In this case, the bound for SGD of Theorem 1 is

n ≥ 2
L(K)

µ
log

(
2
f(x0)− f∗

µε

)
.

The bound on SNAG from Theorem 9 is better if L(K)

µ ≤ 4
3 . In realistic setting, L(K)

µ ≫ 1.
In particular if f is quadratic strongly convex, to ensure that the bound of SNAG is better,
we need to ensure that λmax

λmin
≤ 4

3 , where λmax and λmin are respectively the highest and
the lowest eigenvalues of the Hessian matrix of f .

Using Assumptions 1-2 to study the convergence of SNAG almost always leads to a worst bound
than SGD independently of the value of L(K), which is misleading. This is because, in this case, we
have to take safer parameters for SNAG. For example in the convex case, sn → 0 in order to ensure
convergence, compared to the Theorem using SGC (Theorem 3) where sn = s > 0. This means
that this is the SGC characterization of the noise that allows to stabilize SNAG and which tells us
how to chose parameters such that the convergence is of the orderO

(
n−2

)
. Our results of Section 4

indicate that what is behind, in the finite sum setting, is the question of measuring the correlation
between gradients, that is encapsulated within the SGC.

Comparison with Theorem 3 Compared to Theorem 3 that makes use of SGC, in Theorem 9
we had to choose more conservative parameters in order to ensure convergence, leading to similar
convergence bound as for SGD (Algorithm 1). The comparison of the bounds of Theorems 3-9 are
similar to the ones of Remark 3.
Remark 9. In Remark 3, we compare SGD and SNAG under different assumptions, in the sense that
we assume that the SGC holds when studying convergence of SNAG, but not for SGD. In Section E.2,
we see that using SGC to study SGD leads to convergence bounds that are always worse than for
SNAG, which is misleading. In this Section, with Theorem 9, we show that not using SGC when
studying SNAG leads to an opposite phenomenon, with bounds for SGD that are almost always
better than for SNAG, which is also misleading. Indeed, in particular, as seen in Remark 3, in the
convex case, using SGC to study SNAG allows to have acceleration over SGD in finite-time, as long
as we aim for a small enough ε-precision. Also, in our experiments, e.g. on Figures 1-2, we see that
both cases are possible, namely SGD outperforming SNAG or SNAG outperforming SGD.

F.1 PROOF OF THEOREM 9, CONVEX CASE

We first recall the SNAG algorithm (Algorithm 2), with step-size sn and β = 1
yn = αnxn + (1− αn)zn
xn+1 = yn − sn∇̃K(yn)

zn+1 = zn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1).

1

2
∥zn+1 − x∗∥2 =

1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − zn, ∇̃K(yn)⟩ (70)

=
1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − yn, ∇̃K(yn)⟩ (71)

+ ηn
αn

1− αn
⟨xn − yn, ∇̃K(yn)⟩ (72)
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Taking the expectation, using, under the assumption sn ≤ 1
L , Lemma 4, we have

En

[
1

2
∥zn+1 − x∗∥2

]
≤ 1

2
∥zn − x∗∥2 + ηn⟨x∗ − yn,∇f(yn)⟩ (73)

+ ηn
αn

1− αn
⟨xn − yn,∇f(yn)⟩+

η2n
sn

En [f(yn)− f(xn+1)] + η2nEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
.

(74)

Using convexity of f on both scalar products, we get

En

[
1

2
∥zn+1 − x∗∥2 +

η2n
sn

(f(xn+1)− f∗)
]
≤ 1

2
∥zn − x∗∥2 + ηn

αn

1− αn
(f(xn)− f(yn)) (75)

+

(
η2n
sn
− ηn

)
(f(yn)− f∗) + η2nEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (76)

In order to bound En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
, we use Lemma 3

En

[
1

2
∥zn+1 − x∗∥2 +

η2n
sn

(f(xn+1)− f∗)
]
≤ 1

2
∥zn − x∗∥2 + ηn

αn

1− αn
(f(xn)− f∗)

+

(
η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K)

)
(f(yn)− f∗).

(77)

We set
η2n
sn

=
C

L(K)
(n+ 1)α, ηn

αn

1− αn
=

C

L(K)
nα,

for some positive constants C and α. We want to have α to be the highest possible, while having
the factor behind (f(yn)− f∗) non-positive. We have

η2n
sn

=
C

L(K)
(n+ 1)α ⇒ ηn =

√
Csn
L(K)

(n+ 1)
α
2 . (78)

And then

ηn
αn

1− αn
=

C

L(K)
nα ⇒ αn

1− αn
=

1

ηn

C

L(K)
nα (79)

⇒ αn

1− αn
=

√
C

L(K)sn

nα

(n+ 1)
α
2
. (80)

We plug the above equations in the factor behind (f(yn)− f∗)

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) =

C

L(K)
(n+ 1)α − C

L(K)
nα (81)

−

√
Csn
L(K)

(n+ 1)
α
2 + 2snC(n+ 1)α (82)

=
C

L(K)

(
(n+ 1)α − nα −

√
L(K)sn

C
(n+ 1)

α
2 (83)

+2snL(K)(n+ 1)α
)
. (84)

Now, we note sn = C1

(n+1)β
. Then, we have

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) =

C

L(K)

(
(n+ 1)α − nα −

√
L(K)C1

C
(n+ 1)

α−β
2

+ 2L(K)C1(n+ 1)α−β
)
. (85)
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We have to ensure that the positive term are not of larger order than the negative ones. We have
(n+ 1)α − nα ≈ αnα−1. So, to have that this term is controlled, we need to have{

2(α− 1) ≤ α− β
α− β ≥ 2(α− β) (86)

The second constraint implies α ≤ β. As we want α to be maximal, we set α = β. The first
constraint implies α+ β ≤ 2, we get α = β = 1. Plugging these values into Equation (85)

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) = 0⇒ C

L(K)

(
1−

√
L(K)C1

C
+ 2L(K)C1

)
= 0. (87)

⇒
√
L(K)C1

C
= 1 + 2L(K)C1 (88)

⇒ C =
C1L(K)

(1 + 2L(K)C1)2
(89)

We choose C1 such that C is maximal, and C1L(K)

(1+2L(K)C1)2
is maximized at C1 =

L(K)

2 ⇒ C = 1
8 .

So we have
sn =

1

2L(K)

1

n+ 1
, ηn =

1

4L(K)
, (90)

and αn

1−αn
= 1

ηn

C
L(K)

n = n
2 , so αn = n

n+2 . Note that as L(K) ≥ L, this choice of sn satisfies the

constraint sn ≤ 1
L , needed to apply Lemma 4. With these choices of parameters, taking expectation

on Equation (77), we have

E
[
1

2
∥zn+1 − x∗∥2 +

(n+ 1)

8L(K)
(f(xn+1)− f∗)

]
≤ E

[
1

2
∥zn − x∗∥2 +

n

8L(K)
(f(xn)− f(x∗))

]
.

(91)
By induction, we get

E
[
1

2
∥zn+1 − x∗∥2 +

(n+ 1)

8L(K)
(f(xn+1)− f∗)

]
≤ E

[
1

2
∥z0 − x∗∥2

]
=

1

2
∥x0 − x∗∥2. (92)

Now, as 1
2∥zn+1 − x∗∥2 + (n+1)

8L(K)
(f(xn+1)− f∗) ≥ (n+1)

8L(K)
(f(xn+1)− f∗), we get

E [(f(xn+1)− f∗)] ≤
4L(K)

(n+ 1)
∥x0 − x∗∥2 (93)

We see that, compared to the case where we assumed SGC, where we had a decrease of the order
O
(
n−2

)
, the decrease here is of the order O

(
n−1

)
. In term of ε solution, it leads to

n ≥
4L(K)

ε
∥x0 − x∗∥2. (94)

F.2 PROOF OF THEOREM 9, STRONGLY CONVEX CASE

We use the following Lyapunov function.

En := f(xn)− f∗ +
µ

2
∥zn − x∗∥2 (95)

Proceeding to the same computations as in the proof of Theorem 3 in the strongly convex case, we
arrive to Equation (148), namely

En [En+1] = βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (96)

+
µ

2
η2En

[
∥∇̃K(yn)∥2

]
− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2

− αβηµ

1− α
⟨En

[
∇̃K(yn)

]
, yn − xn⟩ − µη⟨En

[
∇̃K(yn)

]
, yn − x∗⟩.
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Recall En

[
∇̃K(yn)

]
= ∇f(yn). By Lemma 4, and Lemma 3 we respectively have

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [(f(yn)− f(xn+1))] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
, (97)

and

E
[
∥∇f(yn)− ∇̃K(yn)∥2

]
≤ 2(L(K) − µ)(f(yn)− f∗). (98)

So, by combining the two previous equations, we have

En

[
∥∇̃K(yn)∥2

]
≤ 2

s
En [(f(yn)− f(xn+1))] + 4(L(K) − µ)(f(yn)− f∗). (99)

Now, we inject this in (96), also using strong convexity.

En [En+1] ≤ βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (100)

+
µ

s
η2En [f(yn)− f(xn+1)] + 2µη2(L(K) − µ)(f(yn)− f∗)

− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 −
αβηµ

1− α
(f(yn)− f(xn))− µη(f(yn)− f∗)

− µ2η

2
∥yn − x∗∥2.

Collecting terms and removing the ∥yn − xn∥2 term, we get

En [En+1] ≤ βEn +
(
1− µ

s
η2
)
En [f(xn+1)− f∗] + β

(
αηµ

1− α
− 1

)
(f(xn)− f∗) (101)

+
µ

2
(1− β − µη)∥yn − x∗∥2 + µη

(
η

s
− αβ

1− α
− 1 + 2η(L(K) − µ)

)
(f(yn)− f∗)

We fix s = µη2 and α
1−α = 1

ηµ , which cancels En [f(xn+1)− f∗] and the f(xn)− f∗ terms. With
these choices, we want

η

s
− αβ

1− α
− 1 + 2η(L(K) − µ) =

1

µη
− β

µη
− 1 + 2η(L(K) − µ) = 0 (102)

⇒1− β = µη(1− 2η(L(K) − µ)) (103)

We want to maximize the right quantity with respect to η. It is maximized for η = 1
4(L(K)−µ) , and

in this case:

β = 1− µη(1− 2η(L(K) − µ)) = 1− 1

4

µ

(L(K) − µ)
(1− 1

2
) = 1− 1

8

µ

(L(K) − µ)
(104)

Also with that choice of η and β, we have 1−β−µη = 1
8

µ
(L(K)−µ)−

1
4

µ
(L(K)−µ) = −

1
8

µ
(L(K)−µ) < 0,

which ensures that we can control the ∥yn − x∗∥2 term. Thus, with the choice of parameters

s =
1

16

µ

(L(K) − µ)2
, β = 1− 1

8

µ

(L(K) − µ)
, η =

1

4

1

(L(K) − µ)
, α =

1

1 + 1
4

µ
(L(K)−µ)

,

(105)
we have

En [En+1] ≤
(
1− 1

8

µ

(L(K) − µ)

)
En −

1

16

µ2

(L(K) − µ)
∥yn − x∗∥2 (106)

Ignoring norm term, taking expectation and by induction

E [En] ≤
(
1− 1

8

µ

(L(K) − µ)

)n

E [E0] (107)
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Finally, we just bound E0, by strong convexity

E0 = f(x0)− f∗ +
µ

2
∥x0 − x∗∥2 ≤ 2(f(x0)− f∗), (108)

as we assumed x0 = z0. Thus, we get

E[f(xn)− f∗)] ≤ 2

(
1− 1

8

µ

(L(K) − µ)

)n

E [f(x0)− f∗)] (109)

We obtain a bound in term of ε solution following the same reasoning as for the proof of Theorem 3
in the strongly convex case, and obtain jfathat such a solution is achieved if

n ≥ 8
L(K) − µ

µ
log

(
2(f(x0)− f∗)

ε

)
(110)

F.3 ADDITIONAL LEMMA

In this section, we prove Lemma 3. Then, we introduce and prove Lemma 4.

First, we recall the statement of Lemma 3.

Lemma. Assume f is such that assumptions (1)-(2) hold.

If f is µ-strongly convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2(L(K) − µ)(f(x)− f∗). (111)

If f is convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (112)

Proof. We have the elementary relation:

E
[
∥∇f(x)− ∇̃K(x)∥2

]
= E

[
∥∇̃K(x)∥2

]
− ∥∇f(x)∥2. (113)

If f is µ-strongly convex, it satisfies the Polyak-Łojasiewicz inequality (Necoara et al., 2019),
namely

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗). (114)

The convex case can be obtained by letting µ → 0. In this case, we only have ∥∇f(x)∥2 ≥ 0. To
conclude, we apply Lemma 2 and we get the result.

Lemma 4. Assuming f is L-smooth and sn ≤ 1
L , iterates of SNAG give:

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [(f(yn)− f(xn+1))] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (115)

Proof. Using smoothness, we get

f(xn+1) ≤ f(yn) + ⟨∇f(yn), xn+1 − yn⟩+
L

2
∥xn+1 − yn∥2 (116)

f(xn+1) ≤ f(yn)− sn⟨∇f(yn), ∇̃K(yn)⟩+
Ls2n
2
∥∇̃K(yn)∥2. (117)

We have

⟨∇f(yn), ∇̃K(yn)⟩ = ⟨∇f(yn)− ∇̃K(yn), ∇̃K(yn)⟩+ ∥∇̃K(yn)∥2 (118)

= −∥∇f(yn)− ∇̃K(yn)∥2 + ∥∇̃K(yn)∥2 − ⟨∇f(yn)− ∇̃K(yn),∇f(yn)⟩.
(119)
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Note that taking conditional expectation with respect to Fn, the scalar product in equation equa-
tion 119 gets cancelled. Inserting (119) in (117) and taking conditional expectation, we have

En [f(xn+1)] ≤ En [f(yn)] + snEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
(120)

− sn
(
1− Lsn

2

)
En

[
∥∇̃K(yn)∥2

]
(121)

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [f(yn)− f(xn+1)] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (122)

Where we used in the second inequality that sn
(
1− Lsn

2

)
≥ 1

2 , provided that sn ≤ 1
L .

G CONVERGENCE OF SNAG WITH STRONG GROWTH CONDITION

In Sections G.1 and G.2, we provide for completeness a proof of Theorem 3, that is a similar result to
the one from Vaswani et al. (2019). Our proof is a slightly simpler formulation of the algorithm. In
Sections G.3 and G.4, we extend these results proving new almost sure convergences (Theorem 4),
that are asymptotically better that the results in expectation.

In this Section G, we denote Fn the σ-algebra generated by the n + 1 first iterates {xi}ni=0 gener-
ated by SNAG (Algorithm 2), i.e. Fn = σ(x0, . . . , xn). Also, we will note En[·] the conditional
expectation with respect to Fn.

First, we present a technical result (Lemma 5) that will be useful in our proofs.

Lemma 5. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. If yn and xn+1 are
generated by SNAG (Algorithm 2), then with s = 1

LρK

∥∇f(yn)∥2 ≤ 2LρKEn [f(yn)− f(xn+1)] (123)

where En stands for the conditional expectation with respect to Fn.

Proof. By L-smoothness, we have

f(xn+1) ≤ f(yn) + ⟨∇f(yn), xn+1 − yn⟩+
L

2
∥xn+1 − yn∥2 (124)

= f(yn)− s⟨∇f(yn), ∇̃K(yn)⟩+
Ls2

2
∥∇̃K(yn)∥2. (125)

By taking conditional expectation,

En [f(xn+1)− f(yn)] ≤ −s∥∇f(yn)∥2 +
Ls2

2
En

[
∥∇̃K(yn)∥2

]
. (126)

Then, by strong growth condition (SGC), we have

En [f(xn+1)− f(yn)] ≤ s
(
LρK
2

s− 1

)
∥∇f(yn)∥2. (127)

To maximize the decrease, we choose s = 1
LρK

, leading to

En [f(xn+1)− f(yn)] ≤ −
1

2LρK
∥∇f(yn)∥2. (128)

G.1 CONVEX-EXPECTATION

In this section, we prove statement (8) of Theorem 3 which is the convergence rate of SNAG algo-
rithm for a convex function.
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We first recall the SNAG algorithm (Algorithm 2), with a fixed step-size s and β = 1
yn = αnxn + (1− αn)zn
xn+1 = yn − s∇̃K(yn)

zn+1 = zn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1).

1

2
∥zn+1 − x∗∥2 =

1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − zn, ∇̃K(yn)⟩ (129)

=
1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − yn, ∇̃K(yn)⟩ (130)

+ ηn
αn

1− αn
⟨xn − yn, ∇̃K(yn)⟩. (131)

After taking conditional expectation with respect to Fn, by the convexity of f , SGC and Lemma 5,
we have
1

2
En[∥zn+1 − x∗∥2] ≤

1

2
∥zn − x∗∥2 − ηn(f(yn)− f(x∗)) + ηn

αn

1− αn
(f(xn)− f(yn)) (132)

+ Lρ2Kη
2
nEn[f(yn)− f(xn+1)]. (133)

We can reformulate as

En[Lρ
2
Kη

2
n (f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2] ≤ ηn

αn

1− αn
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

(134)

+

(
Lρ2Kη

2
n − ηn − ηn

αn

1− αn

)
(f(yn)− f∗).

(135)

We define parameters as

Lρ2Kη
2
n =

C

L
(n+ 1)2, ηn

αn

1− αn
=
C

L
n2, (136)

with C ≥ 0.

This parameter setting implies ηn =
√
C

LρK
(n+ 1). Thus, we have

Lρ2Kη
2
n − ηn − ηn

αn

1− αn
=
C

L
(2n+ 1)−

√
C

LρK
(n+ 1) ≤ 0 (137)

⇒
√
C ≤ 1

ρK

n+ 1

2n+ 1
. (138)

As we have, for all n ∈ N, 1
2 ≤

n+1
2n+1 ≤ 1, at best we can set

√
C = 1

2ρK
. With this choice, we have

C = 1
4ρ2

K
, ηn = 1

Lρ2
K

n+1
2 and

αn

1− αn
=
C

L
n2η−1

n =
1

2

n2

n+ 1
. (139)

This implies that αn =
n2

n+1

2+ n2

n+1

. With this choice of parameter, we have

En

[
(n+ 1)2

4Lρ2K
(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2

]
≤ n2

4Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2.

(140)

Finally, we get the convergence rate

E[f(xn+1)− f∗] ≤
2Lρ2K

(n+ 1)2
∥x0 − x∗∥2. (141)

To conclude:

2Lρ2K
n2
∥x0 − x∗∥2 ≤ ε⇒

√
2L

ε
ρK∥x0 − x∗∥ ≤ n. (142)
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G.2 STRONGLY CONVEX - EXPECTATION

In this section, we prove statement (9) of Theorem 3. Let us remind the algorithm
yn = αnxn + (1− αn)zn
xn+1 = yn − s∇̃K(yn)

zn+1 = βzn + (1− β)yn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1). We introduce the following Lyapunov energy:

En = f(xn)− f∗ +
µ

2
∥zn − x∗∥2 (143)

We compute:

En+1 − En = f(xn+1)− f(xn) +
µ

2
∥zn+1 − x∗∥2 −

µ

2
∥zn − x∗∥2. (144)

We start considering the right term
∆n = ∥zn+1 − x∗∥2 − ∥zn − x∗∥2

= ∥βzn + (1− β)yn − η∇̃K(yn)− x∗∥2 − ∥zn − x∗∥2

= (β2 − 1)∥zn − x∗∥2 + (1− β)2∥yn − x∗∥2 + η2∥∇̃K(yn)∥2

+2β⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩ − 2(1− β)η⟨∇̃K(yn), yn − x∗⟩
by construction of Algorithm 2. We now control the first scalar product: using the definition of
Algorithm 2, we have zn = yn + α

1−α (yn − xn), therefore

⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩
= ⟨yn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩

+
α

1− α
⟨yn − xn, (1− β)(yn − x∗)− η∇̃K(yn)⟩

= (1− β)∥yn − x∗∥2 − η⟨yn − x∗, ∇̃K(yn)⟩ −
α

1− α
η⟨yn − xn, ∇̃K(yn)⟩

+
α

1− α
(1− β)⟨yn − xn, yn − x∗⟩

Now, applying the relation 2⟨a, b⟩ = ∥a+b∥2−∥a∥2−∥b∥2 to a = yn−x∗ and b = α
1−α (yn−xn),

we get

α

1− α
⟨yn − xn, yn − x∗⟩ =

1

2
∥zn − x∗∥2 −

1

2

(
α

1− α

)2

∥yn − xn∥2 −
1

2
∥yn − x∗∥2, (145)

so that
⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩

=
1− β
2

(
∥zn − x∗∥2 + ∥yn − x∗∥2 −

(
α

1− α

)2

∥yn − xn∥2
)
− η⟨yn − x∗, ∇̃K(yn)⟩

− α

1− α
η⟨yn − xn, ∇̃K(yn)⟩

and
∆n = −(1− β)∥zn − x∗∥2 + (1− β)∥yn − x∗∥2 + η2∥∇̃K(yn)∥2

−β(1− β)
(

α

1− α

)2

∥yn − xn∥2 − 2
αβη

1− α
⟨∇̃K(yn), yn − xn⟩

−2η⟨∇̃K(yn), yn − x∗⟩.
Reinjecting ∆n in the expression of En+1 − En and by definition of En, we get

En+1 − En = −(1− β)En + f(xn+1)− f∗ − β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2

+
µ

2
η2∥∇̃K(yn)∥2 −

µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 (146)

− αβηµ

1− α
⟨∇̃K(yn), yn − xn⟩ − µη⟨∇̃K(yn), yn − x∗⟩. (147)
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We take the conditional expectation with respect to Fn:

En [En+1] = βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (148)

+
µ

2
η2En

[
∥∇̃K(yn)∥2

]
− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2

− αβηµ

1− α
⟨En

[
∇̃K(yn)

]
, yn − xn⟩ − µη⟨En

[
∇̃K(yn)

]
, yn − x∗⟩. (149)

Using strong convexity of f , the strong growth condition (SGC), and then Lemma 5, we have:

En [En+1] ≤ βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2

+ µLρ2Kη
2En [f(yn)− f(xn+1)]−

µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 (150)

− αβηµ

1− α
(f(yn)− f(xn))− µη(f(yn)− f∗)−

µ2η

2
∥yn − x∗∥2. (151)

≤ βEn +
(
1− µLρ2Kη2

)
En [f(xn+1)− f∗] + β

(
αηµ

1− α
− 1

)
(f(xn)− f∗)

+
µ

2
(1− β − µη)∥yn − x∗∥2 + µη

(
Lρ2Kη −

αβ

1− α
− 1

)
(f(yn)− f∗) (152)

We make the following choices: η = 1√
µLρK

, β = 1 − µη = 1 − 1
ρK

√
µ
L and α

1−α = 1
µη =

ρK

√
L
µ ⇒ α = 1

1+ 1
ρK

√
µ
L

. As we have:

Lρ2Kη −
αβ

1− α
− 1 = ρK

√
L

µ
− ρK

√
L

µ
(1− 1

ρK

√
µ

L
)− 1 = 0, (153)

these choices cancel all the terms. Thus we have:

En [En+1] ≤
(
1− 1

ρK

√
µ

L

)
En ⇒ E [En+1] ≤

(
1− 1

ρK

√
µ

L

)n+1

E0. (154)

Now, note that E0 = f(x0)− f∗+ µ
2 ∥x0−x

∗∥2 ≤ 2(f(x0)− f∗), because f is µ-strongly convex.
We deduce the following convergence rate:

E[f(xn)− f∗] ≤ 2

(
1− 1

ρK

√
µ

L

)n

(f(x0)− f∗). (155)

A sufficient condition on the number n of iterations needed to achieve a precision ε is then naturally
given by

2

(
1− 1

ρK

√
µ

L

)n

(f(x0)− f∗) ≤ ε. (156)

By taking the log, we get

n log

(
1− 1

ρK

√
µ

L

)
+ log

(
2(f(x0)− f∗)

ε

)
≤ 0. (157)

Or equivalently

n ≥
∣∣∣∣log(1− 1

ρK

√
µ

L

)∣∣∣∣−1

log

(
2(f(x0)− f∗)

ε

)
. (158)

Using the inequality: |log (1− x)| ≥ x for any x ∈ (0, 1), we observe that∣∣∣∣log(1− 1

ρK

√
µ

L

)∣∣∣∣−1

log

(
2(f(x0)− f∗)

ε

)
≤ ρK

√
L

µ
log

(
2(f(x0)− f∗)

ε

)
(159)

Hence a sufficient condition on the number of iterations to reach a given precision ε is

n ≥ ρK
√

L
µ log

(
2(f(x0)−f∗)

ε

)
⇒ n ≥

∣∣∣log (1− 1
ρK

√
µ
L

)∣∣∣−1

log
(

2(f(x0)−f∗)
ε

)
⇒ E[f(xn)− f∗] ≤ ε (160)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

G.3 CONVEX - ALMOST SURE

In this section we extend statement (8) of Theorem 3 to get a new almost sure convergence rate.

Proposition 5. Assume f is L-smooth, convex, and that ∇̃K verifies the SGC for ρK ≥ 1. Then

SNAG (Algorithm 2) with parameter setting s = 1
ρKL , β = 1, αn =

n2

n+1

4+ n2

n+1

, ηn = 1
4

n2

n+1 generates

a sequence {xn}n∈N such that

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (161)

This result is asymptotically better than the result in expectation of Theorem 3. This asymptotic
speedup happens similarly considering the deterministic version of the algorithm (Attouch & Pey-
pouquet, 2016).
Following the scheme of the proof of Theorem 3.1 in Sebbouh et al. (2021), the Theorem 10 is the
key result of our proof.

Theorem 10 (Robbins & Siegmund (1971)). Let Vn,An,Bn and αn be positive sequences, adapted
to some filtration Fn. Assume the following inequality is verified for all n ∈ N :

E[Vn+1| Fn] ≤ Vn(1 + αn) +An −Bn (162)

Then, on the set {
∑

i≥0 αi < +∞,
∑

i≥0Ai < +∞}, Vn converges almost surely to a random
variable V∞, and we also have

∑
i≥0Bi < +∞.

Note that the choice of parameters stated in Proposition 5 are less agressive (multiplied by a factor
1
2 ) compared to the results in expectation (Theorem 8).

Proof. We start back from Equation (134) that we recall

En[Lρ
2
Kη

2
n(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2] ≤ ηn

αn

1− αn
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

(163)

+

(
Lρ2Kη

2
n − ηn − ηn

αn

1− αn

)
(f(yn)− f∗).

(164)

We set

Lρ2Kη
2
n =

C

L
(n+ 1)2, ηn

αn

1− αn
=
C

L
n2, (165)

with C ≥ 0.

In this proof, compared to the one of Theorem 3, we do not want to cancel the last term but to exploit
it. More precisely, we are looking forward to the following inequality

Lρ2Kη
2
n − ηn − ηn

αn

1− αn
≤ −ηn

2
(166)

Hence:

C

L
(2n+ 1) ≤ ηn

2
=

1

2

√
C

LρK
(n+ 1) ⇔

√
C ≤ 1

2ρK

n+ 1

2n+ 1
(167)

⇔ C ≤ 1

16ρ2K

(
n+ 1

n+ 1
2

)2

. (168)

With the choice C = 1
16ρ2

K
, the last inequality is verified. Then, we get the following parameters

ηn =
1

ρ2KL

n+ 1

4
,

αn

1− αn
=

1

4

n2

n+ 1
. (169)
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The latter induces αn =
n2

n+1

4+ n2

n+1

. Thus, we have

En

[
(n+ 1)2

16Lρ2K
(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2

]
≤ n2

16Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

− ηn
2
(f(yn)− f∗).

We can now apply Theorem 10 with

Vn :=
n2

16Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2,

An := 0,

Bn :=
ηn
2
(f(yn)− f∗),

αn := 0.

So we have almost surely∑
n≥0

Bn =
1

8ρ2KL

∑
n≥0

(n+ 1)(f(yn)− f∗) < +∞, (170)

which implies that ∑
n≥0

(n+ 1)(f(yn)− f∗) < +∞. (171)

By the definition of Algorithm 2 (β = 1 in the convex setting), we have

xn − zn = αn−1(xn−1 − zn−1) + (ηn−1 − s)∇̃K(yn−1). (172)

Moreover, we have

xn − yn = (1− αn)(xn − zn). (173)

By combining Equation (172) and Equation (173), we get

∥xn+1 − yn+1∥2 = (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 + (1− αn+1)
2(ηn − s)2∥∇̃K(yn)∥2

(174)

+ 2(1− αn+1)
2 αn

1− αn
(ηn − s)⟨xn − yn, ∇̃K(yn)⟩. (175)

By taking the expectation with respect to Fn, and using (ηn−s)2 ≤ η2n for n large enough, we have

En[∥xn+1 − yn+1∥2] ≤ (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 (176)

+ (1− αn+1)
2η2nEn[∥∇̃K(yn)∥2] + 2(1− αn+1)

2 αn

1− αn
(ηn − s)⟨xn − yn,∇f(yn)⟩. (177)

Using the convexity of f , we have ⟨xn − yn,∇f(yn)⟩ ≤ f(xn) − f(yn). Thanks to SGC and
Lemma 5, we have

En[∥xn+1 − yn+1∥2] ≤ (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 (178)

+ 2(1− αn+1)
2η2nLρ

2
KEn[f(yn)− f(xn+1)] (179)

+ 2(1− αn+1)
2 αn

1− αn
(ηn − s)(f(xn)− f(yn)). (180)
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We divide the previous inequality by (1− αn+1)
2

En

[
∥xn+1 − yn+1∥2

(1− αn+1)
2

]
≤
(

αn

1− αn

)2

∥xn − yn∥2 + 2η2nLρ
2
KEn[f(yn)− f(xn+1)] (181)

+ 2
αn

1− αn
(ηn − s)(f(xn)− f(yn)). (182)

Thus

En

[
∥xn+1 − yn+1∥2

(1− αn+1)
2

]
≤
(

αn

1− αn

)2

∥xn − yn∥2 + 2η2nLρ
2
KEn[(f

∗ − f(xn+1))] (183)

+ 2
αn

1− αn
(ηn − s)(f(xn)− f∗) (184)

+ 2

(
η2nLρ

2
K −

αn

1− αn
(ηn − s)

)
(f(yn)− f∗). (185)

By the parameter setting (Equation (169)) and the step-size s = 1
ρKL , we have

η2nLρ
2
K −

αn

1− αn
(ηn − s) =

1

16

2n+ 1

Lρ2K
+

1

LρK

1

4

n2

n+ 1
= O(n). (186)

By setting Cn := 2
(
η2nLρ

2
K −

αn

1−αn
(ηn − s)

)
(f(yn) − f∗), Equation (171) and Equation (186)

gives that almost surely ∑
n

Cn < +∞. (187)

By defining λn := 1
1−αn

and the parameter setting (Equation (169)), Equation 183 can be trans-
formed into

En[λ
2
n+1∥xn+1 − yn+1∥2 +

1

8

(n+ 1)2

Lρ2K
(f(xn+1)− f∗)] (188)

≤ (1− λn)2 ∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗)−

n2

2LρK(n+ 1)
(f(xn)− f∗) + Cn (189)

≤ λ2n∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗)−

n2

2LρK(n+ 1)
(f(xn)− f∗) + Cn (190)

− (2λn − 1)∥xn − yn∥2. (191)

Recalling
∑

n Cn < +∞, we then use Theorem 10 with

Ṽn := λ2n∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗),

Ãn := Cn,

B̃n :=
n2

2LρK(n+ 1)
(f(xn)− f∗) + (2λn − 1)∥xn − yn∥2,

α̃n := 0.

Note that λn = 1
1−αn

=
4+ n2

n+1

4 ≥ 1, 2λn − 1 ≥ λn ≥ 0 and B̃n is positive. So, we have that
lim Ṽn := Ṽ∞ exists almost surely, and

∑
n B̃n < +∞ almost surely. However, we have

λnB̃n ≥
λnn

2

2LρK(n+ 1)
(f(xn)− f∗) + λ2n∥xn − yn∥2. (192)

Moreover, we can compute by the parameter setting (Equation 169)

λnn
2

2LρK(n+ 1)
=

4 + n2

n+1

4

1

LρK

1

2

n2

n+ 1
=

n2

8Lρ2K

ρK(4 + n2

n+1 )

n+ 1
. (193)
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As
ρK(4+ n2

n+1 )

n+1 = ρK
n2+4n+4
n2+2n+1 > 1, we have λnn

2

2LρK(n+1) >
n2

8Lρ2
K

, and thus

λnB̃n ≥ Ṽn. (194)
We can deduce from the previous inequality∑

n≥0

B̃n =
∑
n≥0

1

λn
λnB̃n ≥

∑
n≥0

1

λn
Ṽn = 4

∑
n≥0

Ṽn

4 + n2

n+1

(195)

As
∑
B̃n <∞ almost surely, we have

∑
n≥0

Ṽn

4+ n2

n+1

< +∞ almost surely, and necessarily V∞ = 0

almost surely. Then, almost surely
1

8

n2

Lρ2K
(f(xn)− f∗)

a.s.→ 0. (196)

Finally, we get the result of Proposition 5

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (197)

G.4 STRONGLY CONVEX - ALMOST SURE

Similarly to Section G.3, we extend statement (8) of Theorem 3 to get a new, asymptotically better,
almost sure convergence result.
Proposition 6. Assume f isL-smooth, µ-strongly convex, and that ∇̃K verifies the SGC for ρK ≥ 1.
Then SNAG (Algorithm 2) with parameter setting α = 1

1+ 1
ρK

√
µ
L

, s = 1
ρKL , β = 1 − 1

ρK

√
µ
L and

η = 1
ρK

√
µL

generates a sequence (xn)n∈N such that for all ε > 0, we have

f(xn)− f∗
a.s.
= o ((q + ε)n) , (198)

∥zn − x∗∥2
a.s.
= o ((q + ε)n) (199)

where q := 1− 1
ρK

√
µ
L .

Proof. We use the following Lyapunov function

En := f(xn)− f∗ +
µ

2
∥zn − x∗∥2. (200)

We set q := 1− 1
ρK

√
µ
L . We fix ε′ > 0. By the Markov inequality and Equation (154), we get

P (En ≥ (q + ε′)nE0) ≤
E[En]

(q + ε′)nE0
≤
(

q

q + ε′

)n

. (201)

We sum on n ≥ 0 ∑
n≥0

P (En ≥ (q + ε′)nE0) ≤
∑
n≥0

(
q

q + ε′

)n

< +∞. (202)

SettingAn := {En ≥ (q+ε′)nE0}, we have by the Borel Cantelli Lemma that P (lim supAn) = 0,
which implies P (lim inf Ac

n) = 1, where Ac
n is the complementary of An. In other words, as

Ac
n := {En < (q+ε′)nE0}, then for almost every ω ∈ Ω, ∃N0(ω) ∈ N such that for all n ≥ N0(ω),

we have
En(ω) < (q + ε′)nE0. (203)

Thus, we have
En(ω)

(q + 2ε′)n
<

(
q + ε′

q + 2ε′

)n

E0 →
n→+∞

0 (204)

The right term is independent of ω, so almost surely, we have
En = o ((q + 2ε′)n)

Now fix ε = 2ε′ and we get
En = o ((q + ε)n) , (205)

and thus the result by definition of En.
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H PROOFS OF SECTION 4

In this section, we will prove our results that establish a link between the strong growth condition
SGC and the average correlation between gradients, by exploiting the finite sum structure (FS).

H.1 PROOF OF PROPOSITION 1

In order to demonstrate Proposition 1, we first establish Lemma 6.

Lemma 6. Let {ai}Ni=1 be a sequence of vectors in Rd and K ∈ N. We define B(K,N) = {B ⊂
{1, . . . , N}|Card(B) = K}. Then, we have

∥
N∑
i=1

ai∥2 =
N

K

1(
N
K

) ∑
B∈B(K,N)

∥
∑
i∈B

ai∥2 + 2
N −K
N − 1

∑
1≤i<j≤N

⟨ai, aj⟩ . (206)

Proof. We fix {i1, . . . , ik} ∈ B(K,N). We have

∥
∑

i∈{i1,...,ik}

ai∥2 = ∥
N∑
i=1

ai −
∑

i/∈{i1,...,ik}

ai∥2 (207)

= ∥
N∑
i=1

ai∥2 + ∥
∑

i/∈{i1,...,ik}

ai∥2 − 2

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ (208)

= ∥
N∑
i=1

ai∥2 +
∑

i/∈{i1,...,ik}

∥ai∥2 +
∑

i,j /∈{i1,...,ik}
i̸=j

⟨ai, aj⟩ − 2

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ .

(209)

We sum over all the possible B = {i1, . . . , ik} ∈ B(K,N). Note that |B(K,N)| =
(
N
K

)
. We split

each term in Equation (209), first

∑
B∈B(K,N)

∥
N∑
i=1

ai∥2 =

(
N

K

)
∥

N∑
i=1

ai∥2. (210)

The sum of the second term of Equation (209) is∑
B∈B(K,N)

∑
i/∈{i1,...,ik}

∥ai∥2 =
∑

B∈B(N−K,N)

∑
i∈{i1,...,in−k}

∥ai∥2 (211)

=

(
N − 1

N −K − 1

) N∑
i=1

∥ai∥2 (212)

=

(
N

K

)
N −K
N

N∑
i=1

∥ai∥2 (213)

=

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2 −
(
N

K

)
N −K
N

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (214)

The second equality comes from how many times the index i is picked by the sum. We thus count
the number of set {i1, . . . , in−k} ∈ {1, . . . , N}n−k such that i belongs to this set. This amounts to
compute the cardinal of the set {{i, i1, . . . , in−k−1}, i1, . . . , in−k−1 ∈ {1, . . . , N}\{i}}. This set
has the same size as B(N −K − 1, N − 1), which is

(
N−1

N−K−1

)
.
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The sum of the third term of Equation (209) is∑
B∈B(K,N)

∑
i,j /∈{i1,...,ik}

i ̸=j

⟨ai, aj⟩ =
∑

B∈B(N−K,N)

∑
i,j∈{i1,...,in−k}

i ̸=j

⟨ai, aj⟩ (215)

=

(
N − 2

N −K − 2

) N∑
i,j=1
i ̸=j

⟨ai, aj⟩ (216)

=

(
N

K

)
(N −K)(N −K − 1)

N(N − 1)

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (217)

Here, the second equality comes from the fact that we compute the size of the set
{{i, j, i1, . . . , in−k−2}, i1, . . . , in−k−2 ∈ {1, . . . , N}\{i, j}}, which is of the same size as B(N −
K − 2, N − 2), which is

(
N−2

N−K−2

)
.

Finally, we compute the sum of the fourth term of Equation (209), using Equation (213)

∑
B∈B(K,N)

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ =
N∑
i=1

〈
ai,

∑
B∈B(K,N)

∑
j /∈{i1,...,ik}

aj

〉
(218)

=

N∑
i=1

〈
ai,

(
N

K

)
N −K
N

N∑
j=1

aj

〉
(219)

=

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2. (220)

Now that we have computed the sum of each terms in Equation (209), we have

∑
B∈B(K,N)

∥
∑

i∈{i1,...,ik}

ai∥2 =

(
N

K

)
∥

N∑
i=1

ai∥2 +
(
N

K

)
N −K
N

∥ N∑
i=1

ai∥2 −
N∑

i,j=1
i ̸=j

⟨ai, aj⟩


(221)

+

(
N

K

)
(N −K)(N −K − 1)

N(N − 1)

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ − 2

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2 (222)

=

(
N

K

)(
1− N −K

N

)
∥

N∑
i=1

ai∥2 +
(
N

K

)
N −K
N

(
N −K − 1

N − 1
− 1

) N∑
i,j=1
i ̸=j

⟨ai, aj⟩ (223)

=

(
N

K

)
K

N
∥

N∑
i=1

ai∥2 −
(
N

K

)
K

N

N −K
N − 1

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (224)

By rearranging the terms, we obtain the desired result

∥
N∑
i=1

ai∥2 =
N

K

1(
N
K

) ∑
B∈B(K,N)

∥
∑

i∈{i1,...,ik}

ai∥2 +
N −K
N − 1

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (225)
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The proof the Proposition 1 is simply an application of Lemma 6 with ai = 1
N∇fi(x). We obtain

∥∇f(x)∥2 = ∥ 1
N

N∑
i=1

∇fi(x)∥2 (226)

=
N

K

1(
N
K

) ∑
B∈B(K,N)

∥ 1
N

∑
i∈{i1,...,ik}

∇fi(x)∥2 +
N −K
N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩

(227)

=
K

N

1(
N
K

) ∑
B∈B(K,N)

∥ 1
K

∑
i∈{i1,...,ik}

∇fi(x)∥2 +
N −K
N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩

(228)

=
K

N
E[∥∇̃K(x)∥2] + N −K

N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩ (229)

=
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (230)

H.2 PROOF OF PROPOSITION 2

In this part, we demonstrate Proposition 2. The result is a direct consequence of the RACOGA
condition. Indeed, considering batch of size 1, by Proposition 1 we have ∀x ∈ Rd

∥∇f(x)∥2 =
1

N
E
[
∥∇̃1(x)∥2

]
+

2

N2

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (231)

Now recall the RACOGA condition

∀x ∈ Rd,

∑
1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N

i=1∥∇fi(x)∥2
≥ c. (RACOGA)

We inject RACOGA in Equation (231) to get

∥∇f(x)∥2 ≥ 1

N
E
[
∥∇̃1(x)∥2

]
+ c

2

N2

N∑
i=1

∥∇fi(x)∥2 (232)

=
1

N
E
[
∥∇̃1(x)∥2

]
+ c

2

N
E
[
∥∇̃1(x)∥2

]
(233)

=
1

N
(1 + 2c)E

[
∥∇̃1(x)∥2

]
. (234)

From Equation (234), that holds ∀x ∈ Rd, we deduce that f satisfy SGC with ρ1 ≤ N
1+2c .

H.3 PROOF OF LEMMA 1

In this part, we demonstrate Lemma 1. Assume that for batches of size 1, f verifies a ρ1-SGC, i.e.

∀x ∈ Rd,
1

N

N∑
i=1

∥∇fi(x)∥2 ≤ ρ1∥∇f(x)∥2. (235)

By Proposition 1, we have

∥∇f(x)∥2 =
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (236)
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Moreover, by developing the squared norm of ∇f(x) and rearranging, we get

1

N

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ =
N

2
∥∇f(x)∥2 − 1

2N

N∑
i=1

∥∇fi(x)∥2, (237)

hence, by reinjecting (237) into (236),

E
[
∥∇̃K(x)∥2

]
=

N

K

(
1− N −K

N − 1

)
∥∇f(x)∥2 + 1

NK

N −K
N − 1

N∑
i=1

∥∇fi(x)∥2 (238)

≤ N

K

(
1− N −K

N − 1
+

1

N

N −K
N − 1

ρ1

)
∥∇f(x)∥2 (239)

≤ 1

K(N − 1)
(N(K − 1) + (N −K)ρ1) ∥∇f(x)∥2 (240)

using the SGC assumption for batches of size 1.

Finally we deduce Lemma 1: the SGC is verified for every size of batch K ≥ 1 and we have

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (241)

Remark 10. Lemma 1 offers an indirect way to demonstrate Corollary 1. Indeed, the result of
Proposition 1 for the special case of batches of size 1 is easily computed, as we have

∥∇f(x)∥2 =
1

N2

N∑
i=1

∥∇fi(x)∥2 +
2

N2

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ . (242)

Thus, when PosCorr is verified, with batches of size 1, f verifies SGC with constant ρ1 = N . By
applying Lemma 1 with ρ1 = N , we get that for batches of size K, f verifies SGC) with constant

ρK ≤
1

K(N − 1)
(N(N −K) + (K − 1)N) =

N

K
. (243)

For the clarity of our presentation, we choose to present Proposition 1 before Lemma 1, even if it
can be seen as a corollary of this result.

One can obtain a reciprocal result of Lemma 1.

Proposition 7. Assume that for batches of size K, f verifies the SGC with constant ρK . Then, for
batches of size 1, f verifies the SGC with a constant ρ1 which satisfies

ρ1 ≤
KρK(N − 1)−N(K − 1)

N −K
. (244)

Proof. From Equality (238), we have

E
[
∥∇̃K(x)∥2

]
=

1

KN

N −K
N − 1

N∑
i=1

∥∇fi(x)∥2 +
K − 1

K

N

N − 1
∥∇f(x)∥2. (245)

Using the SGC, we obtain

1

K

N −K
N − 1

1

N

N∑
i=1

∥∇fi(x)∥2 ≤
(
ρK −

K − 1

K

N

N − 1

)
∥∇f(x)∥2. (246)

So, the SGC is verified with batches of size 1 and (244) is proved.
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Remark 11. Proposition 7 indicates that satisfying the SGC for batches of size K implies interpo-
lation (Assumption 1) if each fi is convex. Indeed, Proposition 7 induces that the SGC is verified for
batches of size 1 with some ρ1 ≥ 1, i.e.

∀x ∈ Rd,
1

N

N∑
i=1

∥∇fi(x)∥2 ≤ ρ1∥∇f(x)∥2. (247)

Interpolation is then a direct consequence of evaluating Inequality (247) at some x∗ ∈ argmin f .
Indeed, it implies that each minimizer of f is a critical point of each fi. Convexity of the fi allow to
conclude.

H.4 PROOF OF THEOREM 5

In this section, we demonstrate Theorem 5. Recall that we assume f is convex, L-smooth, and that
∇̃1 verify SGC for ρ1 ≥ 1. We know that SNAG with good choice of parameters (see Theorem 3)
guarantees to reach an ε-precision (2) if

n ≥ ρK

√
2L

ε
∥x0 − x∗∥. (248)

Note that by Lemma 1, we know that ρk, the SGC constant associated to ∇̃K , exists, and that

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (249)

So, in particular, we are ensured to reach an ε-precision if

n ≥ 1

K(N − 1)
(ρ1(N −K) + (K − 1)N)

√
2L

ε
∥x0 − x∗∥ (250)

=

(
N −K
N − 1

+
N

ρ1

K − 1

N − 1

)
︸ ︷︷ ︸

:=∆K

ρ1
K

√
2L

ε
∥x0 − x∗∥. (251)

Now, to translate the result in term of number of ∇fi evaluated, note that each iteration requires to
evaluate K different ∇fi, because we consider batches of size K. Finally, the number of ∇fi to
evaluate is

∆Kρ1

√
2L

ε
∥x0 − x∗∥. (252)

H.5 BOUND ON RACOGA

In this section, we bound the ratio
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2 , that is involved in the RACOGA con-

dition.
Proposition 8. Let x ∈ Rd\X . We have

−1

2
≤
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≤ N − 1

2
. (253)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}.

Proof. The upper-bound relies on the inequality ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2, for a, b ∈ Rd.∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≤
1

2

∑
1≤i<j≤N

(
∥∇fi(x)∥2 + ∥∇fj(x)∥2

)
(254)

=
N − 1

2

N∑
i=1

∥∇fi(x)∥2. (255)
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Using ⟨a, b⟩ ≥ −1
2∥a∥

2− 1
2∥b∥

2, for a, b ∈ Rd, we could get a lower-bound. This lower-bound is not
tight when considering a sum of two or more scalar products. This is because the critical equality
case occurs when a = −b. However considering at least 3 vectors, they cannot be respectively
opposite to each other. Interestingly, Proposition 1 provides a way to get a tighter lower-bound.

By contradiction, assume there exists xε ∈ Rd\X such that∑
1≤i<j≤N ⟨∇fi(xε),∇fj(xε)⟩∑N

i=1∥∇fi(xε)∥2
= −1

2
− ε (256)

with ε > 0. Using Proposition 1 with batches of size 1, we have

∥∇f(xε)∥2 =
1

N2

N∑
i=1

∥∇fi(xε)∥2 +
2

N2

∑
1≤i<j≤N

⟨∇fi(xε),∇fj(xε)⟩ (257)

=
1

N2

N∑
i=1

∥∇fi(xε)∥2 −
2

N2

(
1

2
+ ε

) N∑
i=1

∥∇fi(xε)∥2 (258)

= − 2ε

N2

N∑
i=1

∥∇fi(xε)∥2 < 0. (259)

We thus arrive at a contradiction, as ∥∇f(xε)∥2 is non negative. As a consequence, (256) cannot
hold. Thus, at worst we have for all x ∈ Rd\X

−1

2
≤
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

. (260)

So, Proposition 8 is proved.

I RACOGA VALUES IN LINEAR REGRESSION

In this section, we give deeper insights considering RACOGA values in the case of the linear re-
gression problem. Moreover, we investigate, in this linear regression context, the link between
RACOGA values and the curvature.

We have {ai, bi}Ni=1, where each (ai, bi) ∈ Rd × R, and we want to minimize f , with

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

1

2
(⟨ai, x⟩ − bi)2. (LR)

As mentioned in Section 5.1, in this case the correlation between gradients is directly linked to the
correlation between data by

⟨∇fi(x),∇fj(x)⟩︸ ︷︷ ︸
gradient correlation

= (⟨ai, x⟩ − bi)(⟨aj , x⟩ − bj) ⟨ai, aj⟩︸ ︷︷ ︸
data correlation

. (261)

In particular uncorrelated data, i.e. ⟨ai, aj⟩ = 0, will induce uncorrelated gradients, i.e. ∀x ∈
Rd, ⟨∇fi(x),∇fj(x)⟩ = 0. In this case, RACOGA is verified for c = 0. In this section, we will
see that outside this special case of orthogonal data, the characterization of RACOGA values is a
challenging problem.

I.1 TWO FUNCTIONS IN TWO DIMENSIONS

We study in this subsection the simplified case with d = 2, N = 2 and b1 = b2 = 0, i.e. two
functions defined on R2 such that 0 is their unique minimizer. Formally the function we consider is
the following

f(x) :=
1

2

(
1

2
⟨a1, x⟩2 +

1

2
⟨a2, x⟩2

)
. (2f)
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In this special case, we look at the gradient correlation, with same sign of the RACOGA values,
∆(x) := ⟨∇f1(x),∇f2(x)⟩ = ⟨a1, x⟩ ⟨a2, x⟩ ⟨a1, a2⟩ . (262)

If ⟨a1, a2⟩ ≠ 0, ∆(x) is not identically equal to zero. Without loss of generality, for the following
reasoning we can assume ⟨a1, a2⟩ > 0. Choose x0 ∈ R2 such that ⟨a1, x0⟩ > 0 and ⟨a2, x0⟩ ̸=
0. The function x → ⟨a1, x⟩ has a kernel a⊥1 , the orthogonal of a1. Moving along this kernel,
i.e. considering x = x0 + k, k ∈ a⊥1 , if a1 and a2 are not colinear, one can make the scalar
product ⟨a2, x⟩ be positive or negative while ⟨a1, x⟩ > 0 as it remains equal to ⟨a1, x0⟩. Therefore
necessarily, if ⟨a1, a2⟩ ≠ 0 and a1 and a2 are not colinear, we have minx ∆(x) < 0. So, if
⟨a1, a2⟩ ≠ 0, the minimum of the RACOGA values on the space is necessarily negative.

Figure 9: Illustration of the RACOGA values for problem (2f), along a circle around the solution.
On the left part, a1 and a2 are orthogonal, inducing RACOGA is constant equal to zero. On the right
part, a1 and a2 are slightly correlated, inducing positive and negative RACOGA values. Note that
the non positive RACOGA areas exactly contain the points x ∈ Rd such that ⟨a1, x⟩ ⟨a2, x⟩ ≤ 0.

Figure 9 illustrates this behaviour. We observe that non orthogonality of a1 and a2 creates non
positive and non negative areas of RACOGA values.

According to Theorem 5, non positive RACOGA values indicate a bad performance of SNAG (Al-
gorithm 2). The example of this section indicates that we can not hope to obtain theoretical results
that would ensure high RACOGA values for any linear regression problem, and thus a good perfor-
mance of SNAG. In the next section we see that, nevertheless, we can expect the RACOGA values
to be positive over most of the space.

I.2 RACOGA IS HIGH OVER MOST OF THE SPACE

In Section I.1, we considered a 2-dimensional example with 2-functions. Increasing dimension
and adding functions, the problem of characterizing RACOGA values becomes harder. In the case
of independent data, it is possible to give a theoretical result considering the RACOGA values in
expectation over the data.

Proposition 9. Let f(x) = 1
N

∑N
i=1(Φ(x, ai) − bi)2 where {ai, bi}Ni=1 ∈ Rp × R are i.i.d. and

Φ : Rd × Rp → R is differentiable. We have

E[
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩] =
N(N − 1)

2
∥E[(Φ(x, a1)− b1)∇Φ(x, a1)]∥2 ≥ 0. (263)

In particular if Φ(x, ai) = ⟨x, ai⟩ and a1 ∼ N (m,Γ), b1 ∼ N (mb, σ
2
b ) with a1 ⊥⊥ b1, we have

E

 ∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩

 =
N(N − 1)

2
∥Γx+mmtx−mbm∥2 ≥ 0. (264)

In both cases, the expectation is taken with respect to the data {ai, bi}Ni=1.
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Proposition 9 indicates that when having a large amount of data, we can expect the RACOGA values
to be positive over a large part of the space. The proof of Proposition 9 is deferred in Appendix I.4.

To confirm this statement empirically, for a fixed dataset {ai, bi}Ni=1, we compute the RACOGA
values on a sphere whose center is a minimizer of the function. Note that by the linearity of the
gradient, the RACOGA values taken on this sphere are invariant by homothety. We set the bias, i.e.
the {bi}Ni=1, at zero. This forces zero to be a minimizer, without loss of generality. The function we
consider is the following

f(x) =
1

N

N∑
i=1

1

2
⟨ai, x⟩2 . (265)

(a) Uncorrelated data (b) Correlated data

Figure 10: Histogram distribution of the RACOGA values for points sampled uniformly on a sphere
centered on a minimizer. On the left plot, the data are fewly correlated and the RACOGA values
are mostly positive. On the right plot there is correlation inside data, and all RACOGA values are
positive. Note that the RACOGA values are significantly higher on the right plot, because of the
higher data correlation.

On Figure 10, we run this experiment in the case where {ai}Ni=1 are drawn uniformly onto the sphere,
inducing low correlation inside data, and also in the case it is drawn following a gaussian mixture
law, inducing higher correlation inside data. We set d = 1000, N = 100. It is the same problem
as for Figure 1, except that here we set the bias to zero. We sample 10000 points on the sphere. In
both cases, RACOGA is almost only non negative. More, all the RACOGA values are positive on
Figure 10b, i.e. for the correlated dataset. Note that the observations we made in Section 5.1 are
consistent: correlated data induce higher RACOGA values (Figure 10b), whereas with uncorrelated
data the RACOGA values are smaller (Figure 10a).

However, one should not conclude from Figure 10b that RACOGA values are positive everywhere,
as there could be non positive RACOGA value areas that are so small that our sampled points never
fall in. Even more, we should not conclude from the fact that the eventual areas of non positive
RACOGA values are small that the optimisation algorithms never cross them. We show in the
following section that, actually, these small non positive RACOGA value areas exist and attract the
optimization algorithms, and that stochasticity prevents the algorithm to get stuck inside.
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I.3 THE CURVATURE PROBLEM: FIRST ORDER ALGORITHMS ARE ATTRACTED BY LOW
RACOGA VALUE AREAS

In Section I.2, we showed that in the case d > N whereN is not too small, one can expect RACOGA
values to be high over most of the space. This statement is reinforced in the presence of correlation
inside data (Figure 10b).

However, if d is high, even though we sample a large amount of points to evaluate RACOGA values,
we could miss non positive RACOGA value areas if these areas are too small. On Figure 11, we
see that these areas indeed exist. Moreover, although they are tiny with respect to the whole space
(Section I.2), deterministic algorithms, namely GD (Algorithm 6) and NAG (Algorithm 7), dive into
these areas and stayed trapped inside. Strikingly, SNAG behaves differently and it manages not to
get stuck in the same area.

(a) Spherical data (b) Gaussian mixture data

Figure 11: Illustration of RACOGA values taken along iterations of GD (Algorithm 6), NAG (Al-
gorithm 7) and SNAG (Algorithm 2, batch size 1) for the linear regression problem. On the left plot,
the data are fewly correlated while on the right plot there is correlation inside data. Note that while
deterministic algorithms, i.e. GD and NAG, dive and stay in a negative RACOGA value area, the
stochasticity of SNAG enables it to not to be trapped in the same zone.

In the remaining of this section, we give an explanation of the behaviour observed on Figure 11.

First order algorithms fall in low curvature area In the case of linear regression, which amounts
to minimizing a quadratic function, it is well known that first order algorithms, namely algorithms
that use only gradient information, converge faster in the direction of high curvature, i.e. directions
such that the Hessian matrix has a high eigenvalue. We illustrate this phenomenon on Figure 12,
where we plot the first iterations of GD (Algorithm 6) and NAG (Algorithm 7) applied to the function

g(x) =
1

2
xTAx (266)

where A =

(
L 0
0 µ

)
, 0 < µ < L. The algorithms GD and NAG dive and stay in a low curvature

zone. However, note that the stochasticity of SNAG makes it unstable enough to not follow the exact
same path.

The RACOGA-Curvature link In this paragraph, we connect our observations about curvature
and RACOGA values. Intuitively, for a point x ∈ Rd such that RACOGA is small, i.e. gradients
are on average anti correlated, the gradients will compensate each other. Thus, we can expect that
around this point, the gradient will have low values. Considering linear regression, this induce that
non positive RACOGA areas tend to produce low curvature areas. We illustrate this phenomenon
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Figure 12: Illustration of the iterations of the trajectories of GD (Algorithm 6), NAG (Algorithm 7)
and SNAG (Algorithm 2) applied the function (266). We also display the curvature of the function,
which we define at x ∈ R2

∗ as xTAx
∥x∥2 . Note that the deterministic algorithms GD and NAG dive in the

direction of smallest curvature, and then move following this direction. Note also that the instability
of SNAG enables itself to follow less strictly this smallest curvature ravine.

on Figure 13, where we consider problem 2f. Actually if a1 and a2 have the same norm, the lowest
RACOGA direction coincides exactly with the lowest curvature direction. As we mentioned in the
previous paragraph that deterministic algorithms dive and stay in a low curvature zone, they actually
dive and stay in low RACOGA areas. The instability provided by stochasticity allows SNAG not to
get stuck inside these low RACOGA areas.

Figure 13: Comparison of the RACOGA and curvature values for problem (2f), along a circle around
the solution. On the left plot, a1 and a2 have the same norm, which is not the case on the right plot.
Note that the low curvature zone are close to the non positive RACOGA areas, and are exactly the
same when a1 and a2 have same norm.
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I.4 PROOF OF PROPOSITION 9

Proof of Equation (263) We consider the least square problem defined by

f(x) =
1

N

N∑
i=1

(Φ(x, ai)− bi)2, (267)

with Φ : Rd × Rp → R differentiable and {ai, bi}Ni=1, random variables drawn i.i.d.

By the independence of the variable, we have for i ̸= j

E[⟨∇fi(x),∇fj(x)⟩] = ⟨E[∇fi(x)],E[∇fj(x)]⟩ (268)

= ∥E[∇f1(x)]∥2 (269)

= ∥E[(Φ(x, a1)− b1)∇Φ(x, a1)]∥2 ≥ 0 (270)

Finally, we sum over N to get Equation (263).

Proof of Equation (264) First, we compute for a = (a(1), . . . , a(d)) ∈ Rd and b ∈ R

E[(⟨a, x⟩ − b)a] = (E[
∑
i

a(1)a(i)xi]− E[a(1)b], . . . ,E[
∑
i

a(d)a(i)xi]− E[a(d)b]). (271)

We have a ∼ N (m,Γ), b ∼ N (mb, σ
2
b ) with a ⊥⊥ b. So we can deduce that E[(a(i))2] = Γi,i +m2

i ,
and E[a(i)a(j)] = Γi,j +mimj . Thereby, we have for a fixed x ∈ Rd

E[(⟨a, x⟩ − b)a] = (E[
∑
i

a(1)a(i)xi]− E[a(1)b], . . . ,E[
∑
i

a(d)a(i)xi]− E[a(d)b]) (272)

= (
∑
i

E[a(1)a(i)]xi − E[a(1)]E[b], . . . ,
∑
i

E[a(d)a(i)]xi − E[a(d)]E[b]) (273)

= (
∑
i

Γ1,ixi +
∑
i

m1mixi −mbm1, . . . ,
∑
i

Γd,ixi +
∑
i

mdmixi −mbmd) (274)

= (
∑
i

Γ1,ixi, . . . ,
∑
i

Γd,ixi) + (m1, . . . ,md)
∑
i

mixi −mb(m1, . . . ,md) (275)

= Γx+ (mTx−mb)m (276)

From the previous computation and Equation (263), we deduce Equation (264).
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