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Abstract

The backpropagation networks are notably susceptible to catastrophic forgetting,
where networks tend to forget previously learned skills upon learning new ones.
To address such the ’sensitivity-stability’ dilemma, most previous efforts have been
contributed to minimizing the empirical risk with different parameter regularization
terms and episodic memory, but rarely exploring the usages of the weight loss
landscape. In this paper, we investigate the relationship between the weight loss
landscape and sensitivity-stability in the continual learning scenario, based on
which, we propose a novel method, Flattening Sharpness for Dynamic Gradient
Projection Memory (FS-DGPM). In particular, we introduce a soft weight to
represent the importance of each basis representing past tasks in GPM, which can
be adaptively learned during the learning process, so that less important bases
can be dynamically released to improve the sensitivity of new skill learning. We
further introduce Flattening Sharpness (FS) to reduce the generalization gap by
explicitly regulating the flatness of the weight loss landscape of all seen tasks. As
demonstrated empirically, our proposed method consistently outperforms baselines
with the superior ability to learn new skills while alleviating forgetting effectively.2.

1 Introduction

Humans have the ability to continually learn new knowledge without forgetting their previously
learned ones through mediating a rich set of neurocognitive mechanisms [41, 15, 39]. This ability,
often known as continual learning or lifelong learning [29], is crucial for computational systems,
such as deep neural networks (DNNs), which are required to sequentially learn and deal with multiple
tasks when implemented in the dynamically changing environment. Continual learning remains a
long-standing challenge for DNNs since these networks are typically trained with stationary training
batches by stochastic gradient descent methods [19], which generally leads to an abrupt performance
decrease on previously learned tasks as new tasks are learned. To address such catastrophic forgetting,
we can brutally retrain an oracle network on the entire dataset containing all tasks to capture dynamic
changes in the data distribution, but this methodology is obviously too inefficient to hinder the
learning of novel data in real time.

During the last few years, lots of research efforts have been devoted to improving the stability of
DNNs on old tasks while keeping sensitive to new information. The first intuitive idea is to introduce
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an independent branch for each new task while freezing the old task parameters to preserve the
old knowledge [33, 45, 43, 25, 35, 22]. However, in this way, the network will inevitably become
redundant as the task number continually increases. As presented in the neurocognitive works [41, 15],
the reactivation of neuronal activity patterns, representing old memories, plays an important role in
the continual learning of humans [39]. Thus, forgetness can be effectively mitigated by training a
single network for new tasks by considering diverse information stored in the memory, including the
original training samples of old tasks [31, 5, 13], the gradients induced from old tasks [9] and the
feature subspace representing old tasks [34]. However, their continual learning performance is still
limited because DNNs can easily overfit the limited information stored in the small-size memory.

The overfitting problem of DNNs is often attributed to the complex loss landscape containing multiple
local optima, and the sharpness of the loss landscape has been widely used to characterize the
generalization gap in standard training scenarios from both theoretical and empirical perspectives
[27, 21, 42, 10, 6]. While this characterization has inspired new approaches for model training with
better generalization, practical algorithms that especially seek out flatter minima to effectively address
the ’sensitivity-stability’ dilemma for continual learning have thus far been elusive. In this paper, our
first contribution is to characterize the weight loss landscape for the continual learning scenario and
identify that a flatter loss landscape with lower loss value often leads to better continual learning
performance, as shown in Figure 1 and Figure 3.

Further, based on our characterization of the weight loss landscape, we find that the recently proposed
Gradient Projection Memory (GPM) method [34] maintains the lowest loss value on old tasks among
the previously proposed methods by taking gradient steps orthogonal to the subspace representing
old tasks. However, its loss landscape on newly learned tasks is the sharpest due to the lack of
sufficient subspace left for new task learning. To improve the network’s sensitivity, our second
contribution is to predict the importance of bases spanning the subspace for old tasks, so that less
important bases can be dynamically released. In particular, we introduce a soft weight to indicate the
bases importance, which can be dynamically adjusted by combining the Flattening Sharpness (FS)
to minimize the loss value and loss sharpness simultaneously. Intuitively, a basis will be regarded
as important for preserving old knowledge if the gradients induced by new tasks and old ones are
aligned in the opposite direction on that basis. As demonstrated through extensive experiments, our
proposed method can consistently outperform the state-of-the-art methods [17, 30, 24, 31, 5, 13, 34]
by a notable margin across a range of widely used benchmark datasets.

2 Related Work

In this section, we briefly survey the representative works of continual learning by highlighting their
contributions. To simplify our presentation, this section is organized by dividing the representative
works into three categories, parameter isolation, regularization-based, memory-based methods.

Parameter isolation methods address forgetting by assigning a different subset of network parame-
ters to each task. Without restrictions on network architecture, new neurons or layers or modules
can be added for new tasks, while the previous task parameters can be frozen or copied to preserve
old knowledge. For instance, Progressive Neural Network (PGN) [33] freezes the parameters trained
with previous knowledge while expands the architecture by allocating new sub-networks with fixed
capacity for new tasks. Dynamically Expandable Networks (DEN) [45] selectively retrains or ex-
pands network capacity by splitting/duplicating important units on new tasks. Reinforced Continual
Learning (RCL) [43] uses reinforcement learning strategy to adaptively expand the network of each
layer, while [22] use neural architecture search to find optimal network structures for each sequential
task. Alternatively, with the architecture remaining static, a fixed part is allocated to each task. During
the training of a new task, previous task parts are masked out to prevent interference. The mask sets
are imposed at parameter level [25], or unit level [35]. PackNet [25] uses iterative pruning to fully
restrict gradient updates on important weights via a binary mask, whereas HAT [35] limits the update
of important units recognized by the hard attention mask through gradient backpropagation.

Regularization-based methods introduce an additional regularization term in the loss function to
consolidate previous knowledge without using replay. This involves using knowledge distillation
[23, 14] or penalizing changes in weights deemed important for previous tasks [17, 46, 28, 2, 3] to
reduce forgetting. There are many ways to measure the importance. Elastic Weight Consolidation
(EWC) [17] identifies important weights based on the diagonal values of Fisher information matrix
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after training, while Synaptic Intelligence (SI) [46] calculates them online and over the entire learning
trajectory in parameter space. Memory Aware Synapses (MAS) [2] estimates importance weights in
an unsupervised manner, while Variational Continual Learning (VCL) [28] introduces a variational
framework that spawned some Bayesian-based works [32, 8, 1, 7]. For example, [32] recursively
uses a Gaussian Laplace approximation of the Hessian to approximate the posterior after every task,
[8] adjusts the learning rate according to the uncertainty defined by the probability distribution of the
network weights. [1] introduces an interpretation of node-wise uncertainty on the Kullback-Leibler
(KL) divergence term of the variational lower bound for Gaussian mean-field approximation.

Our method mainly follows memory-based methods, which mitigate forgetting based on information
extracted from old tasks or based on a generative model to generate pseudo samples. For example,
iCaRL [30] selects and stores samples closest to the feature mean of each class. ER [5, 31] suggests
reservoir sampling under the limited and fixed budget for replay buffer. Deep Generative Replay
(DGR) [36] trains a deep generative model in the Generative Adversarial Network (GAN) framework
[11] to simulate past data. These previous task samples are mainly reused as model inputs for replay
in the above methods. However, replay might be prone to overfitting the subset of stored samples.
Alternatively, samples stored in memory can also be used to constrain the optimization of the new
task loss to prevent previous task interference, thereby leaving more leeway for backward and forward
transfer. Gradient Episodic Memory (GEM) [24] projects the estimated gradients in the feasible
region, which is outlined by previous task gradients calculated from the episodic memory samples.
Averaged-GEM (A-GEM) [4] relaxes the projection to a direction that is estimated from samples
randomly selected from memory. [12] proposes a unified view of episodic memory-based continual
learning methods, including GEM and A-GEM, and improves performance over these methods by
using a loss-balancing update scheme. A few other works have utilized gradient information to protect
previous knowledge. [31, 13] adopt optimization-based meta-learning to enforce gradient alignment
between samples from different tasks. GPM [34] minimizes interference between sequential tasks by
ensuring that gradient updates only occur in directions orthogonal to the input of previous tasks.

3 The Weight Loss Landscape of Continual Learning

In this section, we first introduce our formulation of continual learning, and then characterize the
weight loss landscape for the continual learning scenario from stability and sensitivity. Finally, some
insights combining the weight loss landscape and continual learning are provided.

3.1 Problem Formulation

Throughout the paper, we denote scalars as a, vectors as a, matrices as A, and sets asA. We consider
a supervised learning setup where T tasks are sequentially learned from their training data. Each task
has an identical task descriptor, τ ∈ {1, 2, . . . , T}, with its dataset Dτ = {xi,τ , yi,τ}nτi=1 containing
nτ samples randomly generated from a latent distribution Dτ . At any time-step during the learning
process, we minimize the empirical risk of the model on all t tasks seen so far, with just limited size
of memoryM to summarize the training data of previous tasks {Dτ}t−1

τ=1. To simplify the notation,
we denote LA(w) = 1

|A|
∑

(x,y)∈A [` (fw (x) , y)] as the average empirical loss for the set A, where
`(·, ·) is an arbitrary loss function (e.g. the cross-entropy (CE) loss), |A| is the sample size of the
set A, and fw is the DNN with weight w. Our final goal is to find an optimal parameter w, which
minimizes the overall risk

∑T
τ=1 LDτ (w) for all tasks.

3.2 Connection of Weight Loss Landscape and Continual Learning

After learning a new task, we visualize the weight loss landscape of each task seen so far by plotting
changes in its training loss when moving the weights w in a random direction d with magnitude α
following [21]:

gt(α) = LDt(w + αd) =
1

|Dt|
∑

(x,y)∈Dt

` (fw+αd (x) , y) ,

where Dt is the training set for the t-th task previously learned. To eliminate the scaling invariance of
DNNs, d is sampled from a Gaussian distribution and further normalized by dl,j ← dl,j

‖dl,j‖F ‖wl,j‖F ,
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Figure 1: The connection between the weight loss landscape and continual learning is investigated on
four methods. (a)-( c) shows the stability of the first task. (a) is the test accuracy change curve of the
first task; (b) and (c) are the weight loss landscape of the first task after learning the fifth task and all
ten tasks. (d)-(e) shows the sensitivity of the fifth task, which are the test accuracy and the weight loss
landscape of the fifth task after just learning the fifth task. The shape of the weight loss landscape
obtained using ten different random filter-normalized directions. ("Ti" is abbr. of the i-th task)

where dl,j represents the j-th filter at l-th layer of d, and ‖·‖F denotes the Frobenius norm. Compared
with our visualization, [26] only consider one task and plot the loss landscape along the directions
of its Hessian eigenvectors, which only reflects some of the relationship between forgetting and
landscape. Considering d is randomly selected, we repeat the visualization 10 times with different d.

We first study the stability of the network by plotting changes of the weight loss landscape for the first
task after new task learning. In particular, We use the previously proposed ER [5], La-MAML [13],
and GPM [34] to train a MLP network with two hidden layers on the Permuted MNIST (PMNIST)
[20] dataset that contains 10 tasks. We also retrain the network on the entire dataset contain all passed
tasks as an Oracle network. Early stopping is used to halt the training with up to 10 epochs for each
task based on the validation loss as proposed in [35]. As shown in Figure 1(a), all three continual
learning methods lose their stability as learning new tasks. It can be observed from Figure 1(b)-(c)
that the weight loss landscape becomes sharper and loss value increases simultaneously, when the
testing accuracy of the first task continually decreases. We further evaluate the sensitivity of the
network by observing the performance of the fifth task just after it has just been learned. As shown in
Figure 1(d)-(e), ER shows the best learning capability compared with other methods with the lowest
loss value and the flattest loss landscape. Thus, based on these empirical findings, we assume that
lower loss value with a flatter neighbor may lead to better continual learning performance.

3.3 A Case Study of Flattening Sharpness for Vanilla ER
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Figure 2: Schematic of FS-ER update. The
dashed line and the solid line indicate the gra-
dient ascent and descent, respectively. Orange
denotes the actual update of the parameter w.

Figure 3: Landscape of the fifth task after just
learning (a) the fifth task and (b) all ten tasks.

In this part, we further validate our above assump-
tion by Flattening Sharpness for vanilla ER (FS-ER).
Compared with ER that looks for a solution w that
jointly minimizes the training loss of current task data
and memory data, FS-ER seeks out a solution with
both low loss and flat neighbor by minimizing the
maximal loss in the neighbor around the parameter
value. The schematic of the Flattening Sharpness (FS)
is shown in Figure 2. We introduce the adversarial
weight perturbation (orange dashed line) to explic-
itly flatten the weight loss landscape via injecting the
worst-case weight perturbation, which is calculated
from the current task data and past task data sampled
from the replay buffer (Refer to Appendix C.1 and the
next section for more details). Figure 3 respectively
shows the weight loss landscapes of the fifth task af-
ter just learning the fifth task and all tasks. We find
that FS-ER successfully gets a solution with a lower
loss value and flatter landscape, either after the fifth
task has just been learned or all ten tasks have been
learned. The average testing accuracy of all tasks
using FS-ER is 90.44%, significantly higher than
ER (86.16%), which means that flattening sharpness
does benefit continual learning.
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4 Flattening Sharpness for Dynamic Gradient Projection Memory

As shown in Figure 1, GPM achieves the highest testing accuracy on old tasks among all three
practical continual learning methods, but shows less sensitivity to new task learning. To address this
issue, we propose Flattening Sharpness for Dynamic GPM (FS-DGPM), which dynamically adjusts
the gradient subspace representing the past tasks to improve the sensitivity to the new task, while
ensuring stability of the previous tasks. In particular, we let M = [u1,u2, · · · ,uk] denote the bases
matrix that spans the gradient subspace of the previous task, Λ = diag[λ1, λ2, ..., λk] be the diagonal
matrix with its i-th diagonal element λi ∈ [0, 1] indicating the importance of each basis, and k is the
number of bases.

4.1 Sharpness Evaluation

Comparing with the classical strategy that perturbs weight in the entire space [40, 16, 42, 10], we
focus on characterizing the weight loss landscape on the new task with respect to the important
subspace representing old task. The important subspace can be effectively calculated based on the
examples sampled from replay bufferM after each task training. Then, we can find the worst case by
maximizing the training loss of the network on the new task in this subspace. Formally, the sharpness
of the loss landscape around the solution w in the old parameter space can be predicted as,

max
v∈V

LD̂t (w + v) , (1)

where V denotes the subspace spanned by M and Λ, and D̂t denotes the batch samples of the current
t-th task. As shown in Eq. (1), the high value can be obtained when the network fails to learn the new
task (sensitivity) and the new task learning seriously interferes with the past tasks learning (stability).
Based on the gradient method, the adversarial weight perturbation v can be solved as,

v ← v + η1MΛMT
(
∇(w+v)LD̂t(w + v)

)
, (2)

where η1 is the update step size. Note that v is initialized as 0 and layer-wise updated. As shown in
Appendix E, two-step for v (default settings) are enough to get good improvements.

4.2 Dynamic Gradient Projection Memory

After obtaining the adversarial weight perturbation v, we can further update the bases importance
matrix Λ = diag[λ1, λ2, ..., λk] by jointly considering the current task batch D̂t and the batch M̂
sampled from the replay bufferM as following,

λi ← λi − η2

(
∇λiLD̂t∪M̂(w + v)

)
, (3)

where the sigmoid function is used at the end of gradient update to constrain the importance value λi
between 0 and 1. In addition, the second term on the right side in Eq. (3) can be approximated by the
first-order Taylor expansion as,

∇λiLD̂t∪M̂(w + v) ≈ η1

(
∇wLD̂t (w)

)T
uiu

T
i

(
∇wLD̂t∪M̂ (w)

)
. (4)

(a) Transfer

∇	𝐿!(𝜔)

∇𝐿"(𝜔)
𝜇

(b) Interference

𝜇
∇𝐿!(𝜔) ∇𝐿"(𝜔)

Figure 4: A depiction of transfer (a) and interfer-
ence (b) in the basis u of gradient space.

The above equation characterizes the relationship
between the gradients induced by the current task
and the old tasks based on the basis ui. As illus-
trated in the Figure 4, this equation implies that
when the projections of two gradients on the basis
ui are aligned in the same direction, the gradient
of λi will be positive, and when there is interfer-
ence, the gradient will be negative. The positive
(negative) gradient will decrease (increase) the
importance λi, thereby releasing (tightening) the
update limit of the new task on the corresponding
basis ui. We provide the full derivation in the Appendix A.2. Note that the initial value of all
importance is set to 1 and dynamically adjusted from the second task.
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4.3 Weight Updating

Finally, we update the model parameters by minimizing the worst performance of fw+v with respect
to w, while adjusting the update magnitude of w on each basis based on its importance to alleviate
forgetting. More concretely, the parameter w will be updated to:

w ← w − η3

(
I −MΛMT

)
∇wLD̂t∪M̂(w + v). (5)

Note that the optimization is performed over the model parameters w, whereas the objective is
computed using perturbed model fw+v. In addition, we update the replay bufferM with reservoir
sampling as in [31], and then use Singular Value Decomposition (SVD) to recalculate M based on
the sampling data in the replay buffer after learning one task following GPM [34]. Comparing with
[34], we calculate the important bases in the entire gradient space and use them to replace the bases
calculated last time. Besides that, our method degenerates to GPM when η1 and η2 are set to 0. The
complete pseudo-code of FS-DGPM is outlined in the Algorithm 1.

Algorithm 1 FS-DGPM (Flattening Sharpness for Dynamic Gradient Projection Memory)
Input: Network weight w, loss function `, learning rate η3, FS step size η1, FS steps K, Soft
weight step size η2, batch size b.
InitializingM← {}, M ← I,Λ← I
for t = 1, 2, · · · , T do

for ep = 1, 2, · · · , numepochs do
for batch D̂t

b∼ Dt do
M̂ b∼M
for k = 1, · · · ,K do

v ← v + η1MΛMT
(
∇(w+v)LD̂(w + v)

)
. Sharpness Evaluation

end for
if t ≥ 2 then

Λ← Λ− η2

(
∇ΛLD̂t∪M̂(w + v)

)
. Dynamic Gradient Projection Memory

end if
w ← w − η3

(
I −MΛMT

)
∇wLD̂t∪M̂(w + v) . Weight updating

Push D̂t toM with reservior sampling
end for

end for
M ← UpdateGPM (M) . see Appendix Alg. 2

end for

4.4 Theoretical Understanding

We further provide a theoretical view on why landscape can characterize the continual learning
performance and why our proposed FS-DGPM works. To simplify our explanation, we only consider
two tasks, which contains the training sets D1 and D2 sampled from the distributions D1 and
D2, respectively. Based on the previous works on PAC-Bayes bound [27, 42, 10], given a "prior"
distribution P (a common assumption is zero mean, σ2 variance Gaussian distribution) over the
weights, the expected error of the classifier for the continual learning scenario can be bounded with
probability at least 1− δ over the draw of n training data:

min
∆w

Ev [LD1∪D2
(w + ∆w + v)] ≤ min

∆w∈VC
Ev [LD1

(w + ∆w + v)] + LD2
(w + ∆w)

+ max
v∈V

LD2
(w + ∆w + v)− LD2

(w + ∆w) + 4

√
1

n

(
KL(w + ∆w + v||P ) + ln

2n

δ

)
.

where ∆w is the update based on the previously optimal solution w learned on the old task D1 when
learning the new one D2, and v is often chosen as a zero mean spherical Gaussian perturbation
with variance σ2 in every direction. Let ∆w ∈ VC , then ∆w lies in the complementary space of
the important space representing the old task D1, so that Ev [LD1

(w + ∆w + v)] does not increase
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too much compared with the previously minimized Ev [LD1(w + v)]. The second term denotes
the empirical loss on the second task and the third term represents the sharpness of the weight loss
landscape around the w + ∆w. Since we have constrained ∆w ∈ VC , then it is natural to assume
v ∈ V , so that ∆w + v will cover the full space. Thus, our FS-DGPM exactly optimizes the worst-
case of the flatness of weight loss landscape to control the PAC-Bayes bound, which theoretically
justifies both lower loss value and flatter landscape lead to better continual learning performance, and
why our proposed FS-DGPM works.

5 Experiments

In this section, we conduct extensive experiments to compare the performance of our proposed
FS-DGPM model with the state-of-the-art methods on widely used continual learning benchmark
datasets. Additional results and more details about the datasets, experiment setup, baselines, and
model architectures are presented in the Appendix D and E.

5.1 Experimental Setup

Datasets: We evaluate our algorithm on four image classification datasets: Permuted MNIST
(PMNIST) [20], CIFAR-100 Split [18], CIFAR-100 Superclass [44] and TinyImageNet [37]. The
PMNIST dataset is a variant of the MNIST dataset, in which each task applies a fixed random pixel
permutation to the original dataset. The PMNIST benchmark dataset consists of 20 tasks, and each
contains only 1000 samples from 10 different classes [13]. The CIFAR-100 Split is constructed by
randomly dividing 100 classes of CIFAR-100 into 10 tasks with 10 classes per task. The CIFAR-100
Superclass is divided into 20 tasks according to the 20 superclasses of the CIFAR-100 dataset, and
each superclass contains 5 different but semantically related classes. Whereas, TinyImageNet is
constructed by splitting 200 classes into 40 5-way classification tasks. In our experiments, we do not
use any data augmentation. The dataset statistics are given in Appendix D.1.

Network Architecture: For PMNIST, we use a fully connected network with two hidden layers
of 100 units each following [24]. For experiments of CIFAR-100 Split and CIFAR-100 Superclass,
we use a 5-layer AlexNet and LeNet architecture similar to [34] respectively. For TinyImageNet,
we use the same network architecture as [13], which consists of 4 conv layers and 3 fully connected
layers. In PMNIST, all tasks share the final classifier layer, while other experiments use a multi-head
incremental setting, that is, each task has a separate classifier. Refer to Appendix D.2 for more details.

Baselines: We compare our method against multiple methods described below. (1) EWC [17],
a regularization-based method that uses the diagonal of Fisher information to identify important
weights; (2) ICARL [30], a memory-based method that uses knowledge-distillation and episodic
memory to reduce forgetting; (3) GEM [24], another memory-based method that uses the gradient of
episodic memory to constrain optimization to prevent forgetting; (4) ER [5], a simple and competitive
method based on reservoir sampling; (5) La-MAML [13] and (6) GPM [34] are memory-based
methods inspired by optimization-based meta-learning and based on gradient orthogonal constraints,
respectively; (7) Multitask is an oracle baseline that all tasks are learned jointly using the entire
dataset at once in a single network. Multitask is not a continual learning strategy but serves as an
upper bound on average test accuracy on all tasks.

Training Details: All baselines and our method use stochastic gradient descent (SGD) for training.
For each task in PMNIST and TinyImageNet, we train the network in 1 and 10 epochs, respectively,
with the batch size as 10. These experimental settings are the same as La-MAML [13], so that we
directly compare with their reported results. In the CIFAR-100 Split and CIFAR-100 Superclass
experiments, we use the early termination strategy to train up to 50 epochs for each task, which is
based on the validation loss as proposed in [35]. For both datasets, the batch size is set to 64. The
replay buffer size of PMNIST, CIFAR-100 Split, CIFAR-100 Superclass, and TinyImageNet are 200,
1000, 1000, and 400, respectively. Details about the experimental setting and the hyperparameters
considered for each baseline are provided in Appendix D.5 and D.6.
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Figure 5: (a) Average accuracy as a function of the number of tasks trained on 20-Split CIFAR-100
Superclass. (b) Training time per task on 20-Split CIFAR-100 Superclass. (c) Memory usage on four
datasets. ("Superclass" is abbr. of CIFAR-100 Superclass).

Table 1: Experimental results on 10-Split CIFAR-100, 20-Split CIFAR-100 Superclass and 40-Split
TinyImageNet in 50 epochs. Each experiment is run with 5 seeds. † and ∗ denotes results reported by
[13] and [44] respectively.

CIFAR-100 Split CIFAR-100 Superclass TinyImageNet
Method ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

EWC 72.77 ± 0.45 -3.59 ± 0.55 50.26 ± 1.48 -7.87 ± 1.63 - -
GEM 70.15 ± 0.34 -8.61 ± 0.42 50.35 ± 0.80 -9.50 ± 0.85 50.57 ± 0.61† -20.50 ± 0.10†

ICARL 53.50 ± 0.81 -20.44 ± 0.82 49.05 ± 0.51 -11.24 ± 0.27 54.77 ± 0.32† -3.93 ± 0.55†

ER 70.07 ± 0.35 -7.70 ± 0.59 51.64 ± 1.09 -7.86 ± 0.89 48.32 ± 1.51† -19.86 ± 0.70†

La-MAML 71.37 ± 0.67 -5.39 ± 0.53 54.44 ± 1.36 -6.65 ± 0.85 66.90 ± 1.65† -9.13 ± 0.90†
GPM 73.18 ± 0.52 -1.17 ± 0.27 57.33 ± 0.37 -0.37 ± 0.12 67.39 ± 0.47 1.45 ± 0.22
FS-DGPM 74.33 ± 0.31 -2.71 ± 0.17 58.81 ± 0.34 -2.97 ± 0.35 70.41 ± 1.30 -2.11 ± 0.84

Multitask 79.75 ± 0.38 - 61.00 ± 0.20∗ - 77.10 ± 1.06† -

Metrics: We evaluate the continual learning performance by the average accuracy (ACC) and
backward transfer (BWT) [24, 4, 5], formulated as following,

ACC =
1

T

T∑
i=1

RT,i, BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i,

where T is the total number of learned sequential tasks, Ri,j is the test classification accuracy of the
model on j-th task after learning the last sample from i-th task. ACC is the average test classification
accuracy of all tasks, bigger is better. BWT is the interference of new learning on the past knowledge.
More specifically, negative BWT implies (catastrophic) forgetting whereas positive BWT indicates
learning new task increases the performance on some preceding tasks.

5.2 Results and Discussion Table 2: Experimental results (mean ± std in 5
runs) on PMNIST in single-epoch.

PMNIST
Method ACC(%) BWT(%)

EWC 62.25 ± 1.44 -15.22 ± 1.25
GEM 61.82 ± 0.85 -15.58 ± 1.17
ER 68.31 ± 0.56 -13.91 ± 0.67
La-MAML 75.98 ± 0.60 -10.21 ± 0.90
GPM 74.54 ± 0.36 -7.17 ± 0.51
FS-DGPM 76.96 ± 0.51 -7.45 ± 0.30

Multitask 86.54 ± 1.74 -

PMNIST: We first evaluate our algorithm for
20 sequential PMNIST tasks with only 1000
samples per task in a single-head setting. From
the results, as shown in Table 2, we see that
our method (FS-DGPM) achieves the best aver-
age accuracy (76.96% ± 0.77). Moreover, we
achieve the least amount of forgetting except
GPM, which is essentially a trade-off in accu-
racy to minimize forgetting. As shown in Figure
5(c), we only use about 31% of the final mem-
ory size of GPM and achieve ∼ 2.5% better
accuracy.
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Figure 6: The ablation study implemented on CIFAR-100 Split with 10 tasks. (a)-(c) shows the
stability of the first task. (a) is the test accuracy change curve of the first task; (b) and (c) are the
weight loss landscape of the first task after learning the fifth task and all ten tasks. (d)-(e) shows the
sensitivity of the fifth task, which are the test accuracy and the weight loss landscape of the fifth task
after just learning the fifth task. The shape of the weight loss landscape obtained using ten different
random filter-normalized directions. ("Ti" is abbr. of the i-th task)

CIFAR-100 and TinyImageNet: Next, we use a multi-head setting to evaluate our algorithm under
the more challenging visual classification benchmarks. Table 1 reports all results of these experiments.
We outperform all baselines on three datasets, with achieving the best average accuracy 74.33%,
58.81% and 70.41%. In these experiments, we observe that GPM is a strong baseline with the least
forgetting. At the same time, we highlight that our method achieves the highest accuracy on all
datasets and the second-lowest forgetting after GPM. Figure 5(a) shows the process of performance
changing with the number of tasks on the CIFAR-100 Superclass. We consistently see the superior
performance of our method at any stage of model evolution. It is also worth emphasizing that
although our method requires more time for training than GPM, it has lower memory usage and
better test accuracy (See Figure 5(b)-(c)). As noted by [4] and [38], EWC performs poorly without
multiple passes over the datasets, and GEM is not very effective under the single-head variants. These
situations have also been observed in our experiments.

5.3 Ablation studies on FS-DGPM

Table 3: The ablation study results on CIFAR-100 Split and
Superclass. Each experiment is run with 5 seeds.

CIFAR-100 Split CIFAR-100 Superclass
Method ACC(%) BWT(%) ACC(%) BWT(%)

FS-DGPM 74.33 ± 0.31 -2.71 ± 0.17 58.81 ± 0.34 -2.97 ± 0.35
La-DGPM 73.74 ± 0.61 -3.05 ± 0.73 58.18 ± 0.41 -2.41 ± 0.39
FS-GPM 73.96 ± 0.44 -3.12 ± 0.43 58.61 ± 0.53 -2.79 ± 0.30
DGPM 73.78 ± 0.32 -3.67 ± 0.42 56.78 ± 0.49 -2.44 ± 0.40

GPM 73.18 ± 0.52 -1.17 ± 0.27 57.33 ± 0.37 -0.37 ± 0.12

We further investigate our model per-
formance with an ablation study and
summarize it in Table 3. We respec-
tively ablate the effects of flattening
sharpness and dynamically adjusting
the soft weight for bases. We refer to
them as DGPM and FS-GPM. We also
construct an ablation referred to as La-
DGPM (Look-ahead DGPM), where
the adversarial weight perturbation v
in Eq. (2) is changed to the direction
of gradient descent. At the same time, we also change the sign in Eq. (3) to ensure that the soft weight
of the basis is reduced when the gradients are aligned in the same direction. From the results, shown
in Table 3, we observe that flattening sharpness does benefits GPM, with ∼ 1.0% improvement over
GPM on both datasets. We can further observe through Figure 6 that all landscapes of FS-DGPM
have lower loss values and flatter neighbors than DGPM and La-DGPM on the CIFAR-100 Split
experiments. In addition, we see that DGPM performs well in learning new tasks, but it also leads to
forgetting previous tasks. This situation can be efficiently alleviated by flattening sharpness. Hence,
FS is indeed a powerful method worthy of being widely adopted for continual learning scenarios.

6 Conclusion

In this paper, we explore the weight loss landscape to characterize the well-known ’sensitivity-
stability’ dilemma faced by continual learning algorithms, and find that lower loss value with flatter
neighbor often leads to better continual learning performance. Based on this finding, we propose
our FS-DGPM algorithm, which introduces a soft weight to represent the importance of each basis
representing past tasks in GPM, so that less important bases can be dynamically released to improve
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the sensitivity of new skill learning. Flattening Sharpness (FS) is also introduced here to reduce the
generalization gap by explicitly regulating the flatness of the weight loss landscape of all tasks seen so
far. The evaluation of various image classification tasks with different network architectures and the
comparison with some state-of-the-art algorithms show the effectiveness of our method in achieving
high classification performance while alleviating forgetting. Although our method theoretically and
empirically demonstrates the advantages of introducing FS into continual learning, whether there
exists a closer upper bound for the continual learning performance remains an unresolved problem
and left for our future exploration. Although our method theoretically and empirically demonstrates
the advantages of introducing bases soft weight and FS into continual learning, whether there exists a
better dynamic adjustment and a closer upper bound for the continual learning performance remains
an unresolved problem and left for our future exploration.
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