
Understanding INT4 Quantization for Language Models:
Latency Speedup, Composability, and Failure Cases

Xiaoxia Wu * 1 Cheng Li * 1 Reza Yazdani Aminabadi 1 Zhewei Yao 1 Yuxiong He 1

Abstract

Improving the deployment efficiency of
transformer-based language models has been
challenging given their high computation and
memory cost. While INT8 quantization has
recently been shown to be effective in reducing
both the memory cost and latency while preserv-
ing model accuracy, it remains unclear whether
we can leverage INT4 (which doubles peak
hardware throughput) to achieve further latency
improvement. In this study, we explore the
feasibility of employing INT4 weight and activa-
tion (W4A4) quantization for language models.
Our findings indicate that W4A4 quantization
introduces no to negligible accuracy degra-
dation for encoder-only and encoder-decoder
models, but causes a significant accuracy drop
for decoder-only models. To materialize the
performance gain using W4A4, we develop a
highly-optimized end-to-end W4A4 encoder
inference pipeline supporting different quanti-
zation strategies. Our INT4 pipeline is 8.5×
faster for latency-oriented scenarios and up to
3× for throughput-oriented scenarios compared
to the inference of FP16, and improves the
SOTA BERT INT8 performance from Faster-
Transformer by up to 1.7×. We provide insights
into the failure cases when applying W4A4 to
decoder-only models, and further explore the
compatibility of INT4 quantization with other
compression methods, like pruning and layer
reduction.

*Equal contribution 1Deepspeed Team @ Microsoft.
Code is released at https://github.com/microsoft/
DeepSpeed. Correspondence to: Xiaoxia Wu <xiaoxi-
awu@microsoft.com>, Cheng Li <chengli1@microsoft.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
As pre-trained large language models (LLMs) (Vaswani
et al., 2017) such as BERT (Tenney et al., 2019),
BART (Lewis et al., 2020), and GPT (Radford et al.,
2019) require a significant amount of GPU resources to
deploy, compression becomes a common practice to opti-
mize model inference, especially for resource-constrained
environments. One of the widely used compression tech-
niques is quantization where data are stored and manipu-
lated in a lower-precision format, such as 8-bit or 4-bit in-
tegers instead of 32-bit or 16-bit floating-point numbers. It
not only reduces the amount of memory required to store
the model, but also can leverage the higher GEMM com-
putation throughput for lower-bit data types on supported
GPUs (e.g., peak INT4 Tensor Core TFLOPS doubles that
of INT8 and quadruples that of FP16) to improve inference
latency. Note that only quantizing the model weights with-
out computing in lower-bit data types (i.e., keeping activa-
tion in FP16 or FP32) introduces no latency improvement
(or even slower due to type conversion at runtime) but only
memory saving.

Recent work proposes techniques to apply INT8 quantiza-
tion (using INT8 computation where both weight and ac-
tivation are quantized, referred to as W8A8) to all linear
layers without introducing accuracy degradation for trans-
formers (Yao et al., 2022; Xiao et al., 2022; Dettmers et al.,
2022a;b; Li et al., 2022; Kim et al., 2021). Yao et al. (2022)
also present an INT8 inference pipeline and show good
end-to-end (E2E) performance improvement over FP16
model inference. NVIDIA’s FasterTransformer (NVIDIA,
2023) holds SOTA open-source INT8 implementations
where aggressive quantization are explored: mode-1 quan-
tizes the attention computation beyond linear layers, and
mode-2 further quantizes the residual connection trading
off accuracy for latency.

While we are advancing W8A8 quantization algorithms
and implementations proven to be effective for LLMs, the
questions arise: (1) whether INT4 inference (using INT4
computation where both activation and weight are quan-
tized, referred to as W4A4) is feasible (acceptable accuracy
drop) for these models, and (2) how it can be leveraged
for performance improvement on real hardware. Although

1

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

Understanding INT4 Quantization for Language Models

W4A4 has been successfully applied to other model types
or hardware, e.g., convolution models for image classifica-
tion with quantization-aware training strategy (QAT) (Ab-
dolrashidi et al., 2021),1 there is lack of work on ex-
ploring W4A4 for LLMs inference on GPU. Dettmers &
Zettlemoyer (2022) show little accuracy loss for LLMs
when only model weights are quantized to 4-bit with post-
quantization training (PTQ)2, while the computation is still
in FP16 as the activations are not quantized. Wu et al.
(2022) prove that even the binary network can result in only
a small degradation if applying QAT with knowledge dis-
tillation (KD) (Hinton et al., 2014) and longer training, but
the activations are quantized to INT8 (using INT8 compu-
tation, not INT4). Tang et al. (2022) are the first to claim
to apply W4A4 to BERT for inference with QAT and KD.
However, their quantization method fails to enable W4A4
for all but only the last two layers in a four-layer Tiny-
BERT model (otherwise causing drastic accuracy drops).
Moreover, their E2E INT4 inference lacks implementation
details, with conflicting performance numbers when com-
pared to FasterTransformer (see Appendix B.2).

In this work, we aim not only to better understand the accu-
racy impact of INT4 quantization on common LLMs, but
also to materialize and maximize the benefit of using INT4
computation in E2E inference, further improving the SOTA
inference performance on LLMs. Specifically, we make the
following contributions:

• We explore the feasibility of W4A4 quantization
across popular language model types, by leveraging
the recent layer-wise knowledge distillation method
for quantization. We show that our W4A4 can achieve
no accuracy loss for the encoder-only models (BERT)
on classification problems, negligible accuracy differ-
ence for encoder-decoder models (BART) on summa-
rization tasks, but causes a relatively larger accuracy
drop for decoder-only models (GPT) on autoregres-
sive generation tasks.

• We develop a highly optimized end-to-end encoder
model inference pipeline to support INT4 compu-
tation. The pipeline is built with modular compo-
nents supporting different quantization strategies to
accommodate latency- or throughput-oriented scenar-
ios. Our inference pipeline is up to 8.5×/3× faster
for latency-/throughput-oriented scenarios when com-
pared to HuggingFace FP16 BERT implementation,

1QAT requires the full training pipeline by quantizing the
weight and activation during the forward process and updating
the weights with gradients computed by straight through estima-
tor (Bengio et al., 2013) or other methods.

2PTQ means the quantized model is arrived directly by map-
ping the weights from floating-point to low precision values with-
out the full pipeline training (dataset and backward gradient).

and improves the SOTA BERT INT8 performance
from NVIDIA FasterTransformer by up to 1.7×.

• To unveil the causes of larger accuracy drop for
decoder-only models (GPT) when using INT4 quan-
tization, we provide an in-depth analysis of layer nor-
malization, pretraining effect, and attention mecha-
nism. Additionally, we study the composability of
INT4 quantization with other compression techniques,
including pruning and layer-reduction, for encoder-
related models.

2. Related Work
Model compression, as a technique to reduce to the model
size and computation costs, can be achieved by pruning,
quantization, low-rank factorization and efficient architec-
ture designs (Han et al., 2015; Li et al., 2016b; Mao et al.,
2017; LeCun et al., 1990; Michel et al., 2019; Fan et al.,
2019; Gordon et al., 2020; Raganato et al., 2020; Dong
et al., 2019; Yao et al., 2021; Mao et al., 2020; Hinton et al.,
2014; Sanh et al., 2019; Sun et al., 2019; Jiao et al., 2019;
Sun et al., 2020b; Wang et al., 2020; Lan et al., 2019; De-
hghani et al., 2018; Liu et al., 2021; Hu et al., 2021; Micike-
vicius et al., 2018; Polino et al., 2018; Frantar & Alistarh,
2022). Among the large body of litterateurs, we mainly
cover the recent related works on INT4 quantization and
system inference.

As described in the introduction, the 8-bit quantization for
LLMs, and/or mixing with other precision, has been widely
studied and proven to be effective in recent years (Yao
et al., 2022; Xiao et al., 2022; Dettmers et al., 2022a;b; Li
et al., 2022; Frantar et al., 2022; Kim et al., 2021). How-
ever, the purely INT4 quantization, as a very aggressive
technique that can have a significant impact on the accu-
racy of the model, is not widely used in practice and still
emerging. To the best of our knowledge, we describe some
more closely related works besides those mentioned in the
introduction. In (Sun et al., 2020a), a 4-bit floating point
format with an adaptive gradient scaling technique is pro-
posed to demonstrate its effectiveness in computer vision,
speech and NLP tasks and solid hardware acceleration. Our
study focuses on the use of INT4 quantization instead of
FP4 and the acceleration hardware is based on the Ampere
structure. In (Chung et al., 2020), a low-bits mixed preci-
sion quantization strategy is proposed to represent Trans-
former models. However, their activations are kept in full
precision. In (Han et al., 2020), a detailed implementation
of INT4 optimization is presented, but it is only applica-
ble to convolution networks and not transformer models.
(Dettmers & Zettlemoyer, 2022; Yao et al., 2023; Frantar
et al., 2022) study the INT4 weight quantization for trans-
formers but the activation is not INT4 but FP16 or INT8,
and they mainly focus on post-training quantization.

2

Understanding INT4 Quantization for Language Models

3. Model Accuracy for INT4 Quantization
3.1. Quantization Algorithms and Training

Quantization. For completeness, we here explain the sym-
metric and asymmetric quantization algorithms (Yao et al.,
2022). Suppose x ∈ Rd and xq ∈ Rd represent respec-
tively a full-precision and a quantized vector. The uniform
symmetric mapping strategy from x and xint is

x(sym)
q = S

⌈
clamp(x/S;−2b−1, 2b−1 − 1)

⌉
,

where clamp restricts the value of its argument to a given
range from −2b−1 to 2b−1 − 1, b is the number of bits used
to represent the quantized value, ⌈·⌉ is the rounding opera-
tor, and S ∈ R is the scaling factor. For example, S can be
computed as the maximum of the absolute elements in the
x vector, i.e., S = max (abs(x)). On the other hand, the
asymmetric mapping strategy can be expressed as

x(asym)
q = S

⌈
clamp((x− xzero1)/S; 0, 2

b−1 − 1)
⌉
+xzero1,

where xzero is used as a reference point potentially reducing
any bias into the asymmetric vector. The scalar S can be
computed as S = max(x)−min(x) and xzero = min(x).

Throughout the paper, we always do both weight and acti-
vation quantization using the method proposed in Yao et al.
(2022). See Appendix A for more details.

Knowledge Distillation. Knowledge distillation (KD) can
greatly improve the performance of quantized transformer
models. It trains a smaller quantized model (the student
model) by incorporating the knowledge from the larger
full-precision model (the teacher model). This can be done
by training the student model to mimic the behavior of
the teacher model on the training dataset, using the output
probabilities as a soft target (Hinton et al., 2014) and the
hidden states (and/or attention maps) of each transformer
layer to align feature maps (Jiao et al., 2019; Wang et al.,
2020; Bai et al., 2020; Li et al., 2016a; Wu et al., 2022).

3.2. INT4 Quantization for Language Models

We perform the 4-bit quantization on all linear layers using
QAT and KD. We use BERT-base and BERT-large (Tenney
et al., 2019) as representatives for encoder-only models and
fine-tune them on two largest GLUE tasks, i.e., QQP (Iyer
et al., 2017) and MNLI (Williams et al., 2017) for small ac-
curacy variations. We use GPT2 and GPT2-medium (Rad-
ford et al., 2019) as representatives for decoder-only mod-
els and fine-tune them on three causal generation tasks,
i.e., PTB (Marcinkiewicz, 1994), Wikitext-2, and Wikitext-
103 (Merity et al., 2017). Finally, we use BART-base and
BART-large as representatives for encoder-decoder models
and fine-tune them on two summarization tasks, i.e., CN-
NDaiyMail (Hermann et al., 2015), and XSum (Narayan

et al., 2018). In order to reduce the hyper-parameters’
effect, e.g., the best quantization configuration for BERT
may be suboptimal for GPT, we exhaustively search hyper-
parameters including iterations, learning rate, dropout,
quantization groups, clip values, and knowledge distilla-
tion terms for each model and choose the best one to report
here. We include the experimental details in Appendix B
and Table B.1.

We present the main results in Table 1 for both sym-
metric and asymmetric quantizations. We also provide
more detailed iterative-vs-accuracy plots in Figure B.1 on
the validation datasets for QAT. For symmetric quanti-
zation, as can be seen, there is no accuracy degradation
for BERT models and negligible drops (≤ 1 point) for
BART models, while the 4-bit decoder models, i.e., GPT2
and GPT2-medium, show a significant drop in perplex-
ity (≥ 1.5 points) compared to the original FP32 models.
This suggests that classification/summarization tasks using
encoder-only/encoder-decoder models are much more ro-
bust to quantization when compared to auto-regressive gen-
eration tasks using decoder-only models.

Asymmetric quantization generally improves the accuracy
performance over symmetric quantization since it better
utilizes the quantization range. One notable thing is that
even with a better quantization scheme (i.e., asymmet-
ric quantization) and exhaustive hyper-parameter tuning,
decoder-only models still have larger quality degradation
compared to encoder-only and encoder-decoder models. To
provide more insight into why decoder-only models are
more sensitive to INT4 quantization, we give a detailed
analysis in Section 5.

4. Highly Optimized INT4 Encoder Inference
To materialize and maximize the benefits of using INT4
computation in model inference, we develop a set of cus-
tom GPU kernels and an E2E highly optimized pipeline
to support inference with INT4 (as well as INT8) quan-
tized encoder models. We adopt the system optimiza-
tions described in (Yao et al., 2022) and (Aminabadi et al.,
2022) when applicable, and take advantage of FlashAtten-
tion (Dao et al., 2022) and the CUDA graph (NVIDIA,
2021) to further improve the performance. Moreover,
we explore different quantization strategies for latency- or
throughput-oriented scenarios. The software design and
implementation also largely apply to other model types,
e.g., GPT decoders if the accuracy drop can be resolved.

We conduct the performance experiments on a Lambda
A6000 workstation (Lambda, 2023) (2×A6000-48GB-
GPU, 256GB DRAM, and 2TB NVME), with the fol-
lowing software setup: HuggingFace transformers 4.25.1,
NVIDIA FasterTransformer v5.2.1, PyTorch: 1.12.1, cuda

3

Understanding INT4 Quantization for Language Models

Table 1: The best quality for BERT/BART/GPT-type models (two sizes) over the validation datasets, respectively with
metric Accuracy (Acc., higher is better), Rouge Lsum (RLsum, higher is better), and perplexity (PPL, lower is better).

Models BERT-base (110M) BART-base (140M) GPT2-base (117M)
Tasks MNLI-m/mm QQP CNNDailyMail XSUM PTB WIKI-2 WIKI-103
Metrics Acc/Acc F1/Acc R1/R2/RLsum R1/R2/RL Perplexity Perplexity Perplexity

FP32 (teacher) 84.20/84.67 87.83/90.95 45.62/22.85/42.87 42.18/19.44/34.36 19.31 21.02 17.46
W4A4 (symmetric) 84.31/84.48 88.11/91.14 44.63/21.42/41.92 41.54/18.61/33.69 22.17 27.28 21.75
W4A4 (asymmetric) 84.29/84.65 88.17/91.19 44.83/21.67/42.08 41.53/18.56/33.62 21.72 25.99 21.54

Models BERT-large (345M) BART-large (406M) GPT2-medium (355M)
Tasks MNLI-m/mm QQP CNNDailyMail XSUM PTB WIKI-2 WIKI-103
Metrics Acc/Acc F1/Acc R1/R2/RLsum R1/R2/RL Perplexity Perplexity Perplexity

FP32 (teacher) 86.65/85.91 88.08/91.07 44.82/21.67/41.80 45.42/22.37/37.29 15.92 15.92 12.75
W4A4 (symmetric) 86.25/86.20 88.30/91.17 45.12/21.73/42.31 44.39/21.28/36.33 17.69 19.51 14.57
W4A4 (asymmetric) 86.49/86.28 88.35/91.24 45.20/21.85/42.40 44.91/21.74/36.79 17.32 18.74 14.23

11.7, and cutlass v2.6.0. Currently, INT4 GEMM is not
supported by CUBLAS, and is only available through CUT-
LASS (NVIDIA, 2017) and we use that to support the INT4
computation in model inference.

4.1. INT4 GEMM

INT4 Tensor Core performance (peak TFLOPS) theoret-
ically doubles INT8 throughput on supported NVIDIA
GPUs. However, to achieve the 2× speedup, the GEMM
input shapes have to be large enough (being compute-
intensive). The linear layers that are quantized and com-
puted with INT4 data in the encoder model inference are
QKV projection, attention output, MLP intermediate, and
MLP output GEMM. The GEMM shapes (M-N-K) for
these layers are (bs× seq − 3h− h), (bs× seq − h− h),
(bs× seq− 4h−h) and (bs× seq−h− 4h) respectively,
where bs and seq are input batch size and sequence length,
and h is the model hidden dimension. These shapes set
the upper-bound performance improvement we can achieve
with INT4 over INT8 GEMM for a given model.

Figure 1 shows the performance comparison between INT4
and INT8 GEMM for common shapes in BERT-base and
BERT-large model. We can see that the larger the input
shape, the higher the speedup. While the INT4 GEMM
speedup for BERT-large are overall higher than BERT-
base as the model hidden dimension is larger (1024 vs.
768), within a model the four GEMM can have very dif-
ferent achieved INT4 speedup given the same input, i.e.,
bs × seq. For example, with bs × seq = 12288
for BERT-large, the attention output GEMM (12288-h-
h) only achieves 1.46× speedup while the MLP output
GEMM (12288-h-4h) achieves 1.96× when using INT4
over INT8 computation. Combining with the quantiza-
tion/dequantization overhead (see Section 4.2), this differ-
ence suggests the need for tunable quantization strategies
(enable/disable quantization on certain GEMM parts) de-

pending on the input shape.

4.2. Holistic Optimizations of End-to-end Inference

While INT4 computation introduces performance improve-
ment for the linear layers, there are other major com-
ponents in between using FP16 data types (e.g., layer
normalization, elementwise operations, etc.). The E2E
inference requires quantizing/dequantizating the activa-
tions before/after the lower-bit GEMM operations. More-
over, the improvement from INT4 and the quantiza-
tion/dequantization overhead are both model- and input-
dependent. Depending on the deployment scenarios
(latency- or throughput-oriented), the optimal quantization
strategies can be different. Thus, maximizing the gain from
using INT4 computation requires holistic optimizations of
the E2E model inference.

The quantization/dequantization of activations are
memory-bound operations and introduce nontrivial over-
head. Similar to Yao et al. (2022), we fuse the quantization
operation for activation with its previous element-bias-add,
GELU, or layer normalization operation into a single
GPU kernel; and fuse the dequantization operation with
the INT4 GEMM kernel to avoid extra data movement to
global GPU memory. Since the current PyTorch does not
support the INT4 tensor data type yet, we pack INT4 data
into INT8 tensors when invoking our customized kernels.

FlashAttention (Dao et al., 2022) has been shown to largely
improve the attention computation performance, especially
for large batch sizes and sequence lengths. We integrate
FlashAttention into our inference pipeline to speed up the
attention computation (in FP16). CUDA graph (NVIDIA,
2021) was introduced by NVIDIA to reduce GPU ker-
nel launching overhead. For small batch sizes and short
sequence lengths, the kernel launching overhead is non-
negligible, thus we enable CUDA graph in our inference
pipeline to minimize such overhead.

4

Understanding INT4 Quantization for Language Models

Figure 1: CUTLASS INT4 vs. INT8 GEMM performance comparison across different batch size×sequence length (M)
for BERT-base and BERT-large GEMM shapes (N and K). We use the best GEMM schedule for different inputs identified
with the CUTLASS profiler. Left axis shows the throughput achieved (Peak INT8 and INT4 Tensor TOPS is 309.7 and
619.3 TFLOPS on A6000 GPU) and the right axis shows the speedup of INT4 over INT8.

(a) (b)

Figure 2: E2E latency speedup of (a) our INT4 over INT8 with all four parts quantized (i4-qall and i8-qall), and (b) our
INT4 with best quantization strategy (i4-qbest) over Fastertransformer INT8 (FT-i8) on A6000.

A model deployment scenario can be either latency-
sensitive or throughput-oriented, thus different batch sizes
and sequence lengths are used for different cases. As
shown in Section 4.1, the gain from INT4 is input (decides
GEMM shapes) dependent. The memory-bound quantiza-
tion/dequantization operations introduce input-dependent
(i.e., the size of activations) overhead as well. Due to
the various model sizes (particularly the hidden dimension,
h), input shapes, and hardwares, the four linear layers for
quantization have different trade-offs between the gain and
overhead. For example, for low bs × seq inference with
BERT models, quantization of QKV projection, attention
output, and MLP output might not result in E2E perfor-
mance improvement. If so, we can skip the quantization of
these three parts in inference (note that using a higher-bit
computation data type for a QAT model does not degrade
the inference accuracy).

As such, we develop the four model parts as modular com-
ponents where quantization can be enabled or disabled sep-
arately in the inference pipeline. Different quantization
strategies can be applied given a target scenario and hard-
ware. Also, the GEMM schedules used in inference are
pre-tuned (with CUTLASS profiler) for the best perfor-

mance in the deployment environment as well.

4.3. End-to-end Inference Performance Results

We measure the E2E BERT model INT4 (prefixed with i4-
) and INT8 (prefixed with i8-) latency with our inference
pipeline and compare it with the HuggingFace FP16 imple-
mentation (noted as HF-fp16) as well as the SOTA INT8
implementation (noted as FT-i8) from NVIDIA Faster-
Transformer (NVIDIA, 2023). The input batch size and
sequence length are selected to cover both latency- and
throughput-oriented scenarios. We explore different quan-
tization strategies (suffix in name to note what is quantized)
with the inference pipeline and show the effectiveness of
such tuning. We use symmetric quantization for the BERT
models in the experiments as the earlier section shows no
accuracy drop and it is faster than asymmetric quantization
because of less required computation for bias term.

Figure 2a shows the E2E speedup of our INT4 over our
INT8 inference when quantizing all four parts. Cross-
comparing it with Figure 1 which indicates the upper bound
of the E2E INT4-vs-INT8 speedup, we can see that the
inference pipeline design achieves well the goal of max-

5

Understanding INT4 Quantization for Language Models

Figure 3: E2E latency speedup of FasterTransformer INT8 (FT-i8), our IN8 with all quantization (q=i8-qall), and our INT4
with best quantization strategy (i4-qbest) over HuggingFace FP16 (HF-fp16) inference.

imizing the performance gain from using INT4 computa-
tion. Figure 2b compares our best INT4 inference with the
Fastertansformer INT8 (using mode-1 as model-2 trades
off accuracy for better latency) inference. Note that other
than the four parts we quantize in our pipeline, Fastertans-
former INT8 also quantizes attention computation while
we use FP16 FlashAttention (see Section 4.2). As anno-
tated, the best quantization strategy for (bs − seq) (1-32),
(1-128) and (8-32) is to only quantize the MLP interme-
diate GEMM (q3). For larger batch sizes and sequence
lengths, the best configuration is to quantize all four parts.
We show that our highly-optimized INT4 inference im-
proves the SOTA BERT model performance by up to 1.7×
as compared to FP-INT8, while model quality maintains.

Figure 3 presents the speedup of our inference and Faster-
Transformer pipelines over HuggingFace FP16 inference,
a common baseline for comparison. Our INT4 inference
is up to 8.5× faster for latency-oriented scenarios and up
to 3× for throughput-oriented scenarios. Note that we fo-
cus on maximizing the performance gain from using INT4
computation in this work, thus orthogonal optimizations
from FasterTransformer (e.g., padding removal) or other
work are applicable to our INT4 inference design, and can
further improve the inference performance.

5. Failure Cases: Understanding the Quality
Degradation of INT4 Decoder Models

For W4A4 GPT models, we have made heavy efforts to
tune and distill but their results are still far away from the
FP32 counterparts. In this section, we present several anal-
yses of the causes of such degradation, including

(1) Layer Normalization (LN). The position of LN is dif-
ferent for encoder and decoder models: LN for BERT and
BART happens after each sublayer’s residual connection
(“Post-LN”) (Vaswani et al., 2017), while LN for GPT
models operates at the beginning of each sublayer before
adding to the residual values (“Pre-LN”) (Xiong et al.,
2020). Compared to Pre-LN, Post-LN removes the mean
and variance shift caused by the residual connection and

0 200 400 600 800
Iterations (x500)

0

2

4

6

8

10

Pe
rp

le
xi

ty
 G

ap
s (

te
ac

he
r-w

4a
4)

GPT2-Base: Perplexity Gaps
 Pre-LN
 Post-LN

0 50 100150200250300350400450
Iterations (x500)

0

2

4

6

8

10

Pe
rp

le
xi

ty
 G

ap
s (

te
ac

he
r-w

4a
4)

GPT2-Medium: Perplexity Gaps
 Pre-LN
 Post-LN

Figure 4: The quality gaps between W4A4 and FP32 mod-
els, respectively for GPT2-PreLN (blue) and GPT2-PostLN
(orange).

activation functions, which might make the network more
robust. A possible conjecture is that the good quality of
INT4 BERT/BART is due to the effect of Post-LN, which
thus leads the models to less sensitivity to quantization.

(2) Pretraining Effect. The activation range for decoder
models can vary significantly for different layers and for
different linear modules. A possible conjecture that pre-
training with a dataset of a large scale, such as billions of
examples, may exacerbate this issue by introducing more
diversity in the input activations, which could lead to less
optimal quantization performance.

(3) Attention Mechanism. GPT models use casual-self-
attention mechanism to weight the importance of each
word in the input and generate tokens in a sequential man-
ner (autoregressive generation), while BART uses encoder-
decoder attention mechanism plus casual-self-attention.
As such, for the first few generated tokens, BART can
still gather information from the encoder-decoder attention
which can potentially reduce the quantization error by aver-
aging attention information, while GPT does not have this
ability.

Layer Normalization. To understand if pre-LN and
post-LN lead to a significant difference on the quantiza-
tion, we design the following experiments:
(1) As GPT2 is by default using Pre-LN (GPT2-PreLN),

6

Understanding INT4 Quantization for Language Models

0 200 400 600 800 1000
Position

2
4
6
8

10

M
ax

-M
in

Layer 1
Pretrained Scratch

0 200 400 600 800 1000
Position

1

2

3

4

M
ax

-M
in

Layer 5

0 200 400 600 800 1000
Position

1
2
3
4
5

M
ax

-M
in

Layer 9

0 200 400 600 800 1000
Position

2

4

6

M
ax

-M
in

Layer 12

GPT2 layer: Max-Min Activation over hidden dimension (3072) of FC2

Figure 5: The gaps between the minimum and maximum
activations at certain layers (Layer 1, 5, 9, and 12) in the
second fully-connected linear module. The gaps are plotted
with respect to position and the average is being taken over
8 batch sizes, with one standard deviation shaded region.

we construct a model (GPT2-PostLN) by replacing the pre-
LN with post-LN. In order to have a fair comparison be-
tween the quantization results of GPT2-PreLN and GPT2-
PostLN, we directly fine-tune both models on Wikitext-103
from scratch, and the perplexities are 17.88 (PreLN) and
18.95 (PostLN) for GPT2-Medium, and 18.76 (PreLN) and
19.46 (PostLN) for GPT2-base.3

(2) We take the above FP32 checkpoints and apply QAT
with KD to obtain the best W4A4 models. The the perplex-
ities for W4A4 are 18.66 (PreLN) and 19.79 (PostLN) for
GPT2-Medium, and 20.46 (PreLN) and 21.73 (PostLN) for
GPT2-base. We then calculate the perplexity gaps between
the W4A4 and FP32 models.

We report the results in Figure 4 of the two perplexity-gap
curves for W4A4 and FP32 models, depicted by the blue
curve of GPT2-PreLN and orange curve of GPT2-PostLN.
The overlap phenomenon at the end of the training, respec-
tively, demonstrates that LN may not directly affect the per-
formance degradation for decoder-only models..

Pretraining Effect. Despite obtaining negative results on
the position of layer normalization, we have identified an
intriguing observation in regard to models trained from
scratch. Our experiments reveal that the gap between the
student and teacher models in terms of perplexity (PPL) is
smaller when training from scratch (20.46 ppl and 18.76
ppl for INT4 and FP32, respectively) as compared to utiliz-
ing a pretrained GPT2 model (21.54 ppl for INT4 and 17.46
for FP32). This observation raises questions about the po-
tential negative effort of pretraining in the context of quan-
tization, as the model trained from scratch appears to per-
form better. To understand this, we compare the position-

3Compared to Wikitext-2 and PTB, Wikitext-103 is a consid-
erable larger dataset and thus arrived at a low perplexity even from
scratch, closer to results of the pretrained ones.

wise activation range between the fined-tuned models from
pretrained checkpoint and from scratch (referred to as “po-
sitional activation”). This provides a token-level under-
standing on the quantization range. The results are shown
in Figure 5 and it reveals the higher positional-activation
range of the pretrained model as compared to the scratch-
trained model. This further supports the hypothesis that
pretraining on large diverse datasets may lead to a wider
range of activation values, and thus may be suboptimal for
quantization as compared to models trained from scratch.

Attention Mechanism. To gain insight into the impact
of different attention mechanisms (encoder-decoder atten-
tion and causal-self-attention) on quantization errors, we
conduct a comparison of BART-large and GPT2-medium
models. We evaluate the “positional perplexity” of both
FP32 and W4A4 models on the CNNDailyMail dataset for
BART and Wikitext-2 dataset for GPT. The results are de-
picted in Figure 6. We make the following observations:

0 20 40 60 80 100 120
Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rp

le
xi

ty

BART: Summarization (CNNDailyMail)
Teacher (fp32)
Student (w4a4)

0 50 100 150 200
Position

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Pe
rp

le
xi

ty

GPT2: Generation (wikitext2)

0 200 400 600 8001000
101

102

103 Zoom Out

Teacher (fp32)
Student (w4a4)

Figure 6: The positional perplexity across the full sequence
for BART and GPT2 models.

(1) The curves for GPT, whether it is the teacher or student
model, tends to exhibit a downward trend. The token losses
at early positions are significantly higher than those at later
positions. Conversely, the curves for both the teacher and
student models of BART exhibit a mild upward trend, with
token losses at later positions being no better than those at
earlier positions.

(2) The perplexity degradation from quantization for the
BART model is small, with a maximum gap of 2.5 ppl at
the end of the sequence. In contrast, the GPT model expe-
riences large accuracy loss from quantization, with a max-
imum gap of over 100 ppl at the first tens of tokens of the
sequence and around 2 ppl gap at later.

Both phenomena highlight the importance of the addi-
tional encoder-decoder attention mechanism. For causal-
self-attention-only models (i.e., GPT), the next-generated
token can only use the information from previous word. As
such, (1) the earlier positions have less information to re-

7

Understanding INT4 Quantization for Language Models

trieve, which leads to larger ppl scores; (2) the INT4 model
has significant perplexity degradation at the beginning po-
sitions compared to FP32 model due to the information
noise from quantization. Thanks to the encoder-decoder
attention, INT4 BART model has relatively (1) stable per-
plexity for all positions and (2) consistent the positional
perplexity degradation as compared to FP32 counterpart.

6. Composability of INT4 Quantization
In this section, we examine the composability of W4A4 to
identify techniques that can be used to further accelerate
INT4 inference. Specifically, we investigate the potential
of combining INT4 quantization with other compression
techniques, such as pruning and layer reduction. Our study
is based on the observation that encoder-related models,
such as BERT and BART, demonstrate robustness to W4A4
compression as shown in Table 1.

6.1. Composing Semi-structured Pruning with INT4

We focus on combining semi-structured pruning with
W4A4. Specifically, we investigate the semi-structured
sparsity called Pair-(N:M) which allows for accelerated ex-
ecution on NVIDIA Ampere GPUs (Mishra et al., 2021;
Holmes et al., 2022). Pair-(N:M) sparsity structure means
that there are N zero-entries for every M elements. We take
BERT-base as an example, as Quantization-Aware Training
with Knowledge Distillation for W4A4 models has been
shown to lead to better accuracy than its FP32 counterpart.
We follow the training recipe described in (Wu et al., 2022).

Algorithm Design Order between Pruning and INT4.
When combining the two compression techniques pruning
and quantization, a natural question would be the ordering
in the forward pass of the two: should we put quantiza-
tion in front of pruning (e.g. Quant(Prune(W) or P=>Q),
or vice versa (e.g. Prune(Quant(W) or Q=>P). To un-
derstand this, we fine-tune on MNLI with different train-
ing epochs using simplest ℓ1 pruning method (Han et al.,
2015; 2016). ℓ1 pruning method prunes those small abso-
lute value to be zero while keeping those large weight value
untouched. The ℓ1 pruning mask is determined by the ab-
solute value of the weight matrix of the teacher models and
it remains fixed throughout the training.

We plot the accuracy on the validation dataset in Figure 7.
As can be seen, for shorter training time, P=>Q is better
that Q=>P. However, the benefits of P=>Q start to dimin-
ish as we increase the training epochs. Overall, it is gen-
erally recommended to perform pruning before quantiza-
tion, because pruning removes unnecessary weights from
the model. As such, it can help mitigate the loss of pre-
cision caused by quantization and make the quantization
process more effective.

With the decision to use the pruning-quantization order, we
trained an INT4 BERT-base model with both 50% and 75%
sparsity and reported the best validation results in Table 2.
We found that a 75% sparsity level results in an accuracy
drop of 0.79/1.6 for the MNLI-m/mm tasks. Therefore, if
maintaining high accuracy is a priority, using a 50% spar-
sity level for W4A4 models is recommended. In the ap-
pendix, we also present the results of applying 50% spar-
sity to W4A4 models for 8 GLUE tasks and confirm that
the average GLUE scores are similar to those of the origi-
nal FP32 models.

Table 2: Quantization(Q)&Pruning(P) 50% or 75% sparsity.

Tasks Teacher Epoch-3 Epoch-21: P+Q
MNLI- FP32 Q only 50% sparisty 75% sparisty

m/mm 84.9/85.6 84.8/85.2 84.56/85.04 84.11/83.99

6.2. Composing Layer-reduction with INT4

Reducing the depth of a model, also known as layer-
reduction, is a more straightforward method to improve in-
ference latency as it requires no modifications to the single-
layer implementation (e.g. GPU kernels). However, it
should be noted that these layer-reduced models may not
be able to capture the same level of complexity or learn
the same representations as the original models. To under-
stand the compatibility of layer-reduction and quantization
as well as the trade-off between model depth and quality,
we perform detailed study on an encoder-decoder model.

Our implementation of layer-reduction strategies and fine-
tuning recipes follows the work in (Li et al., 2022)4. How-
ever, there are two key differences: (1) Our quantization al-
gorithm, described in Section 3.1, differs from the one used
in (Li et al., 2022).5 (2) While (Li et al., 2022) uses 8-bit
activations, we trained our model with 4-bit activations.

More Encoder or More Decoder? When applying layer-
reduction for encoder-decoder model, we need to decide
the number of encoder and decoder layers. For example,
when the depth is fixed at four layers, should we have more
encoder layers (3-encoder and 1-decoder), more decoder
layers (1-encoder and 3-decoder), or an equal number of
layers for both (2-encoder and 2-decoder)? We investi-
gate different scenarios of x-encoder and y-decoder layers,
where x + y ∈ {9, 7} and x ∈ {6, 5, 4, 3} for the case of
x+ y = 9, and x ∈ {3, 2, 1} for the case of x+ y = 4. We
train our models for 10 epochs with a fixed random seed
and a learning rate of 5e-5.

The results are reported in Table 3. A comparison of the re-

4https://github.com/amazon-science/dq-bart
5We did a comparison of the two quantization algorithms and

found that the algorithm for INT4 presented in Section 3.1 has
better accuracy than that in (Li et al., 2022)

8

Understanding INT4 Quantization for Language Models

0 5 10 15 20 25 30 35
Iterations (x1000)

83.0

83.5

84.0

84.5

85.0

Va
l.

Ac
c.

 (M
NL

I-m
)

Fine-tuning MNLI with 3 epochs:
Method | Best Acc (MNLI-m/-mm) :

Q=>P | 84.18/84.54
P=>Q | 84.31/84.79

0 50 100 150 200
Iterations (x1000)

Fine-tuning MNLI with 18 epochs:
Method | Best Acc (MNLI-m/-mm) :

Q=>P | 84.33/84.89
P=>Q | 84.56/85.04

0 50 100 150 200 250
Iterations (x1000)

Fine-tuning MNLI with 21 epochs:
Method | Best Acc (MNLI-m/-mm) :

Q=>P | 84.6/84.76
P=>Q | 84.51/85.04

Figure 7: The validation accuracy (Val. Acc.) of the W4A4+50% sparsity (i.e., Pair-(2:4)) BERT-base. We compare the
order of pruning and quantization. Q=>P (orange solid curve) means the quantization algorithm is in front of the pruning
algorithm. P=>Q (blue dash curve) is the opposite. From left to right plots, the difference is the training epochs (see title).

sults within the same depth (i.e., 9, 7, and 4) reveals that it
is beneficial to have more encoder layers than decoder lay-
ers, and that the decoder layers should be greater than one.
Particularly, our experiments demonstrate that the perfor-
mance of a 9-layer W4A4 BART model (with 6 encoder
layers and 3 decoder layers) can be maintained at an ac-
ceptable level, which is only 0.6 lower than the 12-layer
INT4 on the CNNDailyMail dataset. This represents a po-
tential latency improvement of about 50% for the decoder
part while experiencing a minor accuracy drop.

Table 3: The W4A4 model with layer-reduction. For ref-
erences, the original W4A4 BART-base (6-encoder and 6-
decoder) on CNNDailyMail and XSUM are respectively
44.83/21.67/42.08 and 41.53/18.56/33.62.

Encoder (Decoder) Six (Three) Five (Four) Four (Five)
CNNDailyMail 44.23/21.07/41.58 44.15/21.02/41.45 43.96/20.9/41.26
XSUM 40.61/17.83/32.90 40.30/17.53/32.61 40.18/17.47/32.43

Encoder (Decoder) Six (One) Five (Two) Four (Three)
CNNDailyMail 42.48/19.83/40.13 43.55/20.56/40.99 43.48/20.38/40.85
XSUM 38.23/16.45/31.49 39.52/17.03/31.98 39.43/16.89/31.80

Encoder (Decoder) Three (One) Two (Two) One (Three)
CNNDailyMail 41.26/18.58/38.93 41.83/18.82/39.20 41.40/18.39/38.68
XSUM 35.88/14.71/29.34 36.09/14.39/29.01 34.69/13.22/27.64

Summary. We demonstrate that it is possible to com-
bine INT4 quantization with other compression techniques,
like composing INT4 and 50% Ampere-structure sparisty
with aronund 0.5 GLUE points degradation and compos-
ing INT4 and 25% layer reduction without causing much
degradation on summarization tasks. Fully investing the
composability of quantization and other methods is beyond
the scope of our paper and we leave it as future work.

7. Discussion
Conclusion. Improving the inference efficiency of lan-
guage models has been increasingly critical given their
growing adoption but high compute resource requirements.

While quantization techniques enabling INT8 computation
on these language models have been well explored recently,
how to fully unlock the INT4 computation power of GPU
is an emerging and unanswered question. In this work,
we thoroughly investigate the feasibility of applying INT4
quantization to language models, and our INT4 encoder in-
ference pipeline shows an up to 1.7× latency improvement
over SOTA INT8 inference. We provide an analysis of the
accuracy drop for decoder models when using INT4 quan-
tization, and study the composability of W4A4 for encoder-
related model with other compression techniques.

Limitation. Our approach build upon existing techniques,
including distillation-assisted quantization, thus limiting
its novelty. Although we introduced an analysis of fail-
ure cases in decoder models, some of these assessments
may not be comprehensive, and drawn conclusions could
be subject to non-optimized conditions, such as the op-
timization of the quantization clipping value. Further-
more, the study lacks an end-to-end performance measure
on INT4 decoder models. We argued that implementation
should only follow the resolution of accuracy issues, but in-
cluding a performance measure could provide valuable in-
sights about pursuing INT4 efforts, considering the unique
memory-bound challenge posed by decoder models. We
acknowledge these limitations in the pursuit of an honest
and accurate discourse.

Acknowledgement
This research was conducted within the supportive envi-
ronment of the DeepSpeed team at Microsoft, whose in-
valuable assistance was instrumental to this project. We
are immensely grateful for the insightful feedback from the
anonymous reviewers from the International Conference on
Machine Learning (ICML) 2023. We would also like to ex-
press our appreciation to Dr. Dan Alistarh for highlighting
his recent works, which facilitated our research.

9

Understanding INT4 Quantization for Language Models

References
Abdolrashidi, A., Wang, L., Agrawal, S., Malmaud, J., Ry-

bakov, O., Leichner, C., and Lew, L. Pareto-optimal
quantized resnet is mostly 4-bit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3091–3099, 2021.

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan,
A. A., Li, C., Li, D., Zheng, E., Rasley, J., Smith, S.,
Ruwase, O., et al. Deepspeed inference: Enabling effi-
cient inference of transformer models at unprecedented
scale. arXiv preprint arXiv:2207.00032, 2022.

Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang,
X., Liu, Q., Lyu, M., and King, I. Binarybert: Push-
ing the limit of bert quantization. arXiv preprint
arXiv:2012.15701, 2020.

Bengio, Y., Léonard, N., and Courville, A. Estimat-
ing or propagating gradients through stochastic neu-
rons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

Chung, I., Kim, B., Choi, Y., Kwon, S. J., Jeon, Y., Park,
B., Kim, S., and Lee, D. Extremely low bit transformer
quantization for on-device neural machine translation.
arXiv preprint arXiv:2009.07453, 2020.

Dagan, I., Roth, D., Sammons, M., and Zanzotto, F. M.
Recognizing textual entailment: Models and applica-
tions. Synthesis Lectures on Human Language Technolo-
gies, 6(4):1–220, 2013.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and
Ré, C. Flashattention: Fast and memory-efficient
exact attention with io-awareness. arXiv preprint
arXiv:2205.14135, 2022.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. arXiv preprint
arXiv:2212.09720, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
GPT3.int8(): 8-bit matrix multiplication for transform-
ers at scale. In Oh, A. H., Agarwal, A., Belgrave, D., and
Cho, K. (eds.), Advances in Neural Information Process-
ing Systems, 2022a. URL https://openreview.
net/forum?id=dXiGWqBoxaD.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022b.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In Proceedings
of the Third International Workshop on Paraphrasing
(IWP2005), 2005.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. HAWQ: Hessian aware quantization of neu-
ral networks with mixed-precision. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
293–302, 2019.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556, 2019.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. arXiv preprint arXiv:2208.11580, 2022.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods
for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Gordon, M. A., Duh, K., and Andrews, N. Compressing
bert: Studying the effects of weight pruning on transfer
learning. arXiv preprint arXiv:2002.08307, 2020.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Confer-
ence on Learning Representations, 2016.

Han, T., Zhang, T., Li, D., Liu, G., Tian, L., Xie, D., and
Shan, Y. S. Convolutional neural network with int4 opti-
mization on xilinx devices. Xilinx White Paper, WP521,
2020.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teach-
ing machines to read and comprehend. arXiv preprint
arXiv:1506.03340, 2015.

10

https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD

Understanding INT4 Quantization for Language Models

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. Workshop paper in NIPS,
2014.

Holmes, C., Zhang, M., He, Y., and Wu, B. Com-
pressing pre-trained transformers via low-bit nxm spar-
sity for natural language understanding. arXiv preprint
arXiv:2206.15014, 2022.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Iyer, S., Dandekar, N., and Csernai, K. First
quora dataset release: Question pairs.(2017). URL
https://data. quora. com/First-Quora-Dataset-Release-
Question-Pairs, 2017.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li,
L., Wang, F., and Liu, Q. Tinybert: Distilling bert
for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization. In In-
ternational conference on machine learning, pp. 5506–
5518. PMLR, 2021.

Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. M. Block
pruning for faster transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 10619–10629, 2021.

Lambda. GPU workstation for deep learning. https:
//lambdalabs.com/gpu-workstations/
vector, January 2023.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
7871–7880, 2020.

Li, F., Zhang, B., and Liu, B. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016a.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016b.

Li, Z., Wang, Z., Tan, M., Nallapati, R., Bhatia, P., Arnold,
A., Xiang, B., and Roth, D. Dq-bart: Efficient sequence-
to-sequence model via joint distillation and quantization.
In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), pp. 203–211, 2022.

Liu, Z., Wang, Y., Han, K., Zhang, W., Ma, S., and Gao,
W. Post-training quantization for vision transformer. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and
Dally, W. J. Exploring the regularity of sparse structure
in convolutional neural networks. Workshop paper in
CVPR, 2017.

Mao, Y., Wang, Y., Wu, C., Zhang, C., Wang, Y., Yang, Y.,
Zhang, Q., Tong, Y., and Bai, J. Ladabert: Lightweight
adaptation of bert through hybrid model compression.
arXiv preprint arXiv:2004.04124, 2020.

Marcinkiewicz, M. A. Building a large annotated corpus of
english: The penn treebank. Using Large Corpora, pp.
273, 1994.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2017.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? arXiv preprint arXiv:1905.10650,
2019.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed precision training. In Inter-
national Conference on Learning Representations, 2018.

Mishra, A., Latorre, J. A., Pool, J., Stosic, D., Stosic,
D., Venkatesh, G., Yu, C., and Micikevicius, P. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Narayan, S., Martins, A., Sordoni, A., Bachman, P.,
Courville, A., and Bengio, Y. Don’t give me the details,
just the summary!: topic-aware convolutional neural net-
works for extreme summarization. In Proceedings of the
2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3706–3716, 2018.

NVIDIA. CUTLASS: Fast Linear Algebra in CUDA C++.
https://developer.nvidia.com/blog/
cutlass-linear-algebra-cuda/, December
2017.

11

https://lambdalabs.com/gpu-workstations/vector
https://lambdalabs.com/gpu-workstations/vector
https://lambdalabs.com/gpu-workstations/vector
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/

Understanding INT4 Quantization for Language Models

NVIDIA. Employing CUDA Graphs in
a Dynamic Environment. https:
//developer.nvidia.com/blog/
employing-cuda-graphs-in-a-dynamic-environment/,
November 2021.

NVIDIA. FasterTransformer. https://github.com/
NVIDIA/FasterTransformer, January 2023.

Polino, A., Pascanu, R., and Alistarh, D. Model com-
pression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. 2019.

Raganato, A., Scherrer, Y., and Tiedemann, J. Fixed en-
coder self-attention patterns in transformer-based ma-
chine translation. arXiv preprint arXiv:2002.10260,
2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P.
SQuAD: 100,000+ questions for machine comprehen-
sion of text. arXiv preprint arXiv:1606.05250, 2016.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. Advances in Neural Infor-
mation Processing Systems, 33:20378–20389, 2020.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-BERT: Hessian
based ultra low precision quantization of bert. In AAAI,
pp. 8815–8821, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep mod-
els for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on empir-
ical methods in natural language processing, pp. 1631–
1642, 2013.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression. arXiv preprint
arXiv:1908.09355, 2019.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-low precision 4-bit
training of deep neural networks. Advances in Neural
Information Processing Systems, 33:1796–1807, 2020a.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. arXiv preprint arXiv:2004.02984,
2020b.

Tang, H., Zhang, X., Liu, K., Zhu, J., and Kang, Z. Mkq-
bert: Quantized bert with 4-bits weights and activations.
arXiv preprint arXiv:2203.13483, 2022.

Tenney, I., Das, D., and Pavlick, E. Bert rediscovers the
classical nlp pipeline. arXiv:1905.05950, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers. arXiv
preprint arXiv:2002.10957, 2020.

Warstadt, A., Singh, A., and Bowman, S. R. Neu-
ral network acceptability judgments. arXiv preprint
arXiv:1805.12471, 2018.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

Wu, X., Yao, Z., Zhang, M., Li, C., and He, Y. Extreme
compression for pre-trained transformers made simple
and efficient. arXiv preprint arXiv:2206.01859, 2022.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Yao, Z., Wu, X., Ma, L., Shen, S., Keutzer, K., Ma-
honey, M. W., and He, Y. LEAP: Learnable Prun-
ing for Transformer-based Models. arXiv e-prints, art.
arXiv:2105.14636, May 2021.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C.,
and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=f-fVCElZ-G1.

Yao, Z., Li, C., Wu, X., Youn, S., and He, Y. A compre-
hensive study on post-training quantization for large lan-
guage models. arXiv preprint arXiv:2303.08302, 2023.

12

https://developer.nvidia.com/blog/employing-cuda-graphs-in-a-dynamic-environment/
https://developer.nvidia.com/blog/employing-cuda-graphs-in-a-dynamic-environment/
https://developer.nvidia.com/blog/employing-cuda-graphs-in-a-dynamic-environment/
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://openreview.net/forum?id=f-fVCElZ-G1
https://openreview.net/forum?id=f-fVCElZ-G1

Understanding INT4 Quantization for Language Models

A. Quantization Algorithms
Weight Quantization. To quantize a weight matrix W ∈ Rdin×dout in a model, we apply the group-wise quantization
method proposed in Shen et al. (2020); Yao et al. (2022). That is, we vectorize Vectorize(W) ∈ Rd (d = dindout) and
participate the weight into g groups, and each group is quantized separately. The finer the quantization we use (larger g),
the smaller the approximation error is between the weight matrix and the 4-bit counterpart. The largest group number we
apply here is din, i.e., a row-wise weight quantization for best GPU utilization,

Activation Quantization. Different from the static weight parameter during inference, the activation is dynamic. In order
to achieve the best latency reduction (Gholami et al., 2021), the static quantization method calibrates S using training data
and fixes S during inference. However, this also limits the quantization representation for activation as discussed in (Yao
et al., 2022). Thus, we adopt a finer-grained token-wise dynamic quantization and use the min/max range for each token.

B. Additional Experimental Details and Results
B.1. Experimental Details for Section 3.2

All experiments are performed on V100 GPU and the training strategy is Quantization-aware Training (QAT) with Knowl-
edge Distillation (KD). For BERT-models, the maximum sequence length for MNLI/QQP is set to 128 with a batch-size of
64 for base and 32 for large. Each independent experiment is ran on a single GPU with a fixed random seed 42. We recorded
their validation performances over the training every 1000 iterations and report the best validation value. For BART-type
models, we follows closely with (Li et al., 2022) with a slightly different hyper-parameters as shown in Table B.1. Each
independent experiment is ran on 2 GPUs for base models and 4 GPUs for large model. As for GPT2-type models, we ap-
plied the pretrained hugging-face models with maximum length 1024 and a batch-size of 8 with 4 GPUs for an independent
run. See Table B.1 for the hyper-parameters search and we will open sources the codes and the configurations.

Asymmetric and Symmetric Quantization. To give better understand on the difference of asymmetric and symmetric
quantization, we plot in Figure B.1 for the iterative performance over the validation datasets during the quantized-aware
training. The orange curves always sits on top of the blue dash line, proving the assymetric quantization is better than
symmetric. Furthermore, Figure B.1 shows that (1) The gaps between symemtric and assymetric quantization appears
more obvious as the model size increase from base (the first row) to large/medium (the second row), which indicates the
importance of asymmetric quantization for large models; (2) While the benefits of asymmetric method (over the symmetric
one) could become marginal from the beginning of the training to the end, it appears that is only the case for BERT and
BART not for GPT.

Table B.1: The hyper-parameters we tuned for the results in Table 1. The entry with single choice means we only use the
default value. For the entry with multiple choice, we bold the one that gives the best performance. In the table, Att with ⋆
(Att⋆) means the attention scores that is not normalized, and Att is a normalized version (note that the default output from
Huggingface library is a normalized venison of attention scores).

Models BERT BART GPT
Size Base Large Base Large Base Medium

Dropout 0.1 (default) 0.1 (default) {0, 0.05, 0.1}
Clip Values {[-5.0, 5.0], [-∞, +∞]} {[-1,1],[-2.5,2.5]} [-2.5, 2.5] {[-0.5,0.5],[-1, 1], [-2.5, 2.5]}
Loss Terms Logit/Att⋆/Rep (default) ClsLoss/Logit/Att⋆/Rep {None,ClsLoss}+{Att,Att⋆}+Logit/Rep
Epoch {3, 9} {3, 5} 20 8 {30, 60, 90} {15, 30, 45}
batch-size 64 32 16 8 8 8
Learning Rate {5e-5, 1e-4} {2e-5, 5e-5} {2e-5, 5e-5} {2e-5, 5e-5} {5e-5, 1e-4, 5e-4} {5e-5, 1e-4}

B.2. MKQ-BERT Results

Table B.2 shows the latency for a single BERT-base layer reported by MKQ-BERT(Tang et al., 2022) Table 2, compared
to FasterTransformer(NVIDIA, 2023). We can see that both the FP32 and INT8 results are off by more than an order of
magnitude. Due to the lack of implementation details described in the MKQ-BERT paper (no open-sourced code), we
cannot further identify the issue.

13

Understanding INT4 Quantization for Language Models

0 10 20 30 40 50 60
82

83

84

85

86

BE
RT

-B
as

e
Ac

cu
ra

cy
Average Acc. of MNLI-m and MNLI-mm

Quantization Method | Best Acc.:
symmetrics | 84.31/84.48
asymmetrics | 84.29/84.65

0 10 20 30 40 50 60
Iterations (x1000)

82

83

84

85

86

BE
RT

-L
ar

ge
 A

cc
ur

ac
y

Quantization Method | Best Acc.:
symmetrics | 86.25/86.2
asymmetrics | 86.49/86.28

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
29

30

31

32

33

34

BA
RT

-B
as

e
RL

su
m

Rouge Lsum of XSUM

Quantization Method | Best Rouge Lsum:
symmetrics | 33.69
asymmetrics | 33.62

1 2 3 4 5 6 7 8
Epoch

32

33

34

35

36

37

BA
RT

-L
ar

ge
 R

Ls
um

Quantization Method | Best Rouge Lsum:
symmetrics | 36.33
asymmetrics | 36.79

0 10 20 30 40 50
25
26
27
28
29
30
31
32
33

GP
T2

-B
as

e
PP

L

Perplexity (PPL) of Wikitext-2
Quantization Method | Best PPL.:

symmetrics | 27.28
asymmetrics | 25.99

0 10 20 30 40 50
Iterations (x500)

18
19
20
21
22
23
24
25
26

GP
T2

-M
ed

iu
m

 P
PL Quantization Method | Best PPL.:

symmetrics | 19.51
asymmetrics | 18.74

Figure B.1: The performance of w4a4 during the quantization-aware trainig with KD over the validation dataset for BERT
(left), BART (middle), GPT (right) models, respectively with metrics: Accuracy (Acc., higher is better), Rouge Lsum
(RLsum, higher is better), and perplexity (PPL, lower is better). Molde sizes in the top row are smaller than those in the
bottom row.

Table B.2: End-to-end inference time (ms) for running one layer in BERT-base model with different batch size and sequence
length on NVIDIA T4 GPUs. Column 2 to 4 are numbers taken from (Tang et al., 2022). FasterTransformer(FT) requires
sequence length to be multiple of 32, thus the inputs in the parenthesis are used to run FasterTransformer.

Batch Size-Seq. Length MKQ-fp32 MKQ-int8 MKQ-in4 FT-fp32 FT-int8
16-440 (16-448) 1.38 0.2131 0.1605 25.62 5.1
16-537 (16-544) 1.845 0.2457 0.1793 34.25 6.61
16-681 (16-704) 2.69 0.2609 0.1965 46.54 9.39

B.3. Sensitivity of Activation Quantization for GPT2

In this section, we study how sensitive the model quality to activation quantization. We relax the INT4 activation to be
INT8 or back to FP32, and follows the same QAT recipe as W4A4. We plot average perplexity with respect to the training
iteration in Figure 5 (left) as well as the position perplexity at training iteration 34000 in Figure 5 (right). We see that
although using QAT with KD, w4a8 (green) can be better than W4A4 but still far away from teacher’s quality. Only 4-bit
weight quantization (w4 only, red curve) can almost match the teacher’s quality (blue), which indicates that autoregressive
generation using GPT models is highly sensitive to activation quantization. It is interesting to notice that the red curve in
Figure 5 (left) already flatten at the beginning of the training, which means PTQ method could be possible for weight only
quantization, this aligns with observation in Dettmers & Zettlemoyer (2022).

B.4. More Experiments on Composing Pruning and INT4

Besides the MNLI/QQP mentioned in Section 6.1, we include the following GLUE tasks for the W4A4 quantization:
MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016),
QQP (Iyer et al., 2017), MNLI (Williams et al., 2017), CoLA (Warstadt et al., 2018), RTE (Dagan et al., 2013)). The
maximum sequence length is set to 64 for CoLA/SST-2, and 128 for the rest sequence pair tasks.

14

Understanding INT4 Quantization for Language Models

Table B.3: Comparison between static and iterative pruning methods on top of w4a4 models. Here the 50% sparsity is
semi-struture pruning with Pair-(2:4). We applied data augmentation for the smaller datasets and used the long training
epochs (Budget-C) shown in Table B.4. The learning rate is fixed with 1e-4. Note the results for MNLI and QQP are
different from Table 2 is due to the teacher models.

Model Pruning Method CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg.
Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all

BERTbase (teacher) 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95

w4a4+ 50% sparsity Static (weight) 57.4 84.4/84.8 90.8/86.5 91.4 88.3/91.4 73.3 93.3 89.5/89.2 83.56
Iterative (gradient) 58.1 84.3/84.9 90.9/86.8 91.4 88.4/91.4 72.9 93.3 89.4/89.0 83.61

Table B.4: Training budgets for the GLUE tasks.

Dataset Data Training epochs:
Aug. Budget-A Budget-B Budget-C

QQP/MNLI no 3 9 18 or 36
QNLI yes 1 3 6 or 9
SST-2/STS-B/RTE yes 1 3 12
CoLA/MRPC yes 1 3 12 or 18

2 4 6 8 10
Iteration (x3400)

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Pe
rp

le
xi

ty

Average ppl w.r.t to iterations
Teacher (fp32)
w4a4
w4a8
w4 only

0 25 50 75 100 125 150 175 200
Position

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Pe
rp

le
xi

ty

Positioin-wise ppl at iteration 34000

0 2 4 6 8 10
0

100

200

300

Zoom Out Y-axis

GPT2: Generation (wikitext2)

0 5 10 15 20 25 30 35
Iterations (x1000)

81

82

83

84

85

86

87

Va
l.

Ac
c.

 (M
NL

I-m
)

Fine-tuning MNLI with 3 epochs:
Method | Best Acc (MNLI-m/-mm) :

Dynamic Mov. | 83.83/84.07
Static 1 | 84.31/84.79

0 50 100 150 200
Iterations (x1000)

Fine-tuning MNLI with 18 epochs:
Method | Best Acc (MNLI-m/-mm) :

Dynamic Mov. | 84.45/84.55
Static 1 | 84.56/85.04

Figure B.2: The top two figures are for GPT2 quantization. The bottom two figures are for the comparison between
movement and ℓ1 pruning with QAT.

Static pruning or iterative movement pruning. Now that we decide to apply prune and then quantize (P=>Q) algorithm,
one may wonder if the ℓ1 pruning method used above is the best pruning algorithm. Recent advancement on pruning
methods suggests that Movement Pruning with iterative pruning threshold (Sanh et al., 2020; Lagunas et al., 2021) has
been proven to be effective in transfer learning for languages models. That is, during the iterative pruning, the mask will
be updated and determined by the gradients of the weight instead of the value of the weight. Previous works only work on
pruning only, here we investigate on whether it works well with quantized models and layerwise KD.

The results are shown in Figure B.2 or Table B.3. We see that ℓ1 is consistently better under long or short training epochs,

15

Understanding INT4 Quantization for Language Models

Table B.5: Results with data augmentation. W4A4 with Budget-A

Cost learning CoLA MNLI-m/-mm MRPC QNLI QQP RTE SST-2 STS-B Avg. Avg. w/o
rate Mcc Acc/Acc F1/Acc Acc F1/Acc Acc Acc Pear/Spea all CoLA

BERTlarge (fp32) 63.4 85.4/85.4 91.6/88.0 92.2 88.4/91.05 74.00 93.6 90.3/90.1 84.81 87.50

Budget-A

1e-05 62.1 85.6/85.3 91.2/87.3 92.5 88.3/91.3 69.7 93.7 90.3/90.1 84.20 86.96
5e-05 64.6 85.6/85.2 91.0/87.0 92.5 87.7/90.9 72.2 93.8 90.7/90.4 84.72 87.24
0.0001 61.7 85.8/85.4 90.9/87.0 91.9 88.5/91.5 75.5 93.8 90.6/90.3 84.80 87.69

Best (above) 64.6 85.8/85.4 91.2/87.3 92.5 88.5/91.5 75.5 93.8 90.7/90.4 85.23 87.81

BERTbase (fp32) 59.7 84.9/85.6 90.6/86.3 92.1 88.6/91.5 72.2 93.2 90.1/89.6 83.95 86.98

Budget-A

2e-05 59.1 84.5/85.0 91.2/87.0 91.7 88.3/91.3 73.6 93.7 89.8/89.4 83.97 87.08
5e-05 60.5 84.6/85.0 90.4/85.8 91.6 88.4/91.4 71.5 93.3 90.0/89.6 83.74 86.65
0.0001 59.9 84.8/85.2 90.4/85.8 92.0 88.3/91.4 72.6 93.5 89.9/89.6 83.90 86.90

Best (above) 60.5 84.8/85.2 91.2/87.0 92.0 88.4/91.4 73.6 93.7 90.0/89.6 84.24 87.21

although the gap between the two methods can be reduced with sufficient iterations. As the iterative pruning based on the
gradient of weight matrices requires to update the masks dynamically, the computation complexity/time is much higher than
that using the static masks under the same training iterations. Thus, this finding indicates that static pruning is sufficient
when applying KD for QAT.

16

