
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTEGRATED FORWARD–INVERSE NETWORKS FOR
PHYSICS-GUIDED IMAGE RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse modeling plays a central role across computational optical imaging prob-
lems, including microscopy, imaging through scattering media, and lensless cam-
eras, where the forward model often manifests as a severe blur. Discrepancies
between the model and the actual imaging process further aggravate the ill-posed
nature of the inverse problem. Physics-enabled methods that integrate analytical
forward models with data-driven networks have been explored, but most incor-
porate physics only in a one-sided manner—either operating purely in the mea-
surement space or only after inversion—thereby discarding complementary cues
and reducing robustness to calibration errors. Here, we propose the Integrated
Forward–Inverse Network (IFIN), a physics-guided deep neural network that in-
terleaves differentiable forward operators with learnable inverse modules at every
stage of the hierarchy. This design preserves physical consistency while shaping
richer feature representations by jointly leveraging information from both mea-
surement and image domains. A physics-guided kernel adaptation further com-
pensates for inaccurate or unavailable PSF calibration, dynamically refining the
kernel for blind deconvolution under system constraints. IFIN is especially ef-
fective when measurements are severely blurred by large point-spread functions,
where conventional CNN-based inversion is limited by local receptive fields and
underutilizes the measurement signal. On challenging lensless imaging bench-
marks—including our newly introduced dataset, IFIN achieves state-of-the-art re-
construction quality and improved robustness under noise and model mismatch.

1 INTRODUCTION

Modern optical imaging systems—ranging from compact lensless cameras with coded apertures to
advanced microscopes with engineered point-spread functions (PSFs)—are increasingly designed
with complex forward models. These systems often operate in regimes where the PSF is intention-
ally or unavoidably broadened by scattering, diffraction, or designed optical coding, while producing
significantly blurred measurements. Such designs unlock diverse imaging capabilities (Sahoo et al.,
2017; Satat et al., 2017; Antipa et al., 2017; 2019; Baek et al., 2022) that transcend the limits of con-
ventional optics, yet they also introduce substantial challenges for reconstruction. In particular, the
resulting measurements frequently violate the stationarity assumptions underlying standard inverse
pipelines (Kuo et al., 2020; Cai et al., 2024), while hardware imperfections and residual modula-
tions further complicate the model. As optical platforms continue to shrink and diversify, the model
mismatch between the assumed forward model and the actual device increases, making accurate and
robust image restoration a central difficulty.

A wide spectrum of approaches has been explored for image reconstruction under complex forward
models. Classical, analytically derived inverse mappings (Wiener, 1964) and model-based opti-
mization (Richardson, 1972; Lucy, 1974; Boyd et al., 2011) built on well-defined priors offer stable
and physically valid results, but the methods are often computationally expensive, sensitive to cali-
bration errors, and unreliable under model mismatch. With advances in deep learning, data-driven
methods (Anonymous, 2020; Pan et al., 2022) has enabled end-to-end mappings from measurements
to images. While such models provide fast inference and can be trained directly on task metrics, they
may not explicitly encode the underlying system physics, which can reduce accuracy and robustness
under out-of-distribution conditions and occasionally yield hallucinations.
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In response, hybrid methods that embed the physical forward model within a learning framework
have emerged, improving efficiency and grounding predictions in the physical model while lever-
aging data-driven components to capture priors that are difficult to specify analytically. Yet in
practice, the methods typically integrate physics only in a one-sided manner—for instance, by ap-
plying a learned denoiser after physics-based reconstruction—either closed-form or optimization-
based—with or without learnable parameters (Monakhova et al., 2019; Khan et al., 2020; Yanny
et al., 2022; Kingshott et al., 2022; Poudel & Nakarmi, 2024; Lee et al., 2023a), incorporating the
forward model into the loss term (Ulyanov et al., 2018; Monakhova et al., 2021), or embedding an
inverse mapping into a single network layer (Dong et al., 2021; Li et al., 2023). Such strategies
incorporate physics in a one-sided manner, either operating purely in the measurement space or only
after an inverse mapping. Yet blurry raw measurements contain information that is often lost once a
direct inversion is applied, while using them alone leaves convolutional layers unable to reliably ex-
tract the underlying structure. This one-sided use of physics thus discards complementary cues that
could stabilize reconstruction. To overcome this, architectures must sustain tight forward–inverse
interactions throughout the hierarchy, so that both image-domain representations and raw measure-
ment information are jointly leveraged within the physical system’s constraints and remain aligned
with real-world behavior.

To this end, we introduce IFIN, a unified encoder–decoder architecture that embeds differentiable
forward operators and learnable inverse modules at every stage of the hierarchy. This design not
only preserves physical consistency but also shapes richer feature representations by jointly leverag-
ing measurement- and image-domain information. In addition, a physics-guided kernel adaptation
compensates for imperfect or unknown PSF calibration; when direct PSF measurement is infeasible,
the kernel is dynamically refined for blind deconvolution under the constraints of system physics.
Our main contributions are as follows:

• Integrated forward–inverse: An encoder–decoder design where differentiable forward
operators and learnable inverse modules are integrated at every level, maintaining physics
consistency while shaping richer feature representations.

• Learnable spatially variant modeling: A parameterization that captures lateral shift- and
depth-dependent variations, regularized for stability to enable accurate recovery in com-
plex systems, with a learnable kernel representation jointly optimized with reconstruction,
allowing blind deconvolution when PSF calibration is inaccurate or unavailable.

This explicit integration of forward and inverse processes is particularly effective in regimes where
the measurements are heavily degraded, such as when the imaging system produces severely blurred
data due to large point-spread functions. Data-driven inversion with conventional CNNs often strug-
gles to capture the broader correlations required in these regimes, leaving much of the measurement
signal underutilized. In contrast, our design propagates information through both the measurement
and image domains at every stage, performing physics-guided inversion while simultaneously learn-
ing representations that capture variations difficult to model analytically. To illustrate the benefits of
this physics-integrated framework, we focus on lensless imaging as a representative case, where our
approach demonstrates superior performance compared to prior methods.

2 RELATED WORK

2.1 LENSLESS IMAGING

Lensless cameras replace conventional lenses with thin optical elements such as coded aperture,
transmissive diffusers and engineered phase masks (Asif et al., 2016; Antipa et al., 2017; Lee et al.,
2023b).As a result, diffuser- or mask-induced PSFs are large and highly structured, often encoding
wide spatial neighborhoods—up to the entire scene—onto the sensor. This encoding eliminates the
need for bulky optics but necessitates computational reconstruction to recover interpretable images
from the raw measurements.

Beyond simple image recovery, the same computational framework also unlocks a wide range of
modalities, including depth estimation (Antipa et al., 2017; Bagadthey et al., 2022), hyperspectral
imaging (Sahoo et al., 2017; Monakhova et al., 2020), polarization analysis (Baek et al., 2022),
single-shot ultrafast video capture via rolling-shutter coding (Antipa et al., 2019), and privacy-
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preserving imaging based on the expressive representations of lensless measurements (Satat et al.,
2017; Henry et al., 2023). These capabilities, coupled with the ultra-compact and lightweight ar-
chitecture, make lensless cameras particularly appealing for applications in embedded vision where
size, cost, and its unique imaging functionalities are critical (Kim et al., 2024; Ge et al., 2024;
Xiangjun & Yue, 2025).

Image reconstruction becomes particularly challenging when the optical system produces strongly
spread measurements, often modeled as 2-D or 3D convolutions with large kernels. In such cases,
extended PSFs distribute scene information broadly across the sensor, leading to loss of spatial de-
tail and strong overlap between measurements, which makes inversion ill-posed. Similar challenges
arise in a range of computational imaging settings, from conventional cameras under severe aber-
rations or motion blur to advanced imaging tasks such as imaging through scattering media (Yoon
et al., 2020), non-line-of-sight imaging (Faccio et al., 2020), coherent diffractive imaging (Miao
et al., 2015) and advanced microscopy techniques with designed PSFs (Pavani et al., 2009).

We begin with a baseline shift-invariant model, which assumes that the system response is identical
across all spatial locations. Under this assumption, the measurement is expressed as a 2D convolu-
tion between the scene and a position-independent PSF:

y[i, j] =
∑
k,ℓ

h[i− k, j − ℓ]x[k, ℓ] + η[i, j], (1)

where x, y ∈ RH×W denote the scene irradiance and the captured measurement, h[·, ·] is a position-
independent PSF, and η models additive noise.

In practice, most imaging systems are not truly shift-invariant. Off-axis aberrations (e.g.,
coma/astigmatism), depth-dependent propagation, field-dependent magnification, vignetting/pupil
clipping, and sensor truncation at the image boundaries all make the effective system response de-
pend on spatial location (Booth, 2014; Thiébaut et al., 2016; Antipa et al., 2017). This is especially
pronounced when a phase or coded mask are non-planar or engineered for a high effective numerical
aperture: resolution improves on-axis, but aberration-induced shift variance grows with field angle.
As a result, the PSF hi,j widens, skews, or changes phase structure across the field, necessitating a
spatially varying model. A more general shift-variant model accounts for this effect by allowing the
PSF to vary with the output coordinates:

y[i, j] =
∑
k,ℓ

hi,j [k, ℓ]x[k, ℓ] + η[i, j], (2)

where hi,j [k, ℓ] is a location-dependent PSF at pixel position [k, ℓ]. This formulation no longer re-
duces to a simple 2D convolution, but instead to a large, spatially varying linear operator, which
significantly increases computational and memory demands for inversion. Compounding the diffi-
culty are sensor cropping (finite field-of-view truncation) and measurement noise, which complicate
inversion and markedly increase ill-posedness and susceptibility to calibration errors.

2.2 IMAGE RESTORATION

Given such forward models, image recovery in lensless cameras is carried out through computa-
tional inversion, often posed as deconvolution. This places lensless reconstruction in the same
category of problems as deblurring in conventional cameras, where severe optical blur can arise
from optical aberrations, motion, or atmospheric turbulence. A long line of approaches has been ex-
plored for this task. Classical methods—including Wiener deconvolution (Wiener, 1964), Richard-
son–Lucy (Richardson, 1972; Lucy, 1974) provide physically grounded solutions, but their perfor-
mance quickly deteriorates under noise and kernel mis-specification. In practice, non-differentiable
elements in the forward model (e.g., cropping or truncation) together with priors such as total varia-
tion (TV) regularization motivate the use of optimization frameworks like the Alternating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011), which decouple data fidelity and regularization
terms to enable tractable iterative solvers (Antipa et al., 2017).

In parallel, substantial efforts address non-uniform blur using PSF fields—either calibrated or es-
timated (Robbins & Huang, 1972; Denis et al., 2015; Yeo et al., 2025), trading off additional cal-
ibration effort and computational cost. More recently, deep learning methods—including CNN-
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based (Ronneberger et al., 2015; Zhang et al., 2018b; Anonymous, 2020; Chen et al., 2022) and
vision-transformer (ViT) architectures (Dosovitskiy et al., 2020; Pan et al., 2022)—have emerged
as powerful data-driven approaches, learning end-to-end mappings from measurements to images
and often achieving state-of-the-art restoration quality, yet they remain prone to hallucinations and
limited generalization under diverse real-world degradations.

Building on the limitations of purely data-driven approaches, a growing body of work has explicit
physical models into neural reconstruction pipelines, rather than relying solely on a fully data-driven
mapping from severely degraded measurements. One prominent direction unrolls classical optimiza-
tion, embedding the forward operator directly into iterative updates: Monakhova et al. (2019) and
Poudel & Nakarmi (2024) augment each iteration with a neural denoiser, while Kingshott et al.
(2022) adopts a primal–dual unrolling that jointly learns forward and adjoint operators. Forward-
model constraints are also used for measurement consistency in unsupervised training, where neu-
ral priors alone can guide reconstructions without ground-truth supervision (Ulyanov et al., 2018;
Wang et al., 2020; Monakhova et al., 2021). Another approach employs feed-forward hybrid archi-
tectures, where a physics-based inversion stage is followed by a learned refinement network (Khan
et al., 2020; Yanny et al., 2022). A related line of work performs deconvolution in feature space,
embedding convolutional inversion within multiscale skip connections to improve fidelity and ro-
bustness (Dong et al., 2021; Li et al., 2023).

Figure 1: Overall architecture of IFIN. The network follows an encoder–decoder structure, where
integrated Forward–Inverse Blocks (IFIBs) are inserted at each scale to jointly apply the Forward
System Operator (FSO) and Inverse System Operator (ISO). A shared learnable PSF field guides
both operators, ensuring forward–inverse consistency across scales.

Severe large-kernel blur mixes information across distant pixels, yet typical CNNs and ViT-style
models process measurements within limited receptive fields or local windows, leaving much of
this information unused (Luo et al., 2016; Liu et al., 2021). As a result, when raw measurements
are fed directly into such architectures, their restoration ability becomes fundamentally constrained.
Even when the physical inversion is embedded within neural layers (Dong et al., 2021; Li et al.,
2023), the injected measurements collapse into degenerate feature representations, preventing op-
timal recovery. Moreover, one-sided physics–NN pipelines (Monakhova et al., 2019; Khan et al.,
2020; Kingshott et al., 2022; Yanny et al., 2022; Poudel & Nakarmi, 2024) are limited in recover-
ing components projected into the optical null space, often hallucinating such content from priors
rather than reconstructing it deterministically. In this context, a restoration model should maintain
the information contained in the raw measurements throughout the network while mitigating the
null-space effects introduced by the inverse mapping.
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3 METHOD

3.1 OVERVIEW

The proposed IFIN adopts an encoder–decoder backbone with Integrated Forward–Inverse Blocks
(IFIBs) placed at every scale. As illustrated in Fig. 1, the encoder downsamples the input to cap-
ture large-scale blur effects and coarse scene structure, while the decoder progressively upsamples
features to recover fine detail at the native resolution.

Feature-scale forward–inverse. We note that performing inverse operations in the feature space
is also meaningful, as it facilitates the recovery of finer details during the network reconstruction
process (Dong et al., 2021; Li et al., 2023). Conversely, embedding forward operations in the feature
space encourages the learned representation to reflect the properties of the measurement.

PSF conditioning across scales. A learnable PSF field is first processed by a lightweight PSF
encoder to produce multi-scale embeddings {h(n)}. These embeddings condition both the For-
ward System Operator (FSO) (image→measurement) and the Inverse System Operator (ISO)
(measurement→image) at the corresponding resolution, maintaining physical consistency across
the hierarchy.

Initialization. We warm-start the reconstruction by applying the ISO to the raw measurement using
the PSFs, producing a coarse inverse estimate. After a refinement, the pair (measurement, coarse
reconstruction) enters the encoder–decoder as two coupled streams.

Scale-wise coupling. At each resolution stage, an IFIB jointly applies the ISO to the measurement
stream and the FSO to the reconstruction stream. Features are exchanged bidirectionally between
the two streams, so that measurement-domain consistency (via the FSO) and image-domain fidelity
(via the ISO) are enforced in tandem rather than in a one-sided fashion.

3.2 LEARNABLE SPATIALLY VARYING PSFS

IFIN incorporates a learnable PSF representation that provides explicit system awareness to both
FSO and ISO. The PSF field is parameterized as k=s2 kernels covering local regions of the image.
In case of s=1 (i.e., k=1), the PSF field reduces to a single global kernel. Kernels are initialized from
calibrated measurements, a single reference PSF, or random patterns, and are optimized jointly with
the network. A compact PSF encoder maps the field to multi-scale embeddings {hn} that condition
all IFIBs throughout the network. By embedding the learnable PSF field, IFIN adapts to unknown or
mismatched degradations and supports blind kernel estimation without external calibration, helping
both operators remain physically consistent even under severe, spatially varying blur.

3.3 INTEGRATED FORWARD–INVERSE BLOCK (IFIB)

The IFIB is the fundamental unit of IFIN, designed to couple forward and inverse imaging processes
at each scale. Each IFIB consists of two parallel operators: (1) a Forward System Operator (FSO),
and (2) an Inverse System Operator (ISO), as illustrated in Fig. 2. Both operators are fundamentally
tied to the target system’s forward and inverse physics. In practice, however, they can be flexibly
configured: a purely shift-invariant model can be used when degradations are approximately uni-
form, or a spatially varying operator can be invoked to handle more complex degradations. This
adaptability allows IFIN to balance efficiency and fidelity across different imaging conditions.

3.3.1 FORWARD SYSTEM OPERATOR (FSO)

FSO simulates how the current estimate x̂ would be formed by the physical system. By default we
use 2-D linear 2-D linear convolution with zero padding via a single point-spread function h:

ỹ[i, j] = (x̂ ∗ h)[i, j]. (3)

When nonstationarity is present, we can model the FSO as a fully shift-variant convolution by
tiling x̂ and applying local PSFs with normalized overlap–add reassembly (See Appendix A.10).
For computational efficiency in IFIN, we use a single-convolution surrogate with the averaged PSF
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heff = 1
k

∑k
r=1 hr while preserving the measurement-consistency signal. We perform a convolution

in Eq. ( 3) with heff instead of h.

Figure 2: (a) Illustration of the forward–inverse pair inside an IFIB—the submodule that hosts
the Forward System Operator (FSO) and the Inverse System Operator (ISO); (b) FSO under shift-
invariant condition; (c) ISO under shift-invariant condition; (d) FSO under shift-variant condition;
(e) ISO under shift-variant condition.

3.3.2 INVERSE SYSTEM OPERATOR (ISO)

ISO restores a sharp estimate from the degraded measurement via Wiener-like deconvolution
with a learnable frequency-dependent regularizer. By default, for PSF h, letting Y (u, v) =
F{WPrpy }(u, v) and H(u, v) = F{h}(u, v), where F{·} denotes the Fourier transform, Prp is
replicate padding, and W is a mild Gaussian window used to mitigate wrap-around artifacts during
deconvolution (Khan et al., 2020), we compute:

X̂(u, v) =
H∗(u, v)

|H(u, v)|2 + ϵ(u, v)
Y (u, v), ϵ(u, v) ≥ 0, (4)

and set x̂ = F−1{X̂}. Here, ϵ(u, v) is a 2-D learnable parameterization predicted and refined during
training, with nonnegativity enforced by a ReLU. By learning to estimate the distribution of noise
variance from data, ϵ functions as an optimal frequency-selective prior that adapts to system noise.

In the spatially varying case, we perform region-wise Wiener-like deconvolution with distinct PSFs
and blend the partial reconstructions:

Y (u, v) = F
{
W Prp

(
y
)}

(u, v), Hr(u, v) = F{hr}(u, v), (5)

X̂r(u, v) =
H∗

r (u, v)

|Hr(u, v)|2 + ϵr(u, v)
Y (u, v), ϵr(u, v) ≥ 0 (ReLU), (6)

x̂[i, j] =

m∑
r=1

wr[i, j]F−1{X̂r}[i, j], (7)

where {wr}mr=1 are learnable region-of-interest (ROI) maps, allowing the model to optimize the
spatial support of each PSF over regions of varying extent and location. We initialize the ROI
maps from Gaussian kernels {gr}kr=1 centered at {pr}, where {pr} are the centers of an s× s grid
partitioning the input measurement.

gr[i, j] = exp
(
− ∥(i,j)−pr∥2

2

2σ2
r

)
, wr[i, j] =

gr[i, j]∑m
q=1 gq[i, j]

,

m∑
r=1

wr[i, j] = 1 ∀(i, j).

(8)
This construction explicitly recovers different spatial neighborhoods using region-specific PSFs and
region-specific frequency priors, which is critical under spatially varying blur.
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3.3.3 INTEGRATED FORWARD-INVERSE

The hallmark of IFIB is the bidirectional exchange between FSO and ISO. Each operator contributes
complementary information to the other: FSO enforces measurement-domain consistency, while
ISO sharpens image-domain details. We implement this by passing the output of each operator as a
skip connection into the input of its counterpart. This ensures both branches evolve jointly:

y(n+1) = ϕy
θ

(
α(n) · y(n) + β(n) · ỹ(n)

)
, x(n+1) = ϕx

θ

(
α(n) · x(n) + β(n) · x̃(n)

)
. (9)

where ϕy
θ and ϕx

θ are lightweight refinement modules, and α(n) and β(n) are learned scalar gates at
scale n, with n indexing the IFIB stage within the encoder–decoder hierarchy.

Refinement block (RB) To boost performance, we adopt a refinement block that applies learned
priors to stabilize and refine the physics-transformed features, enabling coarse-to-fine reconstruc-
tion. Following Chen et al. (2022), the RB is a normalization-free residual module built from
depthwise-separable convolutions with a simple channel-gating mechanism. We place lightweight
convolutional layers before and after the core to stabilize the feature statistics produced by the for-
ward–inverse integrated.

Figure 3: Qualitative comparison on DiffuserCam dataset.

4 EXPERIMENTS

To evaluate IFIN, we conduct end-to-end supervised training on large sets of scene–measurement
pairs, including both real display-and-capture data and synthetic degradations. Training pairs are
constructed through three routes:

DiffuserCam (Monakhova et al., 2019)— display-and-capture measurements acquired with a
diffuser-based lensless camera, using co-located reference camera images as ground-truth labels;

Custom Shift-Variant (SV) Lensless—display-and-capture using our high-resolution, wide-field
phase-mask-based lensless camera, aligned directly to the original display images; and

MultiWienerNet (MW) (Yanny et al., 2022)—synthetic training pairs generated by convolving
ground-truth images with spatially variant PSFs measured from a mask-based microscope (minis-
cope), with validation performed on real miniscope captures.

Further details on dataset composition, camera assembly, registration procedures, and a summary
of the experimental setups and evaluation protocols are provided in the Supplementary Material
(Appendix A.3 and Appendix A.4).
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We evaluate our method against traditional approaches (Wiener deconvolution, ADMM-TV) and
learning-based models, including data-driven approaches (U-Net, NAFNet) and physics-guided ap-
proaches (Le-ADMM-U, DeepLIR, MWNet, UPDN, and MWDN). Details of the baselines and
training protocols are provided in Appendix A.2.

Figure 4: Qualitative comparison on our proposed SV Lensless dataset.

Figure 5: Reconstruction of in-the-wild lenless imaging. IFIN generalizes robustly beyond con-
trolled settings, recovering fine features and natural textures from real-world lensless measurements.

Table 1: Quantitative comparison on three benchmarks—DiffuserCam, SV Lensless, and Multi-
WienerNet. We report PSNR ↑, LPIPS ↓ (Zhang et al., 2018a), and SSIM ↑ (arrows indicate the
preferred direction). Classical baselines (ADMM, Wiener Deconvolution), a single ISO model, and
recent learning-based methods are included.

Dataset DiffuserCam SV Lensless MultiWienerNet

Metrics PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑
ADMM 12.252 0.607 0.346 11.843 0.643 0.323 19.189 0.557 0.420
Wiener Deconv. 12.552 0.591 0.384 12.405 0.607 0.369 18.658 0.640 0.302
ISO 16.528 0.544 0.404 17.240 0.462 0.444 20.202 0.623 0.380
UNet 21.230 0.394 0.656 21.890 0.474 0.646 23.859 0.389 0.589
NAFNet 24.830 0.239 0.810 23.857 0.245 0.769 24.657 0.282 0.712
Le-ADMM-U 23.261 0.312 0.765 21.956 0.278 0.748 23.732 0.335 0.702
DeepLIR 25.958 0.260 0.829 20.523 0.339 0.642 22.556 0.379 0.642
MWNet 24.832 0.247 0.810 23.001 0.255 0.766 25.660 0.260 0.728
UPDN 28.228 0.194 0.877 23.920 0.229 0.801 24.364 0.287 0.707
MWDNet-CPSF 27.298 0.217 0.845 24.525 0.224 0.801 27.436 0.236 0.780
IFIN (Ours) 29.730 0.180 0.888 25.444 0.201 0.824 31.083 0.175 0.866
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Figure 6: Qualitative comparison on the MultiWienerNet dataset, with simulated data with spatially
variant PSFs and a real miniscope capture of USAF resolution targets.

4.1 RESULTS

DiffuserCam. Figure 3 illustrates reconstruction results on display–capture data. Our method de-
livers accurate color reproduction and sharper reconstruction of fine structures, surpassing prior ap-
proaches that frequently suppress details or introduce artifacts. The advantages are especially clear
near edges and in low-contrast regions, where competing methods typically fail to preserve mid-
frequency detail and color fidelity. Consistent with these observations, our method also achieves the
highest quantitative scores among all baselines, as summarized in Table 1.

SV Lensless. Our in-house dataset presents two distinct challenges. First, its wide field of view leads
to strong PSF shift-variance in the outer regions, where conventional shift-invariant models fail and
produce heavy blur and distortion. Second, our custom mask provides higher intrinsic resolution
with sharper PSFs, so the reconstruction must preserve fine structures and deliver correspondingly
sharp features. Our method succeeds on both fronts: it reconstructs central content cleanly while
maintaining detail and contrast in the periphery through explicit shift-variant modeling and feature-
level deconvolution, without requiring direct measurement of off-axis PSFs. As shown in Figure 4,
the results exhibit sharper details and fewer distortions across the field compared to competing ap-
proaches. Figure 5 shows real lensless captures without ground truth. IFIN demonstrates strong
generalization to real-world degradations.

MultiWienerNet. On the MW dataset, our method yields the sharpest and most faithful recon-
structions in both simulated and real captures (Figure 6). In simulated data, IFIN closely matches
the ground-truth structure and contrast, attaining the best PSNR/SSIM. On real miniscope mea-
surements, it preserves the widest effective field of view and the highest apparent acuity on USAF
targets, while suppressing ringing and better separating closely spaced line pairs than competing
methods. Notably, MWNet reconstructs with 9-calibrated PSFs, which explains its advantage over
approaches that rely on a single on-axis PSF. In contrast, IFIN is initialized only with an on-axis
PSF, while learning a field-dependent inverse by estimating effective PSFs across the FoV during
training (see Appendix A.7 for details on PSF estimation). This enables the model to handle shift
variance without dense per-field calibration. This learning is coupled with feature-level deconvolu-
tion, which further improves fidelity and robustness under calibration mismatch and measurement
noise. As a result, whereas MWDN (Li et al., 2023) remains strong in simulation but degrades on
experimental data, IFIN adapts more reliably to the real forward model.

5 CONCLUSION

We presented IFIN, a physics-guided reconstruction network that interleaves forward and inverse
operators at every scale with a learnable PSF field for calibration-free, spatially varying awareness.
Experiments and ablations show that tight forward–inverse coupling and adaptive PSF modeling are
crucial for high-fidelity recovery under large-support, shift-variant kernels. We expect IFIN to serve
as a general template for embedding physical operators into learned reconstructions across various
computational imaging systems.
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6 ETHICS STATEMENT

This study presents an advanced reconstruction method for inverse problems with potential relevance
to domains such as medical imaging, security inspection, and optical system design. We emphasize
responsible research practices by carefully considering ethical implications. Our experiments do not
involve human subjects, personal data, or sensitive information; instead, the datasets are either syn-
thetically generated or collected under controlled settings to avoid privacy risks. While the proposed
method could in principle be applied to biomedical or security-related contexts, the present work
is intended solely for scientific progress. Any practical deployment in sensitive areas must comply
with applicable ethical standards and obtain proper regulatory approvals. Furthermore, we consider
and address potential biases in both data and models to promote fairness, robustness, and broad gen-
eralizability across diverse imaging conditions. By following these principles, our research aims to
contribute responsibly to computational imaging and the broader study of reconstruction.
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A APPENDIX

A.1 TRAINING DETAILS

We train IFIN using the AdamW optimizer with a learning rate of 1 × 10−4 and (β1, β2) =
(0.9, 0.999) for all parameters except the point spread function (PSF). For the PSF, we employ a
separate AdamW optimizer with a learning rate of 1 × 10−3. Both learning rates are reduced by a
factor of 0.5 when the validation loss plateaus. The training is conducted with a batch size of 4.

To initialize the network, for spatially varying deconvolution we construct ROI maps aligned to
the input size, enabling local adaptation without excessive computational overhead. In the for-
ward–inverse integration, the weighting parameters are initialized as α = 0.8 and β = 0.2, balanc-
ing the contributions of the forward and inverse operators at the start of training.

For the PSF representation, to reduce computational cost we crop the support region of the on-axis
PSF to include only its effective feature area. Under shift-variant conditions, we do not rely on
calibrated PSFs; instead, the on-axis PSF is either replicated k times or randomly initialized. We
experiment with k = {1, 4, 9, 16} on DiffuserCam, and set k = 9 for both SV Lensless and MW
datasets.

To ensure fairness, we match hyperparameters to those used in prior works. Whenever a network
requires PSF inputs, we apply proper normalization (e.g., ℓ2, ℓ1, or max normalization) for sta-
ble training and meaningful results. Dataset-specific preprocessing steps such as cropping or affine
registration are not incorporated into the loss, but only applied for visualization. Specifically, Dif-
fuserCam images (480× 270) are cropped to 360× 210 (TBC); SV Lensless inputs (480× 270) are
aligned by applying the inverse of the affine transform used in label registration, with bicubic inter-
polation; and MW dataset images are resized from 640× 448 to 320× 224 to reduce computational
cost. Further details on dataset preparation and affine transforms are provided in A-2 and A-3.

Training IFIN with k = 9 at the resolution of DiffuserCam and SV Lensless datasets takes approxi-
mately 64 hours on a single NVIDIA A6000 GPU.

Loss Functions. We minimize a composite objective balancing pixel fidelity, perceptual quality,
cross-domain consistency, and a physics prior on the PSF. Let y be the observed input, x the ground
truth, x̂ the final reconstructed output, ŷ an intermediate output indicated as measurement, h the
learned PSF, x̃(0) the first ISO-branch output, and I(·, h) the ISO operator with PSF h.

Limg = ∥x̂− x∥22 fidelity loss (10)
Lperc = LPIPSVGG(x̂, x) perceptual loss (11)

LISO = ∥x̃(0) − x∥22 ISO supervision (12)

Lconsim = ∥ŷ − y∥22 measurement consistency (13)

Lconsft = ∥S(ŷ, h)− x̂∥22 cross-domain alignment (14)
Lpsf = ∥min(h, 0)∥1 PSF non-negativity (15)

L = λimgLimg + λpercLperc + λwLw + λconsimLconsim + λconsftLconsft + λpsfLpsf (16)
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(λimg, λperc, λw, λconsim , λconsft , λpsf) = (1.0, 0.05, 0.1, 0.01, 0.01, 0.1). (17)

Coefficients are selected by validation and fixed across all experiments. For fairness in the compar-
ison tables, baseline models retrained under our pipeline were optimized only with the image and
perceptual losses (Limg and Lperc) using consistent weights across datasets.

A.2 BASELINES

We summarize each baseline we use with the reference, its implication in our study.

Wiener Deconvolution (Wiener, 1964): Classical closed-form deconvolution using a calibrated
PSF. We tune the noise–to–signal parameter on a validation split. It is fast and simple but sensitive
to noise and kernel mis-specification.

Alternating Direction Method of Multipliers (ADMM–TV) (Boyd et al., 2011): Variational
reconstruction with a total-variation prior solved via ADMM, which decouples data fidelity and
regularization; we use shared stopping criteria across scenes.

U-Net (Ronneberger et al., 2015): A simple encoder–decoder CNN with skip connections that
serves as a purely data-driven reconstruction baseline.

NAFNet (Chen et al., 2022): A modern, parameter-efficient CNN restorer built from Nonlinear
Activation Free (NAF) blocks, which replace explicit nonlinear activations with lightweight gating
and normalization. As a recent CNN architecture for image restoration, NAFNet provides a strong
purely data-driven baseline and helps illustrate how a modern denoiser design compares with
physics-driven or hybrid methods.

Learned-ADMM-U (LE-ADMM-U) (Monakhova et al., 2019): Unrolled ADMM with learnable
proximal operators over K iterations and U-Net denoiser. Its simple structure proposes a combina-
tion of physics and neural networks.

DeepLIR (Poudel & Nakarmi, 2024): Learned iterative reconstruction that updates with a learned
denoiser over K steps; The study utilizes the ConvNeXt blocks (Woo et al., 2023) in the denoiser
for strong attention-based approach in convolutional layers.

Unrolled Primal–Dual Network (UPDN) (Kingshott et al., 2022): Primal–dual unrolling with
learnable update operators and step sizes and a final denoising stage is applied.

MultiWienerNet (MWNet) (Yanny et al., 2022): A lightweight physics-aware baseline that
linearly combines multiple Wiener-filter outputs and refines them with U-Net under spatially
varying conditions. When calibration is unavailable, we use an on-axis PSF and instantiate k filters
accordingly for this baseline.

MultiWiener Deconvolution Network (MWDN) (Li et al., 2023): Feature-space deconvolution
within a multi-scale encoder–decoder: Wiener-like inversions are inserted along skip connections to
improve fidelity and robustness under severe blur.

A.3 DETAILED DESCRIPTION OF PUBLIC DATASETS

DiffuserCam. The DiffuserCam dataset (Monakhova et al., 2019) comprises 25,000 paired captures
acquired simultaneously with a mask-based lensless camera (Antipa et al., 2017) and a reference
lensed camera aligned via a beam splitter, using images from MIRFlickr (Huiskes & Lew, 2008)
displayed on a computer monitor. DiffuserCam prototype consists of an off-the-shelf Light Shap-
ing Diffuser (Luminit 0.5◦) with a laser-cut paper aperture, the assembly positioned approximately
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9mm in front of the sensor plane. Raw sensor frames of 1080× 1920 pixels are downsampled by a
factor of 4 to 270 × 480. The split uses 24,000 images for training and 1,000 for testing. A single
PSF is calibrated at the field center using an on-axis LED point source at the screen plane.

MultiWienerNet. Built on microscope data from Miniscope3D (Yanny et al., 2020), the Multi-
WienerNet dataset (Yanny et al., 2022) explicitly calibrates spatially varying PSFs across the field: a
sub-resolution bead is scanned to measure the PSF at multiple sensor locations, effectively sampling
a 3 × 3 grid over the imaging field. Using these measured PSFs, a synthetic training set is gen-
erated by convolving natural images with the spatially varying forward model and adding Poisson
and Gaussian noise to emulate realistic measurements. This yields 22,125 two-dimensional paired
samples, split 80/20 for training/testing. All training data are simulated at the system’s sensor field-
of-view resolution, and the trained model is finally evaluated on real lensless measurements from the
calibrated setup (Yanny et al., 2022). In this work, we resize the images to 320 × 224, considering
computational cost.

A.4 SV LENSLESS DATASET

We introduce a new dataset built around a multi–lens-array–like phase mask engineered for a com-
pact, high-resolution lensless camera. The mask profile is optimized for our optical design and
fabricated via grayscale lithography. Using a Sony IMX708 sensor, we assemble the camera by
placing a 2mm aperture and the phase mask at approximately 1.6mm from the sensor. By design,
we prioritize on-axis resolution at the cost of increased PSF shift-variance with incident angle. We
capture 4608 × 2592 measurements from sensor and resize them to 480 × 270. MIRFlickr images
are displayed on an OLED at a working distance of 30 cm for acquisition as shown in Figure 7. For
target alignment, we first reconstruct with a deconvolution baseline, estimate an affine transform be-
tween the reconstruction and the label, and apply this transform to the label images during training
as shown in Figure 8.

Figure 7: Prototype lensless camera and dataset capture setup. (a) Lensless camera prototype
with a CMOS sensor mounted in a custom 3D-printed holder. (b–c) Display-and-capture configura-
tion used for the SV Lensless dataset: reference images are rendered on a calibrated display while
the prototype records the corresponding lensless measurements at a fixed geometry.

OPTICAL DESIGN CONSTRAINTS

We designed the phase mask in a deductive manner under the mechanical and optical constraints.
The constraints included: (i) RPI3 sensor module’s mechanical stack and housing, (ii) target field of
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Figure 8: Affine registration for label and display-capture pairs. (a) Reference image shown
on the display. (b) Raw lensless measurement captured by the prototype; green segments indicate
LoFTR-based feature correspondences used to estimate the affine transform (Sun et al., 2021). (c)
Overlay before registration. (d) Overlay after applying the estimated affine warp, yielding pixel-
wise alignment suitable for supervised training and evaluation.

view (FoV) and equivalent focal length, and (iii) the maximum fabricable optical thickness. Within
these constraints, we derived a single planoconvex micro-lens profile with 20 µm of vertex height
and 860 µm radius of curvature that maximizes the effective numerical aperture (NA).

The unit profile was randomly tiled over a 3.5 mm × 3.5 mm area to form the phase mask. A
minimum inter-lens spacing dmin was enforced during placement to preserve fill factor and suppress
degradation of the effective NA due to mutual overlap and edge clipping.

Figure 9: (a) The designed phase mask pattern optimized for high-resolution lensless imaging. (b) A
representative line profile. (c) Simulated on-axis PSF (d) simulated off-axis PSF at 40◦, showing the
effect of shift variance across the field. (e) captured on-axis PSF (f) captured off-axis PSF showing
the effect of shift variance across the field.

FABRICATION

The mask was fabricated as a multi-level phase element via grayscale lithography (Anony-
mous, 2023). The continuous height map of the planoconvex profile was converted to grayscale
dose, enabling a single exposure–development process. Post-fabrication inspection (surface pro-
filer/microscopy) verified profile integrity and absence of large-area defects.
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Figure 10: (a) Reconstruction using the center PSF along with the corresponding center PSF. (b)
Reconstruction using an off-axis PSF along with the corresponding off-axis PSF. (c) Comparison of
sharpness at the image center between (a) and (b). (d) Comparison at the image periphery, demon-
strating differences caused by field-dependent PSFs.

CAMERA ASSEMBLY

The fabricated mask was aligned and bonded in front of the RPI3 image sensor to form a lensless
camera. A mechanical aperture of 2 mm diameter was applied directly at the mask plane to define
the active pupil and to mitigate stray light and edge effects during imaging.

PSF MEASUREMENT AND OPTICAL PERFORMANCE

We characterized the system by measuring the point spread function (PSF) on- and off-axis. A com-
parison between the designed mask, simulated PSFs, and experimentally captured PSFs is shown in
Figure 9, highlighting the agreement between design and physical performance.

• On-axis. The measured PSF closely matched the designed PSF. Cross-correlation analy-
sis with the design yielded high similarity, and the measured full width at half maximum
(FWHM) was small, consistent with the high effective NA. These results provide an em-
pirical bound on the on-axis optical resolution.

• Off-axis. At larger field angles, aberrations became pronounced as expected under high-
NA operation. The PSF exhibited asymmetric tails consistent with the coma aberration
from the planoconvex element. Consequently, the system exhibits shift-variant imaging
behavior: high optical performance on-axis, with aberration-limited quality off-axis.

IMPLICATIONS

Maximizing NA under a limited thickness budget (20 µm) was effective for on-axis resolution but
increases sensitivity to off-axis aberrations and FoV non-uniformity. Hardware routes to mitigate
this include aspheric refinements, multi-layer (stacked) phase designs, and orientation-aware cell
geometries; software routes include deconvolution with a field-dependent PSF or learned recon-
structions that explicitly model shift variance. As illustrated in Figure 10, deconvolving with PSFs
drawn from different field regions produces noticeable differences in focal sharpness (and associated
artifacts), directly evidencing the field dependence.

A.5 COMPARISON OF DECONVOLUTION AND ISO

In Figure 11, we compare Wiener deconvolution with our learned inverse system operator (ISO).
In DiffuserCam dataset, deconvolution can already recover much of the off-axis information. In
contrast, for the SV lensless dataset, deconvolution is less effective due to shift variance from the
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Figure 11: Deconvolution result comparison via inverse system operator proposed in this paper and
Wiener deconvolution

Table 2: Quantitative comparison (PSNR ↑ / SSIM ↑ / LPIPS ↓) on Gaussian deblur task with
different noise levels σ.

Method σ = 5 σ = 10 σ = 15

PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑
RCAN 25.303 0.220 0.810 22.623 0.330 0.750 21.280 0.355 0.711
NAF 25.625 0.205 0.825 22.810 0.315 0.766 21.535 0.345 0.715
Proposed 25.100 0.230 0.800 22.732 0.337 0.741 21.654 0.340 .721

wide FoV design and angular response effects during acquisition, which cause peripheral light loss.
The proposed ISO module compensates for these limitations and yields improved reconstructions.
On the MW dataset, the ISO recovers a wider range of simulation features and USAF target pat-
terns, demonstrating the benefit of incorporating system-aware operators. Beyond reconstruction,
the proposed inverse system operator can function as a standalone pretrained direct inverse mapping
function, enabling fast network-based inference.

A.6 DECONVOLUTION RESULTS

A.7 LEARNED PSFS WITHOUT CALIBRATION

Figure 12 visualizes the learned 3×3 PSF field from MW dataset. Near the optical center, kernels
are compact and approximately isotropic, whereas off-axis locations exhibit increased spread, slight
centroid shifts, and mild anisotropy—patterns commonly observed with diffusers and wide-aperture
optics. This spatial trend correlates with the improvements seen on real data: FSO reproduces
location-dependent blurs using the learned PSFs, and ISO inverts them with data-driven regulariza-
tion, leading to sharper reconstructions with fewer boundary artifacts.

Notably, the learned PSFs remain normalized and vary smoothly across neighbors, reflecting physi-
cally plausible optics. Because the PSF field is shared across scales and injected into every IFIB, the
network preserves forward–inverse consistency throughout the hierarchy. Qualitatively, these PSFs
agree with expected diffuser patterns and reveal off-axis blur variations that standard shift-invariant
models fail to capture, explaining IFIN’s robustness under strong shift variance.

A.8 GAUSSIAN DEBLUR SIMULATION.

To assess robustness beyond lensless settings, we synthesize a dataset with strong, non-lensless
optical blur. Clean natural images are convolved with Gaussian PSFs with σ ∈ {5, 10, 15} to
emulate heavy defocus. The dataset comprises 24,000 training images and 1,000 test images at
256× 256 resolution, isolating the network’s ability to handle large kernel support in a conventional
deblurring task. See Table 2 for quantitative results. Compared with two strong baselines—RCAN
and NAFNet—our method achieves competitive performance at mild blur and becomes increasingly
advantageous as blur severity grows. In more realistic scenarios where the blur kernels are better
conditioned for deconvolution, as in our main experiments, the benefits of proposed method are
expected to be even greater.
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Figure 12: Comparison of learned and calibrated PSFs in MultiWienerNet Dataset (a) PSFs esti-
mated through training. (b) Calibrated PSFs. (c) Estimated PSF at r = 6 near the right-center
position. (d) Calibrated PSF at the corresponding location. (e–g) Estimated PSFs at different posi-
tions according to the learned ROI weights. (h–j) Calibrated PSFs corresponding to the same indices
as in (e–g).

A.9 EXPANSION OF SYSTEM VARIANCE

Depending on the optical configuration, the same PSF field can be re-indexed along the axis.

Concretely, we write
hr[∆i,∆j; q], r = 1, . . . , s2, q ∈ Q,

where r indexes lateral regions (field dependence) and q indexes the nonlateral axis (e.g., depth z,
wavelength λ, or time t). For scenarios where the PSF varies both laterally and axially, we adopt a
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5-D depth–space-variant PSF:
hi,j [∆k,∆ℓ; z],

The corresponding forward model is

y[i, j] =

Nz∑
z=1

∑
k,ℓ

hi,j [k, ℓ; z] x[k, ℓ, z] + η[i, j], (18)

where x[·, ·, z] denotes the scene slice at depth z. for purely field-dependent blur we set |Q|=1 and
recover the 2-D case. This re-indexing keeps the forward/inverse operators unchanged in form while
allowing IFIN to adapt the PSF dimension to the underlying system; in this work we focus on the
2-D shift-variant setting.

A.10 MODELING SHIFT VARIANCE IN FSO

We also considered a fully shift-variant formulation of the forward operator, analogous to ISO, by
decomposing x̂ into overlapping tiles, padding each tile to the local PSF support, convolving locally,
and reassembling via normalized overlap–add:

ỹ =

m∑
r=1

Sr

((
Rrx̂

)
∗ hr

)
, (19)

where Rr extracts the r-th tile and Sr =R⊤
r denotes overlap–add with normalization by the local

coverage count to avoid seams. In practice, however, this design significantly increases computa-
tional overhead despite efforts to optimize tiling. Moreover, the forward operator in IFIN primarily
serves to preserve measurement-domain properties rather than to synthesize high-fidelity outputs.
Providing it in a simplified, shift-invariant (averaged) form reduces model mismatch while retain-
ing the necessary measurement consistency signal. For these reasons, we adopt the shift-invariant
forward operator in our main design. We anticipate that more precise yet simplified variants of
the forward operator can be integrated when available, further improving fidelity without incurring
significant overhead. A detailed flow of the system operators, including the shift-variant FSO, is
provided in Figure 13.

A.11 ABLATION STUDY

Effect of FSO and ISO & Bidirectional Feature Exchange. We assess the contribution of explic-
itly modeling the forward and inverse processes (FSO/ISO) and the role of bidirectional exchange
between them (see Table 3).

FSO/ISO as identity. We replace both FSO and ISO with identity mappings and allow only latent
mixing between the two streams. This control demonstrates that simple feature mixing is not suf-
ficient: improvements are limited compared to full IFIB, highlighting that enforcing forward and
inverse operators within the feature space is crucial for propagating measurement-domain cues and
stabilizing high-frequency reconstruction.

w/o ISO. We remove the inverse operators and retain only a forward-guided pathway. Without
ISO (i.e., deconvolution followed by a denoiser backbone), information flows primarily from the
measurement domain. This setting reduces feature sharpening and attenuates high-frequency com-
ponents, resulting in softer textures and lower PSNR/SSIM.

w/o FSO. We remove the forward operators and retain only inverse guidance, where the measure-
ment is injected only at the first stage of the network. Without FSO to enforce explicit physics in the
feature space, the model shows a noticeable drop in fidelity and less stable convergence, although it
still benefits from the learned inverse pathway.

Effect of the Number of PSFs We vary the number of learnable PSFs k = s2. Very small k
(e.g., s=2) underfits spatial variability, while excessively large k increases computation without
proportional gains. In particular, because the computational cost of the ISO branch scales linearly
with k, selecting k becomes especially important when the PSF kernels have large spatial support.
We find a sweet spot (e.g., s∈{3, 4} for our image sizes) that balances fidelity and efficiency; details
are provided in Table 4.
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Figure 13: Detailed flow of system operators and refinement block. (a) Basic FSO. (b) Basic
ISO. (c) Shift-variant FSO. (d) Shift-variant ISO. (e) Refinement block.

Table 3: Comparisons of identity mapping, w/o ISO, and w/o FSO variants show that for-
ward–inverse modeling with bidirectional exchange yields the best fidelity and stability.

Method DiffuserCam

PSNR ↑ LPIPS ↓ SSIM ↑

ISO / FSO as Identity 24.674 0.255 0.800
w/o ISO 27.123 0.223 0.833
w/o FSO 28.711 0.185 0.882
proposed 29.730 0.180 0.888

Effect of the Initial Guess of PSFs We compare initializing the PSF with the calibrated on-axis
measurement versus random noise. Using the calibrated PSF provides a consistent PSNR gain and
accelerates convergence, likely because a coarse kernel estimate is available from the start. Impor-
tantly, however, calibration is not strictly required: even without access to an on-axis PSF, as long as
the forward system is well defined and training pairs are available, the network can learn to estimate
effective kernels in a fully data-driven blind deconvolution setting. In such cases, the performance
drop is modest, and the network still converges to meaningful PSFs. While initialization with a cal-
ibrated PSF yields faster and more stable training, the ability to recover kernels without calibration
underscores the robustness and practical utility of the approach.
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Table 4: quantitative comparison (PSNR / SSIM) on four benchmark datasets

Method DiffuserCam

PSNR ↑ LPIPS ↓ SSIM ↑

k=1 (SI) 28.840 0.190 0.864
k=4 29.112 0.186 0.880
k=9 29.484 0.182 0.885
k=16 29.730 0.180 0.888

Table 5: quantitative comparison (psnr / ssim) on four benchmark datasets

Method DiffuserCam

PSNR ↑ LPIPS ↓ SSIM ↑

initialize as random 28.984 0.189 0.872
initialize as center PSF 29.730 0.180 0.888

A.12 DISCUSSION AND LIMITATION

Key Takeaways. Across the three benchmarks (DiffuserCam, SV Lensless, and MultiWienerNet),
IFIN sets a new state of the art, surpassing the strongest learning baselines by +1.50 dB, +0.92 dB,
and +3.65 dB PSNR, respectively—averaging +2.02 dB PSNR, −0.033 LPIPS, and +0.040 SSIM.
Gains are especially clear near the field periphery and on MW, where large PSFs degrade purely
CNN-based inversion. We attribute these improvements to (i) integrated forward–inverse coupling,
which enforces measurement-domain consistency, and (ii) learnable shift-variant operators that uti-
lize a learnable PSF field to adapt to system mismatch.

Accuracy vs. Computational Cost. Spatially varying operators improve fidelity but reduce pa-
rameter sharing, increasing memory usage and runtime relative to shift-invariant (SI) models. IFIN
mitigates this by cropping PSFs to regions with signal and multi-scale processing to avoid unneces-
sary computation.

On inputs of size H×W=270×480 and a 3-scale IFIN, throughput decreases as the number of
learnable PSFs k grows: ≈ 0.87 MP/s at k=1 (148.1 ms), 0.76 MP/s at k=4 (171.6 ms), 0.58 MP/s
at k=9 (223.7 ms), and 0.46 MP/s at k=16 (282.3 ms) on a single NVIDIA A6000 GPU. Peak
memory usage scales similarly, from 0.66 GB at k=1, 1.95 GB at k=4, 4.13 GB at k=9, to 7.26
GB at k=16 (allocated, with total reserved up to 11.3 GB).

Generality Beyond a Single Modality. The integrated forward–inverse design is agnostic to
a specific hardware stack. Any system that admits a (possibly varying) convolutional for-
ward model—including defocus/motion blur in photography, field-dependent aberrations in mi-
croscopy/telescopy, or turbulence in astronomy—can benefit from IFIN’s combined forward–inverse
modeling with flexible system adaptation.

Potential Extensions. Promising directions include depth- and wavelength-dependent operators
for volumetric and hyperspectral imaging, low-rank/separable PSF factorization for speed, and
coordinate-conditioned or deformable operator parameterizations that retain variance with fewer
weights. Hardware–algorithm co-design (e.g., masks/apertures yielding sparser or more localized
PSFs) could further reduce overlap and ringing.
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