
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADIENT CORRELATION IS A KEY INGREDIENT TO
ACCELERATE SGD WITH MOMENTUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Empirically, it has been observed that adding momentum to Stochastic Gradient
Descent (SGD) accelerates the convergence of the algorithm. However, the lit-
erature has been rather pessimistic, even in the case of convex functions, about
the possibility of theoretically proving this observation. We investigate the pos-
sibility of obtaining accelerated convergence of the Stochastic Nesterov Acceler-
ated Gradient (SNAG), a momentum-based version of SGD, when minimizing a
sum of functions in a convex setting. We demonstrate that the average correla-
tion between gradients allows to verify the strong growth condition, which is the
key ingredient to obtain acceleration with SNAG. Numerical experiments, both in
linear regression and deep neural network optimization, confirm in practice our
theoretical results.

1 INTRODUCTION

Supervised machine learning tasks can often be formulated as the following optimization prob-
lem (Hastie et al., 2009):

f∗ = min
x∈Rd

f(x), with f(x) :=
1

N

N∑
i=1

fi(x) (FS)

where for all i ∈ {1, . . . , N}, fi : Rd → R is associated to one data. As there is often no closed
form solution to problem (FS), optimization algorithms are commonly used. Considering high di-
mensional problems, first order algorithms such as gradient descent, namely algorithms that make
use of the gradient information, are popular due to their relative cheapness, e.g. compared to second
order methods which involve the computation of the Hessian matrix. In the case of problem (FS), the
gradient itself may be computationally heavy to obtain when N is large, i.e. for large datasets. This
is the reason why, instead of the exact gradient, practitioners rather use an average of a subsampled
set of several ∇fi, resulting in algorithms such as Stochastic Gradient Descent (SGD) (Robbins &
Monro, 1951) or ADAM algorithm (Kingma & Ba, 2015). Although an estimation of the gradient is
used, SGD performs well in practice (Goyal et al., 2017; Schmidt et al., 2021; Renaud et al., 2024).

Interpolation One of the key points that explain the good performance of SGD is that large ma-
chine learning models, such as over parameterized neural networks, are generically able to perfectly
fit the learning data (Cooper, 2021; Allen-Zhu et al., 2019; Nakkiran et al., 2021; Zhang et al.,
2021). From an optimization point of view, this fitting phenomenon translates into an interpolation
phenomenon (Assumption 1).

Assumption 1 (Interpolation). ∃x∗ ∈ argmin f, ∀1 ≤ i ≤ N, x∗ ∈ argmin fi.

Strikingly, under this assumption, theoretical results show that SGD performs as well as determinis-
tic gradient descent (Ma et al., 2018; Gower et al., 2019; 2021).

Momentum algorithms: hopes and disappointments Within the convex optimization realm, it is
well known that a first order momentum algorithm, named Nesterov Accelerated Gradient (NAG),
outperforms the gradient descent in term of convergence speed (Nesterov, 1983; 2018). A natu-
ral concern is thus whether, assuming interpolation and convexity, a stochastic version of NAG,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Stochastic Nesterov Accelerated Gradient (SNAG), can be faster than SGD. Unfortunately, exist-
ing works has expressed skepticism about the possibility of acceleration via momentum algorithms,
even assuming interpolation (Assumption 1). Devolder et al. (2014); Aujol & Dossal (2015) indicate
that momentum algorithms are very sensitive to errors on the gradient, due to error accumulation.
Also, the choice of parameters that offers acceleration in the deterministic case can make SNAG
diverge (Kidambi et al. (2018); Assran & Rabbat (2020); Ganesh et al. (2023)).

What keeps us hopeful Firstly, in the case of linear regression, depending on the data, SNAG can
accelerate over SGD (Jain et al., 2018; Liu & Belkin, 2020; Varre & Flammarion, 2022). Unfor-
tunately the methods used in those works are hardly generalizable outside of the linear regression
case. On the other hand, in a convex setting, Vaswani et al. (2019) show that under an assumption
over the gradient noise, named the Strong Growth Condition (SGC), SNAG can be stabilized, and
it could accelerate over SGD. However, it is not clear which functions satisfy this assumption, and
in which cases acceleration occurs.

On the convexity assumption For many machine learning models, such as neural networks, the
associated loss function is not convex (Li et al., 2018). However, even in the convex setting, there
is still work to do concerning the possibility of accelerating SGD with SNAG. For example, up to
our knowledge, characterizing convex smooth functions that satisfy SGC has not been addressed
yet. Finally, note that our core results about gradient correlation (Propositions 1-2) do not assume
convexity, and thus could be used in future works beyond the convex setting.

Can SNAG accelerate over SGD in a convex setting ?

Contributions (i) We give a new characterization of the Strong Growth Condition (SGC) constant
by using the correlation between gradients, quantified by RACOGA (Propositions 1-2), and we
exploit this link to study the efficiency of SNAG. (ii) Using our framework, we study the theoretical
impact of batch size on the algorithm performance, depending on the correlation between gradients
(Theorem 5). (iii) We complete convergence results of Vaswani et al. (2019); Gupta et al. (2023)
with new almost sure convergence rates (Theorem 4). (iv) We provide numerical experiments that
show that RACOGA is a key ingredient to have good performances of SNAG compared to SGD.

2 BACKGROUND

For a function f : Rd → R, continuously differentiable, we introduce the following definitions.

Definition 1. Let L > 0. f : Rd → R is L-smooth if∇f is L-Lipschitz.

Definition 1 implies that ∀x, y ∈ Rd, f(x) ≤ f(y)+⟨∇f(y), x− y⟩+ L
2 ∥x−y∥

2 (Nesterov, 2018)
and it ensures that the curvature of the function f is upper-bounded by L.

Definition 2. f : Rd → R is µ-strongly convex if there exists µ > 0 such that: ∀x, y ∈ Rd, f(x) ≥
f(y) + ⟨∇f(y), x− y⟩+ µ

2 ∥x− y∥
2. f : Rd → R is convex if it verifies this property with µ = 0.

Definition 2 implies that the curvature of the function f is lower-bounded by µ ≥ 0. Convex
functions are very convenient for optimization and widely studied (Nesterov, 2018; Beck, 2017).
For instance, a critical point of a convex function is the global minimum of this function.

Assumption 2 (smoothness). Each fi in (FS) is Li-smooth. We note L(K) := maxB
1
K

∑
i∈B Li

where B ⊂ {1, . . . , N}, Card(B) = K and we note Lmax := L(1) = max
1≤i≤N

Li.

Assumption 2 implies that f is L-smooth with L ≤ 1
N

∑N
i=1 Li≤ L(K) ≤ Lmax, and will be used

for the convergence results for SGD (Theorems 1-2).

SGD The stochastic gradient descent (Algorithm 1) is widely used despite its simplicity. It can be
viewed as a gradient descent where the exact gradient is replaced by a batch estimator

∇̃K(x) :=
1

K

∑
i∈B

∇fi(x), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where B is a batch of indices of size K sampled uniformly in {B ⊂ {1, . . . , N} | Card(B) = K}.
Note that ∇̃K(x) is a random variable depending on K, f and x.

Algorithm 1 Stochastic Gradient Descent
(SGD)

1: input: x0 ∈ Rd, s > 0
2: for n = 0, 1, . . . , nit − 1 do
3: xn+1 = xn − s∇̃K(xn)
4: end for
5: output: xnit

Algorithm 2 Stochastic Nesterov Accelerated
Gradient (SNAG)

1: input: x0 = z0 ∈ Rd, s > 0, β ∈ [0, 1],
(αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN

+
2: for n = 0, 1, . . . , nit − 1 do
3: yn = αnxn + (1− αn)zn
4: xn+1 = yn − s∇̃K(yn)

5: zn+1 = βzn + (1− β)yn − ηn∇̃K(yn)
6: end for
7: output: xnit

SNAG The Nesterov accelerated gradient algorithm (Algorithm 7 in Appendix B.1) allows to
achieve faster convergence than gradient descent when considering L-smooth functions that are
convex or strongly convex, see Nesterov (1983; 2018). Intuitively, a momentum mechanism accel-
erates the gradient descent. As proposed in Nesterov (2012), a stochastic version of the Nesterov
accelerated gradient algorithm can be developed, see Algorithm 2. Note that there exists several
ways to write it (see Appendix B.2).

Strong Growth Condition To our knowledge, this assumption was introduced in Polyak (1987),
and further used by Cevher & Vu (2019) as a relaxation of the maximal strong growth condition
(Tseng, 1998; Solodov, 1998).

Definition 3. The function f , with a gradient estimator ∇̃K (Equation 1), is said to verify the Strong
Growth Condition if there exists ρK ≥ 1 such that

∀x ∈ Rd, E
[
∥∇̃K(x)∥2

]
≤ ρK∥∇f(x)∥2. (SGC)

ρK quantifies the amount of noise: the larger ρK , the higher the noise. In some sense, the strong
growth condition allows to replace the norm of the stochastic gradient by the norm of the exact
gradient, up to a degrading constant ρK . We will see in Section 3 that it allows to recover similar
convergence results as for the deterministic case.

Example 1. Vaswani et al. (2019) show that if the function f is strongly convex and verifies As-
sumptions 1 and 2, then f verifies the strong growth condition with ρK =

L(K)

µ .

Remark 1. The SGC implies interpolation (Assumption 1) if each fi is convex, see Remark 11 in
Appendix H.3. However in the following results (Theorems 1-4), as we will only assume that the
sum of fi is convex, SGC will not enforce interpolation. It will imply instead that minimizers of f
are critical points of all fi.

Remark 2. Considering linear regression, one can choose functions such that the SGC is verified
only for arbitrary large values of ρK (see Appendix D.1). Worse, if we discard the convexity as-
sumption, then one can construct examples such that ρK does not exist (see Appendix D.2). Finding
classes of functions such that the SGC is verified for an interesting ρK is thus not an obvious task.

3 CONVERGENCE SPEED OF SNAG AND COMPARISON WITH SGD

In this section, we present convergence results for SNAG (Algorithm 2) under the Strong Growth
Condition (SGC). Before doing so, we introduce convergence results for SGD (Algorithm 1) in order
to compare the performance of these two algorithms. All the results introduced in this section are
summarized in Table 1.
For ε > 0, we say that an algorithm {xn}n reaches an ε-precision at rank νε ∈ R+ if

∀n ≥ νε, E [f(xn)− f∗] ≤ ε. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm Assumption over f Convergence

SGD convex E, ε solution O
(

L(K)

ε

)
, Thm 1

strongly convex E, ε solution O
(

L(K)

µ log
(
1
ε

))
, Thm 1

convex a.s., c.r o
(
1
n

)
, Thm 2

strongly convex a.s., c.r o
(
(1− µ

L + ε′)n
)
, Thm 2

SNAG Convex E, ε solution O
(
ρK

√
L
ε

)
, Thm 3

Strongly Convex E, ε solution O
(
ρK

√
L
µ log

(
1
ε

))
, Thm 3

Convex a.s., c.r o
(

1
n2

)
, Thm 4

Strongly a.s., c.r o
(
(1− 1

ρK

√
µ
L + ε′)n

)
, Thm 4

Table 1: Summary of all the convergence results presented in Section 3. Results stated as ϵ-solution
refer to convergence results of the form of Equation (2). c.r. stands for convergence rate. These
results are stated as an upper bound of the form f(xn) − f∗ = O (ψn), where ψn is a sequence
decreasing to 0.

We denote by Ω the set of realization of the noise. We say that an algorithm {xn}n converges almost
surely with a rate negligible compared to an ∈ RN

++, denoted by f(xn)− f∗
a.s.
= o (an), if and only

if ∃A ⊂ Ω, such that P(A) = 1 and ∀ω ∈ A, ∀ϵ > 0, ∃n0 ∈ N, such that ∀n ≥ n0,

|f(xn(ω))− f∗| ≤ ϵan. (3)

3.1 CONVERGENCE RESULTS FOR SGD

First, we state convergence results of SGD (Algorithm 1), in expectation and almost surely. The
two following theorems are variations of Gower et al. (2019) and Gower et al. (2021) (results in
expectation) and Sebbouh et al. (2021) (result almost surely). The difference is that our setting does
not assume the convexity of each fi in (FS), but rather only the convexity of the sum.

Theorem 1. Under Assumptions 1 and 2, SGD (Algorithm 1) guarantees to reach an ε-precision (2)
at the following iterations:

• If f is convex, s = 1
2L(K)

,

n ≥ 2
L(K)

ε
∥x0 − x∗∥2. (4)

• If f is µ-strongly convex, s = 1
L(K)

,

n ≥ 2
L(K)

µ
log

(
2
f(x0)− f∗

µε

)
. (5)

For the convex case, the bound is of the order O
(

L(K)

ε

)
, while for the strongly convex case the key

factor is L(K)

µ that may be very large for ill conditioned problems. These results are very similar to
those obtained in a deterministic setting, see Appendix B.1.
Additionally, almost sure convergence gives guarantees that apply to a single run of SGD.

Theorem 2. Under Assumptions 1 and 2, SGD (Algorithm 1) guarantees, in the sense of (3), the
following asymptotic results, :

• If f is convex, s = 1
2L(K)

,

f(xn)− f∗
a.s.
= o

(
1

n

)
. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• If f is µ-strongly convex, s = 1
L(K)

,

f(xn)− f∗
a.s.
= o ((q + ε′)n) , (7)

for all ε′ > 0, where q := 1− µ
L(K)

, x0 = x0 and xn+1 = 2
n+1xn + n−1

n+1xn.

Note that in the convex case, there is a need of averaging the trajectory along iterations. Proofs of
Theorem 1 and Theorem 2 are in Appendix E.1.

3.2 CONVERGENCE IN EXPECTATION FOR SNAG

We now state the convergence speed of SNAG in expectation under the Strong Growth Condition
(SGC) and we compare it with the convergence speed of SGD.

Theorem 3. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. Then the SNAG
(Algorithm 2) allows to reach an ε-precision (2) at the following iterations:
• If f is convex, s = 1

LρK
, ηn = 1

Lρ2
K

n+1
2 , β = 1, αn =

n2

n+1

2+ n2

n+1

,

n ≥ ρK
√

2L
ε ∥x0 − x

∗∥. (8)

• If f is µ-strongly convex, s = 1
LρK

, ηn = η = 1
ρK

√
µL
, β = 1− 1

ρK

√
µ
L , αn = α = 1

1+ 1
ρK

√
µ
L

,

n ≥ ρK
√

L
µ log

(
2 f(x0)−f∗

ε

)
. (9)

Theorem 3 is a variation of Vaswani et al. (2019); Gupta et al. (2023), see Appendix C.3. Indeed, our
proof (Appendix G) leads to the same convergence result as Vaswani et al. (2019), although resulting
in a slightly simpler formulation of the algorithm, as we do not have intermediate sequences of
parameters, see Appendix C. Note that we only use the L-smoothness of f and the SGC instead of
Assumptions 1-2 because SGC allows us to make weaker assumptions.

Theorem 3 indicates that the performance degrades linearly with ρK . For the special case ρK = 1,
bounds of Theorem 3 are the same as in the deterministic case (see Appendix B.1).
Remark 3. According to Theorem 3 and Theorem 1, SNAG (Algorithm 2) is faster than SGD (Al-
gorithm 1) when ρK is small enough, more precisely when

• ρK <

√
2L2

(K)

εL ∥x0 − x
∗∥ if f convex.

• ρK < 2

√
L2

(K)

µL if f µ-strongly convex, ignoring the differences between logarithm terms.

If f is convex and the required precision ε small enough, SNAG is faster than SGD. It is not neces-
sarily the case if f is µ-strongly convex, as the dependence on ε disappears. In particular, the bound
ρK ≤

L(K)

µ offered by strong convexity (see Example 1) does not guarantee acceleration.

Remark 4. In our comparison, we neither considered a convergence result for SGD (Algorithm 1)
that assumes the SGC, nor considered a result for SNAG (Algorithm 2) that does not assume SGC.
In both cases, doing so would lead to misleading comparisons, see summary in Remark 9.

3.3 ALMOST SURE CONVERGENCE FOR SNAG

We provide new asymptotic almost sure convergence results for SNAG (Algorithm 2). Almost sure
convergence has already been addressed in Gupta et al. (2023) without convergence rates.

Theorem 4. Assume f is L-smooth , and that ∇̃K verifies the SGC for ρK ≥ 1. Then SNAG
(Algorithm 2) guarantees, in the sense of (3), the following asymptotic results:
• If f is convex, s = 1

ρKL , ηn = 1
4

n2

n+1 , β = 1, αn =
n2

n+1

4+ n2

n+1

,

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• If f is µ-strongly convex, s = 1
ρKL , ηn = η = 1

ρK

√
µL

, β = 1− 1
ρK

√
µ
L , αn = α = 1

1+ 1
ρK

√
µ
L

,

f(xn)− f∗
a.s.
= o ((q + ε′)n) (11)

for all ε′ > 0, where q := 1− 1
ρK

√
µ
L .

See proofs in Appendix G. These bounds are asymptotically better than the finite time bounds, with
o(1

n2) compared to O(1
n2) (Theorem 3) for instance in the convex setting. A similar asymptotic

speedup phenomenon happens in the deterministic setting (Attouch & Peypouquet, 2016).
Remark 5. Theorem 4 states that in the convex case, the parameter ρK has a negligible impact
on the asymptotic convergence, and thus SNAG always asymptotically outperforms SGD. For the
strongly convex case, we need to ensure that ρK <

√
L2
(K)/µL to have SNAG faster than SGD.

The possibility of acceleration of SNAG over SGD is highly depending on the SGC constant ρK .
We need to investigate for a fine characterization of ρK to ensure acceleration in realistic contexts.

4 CHARACTERIZING CONVERGENCE WITH STRONG GROWTH CONDITION
AND GRADIENT CORRELATION

Although general bounds on the constant ρK are difficult to obtain (see Remark 2), Example 2 shows
that the characterization of the SGC constant given in Example 1 can be improved.

Example 2 (Motivating example). Consider the function f(x) = 1
2

(
µ
2 ⟨e1, x⟩

2 + L
2 ⟨e2, x⟩

2
)

, with
0 < µ < L and e1, e2 standard basis vectors. This function satisfies Assumption 1, Assumption
2 with Lmax = L, and it is µ

2 -strongly convex. Following Example 1, f satisfies the SGC with
ρ1 = 2L

µ , which can be arbitrary large. However, by developing ∥∇f(x)∥2, we get that the SGC is
actually verified for ρ1 = 2 < 2L

µ .

Example 2 motivates to seek for new, eventually tighter, characterizations of the SGC constant.

4.1 AVERAGE POSITIVE CORRELATION CONDITION

In this section, we show how we can exploit the finite sum structure of f to exhibit a condition that,
if verified, allows for a new computation of ρK .
Proposition 1. Considering batches of size K, we have

∥∇f(x)∥2 =
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (12)

Proposition 1 is proved in Appendix H.1. Without any assumption on f , Proposition 1 splits the
norm of ∇f into two terms. One relies on the gradient estimator, while the other one involves the
average correlation of gradients. From Proposition 1, we deduce the following consequence.
Corollary 1. Considering batches of size K, f satisfies the SGC with ρK = N

K if its gradients are,
on average, positively correlated, i.e. if we have

∀x ∈ Rd,
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≥ 0. (PosCorr)

Using condition PosCorr, Corollary 1 ensures that f verifies a SGC for a constant ρK only depending
on N and the batch size K, and not on geometrical parameters of f , e.g. µ or L.
Example 3. Assume fi(x) = Φ(⟨x, ui⟩), for some Φ : R → R that are non necessarily convex,
and some orthogonal basis {ui}i. We have ∇fi(x) = Φ′(⟨x, ui⟩)ui. Then, condition PosCorr is
verified, and f satisfies the SGC with ρK = N

K . Note that the upper-bound ρK ≤
L(K)

µ given
in Example 1 can be arbitrary large independently of N and K (see Example 2), meaning that
eventually N

K ≪ L(K)

µ . Thus, the new upper-bound for ρK (Corollary 1) can be much tighter,
resulting in improved convergence bounds for SNAG (Theorem 3-4).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In some cases, condition PosCorr could be too restrictive (see Appendix I). In the following section,
we show how to ensure the SGC with a relaxed version of PosCorr, named RACOGA.

4.2 RACOGA: RELAXING THE POSCORR CONDITION

We introduce a new condition named RACOGA which is related, but not the same as two other
conditions named gradient diversity (Yin et al., 2018) and gradient confusion (Sankararaman et al.,
2020). We discuss these different conditions in Appendix C.
Definition 4. We say that f verifies the Relaxed Averaged COrrelated Gradient Assumption
(RACOGA) if there exists c ∈ R such that the following inequality holds:

∀x ∈ Rd\X ,
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≥ c, (RACOGA)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}.

RACOGA is a generalisation of the condition PosCorr which allows to quantify anti correlation
(c < 0) or correlation (c > 0) between gradients.
Proposition 2. Assume RACOGA holds with c > − 1

2 . Then, considering batch of size 1, f verifies
the SGC with ρ1 = N

1+2c .

Proposition 2 is proved in Appendix H.2. Note that RACOGA is always verified with c = − 1
2 , and

we have c ≤ N−1
2 (Appendix H.5).

Remark 6. Proposition 2 creates a direct link between RACOGA and SGC. It indicates that the
more correlation between gradients there is, the lower is the SGC constant, which results in im-
proved convergence bounds for SNAG, see Theorems 3-4. Importantly if the gradients are too anti
correlated, Proposition 2 could only be verified with c arbitrary close to − 1

2 , resulting in a bound
for ρ1 increasing to +∞.

Remark 7. It is well known that considering high dimensional vectors drawn uniformly on the unit
sphere, they will be pairwise quasi orthogonal with high probability (Milman & Schechtman, 1986).
Sankararaman et al. (2020) show theoretically and empirically that considering neural networks
with data drawn uniformly on the unit sphere, under some assumptions, linked to over parameter-
ization, each scalar product ⟨∇fi(x),∇fj(x)⟩ is not too negative. In this case, RACOGA is thus
verified for a c that is at worst close to zero.

4.3 THE STRONG GROWTH CONDITION WITH BATCH SIZE 1 DETERMINES HOW THE
PERFORMANCE SCALES WITH BATCH SIZE

In this section, we build over Proposition 2, which only covers batches of size 1, to take into account
bigger batches.
Lemma 1. Assume that for batches of size 1, f verifies the SGC with constant ρ1. Then, for batches
of size K, f verifies the strong growth condition with constant ρK where

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (13)

Lemma 1 is proved in Appendix H.3. It shows that if the SGC is verified for batches of size 1, it is
verified for any size of batch K and we can compute an estimation of ρK .

Strikingly, Lemma 1 allows to study the effect of increasing batch size K on the number of ∇fi
evaluations we need to reach a ε-solution. We only consider the convex case, as the same reasoning
and results hold for strongly convex functions.

Theorem 5. Assume f is convex and L-smooth, and that ∇̃1 verifies the SGC with ρ1 ≥ 1. Then,
SNAG (Algorithm 2) with batch size K allows to reach an ε-precision (2) at this amount of ∇fi
evaluations:

∆K .ρ1

√
2L

ε
∥x0 − x∗∥, (14)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where ∆K :=
(

N−K
N−1 + N

ρ1

K−1
N−1

)
, and ρ1

√
2L
ε ∥x0 − x

∗∥ is the number of∇fi evaluations needed
to reach an ε-precision when using batches of size 1 according to Theorem 3.

Compared to the theorems of section 3, Theorem 5 gives a bound on the number of ∇fi we have to
evaluate, not the number of iterations of the algorithm, see the proof in Appendix H.4.

Theorem 5 indicates that using batches of size K, we need ∆K times the number of ∇fi that is
needed when using batches of size 1 to reach an ϵ-precision. Note also that it assumes the knowledge
of ρ1, that can be determined using RACOGA, see Proposition 2.

Remark 8. From Theorem 5, we distinguish 3 regimes, among which the orthogonality of gradients
is a critical state.

1. ρ1 = N . This is notably true when the gradients are orthogonal. ∆K = 1 for any value of
K, and the number of∇fi evaluations is exactly the same independently of batch size.

2. ρ1 < N . The gradients are in average positively correlated, i.e. RACOGA is verified
with c > 0. ∆K > 1, and increasing batch size leads to an increasing amount of ∇fi
evaluations. So, increasing batch size will make parallelization sublinearily efficient, a
phenomenon known as performance saturation, see Ma et al. (2018); Liu & Belkin (2020).

3. ρ1 > N . The gradients are in average negatively correlated, i.e. RACOGA is verified with
c < 0. ∆K < 1 and larger batches leads to a decreasing amount of∇fi evaluations.

Theorem 5 and Remark 8 state that, considering convergence speed, replacing the exact gradient by
a stochastic approximation is not necessarily cheaper, in term of number of∇fi we evaluate.

5 NUMERICAL EXPERIMENTS

Our theory indicates that the correlation between gradients, evaluated through RACOGA is needed
to have SNAG (Algorithm 2) outperforming SGD (Algorithm 1). We provide numerical experiments
to validate this statement by running SNAG to optimize classic machine learning models such as
linear regression (Section 5.1) or classification neural network (Section 5.2). We also compare its
performance with its deterministic version NAG (Algorithm 7), together with GD (Algorithm 6).

RACOGA in practice We introduced the RACOGA as an inequality that holds over all the space.
However, in practice, one only needs to consider the RACOGA values along the optimization path.
So this quantity will be computed only along this path.

Performance metrics Our interest will be how the algorithms make the training loss function
decrease. In order to make a fair comparison between algorithms, our x-axis is the number of ∇fi
evaluations, not nit, the number of iterations of the algorithms.

5.1 LINEAR REGRESSION

For a dataset {ai, bi}Ni=1 ∈ Rd×R, we want to solve a linear regression formulated as Problem LR.

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

1

2
(⟨ai, x⟩ − bi)2. (LR)

We consider the overparameterized case, i.e. d > N . Note that the linear regression problem is con-
vex and smooth, so we are in the theoretical setting of this paper. Moreover, we can directly compute
the parameters involved in the algorithms except for a parameter λ that replaces the unknown ρK
constant in the case of SNAG, see details in Appendix A.1.

An interesting characteristic of linear regression is that as∇fi(x) = (⟨ai, x⟩ − bi)ai, we have

⟨∇fi(x),∇fj(x)⟩︸ ︷︷ ︸
gradient correlation

= (⟨ai, x⟩ − bi)(⟨aj , x⟩ − bj) ⟨ai, aj⟩︸ ︷︷ ︸
data correlation

. (15)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The pairwise correlation between the gradients depends explicitly on the pairwise correlation inside
the data. Therefore, we expect the correlation inside data to impact on the RACOGA values, and
thus on the performance of stochastic algorithms such as SNAG (Algorithm 2).

To validate this intuition experimentally, we build two different datasets with N = 100 and d =
1000. The first set of {ai}Ni=1 is generated uniformly onto the d-dimensional sphere, such that the
data are fewly correlated. The second one is generated by a Gaussian mixture law with ten modes,
which induces correlation inside data. In both cases, the {bi}Ni=1 are generated by a Gaussian law.

(a) Low correlation within data (b) High correlation within data

Figure 1: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch
size 1), NAG (Algorithm 7) and SNAG (Algorithm 2, batch size 1) on a linear regression prob-
lem, together with an histogram distribution of RACOGA values along the iterations of SNAG.
Stochastic algorithms results are averaged over ten runs. On the left, data are generated by a law
that make them fewly correlated, while on the right the data are generated by a gaussian mixture,
leading to higher correlation. The λ parameter replaces the unknown SGC constant in the algorithm,
see Appendix A.1. Note that the data correlation results in better performance of SNAG, whereas
uncorrelated data lead to smaller RACOGA values, reducing the benefit of using SNAG.

SGD vs SNAG Comparing right parts of Figure 1a and Figure 1b, we observe that the lack of
correlation inside data leads to smaller values of RACOGA. In the case of Figure 1a, these lower
RACOGA values coincide with SGD being faster than SNAG. On the other hand we see on Figure 1b
that the presence of correlation inside the data makes the optimization path crosses areas with higher
RACOGA values, allowing SNAG to be faster than SGD. These experimental results support our
theoretical findings.

Deterministic vs stochastic Strikingly, one can also observe that the lack of correlation results in
poor performance of all the stochastic algorithms, especially compared to NAG (Figure 1a). Con-
versely, presence of correlation results in the opposite phenomenon (Figure 1b). These observations
are consistent with our theoretical findings of Section 4.3, which indicate that is some cases, stochas-
tic algorithms are not necessarily cheaper to use than their deterministic counterparts in term of∇fi
evaluations.

Role of λ In the case of SNAG (Algorithm 2), the choice of parameters from Theorem 3 involves
the ρK constant, that we do not know. We thus replace ρK by a parameter λ. The higher the
RACOGA are, the smaller ρK is, and the smaller λ can be chosen which results to more aggressive
steps of the algorithm, as s = 1

Lλ . See details in Appendix A.1.

5.2 NEURAL NETWORKS

In this second experiment, we aim to test if the crucial role of correlation inside data observed for
linear regression (Section 5.1) extend to more general models.

For a dataset {ai, bi}Ni=1 ∈ Rd × R, we consider a classification problem tackled with a neural
network model with the cross-entropy loss. Importantly, this problem is not convex, so we are not
anymore in the setting of our theoretical results.

We use the SNAG version implemented in Pytorch (Algorithm 3), that is equivalent to Algorithm 2,
see Appendix B.2

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

As for the linear regression problem, we use two different datasets. The first one, CIFAR10
(Krizhevsky & Hinton, 2009), is composed of images and serves as the correlated dataset. The
second one, generated onto the d-dimensional sphere with 2 different labels according to which
hemisphere belongs each data (see details in Appendix A.2), serves as the uncorrelated dataset. For
the CIFAR10 experiment, we use a Convolutional Neural Network (CNN, LeCun et al. (1998)), and
for the sphere experiment we use a Multi Layer Perceptron (MLP, Rumelhart et al. (1986)).

(a) SPHERE - MLP (b) CIFAR10 - CNN

Figure 2: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch
size 64), NAG (Algorithm 3, full batch) and SNAG (Algorithm 3, batch size 64) averaged over 10
different initializations, together with an histogram distribution of RACOGA values taken along the
optimization path, averaged over 10 different initialisations, where the x-axis scale is logarithmic.
On the left, we use a MLP to classify data sampled from a law such that they are fewly correlated. On
the right we use a CNN to classify CIFAR10 images. Note that contrarily to Figure 1, the presence
of correlation within data no longer influence the RACOGA values, that remains high in both cases,
resulting in better performances of SNAG.

Strikingly, it appears on Figures 2a and 2b that the correlation inside data has no longer direct impact
on the RACOGA values along the iterations path. In each case the RACOGA values are high, which
results is SNAG outperforming other algorithms. In particular, both deterministic algorithms are
significantly less efficient.

These experiments indicate that neural networks offer high RACOGA values, that SNAG can take
advantage of to converge faster.

6 CONCLUSION

In this paper, we introduced RACOGA to help us to understand in which case the Stochastic Nes-
terov Accelerated Gradient algorithm (SNAG) allows to outperform the Stochastic Gradient Descent
(SGD) for convex or strongly convex functions, as it happens for the deterministic counterparts of
these algorithms. We demonstrate theoretically and empirically that large RACOGA values al-
lows to accelerate SGD with momentum. RACOGA may be the, up to now, missing ingredient
to understand the acceleration possibilities offered by SNAG in this setting, outside of the linear
regression problems.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Mahmoud Assran and Michael Rabbat. On the convergence of nesterov’s accelerated gradient
method in stochastic settings. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org, 2020.

Hedy Attouch and Juan Peypouquet. The rate of convergence of nesterov’s accelerated forward-
backward method is actually faster than 1/kˆ2. SIAM Journal on Optimization, 26(3):1824–1834,
2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jean-François Aujol, Charles Dossal, and Aude Rondepierre. FISTA is an automatic geometrically
optimized algorithm for strongly convex functions. Mathematical Programming, pp. 1–43, 2023.

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, and Aude Rondepierre. Heavy Ball
momentum for non-strongly convex optimization. arXiv preprint arXiv:2403.06930, 2024.

Jean-François Aujol and Charles Dossal. Stability of over-relaxations for the forward-backward
algorithm, application to FISTA. SIAM Journal on Optimization, 25(4):2408–2433, 2015.

Rishab Balasubramanian, Rupashree Dey, and Kunal Rathore. Contrastive learning for ood in object
detection, 2022. URL https://arxiv.org/abs/2208.06083.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Volkan Cevher and Bang Cong Vu. On the linear convergence of the stochastic gradient method
with constant step-size. Optimization Letters, 13(5):1177–1187, 2019.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics
of Data Science, 3(2):676–691, 2021.

Aaron Defazio. On the curved geometry of accelerated optimization. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146:37–75, 2014.

Swetha Ganesh, Rohan Deb, Gugan Thoppe, and Amarjit Budhiraja. Does momentum help in
stochastic optimization? a sample complexity analysis. In Uncertainty in Artificial Intelligence,
pp. 602–612. PMLR, 2023.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1315–1323. PMLR, 2021.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. Sgd: General analysis and improved rates. In International conference on machine
learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kanan Gupta, Jonathan Siegel, and Stephan Wojtowytsch. Achieving acceleration despite very noisy
gradients. arXiv preprint arXiv:2302.05515, 2023.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009. ISBN
9780387848846. URL https://books.google.fr/books?id=eBSgoAEACAAJ.

Julien Hermant, Jean-François Aujol, Charles Dossal, and Aude Rondepierre. Study of the be-
haviour of nesterov accelerated gradient in a non convex setting: the strongly quasar convex case.
arXiv preprint arXiv:2405.19809, 2024.

Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
functions and beyond. In Conference on learning theory, pp. 1894–1938. PMLR, 2020.

11

https://arxiv.org/abs/2208.06083
https://books.google.fr/books?id=eBSgoAEACAAJ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton. Neural networks for machine learning. Coursera Lecture 6e, 2012. Available at
https://www.coursera.org/learn/neural-networks.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
pp. 545–604. PMLR, 2018.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insufficiency of ex-
isting momentum schemes for stochastic optimization. In 2018 Information Theory and Applica-
tions Workshop (ITA), pp. 1–9. IEEE, 2018.

Donghwan Kim and Jeffrey A Fessler. Optimized first-order methods for smooth convex minimiza-
tion. Mathematical programming, 159:81–107, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jongmin Lee, Chanwoo Park, and Ernest Ryu. A geometric structure of acceleration and its role
in making gradients small fast. Advances in Neural Information Processing Systems, 34:11999–
12012, 2021.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-parameterized learn-
ing. In International Conference on Learning Representations, 2020.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effec-
tiveness of sgd in modern over-parametrized learning. In International Conference on Machine
Learning, pp. 3325–3334. PMLR, 2018.

Vitali D Milman and Gideon Schechtman. Asymptotic theory of finite dimensional normed spaces:
Isoperimetric inequalities in riemannian manifolds, volume 1200. Springer Science & Business
Media, 1986.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175:69–107, 2019.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. USSR Compu-
tational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN 0041-5553.

Boris T Polyak. Introduction to optimization. 1987.

12

https://www.coursera.org/learn/neural-networks

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Marien Renaud, Jean Prost, Arthur Leclaire, and Nicolas Papadakis. Plug-and-play image restora-
tion with stochastic denoising regularization. In Forty-first International Conference on Machine
Learning, 2024.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathe-
matical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586.

Herbert Robbins and David Siegmund. A convergence theorem for non negative almost supermartin-
gales and some applications. In Jagdish S. Rustagi (ed.), Optimizing Methods in Statistics, pp.
233–257. Academic Press, 1971. ISBN 978-0-12-604550-5.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors, volume 323. Nature Publishing Group, 1986.

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and Tom Goldstein. The
impact of neural network overparameterization on gradient confusion and stochastic gradient de-
scent. In International conference on machine learning, pp. 8469–8479. PMLR, 2020.

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition. arXiv preprint arXiv:1308.6370, 2013.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine Learning, pp.
9367–9376. PMLR, 2021.

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochas-
tic gradient descent and stochastic heavy ball. In Conference on Learning Theory, pp. 3935–3971.
PMLR, 2021.

Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration phe-
nomenon via high-resolution differential equations. Mathematical Programming, pp. 1–70, 2022.

Mikhail V Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Com-
putational Optimization and Applications, 11:23–35, 1998.

Weijie Su, Stephen Boyd, and Emmanuel J. Candès. A differential equation for modeling nesterov’s
accelerated gradient method: theory and insights. Journal of Machine Learning Research, 17
(153):1–43, 2016.

Paul Tseng. An incremental gradient (-projection) method with momentum term and adaptive step-
size rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

Aditya Varre and Nicolas Flammarion. Accelerated sgd for non-strongly-convex least squares. In
Conference on Learning Theory, pp. 2062–2126. PMLR, 2022.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pp. 1195–1204. PMLR, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In International
Conference on Artificial Intelligence and Statistics, pp. 1998–2007. PMLR, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zeyuan Allen Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. In Christos H. Papadimitriou (ed.), 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pp. 3:1–3:22, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

These supplements contain additional details on the numerical experiments, proofs of our theoret-
ical results, and some additional insights. In Supplement A, we present additional details about
numerical experiments and supplementary experiments. In Supplement B, an optimization back-
ground is provided for completeness. In Supplement C, we present and comment related works.
In Supplement D, we provide simple examples of functions that do not verify SGC, or verify it
for a large constant. In Supplement E, we provide convergence proofs for SGD (Algorithm 1). In
Supplement F, we introduce new convergence results for SNAG (Algorithm 2) without assuming
that the SGC holds. In Supplement G, we present convergence proof for SNAG (Algorithm 2). In
Supplement H, we provide the proof of the results presented in Section 4. Finally in Supplement I,
we give deeper explanations concerning the link between RACOGA and algorithms considered in
this paper when applied to the problem of linear regression.

REPRODUCTIBILITY STATEMENT

Source code used in our experiments can be found in supplementary material. It contains a
README.md file that explains step by step how to run the algorithm and replicate the results of
the paper. We detail our datasets, network architectures and parameter choices in Section A.2. The-
oretical results presented in the paper are proved in the appendices.

IMPACT STATEMENT

The present paper, from an optimization point of view, aims to strengthen our understanding of the
theory of machine learning. A good comprehension of the tools that are broadly used is important
in order to quantify their impacts on the world. Moreover, considering environmental impact, it is
crucial to understand the process that makes learning more efficient, especially accelerate current
optimization algorithms, without necessarily using huge models.

A ADDITIONAL EXPERIMENTS AND DETAILS

This section presents additional details on the experiments for the sake of reproducibility. We also
provide additional experiments for a deeper analysis.

A.1 LINEAR REGRESSION

Algorithms and parameters For the problem LR, we can explicitly compute geometrical con-
stants. Indeed, f is L-smooth with L = 1

N λmax

(∑N
i=1 aia

T
i

)
, and each fi is Li-smooth

with Li = λmax

(
aia

T
i

)
. In the overparametrized case i.e. N < d, f is not µ-strongly con-

vex. However, up to a restriction to the vectorial subspace V spanned by {a1, . . . , aN}, f V is
µ = 1

N λmin

(∑N
i=1 aia

T
i

)
-strongly convex. Therefore in our experiments, in order to run GD,

SGD and NAG (respectively Algorithms 6, 1 and 7), we chose the parameters respectively accord-
ing to Theorem 6, 1 and 7. In the case of SNAG (Algorithm 2), in order to apply Theorem 3, we
also need to know the SGC constant ρK , where K is the selected batch size. However this constant
is hard to compute. The knowledge of RACOGA along iterates would be sufficient, but we do not
know this path before launching the algorithm. Thus, we run SNAG with this choice of parameters

s =
1

Lλ
, η =

1√
µLλ

, β = 1− 1

λ

√
µ

L
, α =

1

1 + 1
λ

√
µ
L

(16)

where λ ≥ 1. In order to achieve better performance, provided that the iterates cross areas with
higher RACOGA values, λ can be chosen more aggressively, i.e. λ smaller, as on Figure 1b. De-
creasing the λ parameter leads to a more aggressive, or less safe algorithm, because it will increase
s and η in Equation (16). Taking a glance at Algorithm 2, we see that it results in making larger
gradient steps. Recall that larger gradients steps allows the trajectory to move faster, and eventually
to converge faster, but steps that are too big will make the algorithm diverge.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Isotropic data (b) Correlation within data

Figure 3: Illustration of the convergence speed of GD (Algorithm 6), NAG (Algorithm 7), SGD
(Algorithm 1) and SNAG (Algorithm 2) with varying batch sizes K, applied to a linear regression
problem, together with an histogram distribution of RACOGA values along the iterations of SNAG.
The stochastic algorithms results are average on ten runs. On the left, data are generated by a law
such that they are fewly correlated, while on the right the data are generated by a gaussian mixture,
such that some of the data are highly correlated. Note that the presence of correlation in data results
in a decrease of performance for SNAG (Algorithm 2) when increasing too much the batch size,
whereas uncorrelated data results in an improvement of performance when increasing batch size.

Algorithm 3 Stochastic Nesterov Accelerated Gradient - Machine learning version (SNAG ML)

1: input: x0, b0 ∈ Rd, s > 0, p ∈ [0, 1], (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: bn ← pbn−1 + ∇̃K(xn−1)

4: xn ← xn−1 − s
(
∇̃K(xn−1) + pbn

)
5: end for
6: output: xnit

Batch size influence In Section 5.1, we observed that contrarily to data generated uniformly onto
the sphere, the presence of correlation inside data coincides with high RACOGA values and good
performance of SNAG (Algorithm 2) with batch size 1 compared to other algorithms. Now in the
same experimental setting, we study the impact of varying batch size. According to Remark 8, in the
case of correlated data, we should observe a decrease of the performance up to a certain batch size.
On Figure 3b, we observe this phenomenon. We see that we can multiply the batch size by a factor
10, and keeping the same performance. If performing parallelization, this results in 10 times faster
computations. However, when increasing batch size from 10 to 25, we lose performance, inducing
paralellization will not results in 2.5 times faster computation. This phenomenon is often referred
to as performance saturation, see Ma et al. (2018); Liu & Belkin (2020). On Figure 3a, we observe
that conversely, increasing batch size improve the performance. Figure 3 is thus consistent with our
theoretical findings, see Remark 8.

A.2 NEURAL NETWORKS

For a dataset {ai, bi}Ni=1 ∈ Rd × R, we want to solve a classification problem formulated as Prob-
lem C.

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

CROSS(x; ai, bi). (C)

Where CROSS() is a cross entropy loss, as it is implemented in Pytorch with the function
nn.CrossEntropyLoss().

Classification problem In Section 5.2, we considered two classification problems. The first one
involves the classic CIFAR10 dataset (Krizhevsky & Hinton, 2009), that contains 60000 color im-
ages (dimension 32 × 32) with 10 different labels. See Figure 4a to see a data visualisation of the
dataset, taken from Balasubramanian et al. (2022). This dataset serves as our correlated dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For the second classification problem, we generated data drawn uniformly onto the d-dimensional
sphere, where d is the same dimension as the image of CIFAR10, i.e. 3∗32∗32 = 3072. We created
2 different labels depending on the positivity of the first coordinate of each data, which remains to
associate a different label depending on which hemisphere belong each data, see Figure 4b for a 3d
visualisation. This dataset is named SPHERE.

(a) CIFAR10 data vizualisation (b) Sphere classification problem

Figure 4: Illustration of the two classification problems we consider in Section 5.2. On the left part,
wee see a 2D vizualisation of CIFAR10 data set, proposed by Balasubramanian et al. (2022). On
the right, we illustrate SPHERE dataset on the 3d-sphere, where each hemisphere correspond to a
different label.

Network architecture For the classification problem involving the CIFAR10 dataset, we use a
Convolutionnal Neural Network (CNN, LeCun et al. (1998)). For the classification problem involv-
ing the spherical data, we use a Multi Layer Perceptron (MLP, Rumelhart et al. (1986)). CNN are
efficient architecture when it comes to image classification, at is exploit local information of the
images. However, this architecture makes less sense for our classification problem on the sphere.
This model indeed performed poorly in our experiment, and so our choice of a MLP architecture.
We detail the architectures on Figure 5.

(a) MLP - 401,730 parameters (b) CNN - 98,730 parameters

Figure 5: Scheme of the architecture of the MLP and the CNN used in our experiments.

Algorithms and parameters We ran the experiments using the Pytorch library. We used the
Pytorch implementation to run the optimization algorithms, through the function torch.optim.SGD.
This function contains a nesterov = True argument, which allows to run Algorithm 3. Note that this
is indeed a formulation of the Nesterov algorithm, see Appendix B.2. The detailed parameters used

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

to run the experiment, determined by grid search, are displayed on Figure 2 are presented on Table 2,
together with the final test accuracy, averaged over 10 initialisations.

MLP (SPHERE) CNN (CIFAR10)
s p Accuracy test(%) s p Accuracy test(%)

GD 3 - 49.72 4 - 17.54
SGD 0.3 - 80.6 0.3 - 65.40
NAG 2 0.9 50.02 2 0.7 17.07
SNAG 0.1 0.9 88.73 0.05 0.9 70.88

Table 2: Parameters (the learning rate s and the momentum p) used to run the experiments presented
in Section 5.2, together with the final accuracy test in percent averaged over 10 different initial-
izations. For precise formulation of the algorithms, see Algorithm 6 (GD), Algorithm 1 (SGD),
Algorithm 8 (NAG) and Algorithm 3 (SNAG).

Single run and RACOGA along iterations As a complement, we display on Figure 6 a slightly
different view of Figure 2. On the left part of Figure 6a-Figure 6b, we display the typical behaviour
of one single run of optimization algorithms, namely without averaging for several initialisations.
As we can expect, we observe a higher variability, although the general behaviour remains similar.
On the right part of Figure 6a-Figure 6b, we displayed the evolution of RACOGA values along the
iterations, instead of the histogram distribution of Figure 2, which does not keep any temporal infor-
mation. For correlated data, we observe that RACOGA values decrease when iterations converge.
This phenomenon can be interpreted as the convergence of the iterations to a minimum with low
curvature which is related to a low RACOGA value (see Appendix I for more details).

(a) SPHERE-MLP (b) CIFAR10-CNN

Figure 6: Illustration of the convergence speed of on run of GD (Algorithm 6 batch size N), SGD
(Algorithm 1, batch size 64), NAG (Algorithm 7) and SNAG (Algorithm 2, batch size 64), together
with a display of the RACOGA values taken along the path, averaged over 5 different initializations.
On the left, we use a MLP, and data are generated by an isotropic law and are fewly correlated. On
the right we use a CNN, and the dataset used is CIFAR10.

Algorithm 4 Root Mean Square Propagation (RMSprop)

1: Input: α, β, ϵ > 0, x0 ∈ Rd

2: for n = 0, . . . , nit − 1 do
3: gn = ∇̃K(xn)
4: vn+1 = βvn + (1− β)g2n
5: xn+1 = xn − α gn√

vn+1+ϵ

6: end for

Comparison with ADAM and RMSprop RMSprop (Hinton, 2012) (Algorithm 4) and ADAM
(Kingma & Ba, 2015) (Algorithm 5) are popular algorithms when it comes to optimize neural net-
works. RMSprop is similar to gradient descent, at the difference that, grossly, it divides component-
wise the gradient by an average of the squared norm of the past gradients. There exists a variant of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 5 Adaptive Moment Estimation (ADAM)

1: Input: α, β1, β2, ϵ > 0, initial parameters x0 ∈ Rd, m0 = v0 = 0
2: for n = 0, . . . , nit do
3: gn = ∇̃K(xn)
4: mn+1 = β1mn + (1− β1)gn
5: vn+1 = β2vn + (1− β2)g2n
6: m̂n+1 = mn+1

1−βn+1
1

7: v̂n+1 = vn+1

1−βn+1
2

8: xn+1 = xn − α m̂n+1√
v̂n+1+ϵ

9: end for

RMSprop that incorporates momentum. Adam combines both techniques of RMSprop and momen-
tum, plus other mechanisms such as bias corrections.

On Figure 7, compared to Figure 2, we add the training convergence curve and RACOGA values
of RMSprop and ADAM. On the CIFAR10 dataset, both algorithms do not converge faster than
SNAG, and share similar RACOGA values. Interestingly for the SPHERE dataset, both algorithms
are significantly faster than others. We observe that all the algorithms are, at the begining of the
optimization process, stuck in a tray. SNAG steps out of this tray faster than SGD, and RMSprop
and ADAM step out of it even faster. One may think that the normalization by the average of
squared gradients induces larger stepsize and boost the convergence speed, as in this tray the gradient
values are low. The average test accuracy at the end of the training for ADAM (Algorithm 5) is
93.73% for MLP, 69.12% for CNN. The average test accuracy at the end of the training for RMSprop
(Algorithm 4) is 94.02% for MLP, 67.31% for CNN.

(a) SPHERE (b) CIFAR10

Figure 7: Illustration of the convergence speed of GD (Algorithm 6), SGD (Algorithm 1, batch size
64), NAG (Algorithm 3, full batch) and SNAG (Algorithm 3, batch size 64), ADAM (Algorithm 5)
and RMSprop (Algorithm 4) averaged over 10 different initializations, together with an histogram
distribution of RACOGA values taken along the optimization path, averaged over 10 different ini-
tialisations. On the left, we use a MLP to classify fewly correlated data sampled from an isotropic
law. On the right we use a CNN to classify CIFAR10 images. Note that if ADAM and RMSprop are
both better than other algorithms for the SPHERE experiment, they are not faster than SNAG in the
CIFAR10 experiment.

Computation time Using the Python library time, the computation time needed to choose the best
parameters for our two models (CNN for CIFAR10 and MLP for SPHERE) have been saved. More-
over, the computational time needed to generate Figures 1, 2, 3 and 7 is added to our computational
budget. We saved the computation time needed to train the models and to compute the RACOGA
values, 10 times per algorithms (due to the 10 initializations) and for both networks. Note that for
the stochastic algorithms, RACOGA was computed only every 100 iterations, because of the heavy
computation time it demands. The experiments for the linear regression problem take less than one
minute of computation. Experiments with SNAG, NAG, SGD and GD took approximately 4 hours.
Additional experiments with ADAM and RMSprop took approximately 8 hours. Note that ADAM

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

requires to tune 3 hyperparameters with the grid search, making this step significantly longer. The
total computation time needed for all these experiments is approximately 12 hours of computation
on a GPU NVIDIA A100 Tensor Core.

Additional datasets results On Figure 8, we present the convergence curves and RACOGA values
for SGD and SNAG on various datasets, including hand-written numbers (MNIST), pictures of
clothes (FashionMNIST Xiao et al. (2017)) and Kuzushiji characters (KMNIST Clanuwat et al.
(2018)) and hand-written characters (EMNIST Cohen et al. (2017)). The used learning rate for SGD
is 0.1 for MNIST and EMNIST and 0.25 for FashionMNIST and KMNIST. The learning rate of
SNAG is 0.05 for MNIST and EMNIST and 0.1 for Fashion MNIST and KMNIST. The momentum
of SNAG (Algorithm 3) is 0.8 for MNIST and FashionMNIST, and 0.9 for KMNIST and EMNIST.
These quantities have been chosen after a grid search to find the parameters that maximize the test
accuracy of the learned model. There were 3 epochs for the training.

Note that the RACOGA values are large for all these training paths. Moreover, in all these scenarios,
we observe that the convergence of SNAG is faster than the convergence of SGD, although it is less
clear for KMNIST. These additional experimental validations support our theoretical results.

(a) MNIST (b) FashionMNIST

(c) KMNIST (d) EMNIST

Figure 8: Illustration of the convergence speed of SGD (Algorithm 1 and SNAG (Algorithm 3,
batch size 64), averaged over 10 different initializations, together with an histogram distribution of
RACOGA values taken along one optimization path. We use a CNN described on Figure 5b, only
changing the input layer with the dimension of images 1× 28× 28. Note that SNAG is faster than
SGD, although it is less clear for KMNIST, and the RACOGA values are large for all these datasets.

B BACKGROUND : CONVEX OPTIMIZATION AND THE NESTEROV
ALGORITHM

In this section, we give the reader some optimization background for completeness of our paper.
First, we expose known results related to the convergence of the deterministic counterparts of SGD
and SNAG, and then we exhibit different forms of the Nesterov algorithm that can be found in the
literature.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.1 PERFORMANCE OF GD AND NAG

We present the speed of convergence of GD (Algorithm 6) and NAG (Algorithm 7). The two fol-
lowing theorems are well known results demonstrated by Nesterov (1983; 2018).

Algorithm 6 Gradient Descent (GD)

1: input: x0 ∈ Rd, s > 0
2: for n = 0, 1, . . . , nit − 1 do
3: xn+1 = xn − s∇f(xn)
4: end for
5: output: xnit

Algorithm 7 Nesterov Accelerated Gradient (NAG)

1: input: x0, z0 ∈ Rd, s > 0, β ∈ [0, 1], (αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: yn ← αnxn + (1− αn)zn
4: xn+1 ← yn − s∇f(yn)
5: zn+1 ← βzn + (1− β)yn − ηn∇f(yn)
6: end for
7: output: xnit

Theorem 6. Let f : Rd → R be L-smooth, {xn}n∈N be generated by Algorithm 6 with stepsize
s = 1

L . Let νϵ ∈ N the smallest integer such that ∀n ≥ νϵ, f(xn)− f∗ ≤ ε.

1. If f is convex, we have

νϵ ≤
L

2

∥x0 − x∗∥2

ε
. (17)

2. If f is µ-strongly convex, we have

νϵ ≤
L

µ
log

(
f(x0)− f∗

ε

)
. (18)

The result for convex f can be found in Garrigos & Gower (2023).
Theorem 7. Let f : Rd → R be L-smooth, {xn}n∈N be generated by Algorithm 7 with stepsize
s = 1

L . Let νϵ ∈ N the smallest integer such that ∀n ≥ νϵ, f(xn)− f∗ ≤ ε.

1. If f is convex, choosing αn = n−1
n+1 , β = 1, ηn = 1

L
n+1
2 , we have

νϵ ≤
√
2L
∥x0 − x∗∥√

ε
. (19)

2. If f is µ-strongly convex, choosing αn = 1

1+
√

µ
L

, β = 1−
√

µ
L , ηn = 1√

µL
, we have

νϵ ≤

√
L

µ
log

(
2(f(x0)− f∗)

ε

)
. (20)

By comparing the convergence speed for convex functions given by Theorems 6 and 7, NAG is
faster than GD as long as the desire precision ϵ is small enough. As L ≥ µ, considering µ-strongly
convex functions NAG is always at least as good as GD. In practice, in particular for ill-conditioned
problems, we can have µ≪ L. In theses cases, NAG is a significant improvement over GD.

Optimality of NAG Note that NAG (Algorithm 7) not only outperforms GD (Algorithm 6). It
also offers bounds that are optimal among first order algorithms when minimizing strongly or non
strongly convex functions, in the sense that it is possible to find examples of functions within these
classes such that these bounds are achieved up to a constant (Nemirovskij & Yudin, 1983).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.2 THE DIFFERENT FORMS OF NESTEROV ALGORITHM

There exists several ways of writing Nesterov momentum algorithm, that can be linked together (see
e.g. Defazio (2019) for 6 different forms in the strongly convex case). Different research fields are
used to their own typical formulation. In this section, we present formulations that can be found
in the optimization and machine learning communities. Within the optimization community NAG
(Algorithm 7) (Zhu & Orecchia, 2017; Hinder et al., 2020) or NAG 2S (Algorithm 9) (Su et al.,
2016; Aujol et al., 2023; 2024) are often used. The machine learning community is rather used to
the formulation of NAG ML (Algorithm 8). In fact, this last algorithm is the version implemented in
Pytorch with the function torch.optim.SGD() with the argument nesterov = True, up to the condition
that τ = 0.

Algorithm 8 Nesterov Accelerated Gradient - Machine Learning version (NAG ML)

1: input: x0, b0 ∈ Rd, s > 0, p ∈ [0, 1], τ ∈ R, (ηn)n∈N ∈ RN
+

2: for n = 0, 1, . . . , nit − 1 do
3: bn ← pbn−1 + (1− τ)∇f(xn−1)
4: xn ← xn−1 − s (∇f(xn−1) + pbn)
5: end for
6: output: xnit

Algorithm 9 Nesterov Accelerated Gradient - Two Sequences version (NAG 2S)

1: input: x0 ∈ Rd, s > 0 , (an)n∈N ∈ [0, 1]N, (bn)n∈N ∈ [0, 1]N

2: for n = 0, 1, . . . , nit − 1 do
3: yn ← xn + an(xn − xn−1) + bn(xn − yn−1)
4: xn+1 ← yn − s∇f(yn)
5: end for
6: output: xnit

The links between the several forms have been studied previously (Defazio, 2019; Lee et al., 2021).
As our results are related to the three points version of NAG (Algorithm 7), we state now results that
allow to generate the same optimisation scheme than Algorithm 7 with Algorithms 8-9.
Proposition 3 (Hermant et al. (2024)). Consider (xn)n∈N and (yn)n∈N generated by NAG (Algo-
rithm 7). The same sequences are generated by Algorithm 9 with choice of parameters

an =
1− αn

1− αn−1
αn−1βn−1, bn = (1− αn)

(
ηn−1

s
− αn−1βn−1

1− αn−1
− 1

)
. (21)

Note that Algorithm 8 have constant parameters in the Pytorch implementation. The link between
Algorithm 7 and Algorithm 8 can be deduced from Defazio (2019) in the case when τ = 1 for Algo-
rithm 8. We demonstrate a generalisation of this result for τ ̸= 1 and we present it in Proposition 4
Proposition 4. Consider (yn)n∈N generated by Algorithm 7. The sequence (xn)n∈N generated by
Algorithm 8 is the same as (yn)n∈N with choices of parameters

p = αβ, τ =
s(1 + α(β − 1))− (1− α)η

αβs
. (22)

Proof. Our strategy is to write both algorithms in a one point form algorithm to compare the param-
eters.

(i) Algorithm 8. By the line 4 of Algorithm 8, we have the relation

bn =
xn−1 − xn

ps
− 1

p
∇f(xn−1). (23)

Now we can replace the bn and bn−1 in line 3 of Algorithm 8, thereby

xn−1 − xn
ps

− 1

p
∇f(xn−1) = p

(
xn−2 − xn−1

ps
− 1

p
∇f(xn−2)

)
+ (1− τ)∇f(xn−1). (24)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We multiply both sides by −ps, and rearrange

xn = xn−1 + p(xn−1 − xn−2)− s∇f(xn−1) + ps∇f(xn−2)− ps(1− τ)∇f(xn−1) (25)
= xn−1 + p(xn−1 − xn−2)− s∇f(xn−1)− ps (∇f(xn−1)−∇f(xn−2)) + τps∇f(xn−1)

(26)

Interestingly, we recognize with the three first terms on the right hand side Polyak’s Heavy Ball
(HB) equation (Polyak, 1964)

xn = xn−1 + p(xn−1 − xn−2)− s∇f(xn−1). (HB)

The −ps (∇f(xn−1)−∇f(xn−2)) term is often referred as a gradient correction term (Shi et al.,
2022), and is characteristic of the difference between Polyak’s Heavy Ball and Nesterov’s algorithm.
The last +τps∇f(xn−1) is considered as a damping term, and is often needed to obtain the tightest
convergence results (Kim & Fessler, 2016), also to achieve accelerated convergence outside of the
deterministic convex realm (Hermant et al., 2024).

(ii) Algorithm 7 We set that ∀n ∈ N, αn = α ∈ [0, 1], and ηn = η > 0. First, combining lines 3 and
4 of Algorithm 7, we have:

yn = αxn + (1− α)zn = α(yn−1 − s∇f(yn−1)) + (1− α)zn (27)

Hence:

zn =
yn − αyn−1 + αs∇f(yn−1)

1− α
. (28)

Now we inject this expression in line 5 of the Algorithm 7

yn+1 − αyn + αs∇f(yn)
1− α

= β

(
yn − αyn−1 + αs∇f(yn−1)

1− α

)
+ (1− β)yn − η∇f(yn). (29)

Then, multiply both sides by 1− α and rearrange to get

yn+1 = αyn − αs∇f(yn) + βyn − βαyn−1 + αβs∇f(yn−1) (30)
+(1− α)(1− β)yn − (1− α)η∇f(yn). (31)

By simplifying and regrouping terms, we get

yn+1 = yn + αβ(yn − yn−1)− s∇f(yn)− αβs (∇f(yn)−∇f(yn−1))

+ s∇f(yn) + αβs∇f(yn)− αs∇f(yn)− (1− α)η∇f(yn) (32)
= yn + αβ(yn − yn−1)− s∇f(yn)− αβs (∇f(yn)−∇f(yn−1))

+ [s(1 + α(β − 1))− (1− α)η]∇f(yn). (33)

By comparing, Equation 26 and Equation 33, we can identify the different parameters

p = αβ (34)
τps = s(1 + α(β − 1))− (1− α)η (35)

So, we have the correspondence

p = αβ (36)

τ =
s(1 + α(β − 1))− (1− α)η

αβs
(37)

Extension to Stochastic Nesterov algorithms Proposition 3 and Proposition 4 can be extended to
the stochastic versions of NAG (Algorithm 7), NAG ML (Algorithm 8) and NAG 2S (Algorithm 9),
where the ∇f terms are replaced by ∇̃K . The same correspondence between parameters of these
algorithms holds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C RELATED WORKS

C.1 GRADIENT CORRELATION CONDITIONS

In this paper, we introduce two assumptions related to the average correlations of the gradients of
the functions that form the sum in problem (FS), namely

∀x ∈ Rd,
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≥ 0. (PosCorr)

∀x ∈ Rd\X ,
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≥ −c, (RACOGA)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}. PosCorr is a special case of RACOGA,
with the choice c = 0. The key role of correlation between gradients has been already observed in
previous works, through related but different assumptions.

Gradient diversity (Yin et al., 2018) Gradient diversity is defined at a point x ∈ Rd as the
following ratio

∆(x) =

∑N
i=1∥∇fi(x)∥2

∥
∑N

i=1∇fi(x)∥2
. (GradDiv)

This quantity is closely related to the SGC condition. Indeed, for batch size 1, we clearly have

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ N sup
x∈Rd

∆(x)∥∇f(x)∥2. (38)

Thus, assuming supx∈Rd ∆(x) < +∞, f verifies SGC with ρ1 ≤ N supx∈Rd ∆(x). The authors
show that increasing batch size is less efficient with a ratio depending on the values thatN∆(·) takes
along the optimization path. The smaller these quantities (high correlation), the smaller this ratio.
Conversely, the higher it is (low or anti correlation), the higher the ratio is, inducing a large gain
with parallelization of large batches. GradDiv is another measure to quantify gradient correlation.
Indeed by developing the squared norm, we have the relation

∆(x)−1 = 1 + 2

∑
1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N

i=1∥∇fi(x)∥2
(39)

However, RACOGA appears naturally in our study of the SGC, and is a direct measure of the
correlation between gradients.

Gradient confusion (Sankararaman et al., 2020) f has gradient confusion η ≥ 0 at a point
x ∈ Rd if

⟨∇fi(x),∇fj(x)⟩ ≥ −η, i ̸= j ∈ {1, . . . , j}. (GradConf)
The authors show that for some classes of functions and considering SGD, satisfying this assumption
allows to reduce the size of the neighbourhood of a stationary point towards which the algorithm
converges. Also, they study theoretically and empirically how the gradient confusion behaves when
considering neural networks. They show that practices that improve the learning, such as increasing
width, batch normalization and skip connections, induce a lower gradient confusion at the end of
the training, i.e. GradConf is verified with a small η. In other words, well tuned neural networks
avoid anti-correlation between gradients. However, compared to RACOGA, GradConf asks for a
uniform bound over the correlation of each pair of gradients, which can be much more restrictive.

C.2 LINEAR REGRESSION ACCELERATION RESULTS

We mentioned in the introduction of this paper that there exists positive results concerning the pos-
sibility of acceleration considering the linear regression problem (Jain et al., 2018; Liu & Belkin,
2020; Varre & Flammarion, 2022). However, our setting is a bit different. Indeed, we consider the
finite sum setting, while they consider the following problem

min
x∈Rd

P (x), P (x) := E(a,b)∼D

[
1

2
(⟨a, x⟩ − b)2

]
. (40)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

They assume that they have access to a stochastic first order oracle, that returns the quantity
∇̃P (x) = (⟨a, x⟩ − b)a (41)

where (a, b) ∼ D. NotingH = E(a,b)∼D[aa
T], they denoteR2 and κ̃ the smallest positive constants

such that
E(a,b)∼D[∥a∥2aaT] ⪯ R2H, E(a,b)∼D[∥a∥2H−1aaT] ⪯ κ̃H. (42)

Finally, they note µ the smallest eigenvalue of H which is assumed to be invertible, and κ := R2

µ . In
this setting, there is interpolation if there exists x∗ ∈ Rd such that almost surely, b = ⟨x∗, a⟩. Under
Assumption 1, noting nit the algorithm iterations, the convergence speed of GD (Algorithm 6) is
of the order O(e−

nit
κ), while momentum style algorithms allow to have a O(e−

nit√
κκ̃) convergence

(Jain et al., 2018; Liu & Belkin, 2020). The acceleration is data dependant. In particular, fixing
the distribution to be uniform over the orthonormal basis {e1, . . . , ed}, one have κ = κ̃ and there
is no acceleration. Our results (Example 3 + Theorem 5) extend outside linear regression this non-
acceleration result, to the case of convex functions with orthogonal gradients. However, the ideas
behind those results and ours are different, and κ̃ is not a correlation measure. According to Jain
et al. (2018), κ̃ measure the number of ai we need to sample such that the empirical covariance is
close to the Hessian matrix, H .

C.3 SGC RELATED CONVERGENCE RESULTS

The linear convergence of SGD under a variation of SGC, for smooth convex and strongly convex
functions, has been addressed in (Schmidt & Roux, 2013). Later, convergence of SNAG type algo-
rithms under strong growth condition, for functions that are convex or strongly convex, also attracted
interest. In this section, we discuss how these works relate to Theorems 3-4.

Vaswani et al. (2019) As mentioned in Section 3, the bounds of Theorem 3 were already achieved
by (Vaswani et al., 2019). It was achieved with a quite unusual formulation of the SNAG algorithm,
which is equivalent, to the following one

Algorithm 10 (Vaswani et al., 2019))

1: input: x0 = z0 ∈ Rd, s > 0, β ∈ [0, 1], (αn)n∈N ∈ [0, 1]N, (ηn)n∈N ∈ RN
+ , gn(.) stochastic

approximation of ∇f(.) at iteration n.
2: for n = 0, 1, . . . , nit − 1 do
3: yn = αnxn + (1− αn)zn
4: xn+1 = yn − sgn(yn)
5: zn+1 = βzn + (1− β)yn − γnsgn(yn)
6: end for
7: output: xnit

For f L-smooth, and such that SGC is verified with constant ρ, the bounds of Theorem 3 are verified
considering SNAG (Vaswani et al., 2019) with the following parameters:

• If f µ-strongly convex:

γn =
1
√
µsρ

, βn = 1−
√
µs

ρ
, bn+1 =

√
µ(

1−
√

µs
ρ

)(n+1)/2
,

an+1 =
1(

1−
√

µs
ρ

)(n+1)/2
, αn =

γnβnb
2
n+1s

γnβnbnn+1s+ a2n
, s =

1

ρL
.

• If f convex:

γn =

1
ρ +

√
1
ρ2 + 4γ2n−1

2
, an+1 = γn

√
sρ,

αn =
γns

γns+ a2n
, s =

1

ρL
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In the strongly convex case, intermediate sequences of parameters (an) and (bn) appear. In the
convex case, the sequence (γn) is defined with a recursive formula. Our different proof of Theorem 3
does not make these features appear.

Gupta et al. (2023) Another line of research leads to a similar expectation result to ours, using
AGNES (Algorithm 11), and so with a different proof. The authors of Gupta et al. (2023) also get
almost sure convergence, nevertheless without convergence rates contrarily to our Theorem 4.

Algorithm 11 Accelerated Gradient descent with Noisy EStimators (AGNES), Gupta et al. (2023)

1: input:f (objective/loss function), x0 (initial point), α = 10−3 (learning rate), η = 10−2 (cor-
rection step size), ρ = 0.99 (momentum), N (number of iterations)

2: v0 ← 0
3: for n = 0, 1, . . . , N do
4: gn ← ∇xf(xn) (gradient estimator)
5: vn+1 ← ρ(vn − gn)
6: xn+1 ← xn + αvn+1 − ηgn
7: end for
8: gN ← ∇xf(xN)
9: xN ← xN − ηgN

10: output: xN

D SOME EXAMPLES WITH CRITICAL STRONG GROWTH CONDITION
CONSTANT

In this section, we show that even for some simple examples, the SGC constant can be very large or
not existing, justifying that finding interesting characterizations of it is a challenging problem.

D.1 LARGE ρ1 WITH LINEAR REGRESSION

We consider the function

f(x) =
1

2
(
1

2
⟨e1, x⟩2︸ ︷︷ ︸
:=f1(x)

+
1

2
⟨a, x⟩2︸ ︷︷ ︸
:=f2(x)

),

where e1 = (1, 0), a = (1, ε). We have ∇f1(x) = ⟨e1, x⟩e1 and ∇f2(x) = ⟨a, x⟩a. Assume
x0 = (− ε

2 , λ). We have

∇f(x0) = −
ε

4
(1, 0) +

ε

2
(λ− 1

2
)(1, ε) (43)

=
ε

2
(λ− 1, (λ− 1

2
)ε). (44)

Thus we obtain

∥∇f(x0)∥2 =
ε2

4
((λ− 1)2 + (λ− 1

2
)2ε2), (45)

whereas

E[∥∇̃1(x0)∥2] =
ε2

8
+
ε2

2
(λ− 1

2
)2(1 + ε2). (46)

Simply note that with the choice λ = 1, we have ∥∇f(x0)∥2 = ε4

16 , while E[∥∇̃1(x0)∥2] = ε2 1
4 +

o(ε2). Thus
E[∥∇̃1(x0)∥2]
∥∇f(x0)∥2

≈ 1

ε2
. (47)

So the strong growth condition can be arbitrarily large as ε vanishes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.2 NON CONVEX FUNCTIONS SUCH THAT ρ1 DOES NOT EXIST

We consider:
f(x) =

1

2
(f1(x) + f2(x))

where x = (x1, x2) ∈ R2, f1(x) = 1
2 (x1 − tanh(x2))

2, f2(x) = 1
2 (x1 + tanh(x2))

2. We have:

∇f1(x) = (x1 − tanh(x2),−(x1 − tanh(x2))(1− tanh2(x2))) (48)

∇f2(x) = (x1 + tanh(x2), (x1 + tanh(x2))(1− tanh2(x2))) (49)

Consider the line y = (0, y0), y0 ∈ R. We have:

∇f1(y) = (− tanh(y0), tanh(y0)(1− tanh2(y0))) (50)

∇f2(y) = (tanh(y0), tanh(y0)(1− tanh2(y0))). (51)

Then:

∇f(y) = 1

2
(∇f1(y) +∇f2(y)) = (0, tanh(y0)(1− tanh(y0)

2) →
|y0|→+∞

(0, 0). (52)

However, we have ∇f1(y) → (−1, 0) and ∇f2(y) → (1, 0) as y0 → +∞. Thus, for any ρ1 > 0,
the SGC condition is not verified when considering the whole space R2.

E CONVERGENCE OF SGD

In this section, we prove convergence results of SGD (Algorithm 1) stated in Section 3, namely
Theorem 1 and Theorem 2. Also, in Subsection E.2 we present a convergence result for SGD under
SGC and we justify that it is not a relevant result in order to compare the convergence speed of SGD
and SNAG (Algorithm 2).

E.1 PROOFS OF THEOREM 1 AND THEOREM 2

We can deduce Theorem 1-Theorem 2 by respectively adapting the proof from Garrigos & Gower
(2023) and Sebbouh et al. (2021). We can not directly apply their original results because their
setting is slightly different: in problem (FS) their convexity assumption holds for each fi, while in
our case it solely holds over the whole sum. In both expectation and almost sure cases, the core
Lemma is to bound E

[
∥∇̃K(x)∥2

]
, which bounds the variance of the estimator. It is Lemma 6.7 in

Garrigos & Gower (2023), and Lemma 1.3 in Sebbouh et al. (2021). These two lemmas do not hold
in our setting. We will use instead the following result.
Lemma 2. Under assumptions (1)-(2), we have

E
[
∥∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (53)

Proof. Let x ∈ Rd. Consider a fixed batch B with |B| = K. We note fB(x) = 1
K

∑
i∈B fi(x),

∇fB(x) := 1
K

∑
i∈B ∇fi(x). We first show that fB is

∑
i∈B Li

K -smooth.

∀x, y ∈ Rd, ∥∇fB(x)−∇fB(y)∥ ≤
1

K

∑
i∈B

∥∇fi(x)−∇fi(y)∥ (54)

≤ 1

K

∑
i∈B

Li∥x− y∥ (55)

=

∑
i∈B Li

K
∥x− y∥. (56)

The first inequality uses triangular inequality, the second inequality uses the assumption that each fi
is Li-smooth, i.e. ∥∇fi(x) −∇fi(y)∥ ≤ Li∥x − y∥. Now, it is well known that if fB is

∑
i∈B Li

K -

smooth, fixing x∗ ∈ argmin f we have ∥∇fB(x)∥2 ≤ 2
∑

i∈B Li

K (fB(x) − fB(x∗)), see Nesterov

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(2018) page 30. We upper bound this quantity uniformly in the constants Li over all the batches.

∥∇fB(x)∥2 ≤ 2

∑
i∈B Li

K
(fB(x)− fB(x∗) ≤ 2L(K)(fB(x)− fB(x∗). (57)

where L(K) := maxB′,|B′|=K

(
1
K

∑
i∈B′ Li

)
. Now, we get back to the random variable ∇̃K(·), we

take the expectation over all the batches of size K, and we get

E
[
∥∇̃K(x)∥2

]
≤ 2L(K)E

[∑
i∈B

1

K
(fi(x)−min fi)

]
. (58)

Note that E
[
1
K

∑
i∈B fi(x)

]
= f(x). By interpolation (Assumption 1), there exists x∗ ∈ argmin f

such that x∗ ∈ argmin fi for all 1 ≤ i ≤ N , which implies

E

[
1

K

∑
i∈B

min fi

]
= E

[
1

K

∑
i∈B

fi(x
∗)

]
= f(x∗) := f∗. (59)

Proof of Theorem 1 Now to prove Theorem 1, note that the same proof as for Theorem 6.8 and
Theorem 6.12 from Garrigos & Gower (2023) holds, replacing their Lemma 6.7 by our Lemma 2,
setting in their proof σ∗

b = 0 (Assumption 1) and replacing their 2Lb by L(K), allowing in our case
to take a stepsize s ≤ 1

2L(K)
, instead of their 1

4Lb
in the convex case, and s ≤ 1

L(K)
instead of their

1
2Lb

in the strongly convex case. Note that for the convex case, the ε-precision is actually reach with

the sequence xn := 1
n

∑N−1
i=0 xi, i.e. we get a number of iterations such that E [f(xn)− f∗] ≤ ε.

Proof of Theorem 2 For the case of a convex function, the almost sure result from Sebbouh et al.
(2021) follows from a decrease in expectation. It is obtained in our case replacing their Lemma 1.3
by our Lemma 2. As for the result in expectation, Lemma 2 allows us to choose s ≤ 1

L(K)
. The

rest of the proof follows as in theirs, as no supplementary assumption is needed in the interpolated
case (Assumption 1). For the case of strongly convex functions, we apply the same proof as for
Proposition 6, fixing En = ∥xn − x∗∥2, where x∗ ∈ argmin f with s = 1

L(K)
.

E.2 CONVERGENCE OF SGD WITH STRONG GROWTH CONDITION

Theorem 1 states a convergence result for SGD (Algorithm 1) without making use of the strong
growth condition. It is however possible, as done in Gupta et al. (2023). In Theorem 8 we give a
very similar result.

Theorem 8. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. Then SGD (Algo-
rithm 1) with stepsize s = 1

ρKL allows to reach an ε-precision (2) at the following iterations

n ≥ ρK
2

L

ε
∥x0 − x∗∥2 (f convex), (60)

n ≥ ρK
L

µ
log

(
2
f(x0)− f∗

ε

)
(f µ-strongly convex). (61)

Proof. These results can be obtained by adapting Theorem 3.4 and Theorem 3.6 from Garrigos &
Gower (2023). Indeed, the two equations from their Lemma 2.28 can be adapted to our case in the
following way, ∀x ∈ Rd

E
[
f(x− s∇̃K(x))− f(x)

]
≤ −s

(
1− ρKsL

2

)
∥∇f(x)∥2. (62)

Then, we can reuse their proof just replacing the condition s ≤ 1
L by s ≤ 1

ρKL . The conclusion
proceeds fixing s = 1

ρKL from their Corollaries 3.5 and 3.8.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

It is straightforward to compare these bounds with those of Theorem 3. This comparison indicates
that the bounds of SNAG always outperform the bounds of SGD. The only exception that could
occur is in the convex case if ∥x0 − x∗∥ ≪ 1, i.e. if we start close from the minimum.
Making such conclusions would be misleading. Indeed in some cases, the characterization of Theo-
rem 8 is suboptimal compared to the one of Theorem 1. Consider the strongly convex bounds: we
then compare ρK L

µ log
(
2 f(x0)−f∗

ε

)
(Theorem 8) with 4Lmax

µ log
(
2 f(x0)−f∗

µε

)
(Theorem 1). Now,

the question is:

How do we compare ρKL with Lmax?

We recall the example of Section D.1, that is

f(x) =
1

2
(
1

2
⟨e1, x⟩2︸ ︷︷ ︸
:=f1(x)

+
1

2
⟨a, x⟩2︸ ︷︷ ︸
:=f2(x)

). (63)

where e1 = (1, 0), a = (1, ε), ε > 0. We already computed the gradient, that is

∇f(x) = 1

2
⟨e1, x⟩ e1 +

1

2
⟨a, x⟩ a. (64)

One can check that the Hessian matrix is

∇2f(x) =
1

2

(
2 ε
ε ε2

)
. (65)

The L-smoothness constant is the larger eigenvalue, that is 1
4

((
ε4 + 4

) 1
2 + ε2 + 2

)
= 1 + o(ε).

Moreover, L(1) = Lmax = 1 + ε2. Now, we saw in Section D.1 that ρK is at least of the order
O
(

1
ε2

)
. Thereby, for small values of ε, we have ρKL≫ L(1), inducing the bound of Theorem 8 is

significantly suboptimal. Therefore, Theorem 1 is more relevant than Theorem 8 to compare SGD
and SNAG convergence speeds.

F CONVERGENCE OF SNAG WITHOUT STRONG GROWTH CONDITION

In this Section, we derive a finite time convergence result in expectation for SNAG (Algorithm 2)
without assuming SGC. In this case, as for Theorems 1-2, the bound over the noise is derived from
the geometrical properties of the functions.
Lemma 3. Assume f is such that assumptions (1)-(2) hold.

If f is µ-strongly convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2(L(K) − µ)(f(x)− f∗). (66)

If f is convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (67)

We prove Lemma 3 in Appendix F.3. We note L the smoothness constant of f . Under assump-
tion (2), we have L ≤ 1

N

∑N
i=1 Li ≤ L(K).

Theorem 9. Under Assumptions 1 and 2, SNAG (Algorithm 2) with batch size K guarantees to
reach an ε-precision (2) at the following iterations:

• If f is convex, sn = 1
2L(K)

1
n+1 , αn = n

n+2 , ηn = 1
4

1
L(K)

, β = 1,

n ≥ 4L(K)

ε ∥x0 − x∗∥2. (68)

• If f is µ-strongly convex, s = 1
16

µ
(L(K)−µ)2 , β = 1 − 1

8
µ

(L(K)−µ) , η = 1
4

1
(L(K)−µ) , α =

1
1+ 1

4
µ

(L(K)−µ)

,

n ≥ 8
L(K)−µ

µ log
(

2(f(x0)−f∗)
ε

)
. (69)

In this Section, we denote Fn the σ-algebra generated by the n + 1 first iterates {xi}ni=0 generated
by SNAG (Algorithm 2), i.e. Fn = σ(x0, . . . , xn). Also, we note En[·] the conditional expectation
with respect to Fn.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Comparison with the bounds of Theorem 1 on SGD (Algorithm 1)

• f convex. In this case, the bound for SGD of Theorem 1 is

n ≥ 2
L(K)

ε
∥x0 − x∗∥2.

This bound for SGD is always better than the bound of SNAG from Theorem 9. However
this comparison would be misleading, as Theorems 3 show that in the convex case, if
aiming for a small enough precision ε, SNAG’s bound can always be smaller than the one
of SGD.

• f strongly convex. In this case, the bound for SGD of Theorem 1 is

n ≥ 2
L(K)

µ
log

(
2
f(x0)− f∗

µε

)
.

The bound on SNAG from Theorem 9 is better if L(K)

µ ≤ 4
3 . In realistic setting, L(K)

µ ≫ 1.
In particular if f is quadratic strongly convex, to ensure that the bound of SNAG is better,
we need to ensure that λmax

λmin
≤ 4

3 , where λmax and λmin are respectively the highest and
the lowest eigenvalues of the Hessian matrix of f .

Using Assumptions 1-2 to study the convergence of SNAG almost always leads to a worst bound
than SGD independently of the value of L(K), which is misleading. This is because, in this case, we
have to take safer parameters for SNAG. For example in the convex case, sn → 0 in order to ensure
convergence, compared to the Theorem using SGC (Theorem 3) where sn = s > 0. This means
that this is the SGC characterization of the noise that allows to stabilize SNAG and which tells us
how to chose parameters such that the convergence is of the orderO

(
n−2

)
. Our results of Section 4

indicate that what is behind, in the finite sum setting, is the question of measuring the correlation
between gradients, that is encapsulated within the SGC.

Comparison with Theorem 3 Compared to Theorem 3 that makes use of SGC, in Theorem 9
we had to choose more conservative parameters in order to ensure convergence, leading to similar
convergence bound as for SGD (Algorithm 1). The comparison of the bounds of Theorems 3-9 are
similar to the ones of Remark 3.
Remark 9. In Remark 3, we compare SGD and SNAG under different assumptions, in the sense that
we assume that the SGC holds when studying convergence of SNAG, but not for SGD. In Section E.2,
we see that using SGC to study SGD leads to convergence bounds that are always worse than for
SNAG, which is misleading. In this Section, with Theorem 9, we show that not using SGC when
studying SNAG leads to an opposite phenomenon, with bounds for SGD that are almost always
better than for SNAG, which is also misleading. Indeed, in particular, as seen in Remark 3, in the
convex case, using SGC to study SNAG allows to have acceleration over SGD in finite-time, as long
as we aim for a small enough ε-precision. Also, in our experiments, e.g. on Figures 1-2, we see that
both cases are possible, namely SGD outperforming SNAG or SNAG outperforming SGD.

F.1 PROOF OF THEOREM 9, CONVEX CASE

We first recall the SNAG algorithm (Algorithm 2), with step-size sn and β = 1
yn = αnxn + (1− αn)zn
xn+1 = yn − sn∇̃K(yn)

zn+1 = zn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1).

1

2
∥zn+1 − x∗∥2 =

1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − zn, ∇̃K(yn)⟩ (70)

=
1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − yn, ∇̃K(yn)⟩ (71)

+ ηn
αn

1− αn
⟨xn − yn, ∇̃K(yn)⟩ (72)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Taking the expectation, using, under the assumption sn ≤ 1
L , Lemma 4, we have

En

[
1

2
∥zn+1 − x∗∥2

]
≤ 1

2
∥zn − x∗∥2 + ηn⟨x∗ − yn,∇f(yn)⟩ (73)

+ ηn
αn

1− αn
⟨xn − yn,∇f(yn)⟩+

η2n
sn

En [f(yn)− f(xn+1)] + η2nEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
.

(74)

Using convexity of f on both scalar products, we get

En

[
1

2
∥zn+1 − x∗∥2 +

η2n
sn

(f(xn+1)− f∗)
]
≤ 1

2
∥zn − x∗∥2 + ηn

αn

1− αn
(f(xn)− f(yn)) (75)

+

(
η2n
sn
− ηn

)
(f(yn)− f∗) + η2nEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (76)

In order to bound En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
, we use Lemma 3

En

[
1

2
∥zn+1 − x∗∥2 +

η2n
sn

(f(xn+1)− f∗)
]
≤ 1

2
∥zn − x∗∥2 + ηn

αn

1− αn
(f(xn)− f∗)

+

(
η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K)

)
(f(yn)− f∗).

(77)

We set
η2n
sn

=
C

L(K)
(n+ 1)α, ηn

αn

1− αn
=

C

L(K)
nα,

for some positive constants C and α. We want to have α to be the highest possible, while having
the factor behind (f(yn)− f∗) non-positive. We have

η2n
sn

=
C

L(K)
(n+ 1)α ⇒ ηn =

√
Csn
L(K)

(n+ 1)
α
2 . (78)

And then

ηn
αn

1− αn
=

C

L(K)
nα ⇒ αn

1− αn
=

1

ηn

C

L(K)
nα (79)

⇒ αn

1− αn
=

√
C

L(K)sn

nα

(n+ 1)
α
2
. (80)

We plug the above equations in the factor behind (f(yn)− f∗)

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) =

C

L(K)
(n+ 1)α − C

L(K)
nα (81)

−

√
Csn
L(K)

(n+ 1)
α
2 + 2snC(n+ 1)α (82)

=
C

L(K)

(
(n+ 1)α − nα −

√
L(K)sn

C
(n+ 1)

α
2 (83)

+2snL(K)(n+ 1)α
)
. (84)

Now, we note sn = C1

(n+1)β
. Then, we have

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) =

C

L(K)

(
(n+ 1)α − nα −

√
L(K)C1

C
(n+ 1)

α−β
2

+ 2L(K)C1(n+ 1)α−β
)
. (85)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

We have to ensure that the positive term are not of larger order than the negative ones. We have
(n+ 1)α − nα ≈ αnα−1. So, to have that this term is controlled, we need to have{

2(α− 1) ≤ α− β
α− β ≥ 2(α− β) (86)

The second constraint implies α ≤ β. As we want α to be maximal, we set α = β. The first
constraint implies α+ β ≤ 2, we get α = β = 1. Plugging these values into Equation (85)

η2n
sn
− ηn

αn

1− αn
− ηn + 2η2nL(K) = 0⇒ C

L(K)

(
1−

√
L(K)C1

C
+ 2L(K)C1

)
= 0. (87)

⇒
√
L(K)C1

C
= 1 + 2L(K)C1 (88)

⇒ C =
C1L(K)

(1 + 2L(K)C1)2
(89)

We choose C1 such that C is maximal, and C1L(K)

(1+2L(K)C1)2
is maximized at C1 =

L(K)

2 ⇒ C = 1
8 .

So we have
sn =

1

2L(K)

1

n+ 1
, ηn =

1

4L(K)
, (90)

and αn

1−αn
= 1

ηn

C
L(K)

n = n
2 , so αn = n

n+2 . Note that as L(K) ≥ L, this choice of sn satisfies the

constraint sn ≤ 1
L , needed to apply Lemma 4. With these choices of parameters, taking expectation

on Equation (77), we have

E
[
1

2
∥zn+1 − x∗∥2 +

(n+ 1)

8L(K)
(f(xn+1)− f∗)

]
≤ E

[
1

2
∥zn − x∗∥2 +

n

8L(K)
(f(xn)− f(x∗))

]
.

(91)
By induction, we get

E
[
1

2
∥zn+1 − x∗∥2 +

(n+ 1)

8L(K)
(f(xn+1)− f∗)

]
≤ E

[
1

2
∥z0 − x∗∥2

]
=

1

2
∥x0 − x∗∥2. (92)

Now, as 1
2∥zn+1 − x∗∥2 + (n+1)

8L(K)
(f(xn+1)− f∗) ≥ (n+1)

8L(K)
(f(xn+1)− f∗), we get

E [(f(xn+1)− f∗)] ≤
4L(K)

(n+ 1)
∥x0 − x∗∥2 (93)

We see that, compared to the case where we assumed SGC, where we had a decrease of the order
O
(
n−2

)
, the decrease here is of the order O

(
n−1

)
. In term of ε solution, it leads to

n ≥
4L(K)

ε
∥x0 − x∗∥2. (94)

F.2 PROOF OF THEOREM 9, STRONGLY CONVEX CASE

We use the following Lyapunov function.

En := f(xn)− f∗ +
µ

2
∥zn − x∗∥2 (95)

Proceeding to the same computations as in the proof of Theorem 3 in the strongly convex case, we
arrive to Equation (148), namely

En [En+1] = βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (96)

+
µ

2
η2En

[
∥∇̃K(yn)∥2

]
− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2

− αβηµ

1− α
⟨En

[
∇̃K(yn)

]
, yn − xn⟩ − µη⟨En

[
∇̃K(yn)

]
, yn − x∗⟩.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Recall En

[
∇̃K(yn)

]
= ∇f(yn). By Lemma 4, and Lemma 3 we respectively have

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [(f(yn)− f(xn+1))] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
, (97)

and

E
[
∥∇f(yn)− ∇̃K(yn)∥2

]
≤ 2(L(K) − µ)(f(yn)− f∗). (98)

So, by combining the two previous equations, we have

En

[
∥∇̃K(yn)∥2

]
≤ 2

s
En [(f(yn)− f(xn+1))] + 4(L(K) − µ)(f(yn)− f∗). (99)

Now, we inject this in (96), also using strong convexity.

En [En+1] ≤ βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (100)

+
µ

s
η2En [f(yn)− f(xn+1)] + 2µη2(L(K) − µ)(f(yn)− f∗)

− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 −
αβηµ

1− α
(f(yn)− f(xn))− µη(f(yn)− f∗)

− µ2η

2
∥yn − x∗∥2.

Collecting terms and removing the ∥yn − xn∥2 term, we get

En [En+1] ≤ βEn +
(
1− µ

s
η2
)
En [f(xn+1)− f∗] + β

(
αηµ

1− α
− 1

)
(f(xn)− f∗) (101)

+
µ

2
(1− β − µη)∥yn − x∗∥2 + µη

(
η

s
− αβ

1− α
− 1 + 2η(L(K) − µ)

)
(f(yn)− f∗)

We fix s = µη2 and α
1−α = 1

ηµ , which cancels En [f(xn+1)− f∗] and the f(xn)− f∗ terms. With
these choices, we want

η

s
− αβ

1− α
− 1 + 2η(L(K) − µ) =

1

µη
− β

µη
− 1 + 2η(L(K) − µ) = 0 (102)

⇒1− β = µη(1− 2η(L(K) − µ)) (103)

We want to maximize the right quantity with respect to η. It is maximized for η = 1
4(L(K)−µ) , and

in this case:

β = 1− µη(1− 2η(L(K) − µ)) = 1− 1

4

µ

(L(K) − µ)
(1− 1

2
) = 1− 1

8

µ

(L(K) − µ)
(104)

Also with that choice of η and β, we have 1−β−µη = 1
8

µ
(L(K)−µ)−

1
4

µ
(L(K)−µ) = −

1
8

µ
(L(K)−µ) < 0,

which ensures that we can control the ∥yn − x∗∥2 term. Thus, with the choice of parameters

s =
1

16

µ

(L(K) − µ)2
, β = 1− 1

8

µ

(L(K) − µ)
, η =

1

4

1

(L(K) − µ)
, α =

1

1 + 1
4

µ
(L(K)−µ)

,

(105)
we have

En [En+1] ≤
(
1− 1

8

µ

(L(K) − µ)

)
En −

1

16

µ2

(L(K) − µ)
∥yn − x∗∥2 (106)

Ignoring norm term, taking expectation and by induction

E [En] ≤
(
1− 1

8

µ

(L(K) − µ)

)n

E [E0] (107)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Finally, we just bound E0, by strong convexity

E0 = f(x0)− f∗ +
µ

2
∥x0 − x∗∥2 ≤ 2(f(x0)− f∗), (108)

as we assumed x0 = z0. Thus, we get

E[f(xn)− f∗)] ≤ 2

(
1− 1

8

µ

(L(K) − µ)

)n

E [f(x0)− f∗)] (109)

We obtain a bound in term of ε solution following the same reasoning as for the proof of Theorem 3
in the strongly convex case, and obtain jfathat such a solution is achieved if

n ≥ 8
L(K) − µ

µ
log

(
2(f(x0)− f∗)

ε

)
(110)

F.3 ADDITIONAL LEMMA

In this section, we prove Lemma 3. Then, we introduce and prove Lemma 4.

First, we recall the statement of Lemma 3.

Lemma. Assume f is such that assumptions (1)-(2) hold.

If f is µ-strongly convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2(L(K) − µ)(f(x)− f∗). (111)

If f is convex, we have

E
[
∥∇f(x)− ∇̃K(x)∥2

]
≤ 2L(K)(f(x)− f∗). (112)

Proof. We have the elementary relation:

E
[
∥∇f(x)− ∇̃K(x)∥2

]
= E

[
∥∇̃K(x)∥2

]
− ∥∇f(x)∥2. (113)

If f is µ-strongly convex, it satisfies the Polyak-Łojasiewicz inequality (Necoara et al., 2019),
namely

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗). (114)

The convex case can be obtained by letting µ → 0. In this case, we only have ∥∇f(x)∥2 ≥ 0. To
conclude, we apply Lemma 2 and we get the result.

Lemma 4. Assuming f is L-smooth and sn ≤ 1
L , iterates of SNAG give:

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [(f(yn)− f(xn+1))] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (115)

Proof. Using smoothness, we get

f(xn+1) ≤ f(yn) + ⟨∇f(yn), xn+1 − yn⟩+
L

2
∥xn+1 − yn∥2 (116)

f(xn+1) ≤ f(yn)− sn⟨∇f(yn), ∇̃K(yn)⟩+
Ls2n
2
∥∇̃K(yn)∥2. (117)

We have

⟨∇f(yn), ∇̃K(yn)⟩ = ⟨∇f(yn)− ∇̃K(yn), ∇̃K(yn)⟩+ ∥∇̃K(yn)∥2 (118)

= −∥∇f(yn)− ∇̃K(yn)∥2 + ∥∇̃K(yn)∥2 − ⟨∇f(yn)− ∇̃K(yn),∇f(yn)⟩.
(119)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Note that taking conditional expectation with respect to Fn, the scalar product in equation equa-
tion 119 gets cancelled. Inserting (119) in (117) and taking conditional expectation, we have

En [f(xn+1)] ≤ En [f(yn)] + snEn

[
∥∇f(yn)− ∇̃K(yn)∥2

]
(120)

− sn
(
1− Lsn

2

)
En

[
∥∇̃K(yn)∥2

]
(121)

En

[
∥∇̃K(yn)∥2

]
≤ 2

sn
En [f(yn)− f(xn+1)] + 2En

[
∥∇f(yn)− ∇̃K(yn)∥2

]
. (122)

Where we used in the second inequality that sn
(
1− Lsn

2

)
≥ 1

2 , provided that sn ≤ 1
L .

G CONVERGENCE OF SNAG WITH STRONG GROWTH CONDITION

In Sections G.1 and G.2, we provide for completeness a proof of Theorem 3, that is a similar result to
the one from Vaswani et al. (2019). Our proof is a slightly simpler formulation of the algorithm. In
Sections G.3 and G.4, we extend these results proving new almost sure convergences (Theorem 4),
that are asymptotically better that the results in expectation.

In this Section G, we denote Fn the σ-algebra generated by the n + 1 first iterates {xi}ni=0 gener-
ated by SNAG (Algorithm 2), i.e. Fn = σ(x0, . . . , xn). Also, we will note En[·] the conditional
expectation with respect to Fn.

First, we present a technical result (Lemma 5) that will be useful in our proofs.

Lemma 5. Assume f is L-smooth, and that ∇̃K verifies the SGC for ρK ≥ 1. If yn and xn+1 are
generated by SNAG (Algorithm 2), then with s = 1

LρK

∥∇f(yn)∥2 ≤ 2LρKEn [f(yn)− f(xn+1)] (123)

where En stands for the conditional expectation with respect to Fn.

Proof. By L-smoothness, we have

f(xn+1) ≤ f(yn) + ⟨∇f(yn), xn+1 − yn⟩+
L

2
∥xn+1 − yn∥2 (124)

= f(yn)− s⟨∇f(yn), ∇̃K(yn)⟩+
Ls2

2
∥∇̃K(yn)∥2. (125)

By taking conditional expectation,

En [f(xn+1)− f(yn)] ≤ −s∥∇f(yn)∥2 +
Ls2

2
En

[
∥∇̃K(yn)∥2

]
. (126)

Then, by strong growth condition (SGC), we have

En [f(xn+1)− f(yn)] ≤ s
(
LρK
2

s− 1

)
∥∇f(yn)∥2. (127)

To maximize the decrease, we choose s = 1
LρK

, leading to

En [f(xn+1)− f(yn)] ≤ −
1

2LρK
∥∇f(yn)∥2. (128)

G.1 CONVEX-EXPECTATION

In this section, we prove statement (8) of Theorem 3 which is the convergence rate of SNAG algo-
rithm for a convex function.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

We first recall the SNAG algorithm (Algorithm 2), with a fixed step-size s and β = 1
yn = αnxn + (1− αn)zn
xn+1 = yn − s∇̃K(yn)

zn+1 = zn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1).

1

2
∥zn+1 − x∗∥2 =

1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − zn, ∇̃K(yn)⟩ (129)

=
1

2
∥zn − x∗∥2 +

η2n
2
∥∇̃K(yn)∥2 + ηn⟨x∗ − yn, ∇̃K(yn)⟩ (130)

+ ηn
αn

1− αn
⟨xn − yn, ∇̃K(yn)⟩. (131)

After taking conditional expectation with respect to Fn, by the convexity of f , SGC and Lemma 5,
we have
1

2
En[∥zn+1 − x∗∥2] ≤

1

2
∥zn − x∗∥2 − ηn(f(yn)− f(x∗)) + ηn

αn

1− αn
(f(xn)− f(yn)) (132)

+ Lρ2Kη
2
nEn[f(yn)− f(xn+1)]. (133)

We can reformulate as

En[Lρ
2
Kη

2
n (f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2] ≤ ηn

αn

1− αn
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

(134)

+

(
Lρ2Kη

2
n − ηn − ηn

αn

1− αn

)
(f(yn)− f∗).

(135)

We define parameters as

Lρ2Kη
2
n =

C

L
(n+ 1)2, ηn

αn

1− αn
=
C

L
n2, (136)

with C ≥ 0.

This parameter setting implies ηn =
√
C

LρK
(n+ 1). Thus, we have

Lρ2Kη
2
n − ηn − ηn

αn

1− αn
=
C

L
(2n+ 1)−

√
C

LρK
(n+ 1) ≤ 0 (137)

⇒
√
C ≤ 1

ρK

n+ 1

2n+ 1
. (138)

As we have, for all n ∈ N, 1
2 ≤

n+1
2n+1 ≤ 1, at best we can set

√
C = 1

2ρK
. With this choice, we have

C = 1
4ρ2

K
, ηn = 1

Lρ2
K

n+1
2 and

αn

1− αn
=
C

L
n2η−1

n =
1

2

n2

n+ 1
. (139)

This implies that αn =
n2

n+1

2+ n2

n+1

. With this choice of parameter, we have

En

[
(n+ 1)2

4Lρ2K
(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2

]
≤ n2

4Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2.

(140)

Finally, we get the convergence rate

E[f(xn+1)− f∗] ≤
2Lρ2K

(n+ 1)2
∥x0 − x∗∥2. (141)

To conclude:

2Lρ2K
n2
∥x0 − x∗∥2 ≤ ε⇒

√
2L

ε
ρK∥x0 − x∗∥ ≤ n. (142)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G.2 STRONGLY CONVEX - EXPECTATION

In this section, we prove statement (9) of Theorem 3. Let us remind the algorithm
yn = αnxn + (1− αn)zn
xn+1 = yn − s∇̃K(yn)

zn+1 = βzn + (1− β)yn − ηn∇̃K(yn)
(SNAG)

with ∇̃K(·) defined in (1). We introduce the following Lyapunov energy:

En = f(xn)− f∗ +
µ

2
∥zn − x∗∥2 (143)

We compute:

En+1 − En = f(xn+1)− f(xn) +
µ

2
∥zn+1 − x∗∥2 −

µ

2
∥zn − x∗∥2. (144)

We start considering the right term
∆n = ∥zn+1 − x∗∥2 − ∥zn − x∗∥2

= ∥βzn + (1− β)yn − η∇̃K(yn)− x∗∥2 − ∥zn − x∗∥2

= (β2 − 1)∥zn − x∗∥2 + (1− β)2∥yn − x∗∥2 + η2∥∇̃K(yn)∥2

+2β⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩ − 2(1− β)η⟨∇̃K(yn), yn − x∗⟩
by construction of Algorithm 2. We now control the first scalar product: using the definition of
Algorithm 2, we have zn = yn + α

1−α (yn − xn), therefore

⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩
= ⟨yn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩

+
α

1− α
⟨yn − xn, (1− β)(yn − x∗)− η∇̃K(yn)⟩

= (1− β)∥yn − x∗∥2 − η⟨yn − x∗, ∇̃K(yn)⟩ −
α

1− α
η⟨yn − xn, ∇̃K(yn)⟩

+
α

1− α
(1− β)⟨yn − xn, yn − x∗⟩

Now, applying the relation 2⟨a, b⟩ = ∥a+b∥2−∥a∥2−∥b∥2 to a = yn−x∗ and b = α
1−α (yn−xn),

we get

α

1− α
⟨yn − xn, yn − x∗⟩ =

1

2
∥zn − x∗∥2 −

1

2

(
α

1− α

)2

∥yn − xn∥2 −
1

2
∥yn − x∗∥2, (145)

so that
⟨zn − x∗, (1− β)(yn − x∗)− η∇̃K(yn)⟩

=
1− β
2

(
∥zn − x∗∥2 + ∥yn − x∗∥2 −

(
α

1− α

)2

∥yn − xn∥2
)
− η⟨yn − x∗, ∇̃K(yn)⟩

− α

1− α
η⟨yn − xn, ∇̃K(yn)⟩

and
∆n = −(1− β)∥zn − x∗∥2 + (1− β)∥yn − x∗∥2 + η2∥∇̃K(yn)∥2

−β(1− β)
(

α

1− α

)2

∥yn − xn∥2 − 2
αβη

1− α
⟨∇̃K(yn), yn − xn⟩

−2η⟨∇̃K(yn), yn − x∗⟩.
Reinjecting ∆n in the expression of En+1 − En and by definition of En, we get

En+1 − En = −(1− β)En + f(xn+1)− f∗ − β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2

+
µ

2
η2∥∇̃K(yn)∥2 −

µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 (146)

− αβηµ

1− α
⟨∇̃K(yn), yn − xn⟩ − µη⟨∇̃K(yn), yn − x∗⟩. (147)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

We take the conditional expectation with respect to Fn:

En [En+1] = βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2 (148)

+
µ

2
η2En

[
∥∇̃K(yn)∥2

]
− µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2

− αβηµ

1− α
⟨En

[
∇̃K(yn)

]
, yn − xn⟩ − µη⟨En

[
∇̃K(yn)

]
, yn − x∗⟩. (149)

Using strong convexity of f , the strong growth condition (SGC), and then Lemma 5, we have:

En [En+1] ≤ βEn + En [f(xn+1)− f∗]− β (f(xn)− f∗) +
µ

2
(1− β)∥yn − x∗∥2

+ µLρ2Kη
2En [f(yn)− f(xn+1)]−

µ

2
β(1− β)

(
α

1− α

)2

∥yn − xn∥2 (150)

− αβηµ

1− α
(f(yn)− f(xn))− µη(f(yn)− f∗)−

µ2η

2
∥yn − x∗∥2. (151)

≤ βEn +
(
1− µLρ2Kη2

)
En [f(xn+1)− f∗] + β

(
αηµ

1− α
− 1

)
(f(xn)− f∗)

+
µ

2
(1− β − µη)∥yn − x∗∥2 + µη

(
Lρ2Kη −

αβ

1− α
− 1

)
(f(yn)− f∗) (152)

We make the following choices: η = 1√
µLρK

, β = 1 − µη = 1 − 1
ρK

√
µ
L and α

1−α = 1
µη =

ρK

√
L
µ ⇒ α = 1

1+ 1
ρK

√
µ
L

. As we have:

Lρ2Kη −
αβ

1− α
− 1 = ρK

√
L

µ
− ρK

√
L

µ
(1− 1

ρK

√
µ

L
)− 1 = 0, (153)

these choices cancel all the terms. Thus we have:

En [En+1] ≤
(
1− 1

ρK

√
µ

L

)
En ⇒ E [En+1] ≤

(
1− 1

ρK

√
µ

L

)n+1

E0. (154)

Now, note that E0 = f(x0)− f∗+ µ
2 ∥x0−x

∗∥2 ≤ 2(f(x0)− f∗), because f is µ-strongly convex.
We deduce the following convergence rate:

E[f(xn)− f∗] ≤ 2

(
1− 1

ρK

√
µ

L

)n

(f(x0)− f∗). (155)

A sufficient condition on the number n of iterations needed to achieve a precision ε is then naturally
given by

2

(
1− 1

ρK

√
µ

L

)n

(f(x0)− f∗) ≤ ε. (156)

By taking the log, we get

n log

(
1− 1

ρK

√
µ

L

)
+ log

(
2(f(x0)− f∗)

ε

)
≤ 0. (157)

Or equivalently

n ≥
∣∣∣∣log(1− 1

ρK

√
µ

L

)∣∣∣∣−1

log

(
2(f(x0)− f∗)

ε

)
. (158)

Using the inequality: |log (1− x)| ≥ x for any x ∈ (0, 1), we observe that∣∣∣∣log(1− 1

ρK

√
µ

L

)∣∣∣∣−1

log

(
2(f(x0)− f∗)

ε

)
≤ ρK

√
L

µ
log

(
2(f(x0)− f∗)

ε

)
(159)

Hence a sufficient condition on the number of iterations to reach a given precision ε is

n ≥ ρK
√

L
µ log

(
2(f(x0)−f∗)

ε

)
⇒ n ≥

∣∣∣log (1− 1
ρK

√
µ
L

)∣∣∣−1

log
(

2(f(x0)−f∗)
ε

)
⇒ E[f(xn)− f∗] ≤ ε (160)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

G.3 CONVEX - ALMOST SURE

In this section we extend statement (8) of Theorem 3 to get a new almost sure convergence rate.

Proposition 5. Assume f is L-smooth, convex, and that ∇̃K verifies the SGC for ρK ≥ 1. Then

SNAG (Algorithm 2) with parameter setting s = 1
ρKL , β = 1, αn =

n2

n+1

4+ n2

n+1

, ηn = 1
4

n2

n+1 generates

a sequence {xn}n∈N such that

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (161)

This result is asymptotically better than the result in expectation of Theorem 3. This asymptotic
speedup happens similarly considering the deterministic version of the algorithm (Attouch & Pey-
pouquet, 2016).
Following the scheme of the proof of Theorem 3.1 in Sebbouh et al. (2021), the Theorem 10 is the
key result of our proof.

Theorem 10 (Robbins & Siegmund (1971)). Let Vn,An,Bn and αn be positive sequences, adapted
to some filtration Fn. Assume the following inequality is verified for all n ∈ N :

E[Vn+1| Fn] ≤ Vn(1 + αn) +An −Bn (162)

Then, on the set {
∑

i≥0 αi < +∞,
∑

i≥0Ai < +∞}, Vn converges almost surely to a random
variable V∞, and we also have

∑
i≥0Bi < +∞.

Note that the choice of parameters stated in Proposition 5 are less agressive (multiplied by a factor
1
2) compared to the results in expectation (Theorem 8).

Proof. We start back from Equation (134) that we recall

En[Lρ
2
Kη

2
n(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2] ≤ ηn

αn

1− αn
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

(163)

+

(
Lρ2Kη

2
n − ηn − ηn

αn

1− αn

)
(f(yn)− f∗).

(164)

We set

Lρ2Kη
2
n =

C

L
(n+ 1)2, ηn

αn

1− αn
=
C

L
n2, (165)

with C ≥ 0.

In this proof, compared to the one of Theorem 3, we do not want to cancel the last term but to exploit
it. More precisely, we are looking forward to the following inequality

Lρ2Kη
2
n − ηn − ηn

αn

1− αn
≤ −ηn

2
(166)

Hence:

C

L
(2n+ 1) ≤ ηn

2
=

1

2

√
C

LρK
(n+ 1) ⇔

√
C ≤ 1

2ρK

n+ 1

2n+ 1
(167)

⇔ C ≤ 1

16ρ2K

(
n+ 1

n+ 1
2

)2

. (168)

With the choice C = 1
16ρ2

K
, the last inequality is verified. Then, we get the following parameters

ηn =
1

ρ2KL

n+ 1

4
,

αn

1− αn
=

1

4

n2

n+ 1
. (169)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

The latter induces αn =
n2

n+1

4+ n2

n+1

. Thus, we have

En

[
(n+ 1)2

16Lρ2K
(f(xn+1)− f∗) +

1

2
∥zn+1 − x∗∥2

]
≤ n2

16Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2

− ηn
2
(f(yn)− f∗).

We can now apply Theorem 10 with

Vn :=
n2

16Lρ2K
(f(xn)− f∗) +

1

2
∥zn − x∗∥2,

An := 0,

Bn :=
ηn
2
(f(yn)− f∗),

αn := 0.

So we have almost surely∑
n≥0

Bn =
1

8ρ2KL

∑
n≥0

(n+ 1)(f(yn)− f∗) < +∞, (170)

which implies that ∑
n≥0

(n+ 1)(f(yn)− f∗) < +∞. (171)

By the definition of Algorithm 2 (β = 1 in the convex setting), we have

xn − zn = αn−1(xn−1 − zn−1) + (ηn−1 − s)∇̃K(yn−1). (172)

Moreover, we have

xn − yn = (1− αn)(xn − zn). (173)

By combining Equation (172) and Equation (173), we get

∥xn+1 − yn+1∥2 = (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 + (1− αn+1)
2(ηn − s)2∥∇̃K(yn)∥2

(174)

+ 2(1− αn+1)
2 αn

1− αn
(ηn − s)⟨xn − yn, ∇̃K(yn)⟩. (175)

By taking the expectation with respect to Fn, and using (ηn−s)2 ≤ η2n for n large enough, we have

En[∥xn+1 − yn+1∥2] ≤ (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 (176)

+ (1− αn+1)
2η2nEn[∥∇̃K(yn)∥2] + 2(1− αn+1)

2 αn

1− αn
(ηn − s)⟨xn − yn,∇f(yn)⟩. (177)

Using the convexity of f , we have ⟨xn − yn,∇f(yn)⟩ ≤ f(xn) − f(yn). Thanks to SGC and
Lemma 5, we have

En[∥xn+1 − yn+1∥2] ≤ (1− αn+1)
2

(
αn

1− αn

)2

∥xn − yn∥2 (178)

+ 2(1− αn+1)
2η2nLρ

2
KEn[f(yn)− f(xn+1)] (179)

+ 2(1− αn+1)
2 αn

1− αn
(ηn − s)(f(xn)− f(yn)). (180)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

We divide the previous inequality by (1− αn+1)
2

En

[
∥xn+1 − yn+1∥2

(1− αn+1)
2

]
≤
(

αn

1− αn

)2

∥xn − yn∥2 + 2η2nLρ
2
KEn[f(yn)− f(xn+1)] (181)

+ 2
αn

1− αn
(ηn − s)(f(xn)− f(yn)). (182)

Thus

En

[
∥xn+1 − yn+1∥2

(1− αn+1)
2

]
≤
(

αn

1− αn

)2

∥xn − yn∥2 + 2η2nLρ
2
KEn[(f

∗ − f(xn+1))] (183)

+ 2
αn

1− αn
(ηn − s)(f(xn)− f∗) (184)

+ 2

(
η2nLρ

2
K −

αn

1− αn
(ηn − s)

)
(f(yn)− f∗). (185)

By the parameter setting (Equation (169)) and the step-size s = 1
ρKL , we have

η2nLρ
2
K −

αn

1− αn
(ηn − s) =

1

16

2n+ 1

Lρ2K
+

1

LρK

1

4

n2

n+ 1
= O(n). (186)

By setting Cn := 2
(
η2nLρ

2
K −

αn

1−αn
(ηn − s)

)
(f(yn) − f∗), Equation (171) and Equation (186)

gives that almost surely ∑
n

Cn < +∞. (187)

By defining λn := 1
1−αn

and the parameter setting (Equation (169)), Equation 183 can be trans-
formed into

En[λ
2
n+1∥xn+1 − yn+1∥2 +

1

8

(n+ 1)2

Lρ2K
(f(xn+1)− f∗)] (188)

≤ (1− λn)2 ∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗)−

n2

2LρK(n+ 1)
(f(xn)− f∗) + Cn (189)

≤ λ2n∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗)−

n2

2LρK(n+ 1)
(f(xn)− f∗) + Cn (190)

− (2λn − 1)∥xn − yn∥2. (191)

Recalling
∑

n Cn < +∞, we then use Theorem 10 with

Ṽn := λ2n∥xn − yn∥2 +
1

8

n2

Lρ2K
(f(xn)− f∗),

Ãn := Cn,

B̃n :=
n2

2LρK(n+ 1)
(f(xn)− f∗) + (2λn − 1)∥xn − yn∥2,

α̃n := 0.

Note that λn = 1
1−αn

=
4+ n2

n+1

4 ≥ 1, 2λn − 1 ≥ λn ≥ 0 and B̃n is positive. So, we have that
lim Ṽn := Ṽ∞ exists almost surely, and

∑
n B̃n < +∞ almost surely. However, we have

λnB̃n ≥
λnn

2

2LρK(n+ 1)
(f(xn)− f∗) + λ2n∥xn − yn∥2. (192)

Moreover, we can compute by the parameter setting (Equation 169)

λnn
2

2LρK(n+ 1)
=

4 + n2

n+1

4

1

LρK

1

2

n2

n+ 1
=

n2

8Lρ2K

ρK(4 + n2

n+1)

n+ 1
. (193)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

As
ρK(4+ n2

n+1)

n+1 = ρK
n2+4n+4
n2+2n+1 > 1, we have λnn

2

2LρK(n+1) >
n2

8Lρ2
K

, and thus

λnB̃n ≥ Ṽn. (194)
We can deduce from the previous inequality∑

n≥0

B̃n =
∑
n≥0

1

λn
λnB̃n ≥

∑
n≥0

1

λn
Ṽn = 4

∑
n≥0

Ṽn

4 + n2

n+1

(195)

As
∑
B̃n <∞ almost surely, we have

∑
n≥0

Ṽn

4+ n2

n+1

< +∞ almost surely, and necessarily V∞ = 0

almost surely. Then, almost surely
1

8

n2

Lρ2K
(f(xn)− f∗)

a.s.→ 0. (196)

Finally, we get the result of Proposition 5

f(xn)− f∗
a.s.
= o

(
1

n2

)
. (197)

G.4 STRONGLY CONVEX - ALMOST SURE

Similarly to Section G.3, we extend statement (8) of Theorem 3 to get a new, asymptotically better,
almost sure convergence result.
Proposition 6. Assume f isL-smooth, µ-strongly convex, and that ∇̃K verifies the SGC for ρK ≥ 1.
Then SNAG (Algorithm 2) with parameter setting α = 1

1+ 1
ρK

√
µ
L

, s = 1
ρKL , β = 1 − 1

ρK

√
µ
L and

η = 1
ρK

√
µL

generates a sequence (xn)n∈N such that for all ε > 0, we have

f(xn)− f∗
a.s.
= o ((q + ε)n) , (198)

∥zn − x∗∥2
a.s.
= o ((q + ε)n) (199)

where q := 1− 1
ρK

√
µ
L .

Proof. We use the following Lyapunov function

En := f(xn)− f∗ +
µ

2
∥zn − x∗∥2. (200)

We set q := 1− 1
ρK

√
µ
L . We fix ε′ > 0. By the Markov inequality and Equation (154), we get

P (En ≥ (q + ε′)nE0) ≤
E[En]

(q + ε′)nE0
≤
(

q

q + ε′

)n

. (201)

We sum on n ≥ 0 ∑
n≥0

P (En ≥ (q + ε′)nE0) ≤
∑
n≥0

(
q

q + ε′

)n

< +∞. (202)

SettingAn := {En ≥ (q+ε′)nE0}, we have by the Borel Cantelli Lemma that P (lim supAn) = 0,
which implies P (lim inf Ac

n) = 1, where Ac
n is the complementary of An. In other words, as

Ac
n := {En < (q+ε′)nE0}, then for almost every ω ∈ Ω, ∃N0(ω) ∈ N such that for all n ≥ N0(ω),

we have
En(ω) < (q + ε′)nE0. (203)

Thus, we have
En(ω)

(q + 2ε′)n
<

(
q + ε′

q + 2ε′

)n

E0 →
n→+∞

0 (204)

The right term is independent of ω, so almost surely, we have
En = o ((q + 2ε′)n)

Now fix ε = 2ε′ and we get
En = o ((q + ε)n) , (205)

and thus the result by definition of En.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

H PROOFS OF SECTION 4

In this section, we will prove our results that establish a link between the strong growth condition
SGC and the average correlation between gradients, by exploiting the finite sum structure (FS).

H.1 PROOF OF PROPOSITION 1

In order to demonstrate Proposition 1, we first establish Lemma 6.

Lemma 6. Let {ai}Ni=1 be a sequence of vectors in Rd and K ∈ N. We define B(K,N) = {B ⊂
{1, . . . , N}|Card(B) = K}. Then, we have

∥
N∑
i=1

ai∥2 =
N

K

1(
N
K

) ∑
B∈B(K,N)

∥
∑
i∈B

ai∥2 + 2
N −K
N − 1

∑
1≤i<j≤N

⟨ai, aj⟩ . (206)

Proof. We fix {i1, . . . , ik} ∈ B(K,N). We have

∥
∑

i∈{i1,...,ik}

ai∥2 = ∥
N∑
i=1

ai −
∑

i/∈{i1,...,ik}

ai∥2 (207)

= ∥
N∑
i=1

ai∥2 + ∥
∑

i/∈{i1,...,ik}

ai∥2 − 2

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ (208)

= ∥
N∑
i=1

ai∥2 +
∑

i/∈{i1,...,ik}

∥ai∥2 +
∑

i,j /∈{i1,...,ik}
i̸=j

⟨ai, aj⟩ − 2

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ .

(209)

We sum over all the possible B = {i1, . . . , ik} ∈ B(K,N). Note that |B(K,N)| =
(
N
K

)
. We split

each term in Equation (209), first

∑
B∈B(K,N)

∥
N∑
i=1

ai∥2 =

(
N

K

)
∥

N∑
i=1

ai∥2. (210)

The sum of the second term of Equation (209) is∑
B∈B(K,N)

∑
i/∈{i1,...,ik}

∥ai∥2 =
∑

B∈B(N−K,N)

∑
i∈{i1,...,in−k}

∥ai∥2 (211)

=

(
N − 1

N −K − 1

) N∑
i=1

∥ai∥2 (212)

=

(
N

K

)
N −K
N

N∑
i=1

∥ai∥2 (213)

=

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2 −
(
N

K

)
N −K
N

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (214)

The second equality comes from how many times the index i is picked by the sum. We thus count
the number of set {i1, . . . , in−k} ∈ {1, . . . , N}n−k such that i belongs to this set. This amounts to
compute the cardinal of the set {{i, i1, . . . , in−k−1}, i1, . . . , in−k−1 ∈ {1, . . . , N}\{i}}. This set
has the same size as B(N −K − 1, N − 1), which is

(
N−1

N−K−1

)
.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

The sum of the third term of Equation (209) is∑
B∈B(K,N)

∑
i,j /∈{i1,...,ik}

i ̸=j

⟨ai, aj⟩ =
∑

B∈B(N−K,N)

∑
i,j∈{i1,...,in−k}

i ̸=j

⟨ai, aj⟩ (215)

=

(
N − 2

N −K − 2

) N∑
i,j=1
i ̸=j

⟨ai, aj⟩ (216)

=

(
N

K

)
(N −K)(N −K − 1)

N(N − 1)

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (217)

Here, the second equality comes from the fact that we compute the size of the set
{{i, j, i1, . . . , in−k−2}, i1, . . . , in−k−2 ∈ {1, . . . , N}\{i, j}}, which is of the same size as B(N −
K − 2, N − 2), which is

(
N−2

N−K−2

)
.

Finally, we compute the sum of the fourth term of Equation (209), using Equation (213)

∑
B∈B(K,N)

N∑
i=1

∑
j /∈{i1,...,ik}

⟨ai, aj⟩ =
N∑
i=1

〈
ai,

∑
B∈B(K,N)

∑
j /∈{i1,...,ik}

aj

〉
(218)

=

N∑
i=1

〈
ai,

(
N

K

)
N −K
N

N∑
j=1

aj

〉
(219)

=

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2. (220)

Now that we have computed the sum of each terms in Equation (209), we have

∑
B∈B(K,N)

∥
∑

i∈{i1,...,ik}

ai∥2 =

(
N

K

)
∥

N∑
i=1

ai∥2 +
(
N

K

)
N −K
N

∥ N∑
i=1

ai∥2 −
N∑

i,j=1
i ̸=j

⟨ai, aj⟩


(221)

+

(
N

K

)
(N −K)(N −K − 1)

N(N − 1)

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ − 2

(
N

K

)
N −K
N

∥
N∑
i=1

ai∥2 (222)

=

(
N

K

)(
1− N −K

N

)
∥

N∑
i=1

ai∥2 +
(
N

K

)
N −K
N

(
N −K − 1

N − 1
− 1

) N∑
i,j=1
i ̸=j

⟨ai, aj⟩ (223)

=

(
N

K

)
K

N
∥

N∑
i=1

ai∥2 −
(
N

K

)
K

N

N −K
N − 1

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (224)

By rearranging the terms, we obtain the desired result

∥
N∑
i=1

ai∥2 =
N

K

1(
N
K

) ∑
B∈B(K,N)

∥
∑

i∈{i1,...,ik}

ai∥2 +
N −K
N − 1

N∑
i,j=1
i ̸=j

⟨ai, aj⟩ . (225)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

The proof the Proposition 1 is simply an application of Lemma 6 with ai = 1
N∇fi(x). We obtain

∥∇f(x)∥2 = ∥ 1
N

N∑
i=1

∇fi(x)∥2 (226)

=
N

K

1(
N
K

) ∑
B∈B(K,N)

∥ 1
N

∑
i∈{i1,...,ik}

∇fi(x)∥2 +
N −K
N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩

(227)

=
K

N

1(
N
K

) ∑
B∈B(K,N)

∥ 1
K

∑
i∈{i1,...,ik}

∇fi(x)∥2 +
N −K
N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩

(228)

=
K

N
E[∥∇̃K(x)∥2] + N −K

N − 1

1

N2

N∑
i,j=1
i ̸=j

⟨∇fi(x),∇fj(x)⟩ (229)

=
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (230)

H.2 PROOF OF PROPOSITION 2

In this part, we demonstrate Proposition 2. The result is a direct consequence of the RACOGA
condition. Indeed, considering batch of size 1, by Proposition 1 we have ∀x ∈ Rd

∥∇f(x)∥2 =
1

N
E
[
∥∇̃1(x)∥2

]
+

2

N2

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (231)

Now recall the RACOGA condition

∀x ∈ Rd,

∑
1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N

i=1∥∇fi(x)∥2
≥ c. (RACOGA)

We inject RACOGA in Equation (231) to get

∥∇f(x)∥2 ≥ 1

N
E
[
∥∇̃1(x)∥2

]
+ c

2

N2

N∑
i=1

∥∇fi(x)∥2 (232)

=
1

N
E
[
∥∇̃1(x)∥2

]
+ c

2

N
E
[
∥∇̃1(x)∥2

]
(233)

=
1

N
(1 + 2c)E

[
∥∇̃1(x)∥2

]
. (234)

From Equation (234), that holds ∀x ∈ Rd, we deduce that f satisfy SGC with ρ1 ≤ N
1+2c .

H.3 PROOF OF LEMMA 1

In this part, we demonstrate Lemma 1. Assume that for batches of size 1, f verifies a ρ1-SGC, i.e.

∀x ∈ Rd,
1

N

N∑
i=1

∥∇fi(x)∥2 ≤ ρ1∥∇f(x)∥2. (235)

By Proposition 1, we have

∥∇f(x)∥2 =
K

N
E
[
∥∇̃K(x)∥2

]
+

2

N2

N −K
N − 1

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩. (236)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Moreover, by developing the squared norm of ∇f(x) and rearranging, we get

1

N

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ =
N

2
∥∇f(x)∥2 − 1

2N

N∑
i=1

∥∇fi(x)∥2, (237)

hence, by reinjecting (237) into (236),

E
[
∥∇̃K(x)∥2

]
=

N

K

(
1− N −K

N − 1

)
∥∇f(x)∥2 + 1

NK

N −K
N − 1

N∑
i=1

∥∇fi(x)∥2 (238)

≤ N

K

(
1− N −K

N − 1
+

1

N

N −K
N − 1

ρ1

)
∥∇f(x)∥2 (239)

≤ 1

K(N − 1)
(N(K − 1) + (N −K)ρ1) ∥∇f(x)∥2 (240)

using the SGC assumption for batches of size 1.

Finally we deduce Lemma 1: the SGC is verified for every size of batch K ≥ 1 and we have

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (241)

Remark 10. Lemma 1 offers an indirect way to demonstrate Corollary 1. Indeed, the result of
Proposition 1 for the special case of batches of size 1 is easily computed, as we have

∥∇f(x)∥2 =
1

N2

N∑
i=1

∥∇fi(x)∥2 +
2

N2

∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ . (242)

Thus, when PosCorr is verified, with batches of size 1, f verifies SGC with constant ρ1 = N . By
applying Lemma 1 with ρ1 = N , we get that for batches of size K, f verifies SGC) with constant

ρK ≤
1

K(N − 1)
(N(N −K) + (K − 1)N) =

N

K
. (243)

For the clarity of our presentation, we choose to present Proposition 1 before Lemma 1, even if it
can be seen as a corollary of this result.

One can obtain a reciprocal result of Lemma 1.

Proposition 7. Assume that for batches of size K, f verifies the SGC with constant ρK . Then, for
batches of size 1, f verifies the SGC with a constant ρ1 which satisfies

ρ1 ≤
KρK(N − 1)−N(K − 1)

N −K
. (244)

Proof. From Equality (238), we have

E
[
∥∇̃K(x)∥2

]
=

1

KN

N −K
N − 1

N∑
i=1

∥∇fi(x)∥2 +
K − 1

K

N

N − 1
∥∇f(x)∥2. (245)

Using the SGC, we obtain

1

K

N −K
N − 1

1

N

N∑
i=1

∥∇fi(x)∥2 ≤
(
ρK −

K − 1

K

N

N − 1

)
∥∇f(x)∥2. (246)

So, the SGC is verified with batches of size 1 and (244) is proved.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Remark 11. Proposition 7 indicates that satisfying the SGC for batches of size K implies interpo-
lation (Assumption 1) if each fi is convex. Indeed, Proposition 7 induces that the SGC is verified for
batches of size 1 with some ρ1 ≥ 1, i.e.

∀x ∈ Rd,
1

N

N∑
i=1

∥∇fi(x)∥2 ≤ ρ1∥∇f(x)∥2. (247)

Interpolation is then a direct consequence of evaluating Inequality (247) at some x∗ ∈ argmin f .
Indeed, it implies that each minimizer of f is a critical point of each fi. Convexity of the fi allow to
conclude.

H.4 PROOF OF THEOREM 5

In this section, we demonstrate Theorem 5. Recall that we assume f is convex, L-smooth, and that
∇̃1 verify SGC for ρ1 ≥ 1. We know that SNAG with good choice of parameters (see Theorem 3)
guarantees to reach an ε-precision (2) if

n ≥ ρK

√
2L

ε
∥x0 − x∗∥. (248)

Note that by Lemma 1, we know that ρk, the SGC constant associated to ∇̃K , exists, and that

ρK ≤
1

K(N − 1)
(ρ1(N −K) + (K − 1)N) . (249)

So, in particular, we are ensured to reach an ε-precision if

n ≥ 1

K(N − 1)
(ρ1(N −K) + (K − 1)N)

√
2L

ε
∥x0 − x∗∥ (250)

=

(
N −K
N − 1

+
N

ρ1

K − 1

N − 1

)
︸ ︷︷ ︸

:=∆K

ρ1
K

√
2L

ε
∥x0 − x∗∥. (251)

Now, to translate the result in term of number of ∇fi evaluated, note that each iteration requires to
evaluate K different ∇fi, because we consider batches of size K. Finally, the number of ∇fi to
evaluate is

∆Kρ1

√
2L

ε
∥x0 − x∗∥. (252)

H.5 BOUND ON RACOGA

In this section, we bound the ratio
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2 , that is involved in the RACOGA con-

dition.
Proposition 8. Let x ∈ Rd\X . We have

−1

2
≤
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

≤ N − 1

2
. (253)

where X = {x ∈ Rd,∀i ∈ {1, . . . , N}, ∥∇fi(x)∥ = 0}.

Proof. The upper-bound relies on the inequality ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2, for a, b ∈ Rd.∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩ ≤
1

2

∑
1≤i<j≤N

(
∥∇fi(x)∥2 + ∥∇fj(x)∥2

)
(254)

=
N − 1

2

N∑
i=1

∥∇fi(x)∥2. (255)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Using ⟨a, b⟩ ≥ −1
2∥a∥

2− 1
2∥b∥

2, for a, b ∈ Rd, we could get a lower-bound. This lower-bound is not
tight when considering a sum of two or more scalar products. This is because the critical equality
case occurs when a = −b. However considering at least 3 vectors, they cannot be respectively
opposite to each other. Interestingly, Proposition 1 provides a way to get a tighter lower-bound.

By contradiction, assume there exists xε ∈ Rd\X such that∑
1≤i<j≤N ⟨∇fi(xε),∇fj(xε)⟩∑N

i=1∥∇fi(xε)∥2
= −1

2
− ε (256)

with ε > 0. Using Proposition 1 with batches of size 1, we have

∥∇f(xε)∥2 =
1

N2

N∑
i=1

∥∇fi(xε)∥2 +
2

N2

∑
1≤i<j≤N

⟨∇fi(xε),∇fj(xε)⟩ (257)

=
1

N2

N∑
i=1

∥∇fi(xε)∥2 −
2

N2

(
1

2
+ ε

) N∑
i=1

∥∇fi(xε)∥2 (258)

= − 2ε

N2

N∑
i=1

∥∇fi(xε)∥2 < 0. (259)

We thus arrive at a contradiction, as ∥∇f(xε)∥2 is non negative. As a consequence, (256) cannot
hold. Thus, at worst we have for all x ∈ Rd\X

−1

2
≤
∑

1≤i<j≤N ⟨∇fi(x),∇fj(x)⟩∑N
i=1∥∇fi(x)∥2

. (260)

So, Proposition 8 is proved.

I RACOGA VALUES IN LINEAR REGRESSION

In this section, we give deeper insights considering RACOGA values in the case of the linear re-
gression problem. Moreover, we investigate, in this linear regression context, the link between
RACOGA values and the curvature.

We have {ai, bi}Ni=1, where each (ai, bi) ∈ Rd × R, and we want to minimize f , with

f(x) :=
1

N

N∑
i=1

fi(x) :=
1

N

N∑
i=1

1

2
(⟨ai, x⟩ − bi)2. (LR)

As mentioned in Section 5.1, in this case the correlation between gradients is directly linked to the
correlation between data by

⟨∇fi(x),∇fj(x)⟩︸ ︷︷ ︸
gradient correlation

= (⟨ai, x⟩ − bi)(⟨aj , x⟩ − bj) ⟨ai, aj⟩︸ ︷︷ ︸
data correlation

. (261)

In particular uncorrelated data, i.e. ⟨ai, aj⟩ = 0, will induce uncorrelated gradients, i.e. ∀x ∈
Rd, ⟨∇fi(x),∇fj(x)⟩ = 0. In this case, RACOGA is verified for c = 0. In this section, we will
see that outside this special case of orthogonal data, the characterization of RACOGA values is a
challenging problem.

I.1 TWO FUNCTIONS IN TWO DIMENSIONS

We study in this subsection the simplified case with d = 2, N = 2 and b1 = b2 = 0, i.e. two
functions defined on R2 such that 0 is their unique minimizer. Formally the function we consider is
the following

f(x) :=
1

2

(
1

2
⟨a1, x⟩2 +

1

2
⟨a2, x⟩2

)
. (2f)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

In this special case, we look at the gradient correlation, with same sign of the RACOGA values,
∆(x) := ⟨∇f1(x),∇f2(x)⟩ = ⟨a1, x⟩ ⟨a2, x⟩ ⟨a1, a2⟩ . (262)

If ⟨a1, a2⟩ ≠ 0, ∆(x) is not identically equal to zero. Without loss of generality, for the following
reasoning we can assume ⟨a1, a2⟩ > 0. Choose x0 ∈ R2 such that ⟨a1, x0⟩ > 0 and ⟨a2, x0⟩ ̸=
0. The function x → ⟨a1, x⟩ has a kernel a⊥1 , the orthogonal of a1. Moving along this kernel,
i.e. considering x = x0 + k, k ∈ a⊥1 , if a1 and a2 are not colinear, one can make the scalar
product ⟨a2, x⟩ be positive or negative while ⟨a1, x⟩ > 0 as it remains equal to ⟨a1, x0⟩. Therefore
necessarily, if ⟨a1, a2⟩ ≠ 0 and a1 and a2 are not colinear, we have minx ∆(x) < 0. So, if
⟨a1, a2⟩ ≠ 0, the minimum of the RACOGA values on the space is necessarily negative.

Figure 9: Illustration of the RACOGA values for problem (2f), along a circle around the solution.
On the left part, a1 and a2 are orthogonal, inducing RACOGA is constant equal to zero. On the right
part, a1 and a2 are slightly correlated, inducing positive and negative RACOGA values. Note that
the non positive RACOGA areas exactly contain the points x ∈ Rd such that ⟨a1, x⟩ ⟨a2, x⟩ ≤ 0.

Figure 9 illustrates this behaviour. We observe that non orthogonality of a1 and a2 creates non
positive and non negative areas of RACOGA values.

According to Theorem 5, non positive RACOGA values indicate a bad performance of SNAG (Al-
gorithm 2). The example of this section indicates that we can not hope to obtain theoretical results
that would ensure high RACOGA values for any linear regression problem, and thus a good perfor-
mance of SNAG. In the next section we see that, nevertheless, we can expect the RACOGA values
to be positive over most of the space.

I.2 RACOGA IS HIGH OVER MOST OF THE SPACE

In Section I.1, we considered a 2-dimensional example with 2-functions. Increasing dimension
and adding functions, the problem of characterizing RACOGA values becomes harder. In the case
of independent data, it is possible to give a theoretical result considering the RACOGA values in
expectation over the data.

Proposition 9. Let f(x) = 1
N

∑N
i=1(Φ(x, ai) − bi)2 where {ai, bi}Ni=1 ∈ Rp × R are i.i.d. and

Φ : Rd × Rp → R is differentiable. We have

E[
∑

1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩] =
N(N − 1)

2
∥E[(Φ(x, a1)− b1)∇Φ(x, a1)]∥2 ≥ 0. (263)

In particular if Φ(x, ai) = ⟨x, ai⟩ and a1 ∼ N (m,Γ), b1 ∼ N (mb, σ
2
b) with a1 ⊥⊥ b1, we have

E

 ∑
1≤i<j≤N

⟨∇fi(x),∇fj(x)⟩

 =
N(N − 1)

2
∥Γx+mmtx−mbm∥2 ≥ 0. (264)

In both cases, the expectation is taken with respect to the data {ai, bi}Ni=1.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Proposition 9 indicates that when having a large amount of data, we can expect the RACOGA values
to be positive over a large part of the space. The proof of Proposition 9 is deferred in Appendix I.4.

To confirm this statement empirically, for a fixed dataset {ai, bi}Ni=1, we compute the RACOGA
values on a sphere whose center is a minimizer of the function. Note that by the linearity of the
gradient, the RACOGA values taken on this sphere are invariant by homothety. We set the bias, i.e.
the {bi}Ni=1, at zero. This forces zero to be a minimizer, without loss of generality. The function we
consider is the following

f(x) =
1

N

N∑
i=1

1

2
⟨ai, x⟩2 . (265)

(a) Uncorrelated data (b) Correlated data

Figure 10: Histogram distribution of the RACOGA values for points sampled uniformly on a sphere
centered on a minimizer. On the left plot, the data are fewly correlated and the RACOGA values
are mostly positive. On the right plot there is correlation inside data, and all RACOGA values are
positive. Note that the RACOGA values are significantly higher on the right plot, because of the
higher data correlation.

On Figure 10, we run this experiment in the case where {ai}Ni=1 are drawn uniformly onto the sphere,
inducing low correlation inside data, and also in the case it is drawn following a gaussian mixture
law, inducing higher correlation inside data. We set d = 1000, N = 100. It is the same problem
as for Figure 1, except that here we set the bias to zero. We sample 10000 points on the sphere. In
both cases, RACOGA is almost only non negative. More, all the RACOGA values are positive on
Figure 10b, i.e. for the correlated dataset. Note that the observations we made in Section 5.1 are
consistent: correlated data induce higher RACOGA values (Figure 10b), whereas with uncorrelated
data the RACOGA values are smaller (Figure 10a).

However, one should not conclude from Figure 10b that RACOGA values are positive everywhere,
as there could be non positive RACOGA value areas that are so small that our sampled points never
fall in. Even more, we should not conclude from the fact that the eventual areas of non positive
RACOGA values are small that the optimisation algorithms never cross them. We show in the
following section that, actually, these small non positive RACOGA value areas exist and attract the
optimization algorithms, and that stochasticity prevents the algorithm to get stuck inside.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

I.3 THE CURVATURE PROBLEM: FIRST ORDER ALGORITHMS ARE ATTRACTED BY LOW
RACOGA VALUE AREAS

In Section I.2, we showed that in the case d > N whereN is not too small, one can expect RACOGA
values to be high over most of the space. This statement is reinforced in the presence of correlation
inside data (Figure 10b).

However, if d is high, even though we sample a large amount of points to evaluate RACOGA values,
we could miss non positive RACOGA value areas if these areas are too small. On Figure 11, we
see that these areas indeed exist. Moreover, although they are tiny with respect to the whole space
(Section I.2), deterministic algorithms, namely GD (Algorithm 6) and NAG (Algorithm 7), dive into
these areas and stayed trapped inside. Strikingly, SNAG behaves differently and it manages not to
get stuck in the same area.

(a) Spherical data (b) Gaussian mixture data

Figure 11: Illustration of RACOGA values taken along iterations of GD (Algorithm 6), NAG (Al-
gorithm 7) and SNAG (Algorithm 2, batch size 1) for the linear regression problem. On the left plot,
the data are fewly correlated while on the right plot there is correlation inside data. Note that while
deterministic algorithms, i.e. GD and NAG, dive and stay in a negative RACOGA value area, the
stochasticity of SNAG enables it to not to be trapped in the same zone.

In the remaining of this section, we give an explanation of the behaviour observed on Figure 11.

First order algorithms fall in low curvature area In the case of linear regression, which amounts
to minimizing a quadratic function, it is well known that first order algorithms, namely algorithms
that use only gradient information, converge faster in the direction of high curvature, i.e. directions
such that the Hessian matrix has a high eigenvalue. We illustrate this phenomenon on Figure 12,
where we plot the first iterations of GD (Algorithm 6) and NAG (Algorithm 7) applied to the function

g(x) =
1

2
xTAx (266)

where A =

(
L 0
0 µ

)
, 0 < µ < L. The algorithms GD and NAG dive and stay in a low curvature

zone. However, note that the stochasticity of SNAG makes it unstable enough to not follow the exact
same path.

The RACOGA-Curvature link In this paragraph, we connect our observations about curvature
and RACOGA values. Intuitively, for a point x ∈ Rd such that RACOGA is small, i.e. gradients
are on average anti correlated, the gradients will compensate each other. Thus, we can expect that
around this point, the gradient will have low values. Considering linear regression, this induce that
non positive RACOGA areas tend to produce low curvature areas. We illustrate this phenomenon

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Figure 12: Illustration of the iterations of the trajectories of GD (Algorithm 6), NAG (Algorithm 7)
and SNAG (Algorithm 2) applied the function (266). We also display the curvature of the function,
which we define at x ∈ R2

∗ as xTAx
∥x∥2 . Note that the deterministic algorithms GD and NAG dive in the

direction of smallest curvature, and then move following this direction. Note also that the instability
of SNAG enables itself to follow less strictly this smallest curvature ravine.

on Figure 13, where we consider problem 2f. Actually if a1 and a2 have the same norm, the lowest
RACOGA direction coincides exactly with the lowest curvature direction. As we mentioned in the
previous paragraph that deterministic algorithms dive and stay in a low curvature zone, they actually
dive and stay in low RACOGA areas. The instability provided by stochasticity allows SNAG not to
get stuck inside these low RACOGA areas.

Figure 13: Comparison of the RACOGA and curvature values for problem (2f), along a circle around
the solution. On the left plot, a1 and a2 have the same norm, which is not the case on the right plot.
Note that the low curvature zone are close to the non positive RACOGA areas, and are exactly the
same when a1 and a2 have same norm.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

I.4 PROOF OF PROPOSITION 9

Proof of Equation (263) We consider the least square problem defined by

f(x) =
1

N

N∑
i=1

(Φ(x, ai)− bi)2, (267)

with Φ : Rd × Rp → R differentiable and {ai, bi}Ni=1, random variables drawn i.i.d.

By the independence of the variable, we have for i ̸= j

E[⟨∇fi(x),∇fj(x)⟩] = ⟨E[∇fi(x)],E[∇fj(x)]⟩ (268)

= ∥E[∇f1(x)]∥2 (269)

= ∥E[(Φ(x, a1)− b1)∇Φ(x, a1)]∥2 ≥ 0 (270)

Finally, we sum over N to get Equation (263).

Proof of Equation (264) First, we compute for a = (a(1), . . . , a(d)) ∈ Rd and b ∈ R

E[(⟨a, x⟩ − b)a] = (E[
∑
i

a(1)a(i)xi]− E[a(1)b], . . . ,E[
∑
i

a(d)a(i)xi]− E[a(d)b]). (271)

We have a ∼ N (m,Γ), b ∼ N (mb, σ
2
b) with a ⊥⊥ b. So we can deduce that E[(a(i))2] = Γi,i +m2

i ,
and E[a(i)a(j)] = Γi,j +mimj . Thereby, we have for a fixed x ∈ Rd

E[(⟨a, x⟩ − b)a] = (E[
∑
i

a(1)a(i)xi]− E[a(1)b], . . . ,E[
∑
i

a(d)a(i)xi]− E[a(d)b]) (272)

= (
∑
i

E[a(1)a(i)]xi − E[a(1)]E[b], . . . ,
∑
i

E[a(d)a(i)]xi − E[a(d)]E[b]) (273)

= (
∑
i

Γ1,ixi +
∑
i

m1mixi −mbm1, . . . ,
∑
i

Γd,ixi +
∑
i

mdmixi −mbmd) (274)

= (
∑
i

Γ1,ixi, . . . ,
∑
i

Γd,ixi) + (m1, . . . ,md)
∑
i

mixi −mb(m1, . . . ,md) (275)

= Γx+ (mTx−mb)m (276)

From the previous computation and Equation (263), we deduce Equation (264).

52

	Introduction
	Background
	Convergence speed of SNAG and comparison with SGD
	Convergence results for SGD
	Convergence in expectation for SNAG
	Almost sure convergence for SNAG

	Characterizing convergence with strong growth condition and gradient correlation
	Average positive correlation condition
	RACOGA: relaxing the PosCorr condition
	The strong growth condition with batch size one determines how the performance scales with batch size

	Numerical experiments
	Linear regression
	Neural networks

	Conclusion
	Additional experiments and details
	Linear regression
	Neural networks

	Background : convex optimization and the Nesterov algorithm
	Performance of GD and NAG
	The different forms of Nesterov algorithm

	Related works
	Gradient correlation conditions
	Linear regression acceleration results
	SGC related convergence results

	Some examples with critical strong growth condition constant
	Large rho with linear regression
	Non convex functions such that rho does not exist

	Convergence of SGD
	Proofs of Theorem 1 and Theorem 2
	Convergence of SGD with strong growth condition

	Convergence of SNAG without strong growth condition
	Proof of Theorem 9, convex case
	Proof of Theorem 9, strongly convex case
	Additional Lemma

	Convergence of SNAG with strong growth condition
	Convex-Expectation
	Strongly convex - Expectation
	Convex - almost sure
	Strongly convex - almost sure

	Proofs of Section 4
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Theorem 5
	Bound on RACOGA

	RACOGA values in linear regression
	Two functions in two dimensions
	RACOGA is high over most of the space
	The curvature problem: first order algorithms are attracted by low RACOGA value areas
	Proof of Proposition 9

