
LVLM-eHub: A Comprehensive Evaluation
Benchmark for Large Vision-Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Vision-Language Models (LVLM) have recently played a dominant role in1

multimodal vision-language learning. Despite the great success, it lacks a holistic2

evaluation of their efficacy. This paper presents a comprehensive evaluation of3

publicly available large multimodal models by building an LVLM evaluation Hub4

(LVLM-eHub). Our LVLM-eHub consists of 8 representative LVLMs such as5

InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative6

capability evaluation and an online arena platform. The former evaluates 6 cat-7

egories of multimodal capabilities of LVLMs such as visual question answering8

and embodied artificial intelligence on 40 standard text-related visual benchmarks,9

while the latter provides the user-level evaluation of LVLMs in an open-world10

question-answering scenario. The study reveals several innovative findings. First,11

Instruction-tuned LVLM with massive in-domain data such as InstructBLIP may12

overfit many existing tasks, generalizing poorly in the open-world scenario. Second,13

Instruction-tuned LVLM with moderate instruction-following data may result in14

object hallucination issues (i.e., generate objects that are inconsistent with target15

images in the descriptions). It either makes the current evaluation metric such16

as CIDER for image captioning ineffective or generates wrong answers. Third,17

employing a multi-turn reasoning evaluation framework could mitigate the issue of18

object hallucination, shedding light on developing an effective metric for LVLM19

evaluation. The findings provide a foundational framework for the conception20

and assessment of innovative strategies aimed at enhancing zero-shot multimodal21

techniques. The evaluation pipeline will be available at vlarena page.22

1 Introduction23

Large Language Models (LLMs), such as LLaMA [1], GPT-3 [2], and Vicuna [3], have demonstrated24

remarkable progress in Natural Language Processing (NLP). These models leverage large-scale pre-25

training data and huge networks to achieve impressive results in NLP benchmarks. Recently, GPT-426

[4] further expanded the impact to the multimodal community, stimulating the rapid development of27

large vision-language models (LVLMs) and revolutionizing the landscape of artificial intelligence.28

Large Vision-Language Models (LVLM) have achieved remarkable progress in multimodal vision-29

language learning for various multimodal tasks such as visual question answering and multimodal30

conversation. Specifically, LVLMs capitalize on the knowledge from LLMs and effectively align31

visual features with the textual space. Flamingo [5], a pioneering LVLM, integrates visual features into32

LLMs through cross-attention layers. Later studies proposed more efficient vision-text interactions [6],33

more efficient training methods [7, 8], and employing instruction tuning [9, 7, 9, 10, 11, 12, 13, 8].34

However, despite the great success, few efforts have been made to provide systematic evaluations of35

LVLMs. But evaluation plays a critical role in understanding the strengths and weaknesses of LVLMs,36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://github.com/OpenGVLab/Multi-Modality-Arena/tree/main/LVLM_evaluation


Visu
al Reasoning

V
is

ua
l 

C
om

m
on

se
ns

e

Visual 

Knowledge Acquisition

V
isual 

Percep
tion

Object

Hallucinatio
n

Embodied

Intelligence

ScoreModelRanking

1027.0mPLUG-Owl1

1021.3MiniGPT-42

1013.2Otter3

1010.2LLaMA-Adapter V24

1009.7LLaVA5

1003.7InstructBLIP6

974.3VPGTrans7

949.4BLIP28

(b) LVLMs Arena Ranking(a) Quantitative Capability Evaluation

Figure 1: Comparative analysis of LVLMs within the LVLM eHub. (a) illustrates the variances in
quantitative capability performance across six distinct aspects among LVLMs. (b) presents the Elo
rating ranking of LVLMs within the LVLM Arena.

thereby guiding their future development. Recent work [14] presents a systematic investigation37

of object hallucination of LVLMs by proposing a polling-based object probing evaluation method.38

Moreover, ImageNetVC [15] studies how well LVLMs can master visual commonsense knowledge.39

Liu et al. [16] comprehensively evaluate the performance of LVLMs in visual recognition with text40

recognition, such as optical character recognition. GVT [17] evaluates LVLM’s visual semantic41

understanding and fine-grained perception capabilities. Nevertheless, these studies only evaluate a42

portion of LVLMs on specific tasks, lacking an overall understanding of LVLM’s capabilities.43

In pursuit of a comprehensive evaluation of LVLMs, we build an LVLM Evaluation hub (LVLM-44

eHub) consolidating 8 representative LVLMs such as InstrucBLIP and MiniGPT-4. The detailed45

information about model configuration and training data is listed in Table 1. Our LVLM-eHub46

consists of a quantitative capability evaluation and an online arena platform, providing a thorough47

investigation of the selected LVLMs. Specifically, the quantitative capability evaluation extensively48

evaluates 6 categories of multimodal capabilities of LVLMs including visual perception, visual49

knowledge acquisition, visual reasoning, visual commonsense, object hallucination, and embodied50

intelligence (see Fig. 1 (a)), by collecting 40 standard text-related visual benchmarks. On the other51

hand, the online arena platform features anonymous randomized pairwise battles in a crowd-sourced52

manner, providing a user-level model ranking in the open-world question-answering scenario (see53

Fig. 1 (b)).54

Our LVLM-eHub comprehensively evaluates LVLMs, revealing several innovative findings. (1)55

Instruction-tuned LVLM with massive in-domain data suffers from overfitting and generalizes poorly56

in open-world scenarios, such as InstructBLIP (see Fig. 1 (a)). (2) With moderate instruction-57

following data, Instruction-tuned LVLM may cause object hallucination issues, generating objects58

that are inconsistent with target images in the descriptions. This leads to incorrect answers or renders59

current evaluation metrics, such as CIDER for image captioning, ineffective. (3) We find that a60

multi-turn reasoning evaluation pipeline can mitigate the issue of object hallucination, indicating that61

developing an effective metric for LVLM evaluation is urgent.62

The contributions of our work are summarized follows. (1) We propose LVLM-eHub which is the63

first comprehensive evaluation benchmark for large vision-language models, to our best knowledge.64

(2) LVLM-eHub provides extensive evaluation on 6 categories of multimodal capabilities of LVLMs65

in more than 40 text-based visual tasks. (3) LVLM-eHub builds an online arena platform for LVLMs,66

which features anonymous randomized pairwise user-level comparison in a open-world scenario. (4)67

Our evaluation results reveal several innovative findings, providing a foundational framework for the68

assessment of innovative strategies aimed at enhancing zero-shot multimodal techniques.69

2 LVLM Evaluation Hub70

In this section, we introduce representative LVLMs, multimodal capabilities of interest, and evaluation71

methods. The whole LVLM Evaluation Hub is illustrated in Fig. 2. Our LVLM evaluation hub72
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Model Model Configuration Image-Text Data Visual Instruction Data

VE LLM Adapt ToP TuP # Token Source Size Source Size

BILP2 ViT-g/14† FlanT5-XL† Q-Former 4B 107M 32 CC∗-VG-SBU-L400 129M - -
LLaVA ViT-L/14† Vicuna FC layer 7B 7B 256 CC3M 595K LLaVA-I 158K
LA-V2 ViT-L/14† LLaMA† B-Tuning 7B 63.1M 10 L400 200M LLaVA-I+G4L 210K

MiniGPT-4 BLIP2-VE† Vicuna† FC layer 7B 3.1M 32 CC-SBU-L400 5M CC+ChatGPT 3.5K
mPLUG-Owl ViT-L/14 LLaMA† LoRA 7B 1.1B 65 CC∗-CY-L400 204M LLaVA-I 158K

Otter ViT-L/14† LLaMA† Resampler 9B 1.3B 64 - - LLaVA-I 158K
InstructBLIP ViT-g/14† Vicuna† Q-Former 7B 107M 32 - - QA∗ 16M
VPGTrans ViT-g/14† Vicuna† Q-Former 7B 107M 32 COCO-VG-SBU 13.8M CC+ChatGPT 3.5K

Table 1: Comparison of Different LVLMs. ‘VE’, ‘Adapt’, ‘ToP’, ‘TuP’, and ‘# Token’ represent the
visual encoder, adaption module, number of total parameters, tuning parameters, and visual tokens
fed into the text encoder, respectively. † indicates that the model is frozen. CC∗ consists of COCO
[18], CC3M [19], and CC12M [20]. CC, VG, SBU CY, and L400 indicate Conceptual Caption
[19, 20], Visual Genome [21], COYO-700M [22] and LAION 400M [23], respectively. LLaVA-I
and G4L represent 158K multimodal instruction-following data in LLaVA [9] and data generated
by GPT-4 for building an instruction-following LLMs [24]. QA∗ denotes 13 question-answering
datasets in InstructBLIP [13]. We count all the data and tuning parameters needed to convert the
pretrained vision model and LLM into a visual instruction model. The average score is obtained by
normalizing over each row and taking the average of each column.

compromises 8 representative models including BLIP2 [6], LLaVa [9], LLaMA-Adapter V2 [7],73

MiniGPT-4 [10], mPLUG-Owl [11], Otter [12], InstructBLIP [13], and VPGTrans [8]. All models74

boost vision-language representation learning by utilizing pre-trained image encoders and large75

language models (LLM). But they differ in training data scale and model configuration as shown in76

Table 1. For a fair comparison between LVLMs, we collect their checkpoints with parameter sizes77

less than 10B. The detailed descriptions of these models are in the Appendix.A.78

2.1 Quantitative Capability Evaluation79

We aim to evaluate LVLMs’ capability comprehensively. In particular, we summarize 6 categories of80

capabilities and collect corresponding benchmarks for quantitative evaluation (see Fig.2). Please see81

our supplementary materials for more statistics and details of the collected benchmarks.82

Visual Perception. Visual perception is the ability to recognize the scene or objects in images, the83

preliminary ability of the human visual system. We evaluate this capability of models through image84

classification (ImgCLs) using the ImageNet1K [25], CIFAR10 [26], Pets37 [27] and Flowers102 [28]85

benchmarks, multi-class identification (MCI) and object counting (OC) using the GVT [29] bench-86

mark. ImgCLs and MCI measure how well an LVLM grasps high-level semantic information, while87

OC assesses the recognition ability for fine-grained objects.88

Visual Knowledge Acquisition. Visual knowledge acquisition entails understanding images beyond89

perception to acquire knowledge. This evaluation is conducted through Optical Characters Recogni-90

tion (OCR) using twelve benchmarks (including IIIT5K [30], IC13 [31], IC15 [32], Total-Text [33],91

CUTE80 [34], SVT [35], SVTP [36], COCO-Text [37], WordArt [38], CTW [39], HOST [40],92

WOST [40]), Key Information Extraction (KIE) using the SROIE [41] and FUNSD [42], and Image93

Captioning (ImgCap) using two benchmarks (including NoCaps [43] and Flickr30K [44]). The OCR94

task measures whether a model can accurately identify and extract text from images or scanned95

documents. The KIE task further poses challenges in extracting structured information from unstruc-96

tured or semi-structured text. Finally, ImgCap assesses whether a model can generate a good natural97

language description of the content of an image.98

Visual Reasoning. Visual reasoning requires a comprehensive understanding of images and related99

texts. To evaluate the visual reasoning ability of LVLMs, we utilize three tasks including visual100

question answering (VQA), knowledge-grounded image description (KGID), and visual entailment101

SNLI-VE [45]), two benchmarks (i.e. ScienceQA [46] and VizWiz [47] ) and one benchmark (i.e.102

SNLI-VE), respectively. These three tasks are in VQA form in different domains. A capable LVLM103

should be able to understand the objects and scenes in an image and can reason to generate answers104

that are semantically meaningful and relevant to the question asked.105

Visual Commonsense. Visual commonsense refers to the general visual knowledge commonly shared106

across the world, as opposed to the visual information specific to a single image. This evaluation tests107
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User           LLaMA-Adapter V2           Mini-GPT4            Otter           LLaVA            InstructBLIP           mPLUG-Owl           

  LVLM Arena 
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Figure 2: Our evaluation encompasses quantitative evaluation and online LVLM Arena. Plentiful
benchmarks are employed to comprehensively evaluate the six critical capabilities of the models in
the quantitative evaluation. In the LVLM Arena, an online platform, users can participate in an online
evaluation by chatting with two anonymous models and choosing their preferred model.

the model’s understanding of commonly shared human knowledge about generic visual concepts108

using ImageNetVC [15] and visual commonsense reasoning (VCR) [48]. Specifically, ImageNetVC109

is utilized for zero-shot visual commonsense evaluation, such as color and shape, while VCR covers110

various scenes, such as spatial, casual, and mental commonsense.111

Embodied Intelligence. Embodied intelligence aims to create agents, such as robots, which learn to112

solve challenging tasks requiring environmental interaction. Recently, LLM and LVLM exhibited113

exceptional effectiveness in guiding the agent to complete a series of tasks. In this evaluation, we114

utilize high-level tasks as in EmbodiedGPT [49] and employ Minecraft [50], VirtualHome [51],115

Meta-World [52], and Franks Kitchen [52] as benchmarks.116

Object Hallucination. It is known that LVLM suffers from the object hallucination problem, i.e.,117

the generated results are inconsistent with the target images in the descriptions [14]. Evaluating the118

degree of object hallucination for different LVLMs help understand their respective weaknesses. To119

this end, we evaluate the object hallucination problem of LVLMs on the MSCOCO dataset [18].120

2.2 Online Evaluation with LVLM Arena121

Designing quantitative evaluations for LVLM to satisfy all capabilities is challenging, as evaluating122

LVLM responses constitutes an open-ended problem. Inspired by FastChat [53], we introduce the123

LVLM Arena, an online evaluation framework for LVLMs’ pairwise battle with human judgment.124

Figure 2 illustrates the LVLM Arena, comprising three primary components: matchmaking, chat, and125

voting. Initially, two models are sampled from the model zoo. Users then converse side-by-side with126

the models, who remain anonymous. Subsequently, users vote for the superior model.127
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is romantic or not. We need
more information about ……
Answer: We are not sure.
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Figure 3: Illustration of our adopted evaluation methods. To evaluate the zero-shot performance
of LVLMs on diverse downstream tasks, we employ four methods including question answering,
prefix-based score, multi-turn reasoning, and user study.

Matchmaking. The matchmaking module samples two models in a tournament style based on their128

Elo rating. However, due to the currently limited size of the model hub, we employ random sampling.129

Chat. Users chat side-by-side with two sampled models (which remain anonymous) using images or130

text inputs. Different from quantitative evaluation, users can chat about anything. Our existing online131

platform supports only single-round chats due to multi-round chats’ high computational and memory132

demands. Future updates will address this constraint.133

Voting. After the chat session, users vote for their preferred model. Four options are available: Model134

A, Model B, Tie, and Both are bad. The Elo rating is subsequently updated using voting results.135

In contrast to limited quantitative evaluations, the LVLM Arena provides an open-world evaluation136

framework that enables users to chat with models about anything, emulating real-world conditions.137

Besides, users serve as the judge for the battle, which brings more convincing evaluation results than138

traditional evaluation metrics.139

2.3 Zero-shot Evaluation140

LVLMs are capable of capturing a wide range of multimodal patterns and relationships. We evaluate141

the above 6 categories of capabilities of LVLMs by investigating their zero-shot performance on142

various tasks. Zero-shot evaluation allows us to evaluate the LVLMs’ ability to generalize to new143

tasks without training the model, which is competent for large-scale evaluation. To be specific, we144

treat the zero-shot evaluation as various forms of prompt engineering for different tasks (see Fig. 3)145

as presented in the following.146

• Question Answering. Prompting with visual question answering can be used to solve many147

downstream tasks, which assess how well an LVLM understands the underlying language and148

visual features. We design proper prompts to ensure that the LLM can produce meaningful results.149

For example, text prompts of OCR can be "what is written in the image?". Then, we evaluate the150

answers generated by the LLM using the corresponding metric such as accuracy.151

• Prefix-based Score. For multi-choice QA tasks, we can utilize a visual encoder to obtain visual152

prompts for a given image. Then, the visual prompts are prefixed into the text embeddings, which153

are fed into the LLM. The likelihood of image-text pair can be generated, which is referred to as154

a prefix-based score. We can obtain a prefix-based score for each text prompt of the candidate’s155

answer. The answer with the largest prefix-based score is selected as the final answer. We provide156

the formulation in Sec. A.3 of Appendix.157

• Multi-turn Reasoning. Following IdealGPT [16], we use a multi-turn reasoning framework to158

evaluate complex visual reasoning tasks. Specifically, we utilize an LLM such as ChatGPT to159

generate sub-questions for a given question, an LVLM to provide corresponding sub-answers, and160
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Datasets BLIP2 InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans S-SOTA

ImgCls
ImageNet1K [54] 23.71 24.51 25.89 23.50 21.58 26.81 19.29 15.60 91.10 [55]

CIFAR10 [26] 58.20 67.24 64.86 67.96 61.17 53.09 65.42 53.11 99.70 [56]
Pets37 [27] 34.83 39.17 24.56 9.05 19.81 33.66 5.91 8.56 96.70 [57]

Flowers102 [28] 30.90 32.79 32.05 11.99 29.74 20.15 10.41 10.46 99.64 [58]

OC COCO 48.90 46.65 38.50 20.56 20.86 27.51 46.14 25.46 -
VCR 25.05 29.29 26.51 24.60 25.26 8.99 41.06 18.03 -

MCI COCO 86.06 87.81 82.90 49.66 72.70 35.39 51.03 50.98 -
VCR 66.59 76.49 50.66 66.90 66.02 19.12 51.60 47.13 -

Avg. 0.879 0.946 0.820 0.617 0.731 0.753 0.669 0.507 -

Table 2: Evaluation results of visual perception capability of LVLMs on tasks of Image Classification
(Imgcls), Object Counting (OC), and Multi-class Identification (MCI). The best result is bold while
the second is underlined. S-SOTA indicates the supervised state-of-the-art results

another LLM to reason to assess sub-answers’ quality. Such a pipeline iteratively proceeds until a161

satisfactory answer is obtained. We provide the formulation in Sec. A.3 of Appendix.162

• User Study. Evaluating the quality of the text generated by an LVLM requires a thorough under-163

standing of the underlying language and context. In embedded artificial intelligence tasks, the164

LVLM generates a plan for the given instruction, which should be evaluated through various aspects165

such as recognition accuracy and conciseness in answers. It is hard to implement such an evaluation166

using an existing metric. Thus, user studies are conducted to assess the quality, relevance, and167

usefulness of the text generated by the LVLM in a specific context. To maintain evaluation fairness,168

we randomly shuffle the model’s output order and anonymize outputs during evaluation.169

Note that our user study does not involve direct interactions with human participants and does not170

involve potential risks to participants, such as the collection of personal information, or any other171

aspects that could impact the participants’ rights or well-being. Currently, we do not include an IRB172

Approval. We are dedicated to addressing the ethical and moral considerations regarding the user173

evaluation method with thoroughness and commitment, while also providing effective solutions.174

3 Experiment and Analysis175

In this section, we perform a zero-shot evaluation to assess the 6 kinds of capabilities of LVLMs.176

Specifically, visual perception ability, visual knowledge acquisition, visual Reasoning, visual com-177

monsense understanding, visual object hallucination, and embodied intelligence are assessed in178

Sec. 3.1 ∼ Sec.3.6, respectively. The LVLM arena evaluation result is presented in Sec.3.7. More179

quantitative results can be found in Appendix C.180

3.1 Results on Visual Perception181

Visual perception is an important ability of LVLMs. As presented in Sec. 2.1, we evaluate through182

image classification (ImgCls), multi-class identification (MCI), and object counting (OC). The183

evaluation details of tasks are demonstrated in Appendix.B.1. The evaluation results are reported in184

Table 2. We have three observations. (1) mPLUG-Owl and LLaVA perform best on coarse-grained185

classification tasks (i.e., ImageNet1K and CIFAR10). The commonality is that they update LLM with186

158K instruction-following data. (2) InstructBLIP presents good perception ability in fine-grained187

ImgCls, OC, and MCI tasks. The main reason is that InstructBLIP may be fine-tuned on various188

existing VQA datasets, which may make it overfit on these tasks. (3) The performances of LVLMs189

on ImgCls are significantly inferior to supervised SOTA, indicating plenty of room for LVLM’s190

perception ability.191

3.2 Results on Visual Knowledge Acquisition192

Visual knowledge acquisition involves going beyond image perception to acquire deeper understand-193

ing and knowledge. In our study, we evaluate the acquisition of visual knowledge through various194

tasks, namely Optical Character Recognition (OCR), Key Information Extraction (KIE), and Image195

Captioning, all performed in a Visual Question Answering (VQA) fashion. The evaluation details196

of tasks are demonstrated in Appendix.B.2. Table 3 shows the zero-shot performance in visual197

knowledge acquisition, and we have the following observations. First, BLIP2, InstructBLIP, and198
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Datasets BLIP2 InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans S-SOTA

OCR

IIIT5K 80.17 83.90 36.30 31.57 25.13 26.50 17.57 51.50 99.2[59]
IC13 81.13 82.08 20.87 16.39 16.75 14.86 09.67 61.67 98.4[60]
IC15 66.68 73.57 29.40 26.58 21.43 21.14 18.49 42.00 91.4[59]

Total-Text 68.31 71.51 30.93 24.51 18.65 21.08 14.81 43.60 90.5[61]
CUTE80 85.07 86.11 35.76 36.46 33.33 34.03 18.75 62.85 99.3[59]

SVT 85.78 86.86 20.40 18.55 17.47 13.45 10.51 51.16 98.3[59]
SVTP 77.34 80.93 31.01 27.44 19.69 20.78 19.22 47.13 97.2[59]

COCO-Text 53.62 58.25 20.94 18.05 12.05 13.50 11.30 27.00 81.1[59]
WordArt 73.66 75.12 38.98 35.87 31.57 32.36 21.05 53.30 72.5[38]

CTW 67.43 68.58 18.13 16.73 15.14 12.91 10.05 40.80 88.3[61]
HOST 57.28 61.22 16.60 15.94 14.57 11.92 10.14 32.20 77.5[59]
WOST 68.83 73.26 21.73 20.49 17.47 14.45 12.29 37.91 87.5[59]

KIE SROIE 0.08 0.09 0.02 0.01 0.01 0.01 0.01 0.06 97.81[62]
FUNSD 1.02 1.03 2.16 1.93 1.20 0.41 1.91 1.27 89.45[63]

Image Captioning NoCaps 48.60 46.61 33.69 1.56 5.84 0.26 11.56 36.20 124.77[64]
Flickr-30k 46.65 50.69 23.85 2.23 2.66 0.02 7.12 23.41 -

Average Score 0.924 0.965 0.416 0.307 0.253 0.215 0.231 0.607 -

Table 3: Comparison of Zero-shot Performance for Large-scale Vision and Language Models
(LVLMs) on OCR, KIE, and Image Captioning Tasks. Evaluation metrics include word accuracy for
OCR datasets, entity-level F1 score for KIE datasets, and CIDEr score for image captioning datasets.

Datasets BLIP2 InstructBLIP LLaMA-Adapter-v2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans S-SOTA

VQA

DocVQA 4.75 5.89 8.13 6.26 3.57 2.24 3.44 2.64 54.48[65]
TextVQA 31.98 39.60 43.76 38.92 21.78 38.76 21.52 17.52 73.1[66]
STVQA 20.98 28.30 32.33 28.40 12.20 8.30 15.23 12.88 -

OCR-VQA 38.85 60.20 38.12 23.40 16.15 3.40 19.50 16.97 -
OKVQA 44.93 60.52 55.93 54.36 30.06 22.89 49.01 45.31 -

GQA 45.53 49.96 43.93 41.30 27.03 12.60 38.12 38.54 72.1[67]
Visdial 10.73 45.20 12.92 14.66 7.97 13.34 11.67 12.10 68.92[68]
IconQA 62.82 56.25 41.83 42.95 28.20 09.12 26.77 25.73 83.62[69]

VSR 63.63 41.28 50.63 51.24 41.04 10.11 06.40 37.00 70.1[70]

KGID ScienceQA IMG 60.73 46.26 54.19 49.33 20.18 2.80 27.22 20.43 92.53[71]
VizWiz 65.44 65.31 62.07 62.42 40.76 11.14 50.04 11.99 73.3[66]

VE SNLI-VE 34.00 56.20 56.80 57.00 52.60 55.00 56.60 47.60 -

Average Score 0.758 0.900 0.835 0.769 0.481 0.324 0.523 0.462 -

Table 4: Comparison of Zero-shot Performance for LVLM Models on VQA, KGID, and VE Tasks.
For VQA and KGID tasks, Mean Reciprocal Rank (MRR) is used for the Visdial, while top-1 accuracy
is employed for the remaining tasks.

VPGTrans achieve dominant performance in all tasks. This may be because these models use a large199

visual encoder (i.e., ViT-g/14) and Q-Former updated with massive image-text pairs. A stronger200

visual encoder and adaption module can extract better tokens entailed with the global and local201

context, leading to remarkable improvement in visual knowledge acquisition. Second, InstructBLIP202

presents consistently the best results on all tasks. The main reason is that InstructBLIP overfits these203

tasks by fine-tuning massive VQA data.204

3.3 Results on Visual Reasoning205

Visual reasoning encompasses the ability to comprehensively understand images and perform cog-206

nitive tasks. In this section, we evaluate the visual reasoning ability of LVLMs on various tasks,207

including Visual Question Answering (VQA), Knowledge-Grounded Image Description (KGID),208

and Visual Entailment (VE) tasks. The evaluation details of tasks are demonstrated in Appendix.B.3.209

Table 4 shows the zero-shot performance in visual reasoning, and we have the following observations.210

First, compared with BLIP2, InstructBLIP again presents better results overall because it overfits211

many tasks by fine-tuning massive VQA data. Second, compared with BLIP2, instruction-tuned212

LVLMs, except for InstructBLIP, generally perform worse than BLIP2. The common words in the213

instruction data often influence the generated content, which can not be evaluated by the current214

metrics (see Appendix C). Third, instruction-tuned LVLMs consistently surpass BLIP2 on SNLI-VE215

where the final answer is obtained by multi-turn reasoning. It shows that instruction-following216

fine-tuning can produce promising content once a good evaluation scheme is employed.217

3.4 Results on Visual Commonsense218

The visual commonsense evaluation aims to evaluate the model’s comprehension of commonly shared219

human knowledge about generic visual concepts. We use two challenging visual commonsense220
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Datasets BLIP2 InstructBLIP LA-v2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans S-SOTA

ImageNetVC

Color 44.60 67.79 23.16 41.92 26.57 25.56 26.21 24.72 44.70[15]
Shape 40.14 59.06 28.16 38.74 22.88 30.72 34.19 24.69 40.50[15]
Mater. 61.49 63.58 32.51 64.91 29.50 34.24 35.81 27.21 61.90[15]

Compo. 53.86 83.25 50.38 58.53 59.96 49.47 50.72 57.21 54.00[15]
Others 51.50 68.37 32.64 59.06 38.86 35.11 34.39 36.39 51.70[15]

Avg 50.30 68.41 33.37 52.63 35.55 35.02 36.26 34.04 50.50[15]

VCR VCR 36.80 45.60 46.20 46.20 44.40 39.40 39.60 39.60 -

Average Score 0.747 0.994 0.567 0.807 0.581 0.564 0.581 0.546 -

Table 5: Comparisons of Zero-shot visual commonsense Performance for LVLM Models on VCR
and ImageNetVC datasets. Top-1 accuracy is employed for the two datasets.

Datasets BLIP2 InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans S-SOTA

MSCOCO
Random 82.21 88.83 74.44 51.52 52.58 40.65 61.40 47.92 -
Popular 80.10 84.15 56.82 50.00 49.31 38.82 49.56 47.64 -

Adversarial 78.52 81.95 60.52 50.00 49.62 38.04 50.68 45.95 -

Average Score 0.945 1.00 0.750 0.595 0.594 0.461 0.633 0.555 -

Table 6: Evaluation results of POPE [14] performance of LVLMs on MSCOCO. The accuracy is
used to assess the performance.

benchmarks in a zero-shot setting, including ImageNetVC and Visual Commonsense Reasoning221

(VCR). The evaluation details of tasks are demonstrated in Appendix.B.4. As shown in Table 5,222

we can find that all those LVLMs represent their abilities to solve visual commonsense problems.223

First, InstructBLIP performs best (68.41%) among those LVLMs on the ImageNetVC dataset. The224

main reason is that it is fine-tuned on 1.6M fine-grained VQA data, making it adapt to answer visual225

common questions. Second, LLaMA-Adapter V2 (46.20%) and LLaVA (46.20%) show the same best226

performance among those LVLMs on the VCR dataset. The main reason is that instruction-flowing227

data is used to update the LLM. Note that the final answer of VCR is obtained by multi-turn reasoning.228

It also shows the significant role of a good evaluation scheme in producing promising content for229

instruction-tuned models.230

3.5 Results on Object Hallucination231

Although LVLMs have made significant progress, they still struggle with the issue of hallucination,232

which refers to their tendency to produce objects that do not align with the descriptions provided233

in the target images. In this section, we focus on evaluating such object hallucination problems234

on MSCOCO captioning dataset. Following POPE [14] evaluation pipeline which is a multi-step235

QA procedure, we prompt LVLMs with multiple Yes-or-No questions. For example, ‘Is there a236

person in the image?’. We use accuracy as the evaluation metric. From Table 6, we could come237

to the following conclusions. InstructBlip performs best in the hallucination problem, followed by238

BLIP2, whose average accuracy both reached more than 80%. We find that instruction-tuned models,239

except for InstructBLIP, perform worse than BLIP2 because they tend to answer ‘Yes’ to the question,240

which shows that LVLMs are prone to generate objects frequently occurring in the instruction data.241

Such object hallucination problem can be alleviated by a multi-turn reasoning pipeline shown in the242

experiments on SNLI-VE and VCR.243

3.6 Results on Embodied Intelligence244

In this section, we present the evaluation results focusing on embodied intelligence. To appraise the245

effectiveness of planning outputs using the given image, we conducted a user study involving 15246

participants. The study comprised 6 household scenarios carefully selected from VirtualHome [51].247

Specifically, the participants rated the generated plans from different LVLM models using a scoring248

system similar to [49]. The evaluation comprised five dimensions with scores ranging from 1 to 5.249

These dimensions included object recognition accuracy, spatial relationship understanding, level of250

conciseness in the response, reasonability of the planning, and executability of the planning. The251

resulting average scores for the different models among the participants are presented in Table 7 below.252

Furthermore, in the Appendix C, we present quantitative evaluation results for Franka Kitchen [52],253

Minecraft [50], and Meta-World [72]. Based on the evaluation results, we observe that visual254
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Dataset BLIP2 InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPGTrans

VirtualHome

Object Recon.(↑) 2.03 3.08 3.81 3.88 3.70 3.42 3.38 3.43
Spatial Relation.(↑) 1.68 2.78 3.71 3.61 3.47 3.22 3.10 3.22

Conciseness (↑) 3.25 2.48 2.04 1.86 1.62 1.48 1.86 1.76
Reasonability(↑) 2.78 3.20 4.04 3.70 3.54 3.44 3.07 3.35
Executability(↑) 2.88 3.10 4.08 3.82 3.11 3.54 3.12 3.35

Average Score 0.674 0.772 0.922 0.879 0.805 0.785 0.761 0.789

Table 7: Generated planning quality evaluation on embodied tasks. Five dimensions including object
recognition, spatial relationship, conciseness, reasonability, and executability are used to assess the
performance.

instruction data is essential for embodied tasks. BLIP2 lacked visual instruction tuning, which greatly255

affected its capability to produce reasonable and executable plans.256

3.7 Results on Online Arena Evaluation257

The arena features anonymous and randomized pairwise battles in a crowd-sourced manner. We have258

collected 634 pieces of evaluation data since we launch the LVLM arena. The collected data shows259

almost the same number of battle outcomes for ‘Model A wins’ and ‘Model B wins.’ Moreover,260

21.8% battle outcomes are voted as ‘both are bad,’ implying that the current LVLMs still struggle to261

generate good answers for open-world visual questions. Furthermore, we rank the selected 8 LVLMs262

with Elo rating [73] using the collected data by following Fastchat [53] and [74]. As shown in Fig. 1263

(b), mPLUG-Owl, MiniGPT-4, and Otter, which are fine-tuned with amounts of instruction-following264

data with updating many parameters, are the top-3 best models in the open-world VQA scenario,265

indicating the significance of instruction-following tuning and effective parameter update. Moreover,266

InstructBLIP perform best on in-domain capability evaluation, while being much worse than many267

instruction-tuned models, implying severe overfitting issue, as shown in Fig. 1.268

3.8 Takeaway Analysis269

We can conclude some actionable insights from our evaluation results. First, the quality of visual270

instruction data matters more than quantity in the open-world VQA. We observe that MiniGPT-271

4, which is tuned by only 3.5K high-quality visual instruction data performs much better than272

InstructBLIP tuned on visual instruction data adapted from various existing VQA datasets in our273

Multi-Modality Arena. Second, a strong visual encoder can help extract detailed information from274

the image, leading to good performance in OCR tasks. For instance, we see that BLIP2, InstructBLIP,275

and VPGTrans achieve better performance than the remaining 5 LVLMs. This may be because the276

visual encoder ViT-g/14 used in BLIP2, InstructBLIP, and VPGTrans is more powerful than ViT-L/14277

employed in the remaining LVLMs. Third, multi-turn reasoning helps alleviate the hallucination issue,278

indicating that the evaluation method with critical thinking can induce the correct prediction from279

the model. We find that LVLM with multi-turn reasoning can determine whether an object exists in280

the image more accurately than single-turn reasoning. Hence, multi-turn reasoning is appropriate to281

assess the full potential of the model. Fourth, LVLMs tuned with high-quality instruction-following282

data present more promising planning ability than models without being tuned with instruction data283

as demonstrated in Table 7.284

4 Conclusion285

This paper proposes a comprehensive evaluation benchmark for large vision-language models called286

LVLM-eHub that incorporates both quantitative performance evaluation and human feedback eval-287

uation. For the quantitative evaluation, we employ 16 tasks spanning over 40+ text-related visual288

datasets to assess the six essential capabilities of LVLM models. Additionally, we have established289

an online LVLM Arena to gather human feedback on LVLM models continually. This arena serves as290

an invaluable resource, providing an Elo rating rank that offers LVLMs ranking in the open-world291

scenario. Our evaluation results reveal several important findings, stimulating the future development292

of LVLMs. We will make ongoing efforts to build a platform for LVLM evaluation as discussed in293

Sec. A.4.294
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