
Published as a conference paper at ICLR 2025

RETHINKING INVARIANCE IN IN-CONTEXT LEARNING

Lizhe Fang1∗ Yifei Wang2∗ Khashayar Gatmiry2 Lei Fang3 Yisen Wang1,4†
1 State Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
2 MIT CSAIL
3 School of Economics, Peking University
4 Institute for Artificial Intelligence, Peking University

ABSTRACT

In-Context Learning (ICL) has emerged as a pivotal capability of auto-regressive
large language models, yet it is hindered by a notable sensitivity to the ordering
of context examples regardless of their mutual independence. To address this
issue, recent studies have introduced several variant algorithms of ICL that achieve
permutation invariance. However, many of these do not exhibit comparable perfor-
mance with the standard auto-regressive ICL algorithm. In this work, we identify
two crucial elements in the design of an invariant ICL algorithm: information non-
leakage and context interdependence, which are not simultaneously achieved by
any of the existing methods. These investigations lead us to the proposed Invariant
ICL (InvICL), a methodology designed to achieve invariance in ICL while ensuring
the two properties. Empirically, our findings reveal that InvICL surpasses previous
models, both invariant and non-invariant, in most benchmark datasets, showcasing
superior generalization capabilities across varying input lengths. Code is available
at https://github.com/PKU-ML/InvICL.

1 INTRODUCTION

In-Context Learning (ICL) has shown to be a key emergent property of large language models
(LLMs) (Brown et al., 2020). By utilizing a sequence of examples as the context, LLMs can be
adapted quickly and accurately to new tasks without parameter tuning (Wang et al., 2024; Kossen
et al., 2024; Wang et al., 2025). Despite its impressive potential, ICL exhibits a crucially unusual
behavior: sensitivity to the order of context examples (Lu et al., 2022; Zhao et al., 2021; Xie et al.,
2021; Agrawal et al., 2022). Although context examples are independent, the order in which they are
presented can dramatically influence ICL predictions, with variations from about 90% to 50% on the
SST-2 dataset (Lu et al., 2022).

It is easy to note that the auto-regressive (AR) nature of LLMs is the root of order sensitivity. AR-
LLMs often utilize a so-called causal mask in the attention module, which breaks the permutation
invariance property of the de facto Transformer architecture1. As the context examples are intrinsically
equivalent under different permutations, a model that respects this data symmetry tends to enhance
both learning and generalization (Sokolić et al., 2016; Bietti et al., 2021; Tahmasebi & Jegelka, 2023).
Therefore, recent works have proposed several variant algorithms of ICL to achieve the invariance by
modifying the Transformer architecture (e.g., Prefix ICL (Raffel et al., 2020), PCW (Ratner et al.,
2022), and BatchICL (Zhang et al., 2024)). However, they often perform inferior to non-invariant
counterparts like AR ICL, as we extensively observed in practice shown in Figure 1.

We note that although desirable, the invariance property alone is insufficient for good ICL performance
(e.g., a model with constant output f(·) = c is invariant yet provides no useful information). Therefore,
to ensure the performance of ICL, we need to satisfy the following two properties while making ICL
invariant: 1) Information Non-leakage: it prevents the query from accessing its answer, thereby
avoiding shortcuts and enabling dense learning signals for ICL by allowing the prediction of every
context example in the input. 2) Context Interdependence: Each context example interacts with all
preceding examples. As the sequence lengthens, more information is provided, thereby enhancing

∗Equal Contribution.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).
1Besides, sequential positional encodings (PEs) of the prompt also introduce order sensitivity.

1

https://github.com/PKU-ML/InvICL


Published as a conference paper at ICLR 2025

prediction accuracy. However, existing methods more or less compromise these properties when
making ICL invariant (Table 1), resulting in the lack of a well-performing invariant ICL method.

Figure 1: Performance of existing ICL algorithms un-
der the settings of (Zhang et al., 2024), including auto-
regressive (AR) ICL, Prefix ICL (Raffel et al., 2020),
BatchICL (Zhang et al., 2024) and PCW (Ratner et al.,
2022). Task prompts are removed for fair comparison.

Motivated by the analysis above, we de-
sign an effective Invariant In-context
Learning (InvICL) algorithm that main-
tains these essential properties, ensuring
both invariance and high performance.
InvICL addresses the issue of order sen-
sitivity (invariance), not only avoiding
information leakage but also enhancing
context interdependence beyond what is
achievable with AR-LLMs. To facili-
tate practical implementation, we also de-
velop a fully parallel version of InvICL,
capable of obtaining all Leave-One-Out
(LOO) embeddings and predictions in a
single forward pass using a novel LOO-
type attention mask. Empirically, InvICL
outperforms existing invariant ICL ver-
sions, and even surpasses AR-ICL (non-
invariant) on most tasks of both synthetic
and real-world datasets.

We summarize our contributions as fol-
lows:

• We undertake a comprehensive exploration into designing invariant ICL algorithms, high-
lighting the importance of preserving information non-leakage and context interdependence.

• We propose InvICL, which synergizes the goals of invariant ICL algorithms by utilizing
leave-one-out embeddings to achieve invariant predictions and information non-leakage
while maximizing context interdependence.

• Empirically, InvICL indeed achieves superior performance across a range of tasks on both
synthetic and real-world datasets.

Table 1: Comparisons of different ICL types (details in Section 2) on permutation invariance,
information non-leakage, context interdependence, and performance.

ICL Type Invariance Non-leakage Interdependence Performance
Auto-regressive ✗ ✓ ✓(partial) A (baseline)
Prefix (full attn.) ✓ ✗ ✓ A-
Bag-of-Examples ✓ ✓ ✗ A-
InvICL (ours) ✓ ✓ ✓ A/A+

2 PRELIMINARIES

Consider a classification task with a few i.i.d. training examples D = {x̃i := (xi,yi)}ni=1, where xi

denotes the input and yi denotes the classification target. An ICL algorithm f takes these training
examples (a.k.a. context examples) together as input and then predicts a new test example xt. A
general formulation of f is

[ŷ1, . . . , ŷn, ŷt] = f(xi,yi, . . . ,xn,yn,xt), (1)

where ŷi denotes the label prediction for xi. Note the predictions for context example, {ŷi}ni=1, are
optional but they are generally available for AR-LLMs.

A popular model choice for ICL is Transformer (Vaswani et al., 2017), where the self-attention layer
is the elementary module. Denote H = (h1, ...,hn)

⊤ be the input hidden state of a self-attention
layer, it outputs

H← H+AHWvP, where A = softmax
(
HWq(HWk)

⊤ +M
)
. (2)

2



Published as a conference paper at ICLR 2025

Query

Key

(a) Auto-regressive ICL

Query

Key

(b) Prefix ICL

Query

Key

(c) Bag-of-Example ICL

Query

Key

Leave-one-out BoE Pre-encoding
for 𝑛 context examples

BoE Encoding for test example

(d) Invariant ICL
Figure 2: The attention masks of four types of ICL, corresponding to different types of ICL methods.

where Wq,Wk,Wv,P denotes the query, key, value, and projector matrices, respectively. M ∈
{0,−∞}n×n is an attention mask. For a standard (or full) self-attention layer, M is a zero matrix,
while a causal self-attention layer utilizes the following causal mask:

M =


0 −∞ · · · −∞
0 0 · · · −∞
...

...
. . .

...
0 0 · · · 0

 . (3)

As a result, the softmax attention A only has nonzero weights in its lower triangular terms. Notably,
the form of Eq. (2) can be generalized to other attention types, as will be discussed later.

Revisiting existing Transformer-based ICL algorithms, they can be categorized into three families
depending on their aggregation scheme over the context examples: 1) Auto-regressive ICL, 2) Prefix
ICL, and 3) Bag-of-Example ICL.

Auto-regressive ICL (AR ICL). A naive way to perform ICL is to adopt the original auto-regressive
Transformer (Radford et al., 2018), which admits the following aggregation rules

hxk
← aggr

{
{(hxi ,hyi)}k−1

i=1 ,hxk

}
, k ∈ [n+ 1], (4)

where hxi
,hyi

,hk denote the encodings of xi,yi, (xk,yk), respectively. Here we let xn+1 := xt

for notation simplicity. Therefore, every example hk only attends to the previous ones h≤k =
{h1, . . . ,hk}, which introduces a sequential order to the input examples. As former examples have a
smaller context, later examples in the sequence enjoy higher accuracy, as shown in Liu et al. (2022);
Wu et al. (2022). Figure 2(a) illustrates the implementation by applying a causal mask M, which is
exactly the form in Eq. (3).

Prefix ICL. To fully utilize the information of every context example, the causal mask is discarded in
Prefix LM (Raffel et al., 2020). Therefore, it aggregates over all context examples as

hxk
← aggr {{(hxi ,hyi)}ni=1} ,∀ k ∈ [n]; (5a)

hxt
← aggr {{(hxi

,hyi
)}ni=1,hxt

} . (5b)

Figure 2(b) illustrates the implementation by modifying the attention mask M in Eq. (2), where it
utilize full attention among the context examples {x̃i}ni=1 and causal attention on the test example x̃t.

Bag-of-Example ICL (BoE ICL). In addition to the two conventional designs above, there is a new
variant of ICL. Methods like PCW (Ratner et al., 2022), SAICL (Cai et al., 2023), and BatchICL
(Zhang et al., 2024) encode each context example (xi,yi) independently (without considering
other context examples), similar to the “bag-of-word” representation. Its aggregation rules can be
formulated as

[hxk
,hyk

]← aggr {(hxk
,hyk

)} ,∀ k ∈ [n]; (6a)
hxt
← aggr {{hxi

,hyi
)}ni=1,hxt

} . (6b)

Figure 2(c) illustrates an implementation (PCW (Ratner et al., 2022)) by modifying the attention
mask M. It restricts attention to occur only within each context example x̃i, i ∈ [n], preventing
cross-attentions between them, while retaining attention between the test example x̃t and context
examples.

3



Published as a conference paper at ICLR 2025

3 THE PROPOSED INVARIANT IN-CONTEXT LEARNING (INVICL)

We begin with formalizing the desiderata of invariant ICL (Section 3.1), and explore how to meet all
these desiderata (Section 3.2). Next, we introduce how to implement our proposed InvICL method in
practice (Sections 3.3).

3.1 INVARIANT ICL AND ITS DESIDERATA

We begin with a formal characterization of three important desiderata in invariant in-context learning.

1) Invariance. In an ICL task, we have the prior knowledge of data symmetry that the n context
examples x̃i are independently identical distributed (i.i.d.). We define an ICL algorithm that preserves
this symmetry property as an invariant ICL algorithm:
Definition 3.1. An ICL algorithm f is said to be (permutation) invariant if its last prediction
ft satisfies ft(x̃1, ..., x̃n,xt) = ft(x̃i1 , ..., x̃in ,xt) for any (i1, . . . , in) ∈ Sn, a permutation of
[n] = {1, 2, . . . , n}.

2) Information Non-leakage. During training, AR-LLMs learn to dynamically predict each interme-
diate context example xi based on its previous tokens x<i as its own context, leading to n prediction
tasks that provide rich learning signals for ICL. To achieve this, an essential architectural inductive
bias is the causal mask, which ensures that the prediction of each query xi, such as ŷi, does not
have access to its ground-truth answer yi; otherwise, the prediction task would become trivial. We
believe this principle should be generally adhered to when designing ICL algorithms. We name this
the information non-leakage principle, formally described below.
Definition 3.2. An ICL algorithm f has no information leakage if its prediction of every example
xi is invariant to its label yi (with others fixed), i.e., f(. . . ,xi,yi, . . . )i = f(. . . ,xi,y

′
i, . . . )i holds

for any two labels yi,y
′
i ∈ Y , where f(·)i denotes the i-th element of f(·).

3) Context Interdependence. Another advantage of AR-LLMs is that they allow the encoding of
each example xi to depend on other (previous) examples. These examples provide the context for
better encoding of xi, which in turn improves the prediction of future examples when xi serves as
their context. We name this property as context interdependence. Unlike the information non-leakage
principle, this property requires that the prediction of each example xi should flexibly depend on as
many other context examples as possible.
Definition 3.3. An ICL algorithm f is context-interdependent for xi if the prediction of xi

is dependent on other examples. Formally, for any j ̸= i, there exists (x′
j ,y

′
j) such that

f(. . . ,xi,yi, . . . ,xj ,yj , . . . )i ̸= f(. . . ,xi,yi, . . . ,x
′
j ,y

′
j , . . . )i with other examples fixed.

Limitations of Previous Methods. Through a close examination, we find that no existing ICL
methods satisfy all these principles: 1) AR ICL avoids information leakage and has partial context
interdependence, but its sequential structure breaks permutation invariance; 2) Prefix ICL maintains
permutation invariance and full context interdependence, but it leaks information; 3) BoE ICL
achieves permutation invariance and prevents information leakage through independent encoding,
but it sacrifices context interdependence and limits the flexibility of context representations. These
properties are summarized in Table 1. Motivated by the limitations of previous methods, we aim to
design an ICL algorithm that achieves all three properties.

3.2 A PRINCIPLED DESIGN OF INVARIANT ICL

In this section, we explore how to design ICL algorithms that preserve all three principles: permutation
invariance, information non-leakage, and context interdependence. In a Transformer, the only
interaction among different examples occurs in the self-attention layer (Eq. (2)). Conceptually,
self-attention can be viewed as a message-passing scheme on a digraph of n examples, denoted as G,
with the adjacency matrix defined by the attention score matrix A ∈ Rn×n:

A = softmax
(
HWq(HWk)

⊤ +M
)
, (7)

where M ∈ {0,−∞}n×n is a constant mask matrix. Under this definition, Aij represents the
message passed from the j-th example to the i-th example. The message passing then updates with
H← AH (informal) using A as the propagation matrix. Here, we only consider the graph of context
examples {x̃i}ni=1, as we always want the test example x̃t to be fully aware of the context examples,

4



Published as a conference paper at ICLR 2025

making these edges trivial. A straightforward way to design invariant ICL algorithm, commonly used
by existing works (such as Prefix ICL (Raffel et al., 2020), PCW (Ratner et al., 2022), and SAICL
(Cai et al., 2023)), is to modify the attention mask M as it is the only controllable factor in Eq. (7).
Therefore, in the following, we discuss how to design the attention mask M to meet these desiderata.
All the proofs are in Appendix D.

Permutation Invariance by Three-choice Mask. Intuitively, permutation invariance requires the
attention mask M to exhibit some form of symmetry. Notably, both the Prefix and BoE masks (Figure
2(b, c)) satisfy permutation invariance, while the causal mask (Figure 2(a)) does not. The following
proposition explores whether other attention masks can also achieve this property.

Proposition 3.4. Given an input matrix H = (h1, ...,hn)
⊤ ∈ Rn×d with the features of the context

examples only. The permutation invariance of ICL outputs (Definition 3.1) holds if and only if the
attention mask on the context examples, M, belongs toM = {M1,M2,0}, where

M1 =


0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,M2 =


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 .

Proposition 3.4 demonstrates that to achieve permutation invariance, the attention mask on the context
example must fall into one of the three choices in M: 0 corresponds to full attention in Prefix
ICL; M1 corresponds to BoE ICL; and the attention score before softmax under M2 is the linear
combination of that of M1 and 0 (only cross-attention between tokens without self-attention).

Information Non-leakage by Lower Triangular Mask. According to Zheng et al. (2018), ensuring
information non-leakage is equivalent to guaranteeing the message-passing process through the graph
is acyclic (except for self-loops). This imposes the following restriction on the attention mask M.
Proposition 3.5. An ICL algorithm realizes information non-leakage if and only if it is possible to
reorder context examples such that the attention mask on context examples M is lower triangular.

Combining the conditions for attention masks outlined in Propositions 3.4 & 3.5 (belong toM and
lower triangular), we find that the attention mask on context examples must be a diagonal matrix, as
concluded in the following proposition.
Proposition 3.6. The message-passing scheme respects permutation invariance and information
non-leakage if and only if the attention mask on context examples M is diagonal.

Therefore, we conclude that if an ICL algorithm preserves both permutation invariance and infor-
mation non-leakage, its attention mask not only can be, but has to be in the form depicted in Figure
2(c). Specifically, it must take the form of a bag-of-examples (BoE) ICL, encoding each example
individually before aggregation as in Eq. (6), denoted as:

hxt
← BoE {{(hxi

,hyi
)}ni=1,hxt

} . (8)

However, as discussed in Section 3.1, BoE lacks context interdependence.

Context Interdependence through Pre-encoding. While context interdependence cannot be imple-
mented within a single propagation step among context examples, it can still be achieved by encoding
each context example with the context of other samples, a process we term pre-encoding. To ensure
the three principles simultaneously, the pre-encoding step must also adopt the form of a BoE ICL
scheme, where it aggregates independent encodings of all other samples (i.e., , a leave-one-out
encoding):

hxk
← BoE

{
{(h̄xi

, h̄yi
)}i ̸=k,hxk

}
, k ∈ [n] (9)

where h̄xi , h̄yi are the independent encoding (similar to Eq. (6a)). Therefore, we arrive at a two-stage
ICL method as follows. First, we encode each context example with a leave-one-out (LOO) BoE
encoding as in Eq. (9). Then, in the second stage, we utilize these contextual encodings to predict the
test examples as in Eq. (8). This approach guarantees the three desiderata of invariant ICL.

Symmetric Positional Encoding. As a minor point, to ensure the symmetry of the model, it is
also necessary to incorporate permutation invariance into the positional encoding. We adopt an
independent position encoding scheme that treats each example as an independent sequence. It is also
applicable to BoE ICL and Prefix ICL for ensuring permutation invariance. Details in Appendix A.1.

5



Published as a conference paper at ICLR 2025

Finally, we reach our proposed InvICL (Invariant In-context Learning). The propagation pro-
cess for InvICL is outlined in Algorithm 1, where h

(k)
xi is the encoding of xi at the k-th layer of

Transformer.

Algorithm 1 Invariant In-context Learning

Require: {(h(0)
xi ,h

(0)
yi )}ni=1: embedding of context examples; h(0)

xt : embedding of the ICL query
1: for k = 1 to #TransformerLayers do
2: for i = 1 to n do
3: Compute the independent encoding of context examples: (h̄

(k)
xi , h̄

(k)
yi ) =

aggr{(h̄(k−1)
xi , h̄

(k−1)
yi )} (where h̄

(0)
xi = h

(0)
xi )

4: end for
5: for i = 1 to n do
6: Compute the leave-one-out pre-encoding of the i-th context example: (h

(k)
xi ,h

(k)
yi ) =

aggr{{(h̄(k−1)
xj , h̄

(k−1)
yj )}j ̸=i,h

(k−1)
xi }

7: end for
8: Update h

(k)
xt = aggr{{(h(k−1)

xi ,h
(k−1)
yi )}ni=1}

9: end for

3.3 PARALLEL IMPLEMENTATION

In Section 3.2, we have developed a truly invariant ICL algorithm achieving the three desiderata.
However, a significant drawback of the encoding scheme in Algorithm 1 is its computational cost. For
each sequence of n context examples, it requires n LOO forward passes to pre-encode each example,
plus an additional forward pass for the final prediction. This results in a total of n+ 1 forward passes
for a single prediction. In contrast, AR ICL, BoE ICL, and Prefix ICL can all be implemented in
parallel using a single forward pass by modifying the attention mask to the form illustrated in Figure
2(a, b, c).

Parallel Computation via Unrolling. To address the computational cost issue, we propose a parallel
implementation for InvICL, leveraging the chain-of-thought idea from LLM reasoning (Wei et al.,
2022). While implementing InvICL within a single forward pass of the input sequence (x̃1, ..., x̃n) is
challenging, this difficulty can be overcome by unrolling the input sequence twice. As illustrated
in Figure 2(d), we duplicate the context examples twice as (x̃1, ..., x̃n, x̃1, ..., x̃n,xt) and perform a
two-step forward process in parallel to encode the context examples. In the first step, we perform a
BoE-style encoding of each context example (h̄(k)

i in Algorithm 1). In the second step, we apply a
LOO-style attention mask to obtain the LOO encodings of each example (h(k)

i in Algorithm 1) that
are aware of all other context examples. At last, we use the LOO encodings {h(k)

i } to predict the test
example xt. This unrolling scheme enables us to accomplish InvICL in a single forward pass, which
results in the same complexity order O(n2) as the baselines.

4 EXPERIMENTS

4.1 SYNTHETIC SCENARIO

To evaluate the in-context capability of InvICL, we conduct a series of experiments inspired by Garg
et al. (2022). Taking the linear regression task for example, we train a model to perform linear
regression using in-context learning, i.e., the model takes the sequence (x1, g(x1), ...,xn, g(xn),xt)
as input and predicts g(xt) where g is a linear function. Detailed experimental settings are provided
in Appendix A.3. We compared the ICL performance across four models: 1) Auto-regressive (AR)
(Radford et al., 2019); 2) Prefix (Raffel et al., 2020); 3) Bag-of-Examples (BoE) (Ratner et al., 2022);
and 4) NoPE (i.e., removing the positional encoding) (Kazemnejad et al., 2024). The MSE loss was
reported for models trained over various epochs, as illustrated in Figure 3. The key insights from our
experiments are as follows:

• InvICL Converges Fast. At 50k epochs, only InvICL demonstrates good ICL performance
(Figure 3(a)), while other models perform well at later epochs (Figure 3(b)).

6



Published as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Prefix ICL
BoE ICL
NoPE
Least Squares

(a) 50k Epochs

0 25 50 75 100 125 150 175 200
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Prefix ICL
BoE ICL
NoPE
Least Squares

(b) 200k Epochs

Figure 3: ICL performance of different models that are trained with (a) 50k epochs and (b) 200k
epochs. “Least Squares” is the optimal algorithm for the linear regression task.

• InvICL Has a Strong Length Extrapolation Ability. The models are trained with a
sequence length of 40. As shown in Figure 3(b), when the test sequence length exceeds 40, it
is clearly that InvICL > AR ICL > Prefix ICL ≈ NoPE > BoE ICL in terms of performance.
This indicates the strong length generalization capability of InvICL. On one hand, this result
confirms the conventional conclusion that a model that respects the data symmetry enjoys
better generalization capability. On the other hand, it highlights that preventing information
leakage and maintaining context interdependence are crucial for an invariant ICL algorithm.

We further conduct experiments in out-of-distribution tasks and other function settings in Appendix
B.1, and present the trend of loss as it changes with the training epochs in Appendix B.4. Both
experiments demonstrate that InvICL’s out-of-distribution in-context performance consistently out-
performs AR ICL. Additionally, in Appendix B.5, we conduct linear probing experiments to further
demonstrate how the architecture of InvICL impacts the model’s internal representations.

4.2 REAL-WORLD DATASETS

In this part, we conduct experiments to evaluate the capacity of InvICL on real-world datasets. Since
ICL tasks are generally different from the pertaining one and some ICL methods introduce new
masking schemes for aggregation (significantly different from the masking in pretrained model), a
short finetuning of the pretrained model on the ICL tasks using these new ICL methods is necessary
to fully utilize the pretrained model’s capacity for ICL (Min et al., 2022b; Wei et al., 2021; Iyer et al.,
2022; Cai et al., 2023). Here, we follow MetaICL (Min et al., 2022b) to do the short finetuning and
evaluation.

As in MetaICL, we utilize 142 tasks including text classification, question answering (QA), natural
language inference (NLI), and paraphrase detection. For each training iteration, we first sample a task
Ti from the C meta-training tasks, and then sample k+1 training examples (x1,y1), ..., (xk+1,yk+1)
from Ti. Given the model parameter θ, the training objective is maximizing prediction accuracy of
yk+1 under the formatting of ICL: maxθ LCE(ŷk+1,yk+1), where LCE is the cross-entropy loss, and
ŷk+1 is the in-context prediction defined in Eq. (1). We evaluate the meta-trained models on the 7
settings of MetaICL. For each setting, we test two cases: 1) all target tasks; 2) target tasks in the
training unseen domains (OOD generalization). More details are in Appendix A.4.

Baselines. Following MetaICL, we use GPT-2 Large (762M) (Radford et al., 2019) as base model, and
also includes GPT-Neo 2.7B (Black et al., 2021) and Pythia-2.8B (Biderman et al., 2023) (Appendix
B.2). For non-invariant methods, we select AR ICL (Radford et al., 2019) and NoPE2 (Kazemnejad
et al., 2024). For invariant methods, we select Prefix ICL (Raffel et al., 2020) and three types of BoE
ICL (Appendix A.2): PCW (Ratner et al., 2022), SAICL (Cai et al., 2023), and BatchICL (Zhang
et al., 2024). We adopt 8 context examples for training and evaluation.

Results. As shown in Table 2, compared to non-invariant methods, InvICL outperforms in 4 out of 7
tasks in the “All target task” setting and all the 7 tasks in the “Target tasks in unseen domains” setting.
This indicates that permutation invariance is indeed an crucial property for ICL algorithm, which
incorporate the inductive bias of symmetry into the model architectures, resulting in an extraordinary
improvement on performance, especially when generalizing to OOD tasks.

2Although NoPE alone is invariant, it still utilizes an auto-regressive LLM which breaks the invariance.

7



Published as a conference paper at ICLR 2025

Table 2: The in-context learning performance with language models based on GPT-2 Large. We
changed the causal mask and positional encoding to implement different types of ICL models. The
models are finetuned under the framework of MetaICL (Min et al., 2022b).

METHOD
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
Non-invariant
AR ICL (RADFORD ET AL., 2018) 43.4±0.76 43.4±1.36 40.2±1.64 44.0±0.22 37.9±0.42 50.3±0.84 34.1±1.78 41.9±1.15

NOPE (KAZEMNEJAD ET AL., 2024) 41.7±0.47 30.0±0.82 40.3±0.99 44.5±0.11 36.6±0.05 26.8±0.68 38.8±1.49 37.0±0.81

Invariant
PCW (BOE) (RATNER ET AL., 2022) 39.7±1.30 37.7±0.51 35.2±0.37 40.8±0.12 37.7±0.30 40.7±1.32 35.1±1.65 38.1±0.98

SAICL (BOE) (CAI ET AL., 2023) 43.4±0.45 43.2±0.74 37.5±0.74 45.1±0.15 37.6±0.15 49.8±2.01 33.3±1.44 41.4±1.03

BATCHICL (BOE) (ZHANG ET AL., 2024) 31.7±0.21 25.4±0.30 27.1±0.22 32.2±0.12 34.4±0.26 28.9±0.48 35.3±0.97 30.7±0.45

PREFIX ICL (RAFFEL ET AL., 2020) 40.3±0.89 39.6±0.73 35.1±0.54 43.6±0.12 36.8±0.33 45.4±1.65 34.9±2.03 39.4±1.11

INVICL(OURS) 45.1±1.31 42.9±0.86 39.4±0.44 45.3±0.15 38.3±0.27 51.6±0.85 34.7±1.36 42.4±0.87

Target tasks in unseen domains
Non-invariant
AR ICL (RADFORD ET AL., 2018) 31.5±2.98 35.7±0.50 28.1±1.65 56.5±0.89 39.2±1.78 80.3±1.80 34.1±0.00 43.6±1.65

NOPE (KAZEMNEJAD ET AL., 2024) 32.9±1.32 23.4±0.39 26.9±1.44 63.6±0.78 38.2±0.34 33.2±0.26 32.6±0.16 35.8±0.83

Invariant
PCW (BOE) (RATNER ET AL., 2022) 35.6±2.54 31.3±0.29 26.9±1.59 65.3±1.16 33.7±1.21 66.7±1.60 34.4±0.31 42.0±1.44

SAICL (BOE) (CAI ET AL., 2023) 30.7±1.67 29.7±1.98 26.4±1.01 56.2±0.50 41.5±1.60 64.3±2.21 37.1±1.89 40.8±1.65

BATCHICL (BOE) (ZHANG ET AL., 2024) 24.2±0.21 22.3±0.15 23.0±0.11 31.9±1.20 29.4±0.54 37.8±0.78 36.8±1.02 29.3±0.70

PREFIX ICL (RAFFEL ET AL., 2020) 31.0±2.43 33.0±1.53 29.6±2.20 63.8±0.47 36.4±1.29 52.6±2.54 34.0±0.23 40.1±1.75

INVICL(OURS) 44.4±2.17 35.8±2.01 29.0±1.99 67.6±0.22 42.6±1.53 81.8±0.65 37.5±2.30 48.4±1.72

1 2 4 8 16
Number of Demonstrations

36

38

40

42

44

46

Ac
cu

ra
cy

AR ICL
InvICL

Figure 4: The length generalization behavior of InvICL
and AR ICL on HR→LR setting. The models are meta-
trained by sequences with 8 context examples.

Table 3: The inference time of different
models.

Method Inference time (ms)

AR ICL 21.9
PCW (BoE ICL) 21.7
Prefix ICL 22.0
InvICL 22.0

Compared to invariant methods, InvICL outperforms 5 out of 7 tasks in the “All target task” setting
and 6 out of 7 tasks in the “Target tasks in unseen domains” setting. Although being permutation
invariant, these baselines exhibit poor performance (none of them surpasses AR ICL on average). This
highlights the crucial properties of information non-leakage and context interdependence implemented
by InvICL.

Length Generalization. The generalization ability to different input lengths is a crucial property
of the language model. In the context of ICL, the ability to adapt to varying numbers of context
examples can be perceived as a dimension of its length generalization capability. However, in the
main experiments, the number of context examples remains consistent throughout both the training
and evaluation phases. Hence, we vary the number of context examples, as illustrated in Figure 4.
We observe that InvICL is much more robust than AR ICL when the length of the test data differs
from that of the training data, indicating its strong capability for length generalization.

Computational Cost. In Section 3.3, we claim that our parallel implementation of InvICL has the
same computational complexity order as full self-attention and AR self-attention. In Table 3, we
empirically verify this by evaluating the inference time of different ICL models, showing that InvICL
enjoys roughly the same inference speed as other models. Besides, a question worth considering is
the memory cost of InvICL since it duplicates the input sequence. We find that when the inputs size
of the GPT-2 Large model increases from 512 to 1024, the GPU memory overhead increases by 14%
(from 4.2 GB to 4.8GB). We consider this acceptable given the clear improvements in performance.

Ablation Study. In Table 4, we conduct an ablation study to demonstrate the effect of the two
components of InvICL: the invariant mask and the symmetric positional encoding. The experiments
show that either component is important for invariant ICL. Additionally, in Appendix B.3, we
demonstrate that the effectiveness of InvICL is not due to its doubled input.

8



Published as a conference paper at ICLR 2025

Table 4: Ablation study of invariant mask and symmetric positional encodings (PE) on ICL perfor-
mance and order sensitivity.

METHOD HR→LR (↑) SENSITIVITY (↓)
AR ICL 43.4+1.5 0.25+0.05

+SYM PE 38.4−5.0 0.30+0.05

+INV MASK 44.8+1.4 0.10−0.15

+BOTH (INVICL) 45.1+1.7 0.00−0.25

Permutation Invariance. In Table 4, we demonstrate the permutation invariance of InvICL. Fol-
lowing Chen et al. (2022), we measure the order sensitivity as the frequency that the prediction is
changed under random permutation. We observe that both the invariant mask and PE are important
for achieving invariance, and a lower sensitivity indicates better performance.

5 DISCUSSION

The Mechanism behind InvICL’s Strong Length Generalization Ability. We consider that the
mechanism primarily stems from InvICL achieving invariance. As mentioned in the introduction,
previous studies have found that respecting data symmetry in models helps improve generalization.
For example, Sokolić et al. (2016) demonstrated that when the input data exhibits invariance under
certain transformations (such as rotation or translation), utilizing an invariant classifier can achieve
lower generalization error compared to a regular classifier. Bietti et al. (2021); Tahmasebi & Jegelka
(2023) concluded that encoding invariances into model improves the effective number of samples,
thereby enhance generalization ability. These theoretical results could help explain why InvICL
demonstrates stronger length generalization ability.

Theoretical Complexity of InvICL. Suppose there are n context examples and 1 test example
(considering the examples as attention units), and let M ∈ {0,−∞}(n+1)×(n+1) be the attention
mask defined in Figure 2(d). The complexity of InvICL is determined by the number of “0” elements
in M . The attention computation for InvICL includes: 1) Independent self-encoding of the first-time
input (corresponding to M[:n, :n]), which requires n self-attention calculations; 2) LOO pre-encoding
(corresponding to M[n: 2n, :2n]), which requires n2 calculations; 3) Aggregation to the test example
(corresponding to M[2n+1, n: 2n+1]), which requires n+1 calculations. In total, there are n2+2n+1
attention calculations, which is of the same order as Prefix ICL (n2 + 1) and twice that of AR ICL
(n2/2 + 3n/2 + 1).

The ICL Training Objective. In the synthetic experiments, we utilize the ICL objective to train the
Transformers, which does not align with how LLMs are pre-trained. However, our paper focuses on
improving the ICL capability of LLMs, rather than investigating the reasons behind the emergence
of ICL ability. Therefore, we train the model using the ICL objective to demonstrate that InvICL
can achieve stronger ICL capability compared to traditional AR ICL. This is also aligned with the
objective we use in the real-world experiments.

Theoretical Understanding InvICL from an Optimization Perspective. Previous studies have
established the duality between ICL and the gradient descent algorithm, demonstrating that under
specific parameterizations, ICL can implicitly implement gradient descent. In Appendix C, we
build upon this line of research and prove that InvICL, under the same parameterizations, can also
approximately perform gradient descent, thereby highlighting the theoretical potential of InvICL.

6 CONCLUSION

In this paper, by distilling the advantages of auto-regressive language models, we identified two
additional desiderata for invariant ICL: information non-leakage and context interdependence. Since
existing invariant ICL algorithms cannot achieve these desiderata simultaneously, we proposed a
novel invariant ICL scheme called Invariant In-context Learning (InvICL), which accomplishes these
goals concurrently. We also proposed an efficient parallel implementation of InvICL. Empirically,
we show that InvICL outperforms both invariant and non-invariant ICL methods on most tasks, and
demonstrates good length generalization abilities. These results sparked the unique advantages of the
principled design of invariant ICL.

9



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160300), National Nat-
ural Science Foundation of China (92370129, 62376010), and Beijing Nova Program (20230484344,
20240484642). Yifei Wang was supported in part by the NSF AI Institute TILOS, and an Alexander
von Humboldt Professorship.

REFERENCES

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad. In-
context examples selection for machine translation. arXiv preprint arXiv:2212.02437, 2022.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv: 2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In ICLR, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In ICML, 2023.

Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under geometric
stability. In NeurIPS, 2021.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Tianle Cai, Kaixuan Huang, Jason D Lee, and Mengdi Wang. Scaling in-context demonstrations with
structured attention. In ICML 2023 Workshop on Efficient Systems for Foundation Models, 2023.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. On the relation between
sensitivity and accuracy in in-context learning. arXiv preprint arXiv:2209.07661, 2022.

Yongqiang Chen, Binghui Xie, Kaiwen Zhou, Bo Han, Yatao Bian, and James Cheng. Positional
information matters for invariant in-context learning: A case study of simple function classes.
arXiv preprint arXiv:2311.18194, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-
context? language models secretly perform gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not
optimal for in-context learning. arXiv preprint arXiv:2308.06912, 2023.

Deqing Fu, Tianqi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In NeurIPS, 2022.

10

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715


Published as a conference paper at ICLR 2025

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. In NeurIPS, 2024.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is not
conventional learning. In ICLR, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In ACL, 2022.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Noisy channel language
model prompting for few-shot text classification. In ACL, 2022a.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. In NAACL, 2022b.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Omri Abend, Ehud Karpas, Amnon Shashua,
Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows improve in-context learning of
large language models. arXiv preprint arXiv:2212.10947, 2022.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Jure Sokolić, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of invariant classifiers. In
AISTATS, 2016.

Behrooz Tahmasebi and Stefanie Jegelka. The exact sample complexity gain from invariances for
kernel regression. In NeurIPS, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
ICML, 2023.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

Qixun Wang, Yifei Wang, Yisen Wang, and Xianghua Ying. Can in-context learning really generalize
to out-of-distribution tasks? In ICLR, 2025.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understanding
of self-correction through in-context alignment. In NeurIPS, 2024.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In ICLR, 2021.

11



Published as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning.
arXiv preprint arXiv:2212.10375, 2022.

Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He. Addressing order sensitivity of in-context
demonstration examples in causal language models. arXiv preprint arXiv:2402.15637, 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In ICLR, 2021.

Kaiyi Zhang, Ang Lv, Yuhan Chen, Hansen Ha, Tao Xu, and Rui Yan. Batch-icl: Effective, efficient,
and order-agnostic in-context learning. arXiv preprint arXiv:2401.06469, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In ICML, 2021.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and E. Xing. Dags with no tears: Continuous
optimization for structure learning. In NeurIPS, 2018.

12



Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 SYMMETRIC POSITIONAL ENCODING

In this paper, we mainly focus on the absolute positional encoding which is used in the GPT family.
As shown in Figure 5, we adopt an independent position encoding scheme that treats each example
as an independent sequence, which follows the design in (Ratner et al., 2022). For each context
example x̃i, we always allocate the positional encoding as it starts from the first position. Denote
the maximal sequence length among x̃i as lmax. For the test example xt, we assign its positional
encodings starting from the index ℓmax. This implementation is applicable to BoE ICL, Prefix ICL,
and InvICL.

𝑧!,! 𝑧!,#!
Token

Embedding
+

Positional
Embedding

…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

𝑧%,!

𝑝%

𝑧%,&

𝑝%'!
(𝑡 = max 𝑘! + 1)

… …

ICL input … …

Input:Aa, answer:x. Input:Bb, answer:y. Input:Cc, answer:

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"… 𝑥%,! 𝑥%,&… … … …Tokens

Tokenizing

Embedding

(a) Symmetric PE for standard input

𝑧!,! 𝑧!,#!…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

𝑧%,!

𝑝%

𝑧%,&

𝑝%'!
(𝑡 = max 𝑘! + 1)

… …

… …

Input:Aa, answer:x. Input:Bb, answer:y. Input:Cc, answer:

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"… 𝑥%,! 𝑥%,&… … … …

𝑧!,! 𝑧!,#!…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

… …

Input:Aa, answer:x. Input:Bb, answer:y.

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"…… …

Token
Embedding

+
Positional
Embedding

ICL input

Tokens

Tokenizing

Embedding

(b) Symmetric PE for the duplicated input of InvICL

Figure 5: The symmetric positional encoding applied in our work. pi refers to the learned absolute
positional embeddings that are added to the token embeddings at position i. Figure (a) shows the
positional encoding under the standard ICL input sequence. As for the duplicated input of InvICL,
we apply the same positional encoding for the original and the repeated examples, as shown in Figure
(b).

A.2 BAG-OF-EXAMPLES ICL

We introduce the implementation detail of two BoE ICL methods mentioned in the main text, PCW
(Ratner et al., 2022), SAICL (Cai et al., 2023) and BatchICL (Zhang et al., 2024).

PCW (Parallel Context Window). PCW is a work originally aimed at improving the acceptable
length of language models. Denote N be the maximal length of a language model, and n > N be the
input length. PCW divides the input into context windows with length N , and separately puts them
into the LM. Finally, it utilizes a “bag-of-window” method (similar to Figure 2(c), where each block
in the mask refers to a context window) to generate the predictions. We note that by considering each
context example as a window in PCW, it can implement the Bag-of-Examples ICL algorithm.

SAICL (Structured Attention for ICL). SAICL is a method proposed to improve the inference
efficiency and order-sensitivity of in-context learning. Similar to PCW, they also encode the context
examples independently but are also aware of the test example. The original method is based on T5
(Raffel et al., 2020), a language model with the encoder-decoder architecture. We transfer its design
to the GPT family by directly taking its attention mask and use the symmetric PE proposed above.

BatchICL. Instead of conducting N -shot encoding for all context examples, BatchICL utilizes N
separate 1-shot encodings for each context example. It then aggregates the intermediate hidden states
of the respective last token, which is subsequently incorporated into the forward computation of a
zero-shot query to generate the final prediction. We basically follows all the setting introduced in the
original paper. As for the layer to extract the aggregated vector, we simply takes the 15-th layer, since
they found that any intermediate or later layer is a fair choice.

A.3 SETTING OF THE EXPERIMENTS ON LINEAR REGRESSION TASKS.

Denote G = {g : X ∈ Rd → R, g(x) = w⊤x + b} as the linear function class. Let DG be a
distribution on G, and DX be a distribution on X . In the training phase, we iteratively sample
a random function g ∈ G from DG , and sample i.i.d. x1, ...,xk+1 from DX . Then, we produce
a prompt in the ICL manner P = (x1, g(x1), ...,xk, g(xk),xk+1), and train a model θ to output
[ĝ(x1), ..., ĝ(xk), ĝ(xk+1)] = fθ(P ) (as equation Eq. (1)), where ĝ(xi) is the prediction for g(xi).

13



Published as a conference paper at ICLR 2025

The training objective is

min
θ

EDG ,DX

[
1

k + 1

k∑
i=0

ℓ(ĝ(xi), g(xi))

]
, (10)

where ℓ is the MSE loss. In the experiments in Section 4.1, we set d = 20, k = 40,DX = N (0, Id),
and DG : w ∼ N (0, Id), b = 0.

The architecture selection follows (Garg et al., 2022), where a 12-layer GPT-like Transformer decoder
is utilized. We implement the four model types by using the symmetric attention mask and PE.

A.4 IMPLEMENTATION DETAILS OF EXPERIMENTS ON REAL-WORLD DATA.

Evaluation. Following MetaICL (Min et al., 2022b), we consider 7 evaluation settings: 1)
HR→LR, which means training with high resource data and testing on low resource data; 2) X→X
(X={Classification, QA}), which means training and testing on the same task type, but with no overlap
in tasks; 3) Non-X→X (X={Classification, QA, NLI, Paraphrase}, which means training and testing
on different task type. The last settings are the most challenging, which require strong generalization
capacities of language models (Min et al., 2022b). For each setting, we make evaluations both on all
target tasks and a subset that contains target tasks in the unseen domains of the source tasks, e.g.,
medical, financial, and climate. This setting also challenges the out-of-distribution generalization
capability of models.

Truncation. Since MetaICL (Min et al., 2022b) truncates the training sequence when it exceeds the
maximum input length of the LM, and the ICL prompt sequence is duplicated in our implementation
of InvICL, the training sequences differ between InvICL and other methods because of different
truncate rates. As shown in Table 5, there is a significant gap in the dataset size between the standard
input and the duplicated input under the truncating setting. To make the comparison fair, we apply
the same truncate rate in InvICL to the normal training sequence so that all the methods share the
same training set. Additionally, we reduce the number of context examples in the training phase from
16 to 8 to control the truncate rate of InvICL to the same level as standard ICL.

Table 5: Ratio of the remaining data between different input types under the truncating setting of
MetaICL (Min et al., 2022b). Here the number of context examples is set to 8.

INPUT TYPE
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

Remaining ratio of training dataset
STANDARD 70% 90% 71% 59% 80% 85% 85%
DUPLICATED 53% 79% 55% 40% 62% 75% 71%

Direct & Channel. Besides the standard ICL paradigm, MetaICL (Min et al., 2022b) adopts
a new inference paradigm called noisy channel (“Channel”) (Min et al., 2022a) and achieves a
better experimental performance. Contrary to the standard ICL paradigm (also called “Direct”
in (Min et al., 2022b)) that takes (x1,y1, ...,xn,yn,xt) as input, the Channel paradigm takes
(y1,x1, ...,yn,xn,yt) and try to generate xt. Note that in order to generate the prediction, Channel
ICL needs to perform n forward passes conditioned on each of the n labels yt and regard the label
with minimum perplexity as the prediction. This will, on the one hand, increase the computational
complexity and, on the other hand, reduce its applicability to the generative tasks where the label
space is large, e.g., Question Answering. Therefore, we adopt the “Direct” setting in our experiments,
i.e., the standard ICL paradigm.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SYNTHETIC EXPERIMENTS ON OTHER SETUPS

In this section, we conduct additional synthetic experiments on more functions and out-of-distribution
setups, to further showcase the generalization capability of InvICL.

Other function settings. We consider two other function settings proposed by (Garg et al., 2022) —
sparse linear regression and decision tree, to illustrate the ability of InvICL to learn algorithms to
solve other tasks. Results are given in Figure 6.

14



Published as a conference paper at ICLR 2025

1. Sparse linear regression. In this task, a random linear function y = w⊤x+ b is sampled
to be predicted, yet the efficient has only 3 non-zero coordinates out of 20 dimensions.
Although it is also a linear regression task, its optimal algorithm is no longer least squares
but Lasso, which involves solving the least squares objective with an l1-norm regularizer for
the weight vector. This demands the in-context learners to learn an algorithm different from
that in linear regression to solve this task. Following the experimental settings in our paper,
we test the performance of AR ICL and InvICL which are trained with 200k epochs. We
can still observe the consistent results of our paper that InvICL possesses fast convergence
(InvICL converges while AR ICL does not).

2. Decision tree. We follow the setting in (Garg et al., 2022), where the class of depth 4
decision trees with 20-dimensional inputs is considered. We evaluate the performance of AR
ICL and InvICL that are trained with 200k epochs. We find that although AR ICL performs
better than InvICL for short inputs, as the length of the input sequence increases, InvICL
gradually outperforms AR ICL, indicating the strong extrapolation ability of InvICL.

(a) Sparse linear regression (b) Desicion tree

Figure 6: ICL performance on sparse linear regression and decision tree.

Out-of-distribution Setups. We consider three out-of-distribution setups proposed by (Garg et al.,
2022; Chen et al., 2023), to showcase the generalization capability of InvICL to out-of-distribution
(OOD) tasks. We consider a distribution shift between the training and test datasets. The training data
remain consistent with Section A.3. However, for the test data, we apply the following modification:

1. Add random noise to the labels by altering b = 0 to b ∼ N (0, 1).

2. Scale the data sampling by altering DX = N (0, Id) to DX = N (0, 32Id).
3. Sample the data xi from a random 10-dimensional subspace (out of 20 dimensions).

In Figure 7, we report the testing MSE loss with the models trained for respectively 50k and 200k
epochs. We omit Prefix ICL and BoE ICL for their poor performance. We find that InvICL continues
the advantages mentioned earlier, i.e., the fast convergence and strong extrapolation ability, indicating
its strong capacity on OOD tasks.

B.2 REAL-WORLD EXPERIMENTS BASED ON GPT-NEO AND PYTHIA

We also conduct experiments with models based on GPT-Neo 2.7B (Black et al., 2021) and Pythia-
2.8B (Biderman et al., 2023) with other hyper-parameters unchanged, as shown in Table 6 and 7. The
result is similar to what is demonstrated in the main text: InvICL outperforms the baseline in most of
the tasks and especially performs well in the OOD settings. This indicates the applicability of InvICL
to different base models.

Besides, we note that the three LLMs (GPT-2, GPT-Neo and Pythia) studied in our work utilize three
different kinds of PE — trainable PE, Alibi and Rotary PE, respectively. Therefore, our design of
symmetric PE is applicable to a wide range of PEs.

15



Published as a conference paper at ICLR 2025

0 50 100 150 200
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(a) Random noise, 50k epochs.

0 50 100 150 200
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(b) Random noise, 200k epochs.

0 50 100 150 200
in-context examples

0.0

2.5

5.0

7.5

10.0

12.5

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(c) Scaling, 50k epochs.

0 50 100 150 200
in-context examples

0.0

2.5

5.0

7.5

10.0

12.5

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(d) Scaling, 200k epochs.

(e) Half subspace, 50k epochs. (f) Half subspace, 200k epochs.

Figure 7: ICL performance on OOD tasks. The training dataset remains consistent with Section
4.1, but we change the distribution of the test dataset. Random noise: changing the distribution
of the linear bias from b = 0 to b ∼ N (0, 1). Scaling: changing the sampling distribution of xi

from DX = N (0, Id) to DX = N (0, 32Id). Half subspace: Sample the data xi from a random
10-dimensional subspace (out of 20 dimensions).

Table 6: The in-context learning performance on GPT-Neo 2.7B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 45.8 41.2 40.1 46.4 36.8 45.2 33.1 41.2
INVICL(OURS) 46.1 40.2 40.2 48.6 35.8 44.7 33.7 41.3

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 39.1 33.1 31.8 66.5 34.7 56.7 33.1 42.1
INVICL(OURS) 39.6 33.9 32.7 68.1 31.4 56.9 36.0 42.7

B.3 ABLATION STUDY FOR INVICL

In this section, we conduct experiments to test the baselines (AR ICL, PCW, Prefix ICL) using the
same duplicated data as InvICL. As shown in Table 8, InvICL still outperforms the baselines when
they are given the doubled input as InvICL does.

16



Published as a conference paper at ICLR 2025

Table 7: The in-context learning performance on Pythia-2.8B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 31.3 22.3 27.8 33.4 33.7 29.7 37.6 30.8
INVICL(OURS) 31.5 26.3 28.5 33.0 35.6 28.0 40.2 31.9

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 20.8 21.0 21.0 43.5 39.7 33.5 34.2 30.5
INVICL(OURS) 20.9 24.2 21.1 44.6 43.7 33.5 38.6 32.4

Table 8: Ablation study of using doubling input for the baseline methods. We report the result on
HR→LR. InvICL still outperforms the baselines.

METHOD DOUBLED INPUT ORIGINAL INPUT

AR ICL 43.8 43.4
PCW (BOE ICL) 40.6 39.7
PREFIX ICL 41.7 40.3
INVICL 45.1 -

B.4 DETAILED RESULTS FOR SYNTHETIC EXPERIMENTS

In this section, we provide detailed results for the synthetic experiments in section 4.1. In figure
8, we demonstrate the error curves of AR ICL and InvICL at different training epochs. In figure
9, we present the error at different training epochs when the number of context examples is 100.
Both experiments demonstrate that InvICL’s OOD in-context performance (length > 40) consistently
outperforms AR ICL across all epochs. Specifically, as shown in figure 9, in the early stages of
training, the error of InvICL decreases rapidly, while the error of AR ICL only shows significant
reduction after approximately 100k epochs. Furthermore, after 200k epochs, the error of InvICL
stabilizes, whereas the error of AR ICL increases.

B.5 LINEAR PROBING EXPERIMENTS

In this section, we conduct a linear probing experiments based on the synthetic setting, to further
explore how the architecture of InvICL impacts the model’s internal representations. For a pre-trained
model on the synthetic linear regression dataset, we freeze the model parameters and trained a single
linear layer on the hidden states of the 3rd, 6th, 9th, and 12th layers, respectively.

As shown in Figure 10, the linear probing error of InvICL is consistent and close to the error curve of
the pre-trained model across all tested layers. In contrast, for AR ICL, only the error curve of layer
12 converges to that of the pre-trained model. This indicates that InvICL encodes task features in the
model much faster than AR ICL. We believe this is closely related to its context interdependence
property, which allows it to utilize richer context example information for encoding.

C THEORETICAL UNDERSTANDING INVICL FROM AN OPTIMIZATION
PERSPECTIVE

In this section, we further characterize the advantages of InvICL from an optimization perspective.

InvICL Can Approximately Implement Gradient Descent. Consider a linear regression task with
instances (X,y), where X consists of row vectors x⊤

i ∈ Rd, and y consists of labels yi ∈ R, i ∈ [n].
The goal is to find the optimal weight vector w that minimizes the LSE loss L(w) = ∥Xw− y∥2. A
standard gradient descent (GD) algorithm updates the weights iteratively as follows:

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y), (11)

where ℓ stands for the iteration step, and η is the step size.

Consider the ICL-style model input, formulated as Z = (z1, ..., zn, z1, ..., zn, zt), where zj =(
xj

yj

)
, j ∈ [n] are the context examples, and zt =

(
xt

0

)
is an arbitrary test example. Here we

17



Published as a conference paper at ICLR 2025

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

50k
80k
100k
120k
150k
180k
200k
300k
400k
500k

(a) InvICL.

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

50k
80k
100k
120k
150k
180k
200k
300k
400k
500k

(b) AR ICL.

Figure 8: Intermediate results for InvICL and AR ICL on the linear regression setting. The line colors
represent the models trained with different epochs.

0 100 200 300 400 500
Training epoch (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL

Figure 9: The squared error at different training epochs. We set the number of context examples to
100.

duplicate the input as required by InvICL and expect the model to predict
(

xt

x⊤
t w

)
at the last token.

The theorem below illustrates the evolution of the prediction through the Transformer layer of InvICL.
Theorem C.1. With the attention weight matrices configured as in (Von Oswald et al., 2023), i.e.,

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w0 −1

)
,P = ηI, (12)

InvICL implements the following weight updating rule: at the ℓ-th layer of the Transformer, the last

token outputs z(ℓ)t =

(
xt

x⊤
t wℓ

)
, where

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2∆wℓ−1. (13)

Here, ∆wℓ = X⊤(XX⊤ − diag(XX⊤))(Xwℓ − y).

Theorem C.1 shows that under specific parametrization, the weight updating rule implemented by
InvICL (Eq. (13)) is very similar to that of standard GD (Eq. (11)), differing only by a second-order
term. For gradient descent to converge, the step size η should be at most the inverse of the largest
eigenvalue of XX⊤. Under this condition, the term η2∆wℓ−1 is dominated by ηX⊤(Xwℓ−1 − y),
ensuring that InvICL has the potential to closely approximates the standard GD algorithm in this
linear regression task.

Discussion to Other ICL Methods. We provide a comprehensive comparison of all the ICL methods
considered in this paper from the optimization perspective: under the parametrization as in Eq. (12),
1) AR ICL emulates the online GD algorithm (with a constant learning rate) (Ding et al., 2023), which
is not guaranteed to converge; 2) Prefix ICL implicitly implements the standard GD algorithm under
a specific set of parameters for attention (Von Oswald et al., 2023; Ding et al., 2023); and 3) BoE ICL

18



Published as a conference paper at ICLR 2025

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r
Layer 3
Layer 6
Layer 9
Layer 12
Pretrain

(a) InvICL.

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

Layer 3
Layer 6
Layer 9
Layer 12
Pretrain

(b) AR ICL.

Figure 10: The linear probing results on InvICL and AR ICL.

can only update the weight vector of the test (last) example (not the context examples) without context
interdependence. This leads to a constant gradient computed at the initial point, causing it to fail to
converge (detailed discussion is in Appendix D.1). Compared with these ICL algorithms, InvICL has
several distinct advantages: 1) InvICL surpasses AR ICL in terms of convergence to optimal solutions;
2) Similar to Prefix ICL, InvICL approximately implements the standard GD algorithm while avoiding
information leakage; and 3) Unlike BoE ICL, InvICL effectively incorporates context interdependence,
allowing it to emulate a more efficient GD algorithm. These advantages underscore the theoretical
superiority of InvICL, which synergizes information non-leakage and context interdependence within
an invariant ICL framework.

Practicality of Theorem C.1. Theorem C.1 is an existence proof which illustrate that the Transform-
ers have the potential to implement complex optimization mechanisms like gradient descent. In fact,
The actual weight may not be strictly follow its parametrization. However, empirical studies including
Von Oswald et al. (2023); von Oswald et al. (2023), have shown that pre-trained Transformers exhibit
behaviors akin to gradient descent in certain scenarios, thereby providing empirical evidence for the
theory.

D PROOFS

D.1 PROOF OF THEOREM C.1

Proof. We mainly adopt the setting of (Von Oswald et al., 2023) and (Ding et al., 2023). Let Z =

(z1, ..., z2n, z2n+1) ∈ R(d+1)×(2n+1) be the duplicated input of InvICL, where zj =

(
xj

yj

)
,xj ∈

Rd,yj ∈ R, and zi = zn+i for i ∈ [n]. Consider the linear self-attention layer in the scheme of
InvICL. Given the query, key, value matrix Wq,Wk,Wv ∈ R(d+1)×(d+1) and the projection matrix
P ∈ R(d+1)×(d+1), the updating rule of the layer is as follows:

zj ← zj +PWvzj(z
⊤
j W

⊤
k Wqzj),

zn+j ← zn+j +PWv

∑
i∈[n]\{j}

zi(z
⊤
i W

⊤
k Wqzn+j),

z2n+1 ← z2n+1 +PWv

n∑
i=1

zn+i(z
⊤
n+iW

⊤
k Wqz2n+1),

(14)

where j ∈ [n]. Following the setting of (Von Oswald et al., 2023) and (Ding et al., 2023), we let

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w(0) −1

)
,P = ηI. (15)

19



Published as a conference paper at ICLR 2025

Now, we hope to see what kind of iterative algorithm can naturally be implemented by InvICL. Before
that, we first give the L2

2 loss after doing one step of gradient descent

∥X(w − ηX⊤(Xw − y))− y∥2

= ∥Xw − y − ηXX⊤(Xw − y)∥2

= ∥(I− ηX⊤X)(Xw − y)∥2.
(16)

To compare InvICL with the conventional attention heads for ICL linear regression, here we investigate
the convergence properties of the leave-one-out scheme in Eq. (17) viewed as an optimization
algorithm for solving the regression problem, and compare it to that of gradient descent. It turns out
that if we use the same weighting strategy as (Von Oswald et al., 2023) but with InvICL, then we
obtain a similar iterative algorithm for in-context linear regression according to which the last row of
Z evolves, but the update rule transforms into

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′), (17)

where
y′ = y − ηXX⊤(Xwℓ−1 − y) + η[x⊤

i xi(x
⊤
i wℓ−1 − yi)]

n
i=1 (18)

is the label updated by the leave-one-out scheme. This equation is obtained by first perform a gradient
descent step w.r.t. the whole dataset with gradient update ηX⊤(Xw − y) and then minus the term
w.r.t the i-th data point xi(x

⊤
i w − yi).

Expanding Eq. (17), we get that the global update becomes

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′)

= wℓ−1 − ηX⊤(Xwℓ−1 − y + ηXX⊤(Xwℓ−1 − y)

− η[x⊤
i xi(x

⊤
i wℓ−1 − yi)]

n
i=1)

= wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2X⊤XX⊤(Xwℓ−1 − y)

− η2X⊤Diag(XX⊤)(Xwℓ−1 − y).

(19)

This delivers Eq. (13).

Remark. In BoE ICL, since the context examples cannot interact with each other, the GD algorithm
implemented by it can only update the weight vector w of the test (last) example, but not the context
examples. Particularly, this means the gradient update process is wℓ = wℓ−1 − g(w0, {xi, yi}),
where g is the update function of BoE ICL. This means that the gradients are always computed at the
initial point of the algorithm, thus the algorithm cannot converge.

D.2 PROOF OF PROPOSITION 3.4

Proof. We will first demonstrate that the attention score matrix A needs to adhere to a specific form
when constrained by the attention mask M, in order to guarantee the permutation equivariance of
the embeddings of the context examples. Subsequently, we will establish that this requirement is
equivalent to the permutation invariance of the ICL prediction with respect to the context examples.

Lemma D.1. Given an input matrix H = (h1, ...,hn)
⊤ ∈ Rn×d and its attention score matrix

A ∈ Rn×n defined in Eq. (7). Denote SA(H) = AHWvP be the self-attention operation, where A
is defined in Eq. (7). Then, SA(H) is permutation equivariant to {hi} iff the attention mask M is
equal to 

0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 , or 0.

Proof. Denote T ∈ Rn×n be a permutation matrix on the row vectors of H. This implies that
T ∈ {0, 1}n×n and 1⊤

nT = 1⊤
n , T1n = 1n. Then the permutation equivariant condition can be

20



Published as a conference paper at ICLR 2025

stated as TSA(H) = SA(TH). Since SA(H) = softmax
(
HWq(HWk)

⊤ +M
)
HWvP, the

condition can be expanded as

T softmax
(
HWq(HWk)

⊤ +M
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤T⊤ +M
)
THWvP.

(20)

It can be easily verified that 1) the permutation and softmax operations are commutative, and 2) T is
orthogonal. Therefore, the above equation can be transformed to

softmax
(
THWq(HWk)

⊤ +TM
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤ +MT
)
HWvP.

(21)

This is equivalent to
TMT−1 = M (22)

for arbitrary permutation matrix T. Next, we will discuss what kind of matrix M satisfies this
condition. For notation simplicity, we denote T(i, j) as the permutation performed only between the
i-th and j-th index.

• Assume Mi,i = c1. Taking T = T(i, j), from Eq. (22) we have Mj,j = c1. By iterating
over j, we have Mk,k = c1 for every k ∈ [n].

• Assume Mi,j = c2, i ̸= j. Taking T = T(i, k), k ̸= j, from Eq. (22) we have Mk,j = c2;
taking T = T(j, k), k ̸= i, we have Mi,k = c2. Hence, by iterative applying permutations
in this way, we can conclude that Mk,l = c2 for every k ̸= l.

In conclusion, M = c1In + c2(1n×n − In). Since the elements of an attention mask can only take
the value of either 0 or −∞, M can only be one of the three forms demonstrated in Lemma D.1 (an
all −∞ attention mask is meaningless).

Now we prove the equivalence between the desired permutation invariance property and the equivari-
ance property discussed in Lemma D.1. As the permutation invariance property involves the ICL
prediction, which relies on the test embedding ht, it is necessary to incorporate it into the discussion.
We denote the full input matrix of ICL as H̃ = (h1, ...,hn,ht) ∈ R(n+1)×d, and the corresponding
matrices in the self-attention process as Ã, M̃.

Lemma D.2. Let the output embeddings of the Transformer be H′ = (h′
1, ...,h

′
n,h

′
t). Then, h′

t
is invariant to the permutation of (h1, ...,hn) iff (h′

1, ...,h
′
n) is equivariant to the permutation of

(h1, ...,hn).

Proof. First, we need to extend existing results to the circumstance of the full input H̃. Consider the
attention mask M̃ ∈ R(n+1)×(n+1) of the full input, whose n× n submatrix at the upper-left is equal
to M, i.e., M̃1:n,1:n = M. From the condition in the Proposition we have that M̃n+1,: = 0⊤

n+1.
Besides, it is evident that Proposition 3.5 also satisfies for M̃, we have M̃1:n,n+1 = −∞ · 1⊤

n . Other
variables can be naturally extended.

In Lemma D.1, we have proved that the equivariance property is equivalent to the attention mask M
being one of three specific forms. Now we prove the contrapositive statement of Lemma D.2.

If (h′
1, ...,h

′
n) is not equivariant to the permutation of (h1, ...,hn), by Lemma D.1, the mask on

context examples M must satisfy either 1) ∃i ̸= j,Mii ̸= Mjj , or 2) ∃i ̸= j, k ̸= l,Mij ̸= Mkl.
We separately demonstrate that these properties will break the property of permutation invariance.
For the following circumstances, we uniformly let Wq = Wk = Wv = P = In+1. Denote the
embedding of hi after k self-attention layer as h(k)

i . Then, the embeddings are updated as

h
(k+1)
i =

∑
j=1,...,n,t

[s(h
(k)
i ,h

(k)
j ) + M̃ij ]h

(k)
j , (23)

where s(·, ·) is the similarity function calculated by their inner product and softmax normalization,
which is defined in 2.

21



Published as a conference paper at ICLR 2025

• ∃i ̸= j,Mii ̸= Mjj . Without loss of generality, since the elements of M only take the value
of either 0 or infty, we let M11 = 0,M22 = −∞. Then we construct the input matrix as
h1 = e1,h2 = e2,hi = 0(i > 2),ht = 0, where ei denotes the i-th unit vector (i ∈ [d]).
Since M22 = M2,n+1 = −∞, following Eq. (23), we find that h(1)

2 = c1e1. And since
M11 = 0, we have h

(1)
1 = c2e1 + c3e1.

Now we permute the first and second examples, i.e., h1 = e2,h2 = e1. Although we find
that the first update of the test embedding remains unchanged since Eq. (23) is permutation
invariant for hk

t , the second update differs. Since we have h
(1)
2 = c1e2 and h

(1)
1 =

c3e1+c2e1, the aggregation h
(2)
i changes. Therefore, the property of permutation invariance

is broken.

• ∃i ̸= j, k ̸= l,Mij ̸= Mkl. Without loss of generality, let Mij = 0,Mkl = −∞.
We construct hi = e1,hk = e2, h̸=i,k = 0. Then, we have h

(1)
j = c1e1 + c2e2, and

h
(1)
l = c3e1. Similar to the above process, we can prove that ht is not permutation invariant

w.r.t. the index exchange (i, j)↔ (k, l).

In conclusion, any attention mask M that violates Lemma D.1 will break the property of permutation
invariance. Thus Lemma D.2 is proved.

Finally, by combining Lemmas D.1 and D.2, we can deliver Proposition 3.4.

D.3 PROOF OF PROPOSITION 3.5

Proof. Consider the case that G has no self-loops. Since G is a digraph with no cycles, it is a directed
acyclic graph (DAG). According to the graph theory (Cormen et al., 2022), DAG can be topologically
ordered, which means in this ordering, any vertex is not reachable from later vertices in the graph.
Therefore, if we reorder the vertices in this way, we have Aij = 0 for i ≤ j, which infers that A is
strictly lower diagonal. Since the original graph allows self-loop, which corresponds to the diagonal
elements, the adjacency matrix is lower triangular. This is equivalent to that the attention mask on
context examples M is lower triangular.

E RELATED WORK

The order-sensitivity of ICL. The phenomenon that ICL is sensitive to the permutation of context
examples has been observed in several works. (Zhao et al., 2021) and (Lu et al., 2022) used GPT-3 to
perform in-context learning on classification tasks such as SST-2 and observe a high variance w.r.t.
the permutation of the context examples. Besides, (Xie et al., 2021) and (Agrawal et al., 2022) found
the same phenomenon on a generated synthetic dataset and machine learning tasks, respectively.
Additionally, (Chen et al., 2022) empirically showed that the order-sensitivity is negatively correlated
to the performance of ICL. To address this issue, (Zhao et al., 2021) proposed a calibration module
to make the output distribution consistent with prior knowledge. (Lu et al., 2022) filtered out the
best prompt ordering by investigating their calibration on a generated set. (Xiang et al., 2024)
utilizes contrastive learning to align representations of in-context examples across different positions,
resulting in the alleviation of order sensitivity. Besides, there are works that focuses on implementing
the concept of permutation invariance from an architectural perspective. For example, SAICL
(Cai et al., 2023) proposed a structured attention mechanism that achieves permutation invariance.
However, their work is based on improving the ICL performance of T5 (Raffel et al., 2020), a
language model based on an encoder-decoder architecture, which did not address the order-sensitivity
issue of auto-regressive LMs. BatchICL (Zhang et al., 2024) is the work that is most relevant to
us. Instead of conducting N -shot encoding for all context examples, it utilizes N separate 1-shot
encodings for each context example. It then aggregates the intermediate hidden states of the respective
last token, which is subsequently incorporated into the forward computation of a zero-shot query
to generate the final prediction. In this way, the model achieves permutation invariance since the
encoding of the context examples are independent.

The connection between ICL and Gradient Descent. Early stage formal theoretical investigation
of the linear regression in-context learners includes (Akyürek et al., 2022; Von Oswald et al., 2023).
They first showed that Transformers learn in context via gradient descent, where one layer performs

22



Published as a conference paper at ICLR 2025

one gradient update. In subsequent work, (von Oswald et al., 2023) further argued that Transformers
are strongly biased towards learning to implement gradient-based optimization routines. (Ahn
et al., 2023) showed Transformers can learn to implement preconditioned Gradient Descent, where
the pre-conditioner can adapt to the data. (Bai et al., 2023) provided detailed constructions for
how Transformers can implement a range of learning algorithms via gradient descent. (Dai et al.,
2022) conducted experiments on NLP tasks and concluded that Transformer-based language models
performing ICL behave similarly to models fine-tuned via gradient descent; however, concurrent
work argued that real-world LLMs do not perform ICL via gradient descent (Shen et al., 2023). (Fu
et al., 2023) argued that Transformers actually learn to perform in-context learning by implementing
a higher-order optimization method, not gradient descent. Predictions made by different Transformer
layers match iterations of higher-order optimization methods better than they match iterations of
gradient descent.

23


	Introduction
	Preliminaries
	The Proposed Invariant In-context Learning (InvICL)
	Invariant ICL and Its Desiderata
	A Principled Design of Invariant ICL
	Parallel Implementation

	Experiments
	Synthetic Scenario
	Real-world Datasets

	Discussion
	Conclusion
	Implementation Details
	Symmetric Positional Encoding
	Bag-of-Examples ICL
	Setting of the Experiments on Linear Regression tasks.
	Implementation details of Experiments on Real-world Data.

	Additional Experimental Results
	Synthetic Experiments on other setups
	Real-world Experiments based on GPT-Neo and Pythia
	Ablation study for InvICL
	Detailed Results for Synthetic Experiments
	Linear Probing experiments

	Theoretical Understanding InvICL from an Optimization Perspective
	Proofs
	Proof of Theorem C.1
	Proof of Proposition 3.4
	Proof of Proposition 3.5

	Related Work

