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Figure 1. Inverse Rendering for High-Genus Surface Meshes from Multi-View Images. (Top) Reconstructions using the SOTA
method [51], which produces incorrect genus number, leading to incorrect topology. (Middle) Our method with the correct genus
number, leading to correct topology. (Bottom) Challenging High-Genus Ground Truth. Please see Appendix D.3 for quantitative results.



Abstract

We present a topology-informed inverse rendering ap-
proach for reconstructing high-genus surface meshes from
multi-view images. Compared to 3D representations like
voxels and point clouds, mesh-based representations are
preferred as they enable the application of differential
geometry theory and are optimized for modern graphics
pipelines. However, existing inverse rendering methods of-
ten fail catastrophically on high-genus surfaces, leading
to the loss of key topological features, and tend to over-
smooth low-genus surfaces, resulting in the loss of surface
details. This failure stems from their overreliance on Adam-
based optimizers, which can lead to vanishing and explod-
ing gradients. To overcome these challenges, we introduce
an adaptive V-cycle remeshing scheme in conjunction with
a re-parametrized Adam optimizer to enhance topological
and geometric awareness. By periodically coarsening and
refining the deforming mesh, our method informs mesh ver-
tices of their current topology and geometry before opti-
mization, mitigating gradient issues while preserving es-
sential topological features. Additionally, we enforce topo-
logical consistency by constructing topological primitives
with genus numbers that match those of ground truth using
Gauss-Bonnet theorem. Experimental results demonstrate
that our inverse rendering approach outperforms the cur-
rent state-of-the-art method, achieving significant improve-
ments in Chamfer Distance and Volume IoU, particularly
for high-genus surfaces, while also enhancing surface de-
tails for low-genus surfaces.

1. Introduction
Inverse reconstruction of high-quality 3D surfaces from im-
ages is one of the most challenging tasks in computer vision
and computer graphics, with diverse applications spanning
virtual and augmented reality (VR/AR), medical imaging,
robotics, autonomous driving, and 3D printing. Recent ad-
vances in reconstruction [13, 17, 22, 28, 46, 66, 70], gen-
erative modeling [33–36, 56, 64, 68], and inverse render-
ing [12, 26, 44, 45, 51, 52] have led to significant improve-
ments in geometric precision and visual realism, represent-
ing a major leap toward real-world deployment of images-
driven 3D geometry creation. However, choosing the right
3D representation has remained a critical challenge due to
the inherent trade-offs in each 3D representation. For ex-
ample, voxels [14, 43, 67, 71] offer structured 3D grids but
are computationally expensive at high resolutions. Point
clouds [15, 41, 50, 74] capture surface points efficiently
but lack connectivity, complicating the detection of small
holes and other topological features. Triangular and tetra-
hedral meshes [17, 18, 20, 26, 51, 52] provide detailed con-
nected surface representations capturing fine geometric de-

tails but rely on complex data structures for efficient local
mesh processing [4, 9, 16] due to its irregular structure.
Signed Distance Fields (SDFs) [19, 25, 44, 45, 54, 65, 69]
enable smooth and continuous surface representation, but
incur high computational cost due to the need for dense 3D
grid evaluation and frequent distance queries, and often suf-
fer from loss of surface details during surface mesh extrac-
tion via Marching Cubes [38].

Among these 3D representations, meshes are particu-
larly favored in physical simulations and graphics render-
ing, as modern graphics pipelines are highly optimized for
processing mesh-based structures efficiently. In engineer-
ing, mesh representations are widely used to solve partial
differential equations (PDEs). Mesh-based finite element
simulations have been extensively applied in fields such as
solid mechanics [32, 62], fluid mechanics [1, 5], aerody-
namics [11, 57], electromagnetics [53], geophysics [58, 60],
and acoustics [42], due to their ability to capture intricate
geometric details essential for accurate analysis. Further-
more, most mathematical proofs regarding convergence, as
well as theoretical analyses of consistency, stability, and er-
ror bounds, are specifically developed for mesh-based dis-
cretizations [55]. Utilizing meshes also allows us to apply
theories from discrete differential geometry [4, 9, 16] to in-
spect surface features such as mean, Gaussian and principal
curvatures, enabling the classification of local shapes and
the determination of the surface genus, a measure of topo-
logical complexity that quantities the number of holes or
tunnel loops on a surface. Ensuring genus consistency is vi-
tal, as mismatches can result in the loss of critical topologi-
cal features and lead to visually inaccurate reconstructions.
Collectively, these factors establish meshes as the standard
representation in both engineering and rendering applica-
tions, where 3D surfaces must meet rigorous requirements
for accuracy and precision. While converting from other
representations to triangular meshes can introduce loss of
geometric or topological detail, conversions from meshes
typically retain nearly all original information. This inher-
ent adaptability makes mesh-based representations the pre-
ferred choice across a wide range of practical applications.

Recently, there has been a growing shift toward solv-
ing inverse rendering problems without relying on neural
networks, particularly using mesh-based surface represen-
tations. Unlike neural-implicit methods such as NeRF [46,
48], neural signed distance fields (SDFs)[54, 65], and
2D/3D Gaussian Splatting [22, 28], which are based on the
volume rendering equation, mesh-based methods [26, 51,
52] adopt differentiable rasterization pipelines to directly
optimize surface geometry. This trend has been largely pro-
pelled by recent advances in physics-based differentiable
rendering (PBDR) [21, 24, 27, 30, 31, 37, 39, 75] and high-
performance GPUs, which enable efficient gradient compu-
tation over mesh parameters. Although neural network–free



methods [26, 51, 52] are appealing for real-time applica-
tions, they remain limited in handling complex geometries,
particularly high-genus surface meshes. The root cause lies
in their heavy reliance on gradient-based optimizers such
as Adam [29], which often leads to vanishing or explod-
ing gradients. As a result, the geometry becomes overly
smoothed, and key topological features are lost. The recon-
structed meshes often suffer from poor quality, exhibiting
artifacts such as topological inconsistency, non-manifold
edges, and self-intersections. These issues significantly
limit their applicability to downstream tasks such as re-
lighting, physical simulation, and 3D printing. Addressing
these limitations is essential for accurately recovering high-
quality, high-genus surface from multi-view images.

To overcome these challenges, we introduce a topology-
informed inverse rendering method that leverages an adap-
tive V-cycle remeshing scheme rooted in geometry process-
ing, in conjunction with an Adam-based optimizer specifi-
cally designed for reconstructing high-genus surfaces from
multi-view images. By periodically coarsening and refining
the mesh and subsequently optimizing, our method effec-
tively mitigates gradient issues and preserves key geomet-
ric and topological features. We further enforce topologi-
cal consistency by constructing topological primitives with
genus numbers matching those of the ground truth, utilizing
the Gauss-Bonnet theorem from differential geometry. Ex-
perimental results demonstrate that our approach surpasses
previous methods in terms of reconstructed surface quality,
Chamfer Distance, and Volume IoU, particularly for high-
genus surface mesh reconstructions.
To summarize, we offer three principal contributions:
• We directly address the core challenges of reconstructing

high-genus surface meshes using a mesh-based represen-
tation within an inverse rendering framework.

• We leverage an adaptive V-cycle remeshing scheme in
conjunction with an Adam-based optimizer to effectively
mitigate gradient issues, enhancing topological aware-
ness, preserving key topological features, and enforc-
ing topological consistency by establishing a homeomor-
phism between initial and ground truth surfaces, achiev-
ing genus invariance.

• We demonstrate superior performance in reconstruct-
ing high-genus surfaces, evaluated both qualitatively and
quantitatively using Chamfer Distance and Volume IoU.

2. Related Work
3D Reconstruction. Reconstructing 3D objects from multi-
view images is inherently an ill-posed problem. As a re-
sult, extensive research has been devoted to addressing it.
Early neural network-based methods typically rely on 2D
image encoders and 3D decoders trained on 3D datasets,
using both explicit and implicit representations, including
voxels [8, 72, 73] and point clouds [15, 41]. Although

promising, these approaches face challenges due to their un-
derlying 3D representations. The former requires high 3D
grid resolution to capture fine surface details, leading to sig-
nificant computational overhead, while the latter relies on
dense points to capture topological features such as small
holes or tunnels. Furthermore, both voxels and point clouds
require post-processing to convert to meshes for applica-
tions such as relighting and physical simulation. Recent ad-
vancements in implicit representations, particularly neural
radiance fields (NeRF) [46], have led to generative mod-
els based on neural fields [6, 7], enabling 3D shape learn-
ing from 2D images via differentiable rendering. However,
converting implicit representations to explicit surfaces often
leads to loss of fine geometric detail. Recent methods such
as 3D Gaussian Splatting (GS) [28] and TetSphere Splat-
ting [17] have shifted focus back to explicit representations,
leveraging Gaussian kernels and tetrahedral meshes, respec-
tively, to improve both visual and reconstruction quality.
Tetrahedral meshes enable lossless surface extraction but
are more memory-intensive than surface meshes, while 3D
Gaussian Splats require post-processing, which may result
in loss of surface details. For applications such as relight-
ing, physical simulation, and 3D printing, directly using 3D
surface mesh-based representation without sacrificing detail
is highly desirable.

Inverse Rendering for 3D. Recent advancements in
physics-based differentiable rendering (PBDR) [24, 30, 40,
75], largely enabled by high-performance NVIDIA GPUs,
have significantly expanded the capabilities of inverse ren-
dering, allowing efficient gradient-based optimization to re-
cover scene parameters such as geometry, texture, and light-
ing from multi-view images. With Adam-based solvers,
recent works [26, 51] have demonstrated the extraction of
high-quality 3D triangular meshes in seconds to minutes un-
der consistent lighting, notably without relying on neural
networks. To handle more complex environmental condi-
tions, approaches such as [19, 47] incorporate neural net-
works to indirectly generate triangular meshes, textures, and
lighting, though these methods incur significantly higher
computational cost. In addition, methods like [44, 45] for-
mulate inverse rendering using level set methods to repre-
sent surfaces implicitly. These methods are computation-
ally expensive but particularly suited for high-genus topol-
ogy due to its powerful 3D representation. In contrast, [40]
apply inverse rendering to simultaneously recover both ge-
ometry and appearance for high-genus surfaces, such as
genus-1 shapes. However, reconstructing high-genus sur-
face meshes using mesh-based representations without neu-
ral networks remains challenging, as most existing methods
are not topologically aware. Sole reliance on Adam opti-
mization often produces overly smooth surfaces and suffers
from vanishing or exploding gradients, leading to the loss
of critical geometric and topological features. Addressing



these limitations is essential to advance mesh-based inverse
rendering that robustly captures high-genus topology and
fine surface detail.

3. Theoretical Foundations
Differential Geometry of Surfaces. Differential geometry
provides the mathematical foundation to analyze the curva-
tures of the surface, which is often represented by a vector-
valued function:

r⃗(u, v) = (x1(u, v), x2(u, v), x3(u, v)) ∈ R3, (1)

where (u, v) ∈ R2 are the coordinate parameters of the sur-
face. At each point on the surface, the vectors r⃗u = ∂r⃗

∂u and
r⃗v = ∂r⃗

∂v form a local basis for the tangent plane.
Principal Curvatures. One of the key reasons our adaptive
V-Cycle remeshing can be topology-informed and preserves
topological and geometric features is that it is guided by
principal curvatures k1 and k2 ∈ R, which are defined as:

k1 = max
ϕ

kn⃗(ϕ), k2 = min
ϕ

kn⃗(ϕ), (2)

where kn⃗(ϕ) represents the normal curvature in the direc-
tion of the polar angle ϕ ∈ [0, 2π).
Mean and Gaussian Curvatures. In differential geometry,
both the mean curvature and Gaussian curvature at a point
on the surface are deeply linked to the principal curvatures.
For instance, the mean curvature H ∈ R at a point on a
surface is defined as the average of the principal curvatures
k1 and k2:

H =
1

2π

∫ 2π

0

kn⃗(ϕ) dϕ =
k1 + k2

2
. (3)

Similarly, the Gaussian curvature K ∈ R at the same point
is defined as the product of the principal curvatures k1 and
k2:

K = k1 · k2. (4)

Assuming we know both H and K from Equations 3 and 4,
we can simply solve for the principal curvatures k1 and k2,
yielding:

k1, k2 = H ±
√
H2 −K. (5)

In practice, we always triangulate the surface into a mesh,
which allows us to compute the discrete mean and Gaussian
curvatures, enabling us to approximate the principal curva-
tures. We will see this in the next few sections.
Discrete Gaussian Curvature. Working on the same mesh,
the discrete Gaussian curvature Ki at vertex vi is given by
the angle deficit method [4, 16]:

Ki =

{
2π −

∑
j∈N(i) θj , if vi /∈ B,

π −
∑

j∈N(i) θj , if vi ∈ B,
(6)

where θj are the interior angles at vi across adjacent trian-
gles, N(i) is the one-ring neighborhood of faces around vi,
and B denotes boundary vertices.

Ground Truth

Figure 2. Topological Consistency: The top row shows a sphere
with genus 0, not homeomorphic to the Bob surface’s genus 1
ground truth, resulting in topological inconsistency. The bottom
row shows a torus with genus 1, ensuring topological consistency.

Discrete Mean Curvature. Interestingly, by leveraging the
discrete Laplacian-Beltrami operator L [3, 49], we can ap-
proximate the mean curvature Hi at each vertex vi as:

Hi =
1

2
∥Lx⃗i∥, (7)

where Lx⃗i =
∑

j∈N(i) wij(x⃗j − x⃗i) is the discrete Lapla-
cian applied to the position x⃗i of vi using either uniform or
cotangent weight with the factor 1

2 included to align with
the continuous definition. Hence, we can approximate the
principal curvatures using the discrete Gaussian curvature
and mean curvatures using earlier Equation 5.
Gauss-Bonnet Theorem. In order to enforce topological
consistency as to prevent topological mismatch between ini-
tial and ground truth surfaces, we apply the Gauss-Bonnet
theorem which links the genus g of a surface S to its Euler
characteristic χ(S) via:∫

S

K dA+

∫
∂S

kg ds = 2πχ(S), (8)

where K denotes Gaussian curvature, kg denotes the
geodesic curvature along the boundary ∂S, and χ(S) =
2 − 2g for a closed, orientable surface without boundary.
For a triangular mesh M, Euler characteristic is defined as:

χ(S) = |V |+ |F | − |E|, (9)

where |V |, |E|, and |F | represent the number of vertices,
edges, and faces, respectively. Consequently, the genus g of
a closed, orientable surface can be computed as:

g = 1− |V |+ |F | − |E|
2

. (10)

By applying Equations 10, we can compute the genus g
of any triangulated 3D surface, enabling us to establish a
homeomorphism between initial triangulated surfaces and
the ground truth ones to circumvent genus mismatch, as
shown in Figure 2. For an in-depth discussion on discrete
differential geometry, we recommend [4, 9, 16].
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Figure 3. Overall Pipeline: A triangulated topological primitive, with genus matching that of the ground truth, undergoes adaptive V-
cycle remeshing with periodic coarsening and refining stages, followed by optimization using an Adam-based optimizer to minimize the
multiview rendering loss.

4. Method
4.1. Problem Formulation

We formulate the inverse rendering problem for high genus
surfaces as:

argmin
x

Φ(R(x)) +w1 tr(x
TLx)

s.t. det(J
(k)
R ) > 0, ∀k ∈ {1, . . . , |F |}

(11)

where x ∈ Rn×3 represents the mesh vertex positions,
L ∈ Rn×n is the uniform bi-Laplacian matrix [2, 23], R(·)
denotes the rendering function, Φ(·) quantifies the render-
ing loss between rendered and target images, tr(·) is the
sum of the diagonal entires of a matrix, |F | is the number
of faces of the triangular mesh, and J

(k)
R represents the Ja-

cobian for each triangle k. Reformulating the Equation 11
as an unconstrained optimization problem simply yields:

argmin
x

Φ(R(x)) +w1 tr(x
TLx)

+w2

|F |∑
k=1

(
min{0, det(J(k)

R )}
)2 (12)

allowing for optimization via gradient descent solvers. In
this formulation, a large w1 enforces mesh smoothness,
while a large w2 prevents triangle inversion.

4.2. Adaptive V-Cycle Remeshing

Our method leverages adaptive remeshing guided by the
principal curvatures k1 and k2, derived from Equation 5
and approximated using Equations 6 and 7 . The overall
pipeline is illustrated in Figure 3. To maintain an opti-
mal mesh structure that balances computational efficiency
and topological awareness, periodic coarsening and refin-
ing are essential. Coarsening alone reduces computational
load by simplifying the mesh but risks losing critical sur-
face details, while refining enhances detail at the cost of
increased memory usage. By alternating coarsening and
refining, we reposition vertices x ∈ Rn×3 to create a

(a) (b) (c)
Figure 4. Visualization of topology-preserving local mesh op-
erations [61]. (a) Edge collapse, (b) Edge split, and (c) Edge flip.

high-quality mesh that accurately captures geometric fea-
tures while maintaining topological consistency. After each
remeshing step, vertex positions are further optimized using
a re-parametrized Adam-based optimizer [51] to minimize
rendering loss. This iterative process ensures that the sur-
face mesh is informed by topological features for accurate
reconstruction of high-genus surfaces while enhancing sur-
face details for low-genus surfaces. See Appendix C.2 for
the adaptive V-Cycle remeshing pseudo-code.

More specifically, our adaptive remeshing algorithm,
leverages the half-edge data structure [3, 4, 16] for coars-
ening and refinement, proceeds as follows:
1. Edge Splitting: We split edges with high curvature

(Figure 4a) to enhance resolution in regions with sharp
surface details while uniformly splitting low-curvature
edges based on the averaged edge length.

2. Edge Collapsing: We collapse short edges (Figure 4b)
until all edge lengths meet a minimum threshold, opti-
mizing mesh structure by reducing excess vertices where
high resolution is unnecessary.

3. Edge Flipping: We flip edges (Figure 4c) to improve
vertex valence (Targeting a valence of 6 for any closed
surface), maintaining mesh stability and uniformity.

4. Tangential Smoothing: We smooth vertices in direction
parallel to the tangent plane to improve triangle quality.
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Sorter Amphora Pretzel Kitten Birthday
Figure 5. Qualitative High-Genus Reconstruction: Rendered Views in Normal Maps Using Topologically Consistent Triangulated Primi-
tives (Genus 1, 2, 3, 4 and 5). Please see Appendix A.2 for the complete set of multi-view high-genus surface qualitative results.

5. Experiments and Results
Implementation details Our method leverages an adaptive
remeshing algorithm developed in C++ using a half-edge-
based data structure [3, 4, 16] to enable efficient local
mesh operations. To balance computational efficiency
and surface quality on a single 24GB RTX 3090, we set
a frequency range of 130–200 iterations to periodically
coarsen or refine the deforming mesh vertices x ∈ Rn×3;
these updated mesh vertices are then passed to the current
optimization loop, where they are rendered and optimized
according to the l1 rendering loss Φ(R(x)), implemented
as a PyTorch extension using CUDA. To ensure timely
reconstruction, we limit the optimization to 1500 iterations
for low-genus surfaces and 3000 iterations for high-genus
surfaces in both the baseline method and our approach.
For multi-view reconstruction, we generate RGBA images
of the ground truth surface by uniformly capturing [59]
multi-view images with a radial distance away from a unit
sphere to serve as our ground truth images, using a batch
of 36 at a resolution of 1024 × 1024 for both low- and
high-genus surfaces, and a batch of 120–360 at 256×256 in
rare cases where the rendered views fail to capture essential
topological features. Finally, we render the deforming
mesh with vertices x using the same camera poses as those
of the ground truth, allowing us to compute the rendering
loss effectively. With this setup, the average reconstruction
time across low-genus models is approximately 1 minute,
while for high-genus models, it is approximately 2–5
minutes on a single 24GB NVIDIA RTX 3090 GPU.

5.1. Baselines and Evaluation Protocols

Baselines and Evaluation Dataset. Few existing works
employ neural network-free approaches for surface mesh-

based reconstruction in inverse rendering, primarily due to
the difficulty of preserving surface topology as genus in-
creases, introducing more tunnels and complex topologi-
cal features. Many recent inverse rendering methods rely
on alternative 3D representations. For example, Mehta et
al.[44, 45] introduced level-set-based representations for
smooth surface reconstructions, while Munkberg et al. [47]
leveraged signed distance function (SDFs) within a neural
framework to jointly optimize geometry, lighting, and ma-
terials. However, these methods are computationally ex-
pensive and not suitable for real-time applications. In con-
trast, surface mesh-based representations offer a balanced
trade-off between efficiency and geometric detail but con-
tinue to struggle with topology preservation. To evaluate
our method’s ability to preserve surface topology in high-
genus meshes, we compare against the state-of-the-art neu-
ral network-free approach by Nicolet et al. [51], recently
integrated into Mitsuba-3 [24] and widely adopted as a
strong baseline. Our evaluation includes five high-genus
models, five genus-0 models from the Google Scanned Ob-
jects (GSO) dataset [10] and Stanford 3D Scanning Repos-
itory [63], as well as high-genus shapes from Gu et al. [16],
Crane et al. [9], and the Thingi10K dataset [76].
Evaluation Metrics. We evaluate reconstruction quality
using two standard metrics: Chamfer Distance (CD) and
Intersection over Union (IoU). Following established prac-
tice, we first apply Iterative Closest Point (ICP) alignment
between the reconstructed mesh and the ground-truth sur-
face prior to computing these metrics, which assess the ge-
ometric accuracy of the reconstructed surface mesh.

5.2. Results

Multi-view Rendered Images. Figures 5 and 6 demon-
strate that our method excels at reconstructing high-genus
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Figure 6. Qualitative Results of Multi-View Reconstruction for Genus 0 Surfaces with Rendered Views and Normal Maps Using a Sphere
(Genus 0) as Topological Primitive. Please see Appendix A.1 for the complete set of multi-view genus-0 surface qualitative results.

surfaces from multiple views, fully preserving topological
features. In contrast, current state-of-the-art methods of-
ten fail to accurately capture these features, especially for
high-genus surfaces. For low-genus surfaces, we show that
our topologically informed approach enhances surface de-
tails and avoids visible seams, whereas existing methods
frequently exhibit over-smoothing and cracks in regions of
high curvature. These qualitative results highlight that re-
lying solely on a reparameterized optimizer [51], without
periodic coarsening and adaptive remeshing cycles, is in-
sufficient for capturing key topological features. Tables 1
present quantitative comparison results, further demonstrat-

ing that our method excels at reconstructing high-genus
surfaces while preserving topological features and enhanc-
ing surface detail for low-genus surfaces, as measured by
Chamfer Distance and Volume IoU. Additionally, the genus
numbers in the tables show that the genus of the recon-
structed surfaces matches that of the ground truth, ensur-
ing topological consistency. Figure 7 tracks the l1 render-
ing loss Φ(R(x)) over optimization iterations, showing that
our method generally converges in fewer iterations on av-
erage. For the Mario model, although the rendering loss
plots converge to nearly zero, our method still achieves sig-
nificantly better qualitative results. This demonstrates that



a1) Armadillo a2) Bunny a3) Nefertiti a4) Planck a5) Mario

b1) Kitten b2) Amphora b3) Pretzel b4) Birthday b5) Sorter

Figure 7. Rendering loss for low-genus surfaces (Top Row: Armadillo, Bunny, Nefertiti, Planck, Mario) and high-genus surfaces (Bottom
Row: Kitten, Amphora, Pretzel, Birthday, Sorter) are shown, where red indicates our results and blue represents Nicolet et al. [51].

Table 1. Quantitative comparison with Nicolet et al. [51] for multi-
view reconstructed low-genus and high-genus surfaces: Lower
Chamfer Distance values means better result while higher Volume
IoU means better result. Please see Appendix D for full table.

Model CD ↓ IoU ↑ χ(S) g
[51] Ours [51] Ours Ours Ours

G
en

us
=0

Armadillo 0.0018 0.0015 0.8968 0.9283 2 0
Bunny 0.0021 0.0020 0.8263 0.8296 2 0

Nefertiti 0.0018 0.0017 0.8768 0.9158 2 0
Planck 0.0019 0.0018 0.9369 0.9261 2 0
Mario 0.0024 0.0024 0.8683 0.9003 2 0

H
ig

he
r-

G
en

us Kitten 0.0039 0.0025 0.6298 0.7126 0 1
Amphora 0.0054 0.0033 0.4581 0.7924 2 2

Pretzel 0.0040 0.0025 0.6518 0.8639 4 3
Birthday 0.0020 0.0006 0.4914 0.8849 6 4

Sorter 0.0672 0.0040 0.2901 0.7504 8 5

a lower rendering loss does not necessarily correspond to
a lower Chamfer Distance or a higher Volume IoU, while
the reverse is generally true. The exception is the Planck
model, where we set a limit of 1,500 iterations for evaluat-
ing low-genus surfaces. It requires more iteration to con-
verge. Furthermore, Figure 8 demonstrates that our method
better preserves surface features, including curvature and
geometric continuity, whereas the current state-of-the-art
often produces noisy curvature and discontinuities.

6. Conclusion

We demonstrate that our topology-informed inverse render-
ing method can accurately reconstruct mesh surfaces from
multi-view images, capturing essential topological features
for high-genus surfaces while enhancing surface details for
low-genus surfaces. Both qualitative and quantitative re-
sults show that our approach outperforms existing methods

Mean
Curvature

H

Gaussian
Curvature

K

Surface
Continuity

Nicolet et al.
[51] Ours GT

Figure 8. Qualitative comparison with Nicolet et al. [51] on sur-
face quality on Amphora (Genus-2). Less noisy curvature and
more continuous reflection lines indicate higher surface quality.

in achieving high topological accuracy and detail preserva-
tion, with superior performance in Chamfer Distance and
Volume IoU, especially for high genus surfaces. We be-
lieve our method can provide valuable insights for genera-
tive tasks where topological consistency is crucial. Future
work will focus on addressing complex topologies with in-
tricate and narrow features, where illumination poses signif-
icant challenges, to further advance topology-aware inverse
rendering in large-scale generative tasks.
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ter Schröder. Digital geometry processing with discrete exte-
rior calculus. In ACM SIGGRAPH 2013 courses, New York,
NY, USA, 2013. ACM. 2, 4, 6

[10] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. arXiv
preprint arXiv:2204.11918, 2022. 6

[11] Thomas Economon, Francisco Palacios, Sean Copeland,
Trent Lukaczyk, and Juan Alonso. SU2: An Open-Source
Suite for Multiphysics Simulation and Design. AIAA Jour-
nal, 54:1–19, 2015. 2

[12] Ziyang Fu, Yash Belhe, Haolin Lu, Liwen Wu, Bing Xu, and
Tzu-Mao Li. Bsdf importance sampling using a diffusion
model. In SIGGRAPH Asia 2024 Conference Papers. ACM,
2024. 2

[13] Xiang Gao, Xinmu Wang, Zhou Zhao, Junqi Huang, and Xi-
anfeng David Gu. Hierarchical graphcut phase unwrapping
based on invariance of diffeomorphisms framework. IEEE
Open Journal of Signal Processing, 6:546–554, 2025. 2

[14] Benjamin Graham and Laurens van der Maaten. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017. 2

[15] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. A papier-mâché ap-
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