
Non-ergodicity in reinforcement learning:
robustness via ergodicity transformations

Dominik Baumann 1 2 Erfaun Noorani 3 James Price 4 Ole Peters 5 6 Colm Connaughton 5 4 Thomas B. Schön 2

Abstract

Envisioned application areas for reinforcement
learning (RL) include autonomous driving, pre-
cision agriculture, and finance, which all require
RL agents to make decisions in the real world. A
significant challenge hindering the adoption of RL
methods in these domains is the non-robustness of
conventional algorithms. In this paper, we argue
that a fundamental issue contributing to this lack
of robustness lies in the focus on the expected
value of the return as the sole “correct” optimiza-
tion objective. The expected value is the average
over the statistical ensemble of infinitely many
trajectories. For non-ergodic returns, this aver-
age differs from the average over a single but in-
finitely long trajectory. Consequently, optimizing
the expected value can lead to policies that yield
exceptionally high returns with probability zero
but almost surely result in catastrophic outcomes.
This problem can be circumvented by transform-
ing the time series of collected returns into one
with ergodic increments. This transformation en-
ables learning robust policies by optimizing the
long-term return for individual agents rather than
the average across infinitely many trajectories.
We propose an algorithm for learning ergodic-
ity transformations from data and demonstrate its
effectiveness in an instructive, non-ergodic envi-
ronment and on standard RL benchmarks.

1Department of Electrical Engineering and Automation, Aalto
University, Espoo, Finland 2Department of Information Technol-
ogy, Uppsala University, Uppsala, Sweden 3University of Mary-
land, College Park, MD, USA 4Department of Mathematics, Uni-
versity of Warwick, Warwick, UK 5London Mathematical Labora-
tory, London, UK 6Santa Fe Institute, Santa Fe, NM, USA. Corre-
spondence to: Dominik Baumann <dominik.baumann@aalto.fi>.

Workshop on Foundations of Reinforcement Learning and Con-
trol at the 41 st International Conference on Machine Learning,
Vienna, Austria. Copyright 2024 by the author(s).

1. Introduction
Reinforcement learning (RL) has experienced remarkable
progress in recent years, particularly within virtual environ-
ments (Mnih et al., 2015; Silver et al., 2017; Duan et al.,
2016; Vinyals et al., 2019). However, the seamless transi-
tion of RL methods to real-world, e.g., robotics, applica-
tions lags behind, primarily due to the non-robust nature of
conventional RL approaches (Amodei et al., 2016; Leike
et al., 2017; Russell et al., 2015). In addressing this issue,
researchers have explored a spectrum of methods from risk-
sensitive RL (Prashanth et al., 2022) to robust (worst-case)
RL (Pinto et al., 2017). In this paper, we take a step back
and look at the optimization objective in RL and how it may,
by design, result in non-robust policies. Traditional RL liter-
ature, including influential references and introductory text-
books such as the ones by Sutton & Barto (2018); Bertsekas
(2019); Powell (2021), typically frames the RL problem as
maximizing the expected return, i.e., the expected value of
the sum of rewards collected throughout a trajectory. Intu-
itively, at each time step, an agent shall choose an action
that maximizes the return it can expect when choosing this
action and following the optimal policy from then onward.
While this indeed seems intuitive, it becomes problematic
when the returns are non-ergodic. When the returns are
non-ergodic, the average over many trajectories—which re-
sembles an expected value—differs from the average along
one long trajectory. We find non-ergodic returns in various
contexts, as we discuss in more detail in Section 6. One
example are settings in which we have “absorbing barri-
ers,” i.e., states, from which there is no return. Such as
when an autonomous car crashes in an accident. Suppose
an autonomous car learns a driving policy through RL. At
deployment time, when we have a passenger in the car, it
does not matter to the passenger whether the policy of the
autonomous car receives a high return when averaging over
multiple trajectories—a high ensemble-average return could
also result from half of the journeys reaching the destination
very fast and half crashing and never reaching it. The return
in a single instance of a long journey would be negligible
if a crash occurred somewhere along the way—and this is
the return that would matter to the individual. Thus, the
time average would be the better choice for an optimization
objective in such scenarios.

1

Non-ergodicity in reinforcement learning

Optimizing the time average might require developing en-
tirely new RL algorithms. Nevertheless, existing RL al-
gorithms have demonstrated remarkable performance by
optimizing expected returns. An alternative is to find a
suitable transformation. This is related to human decision-
making. In economics and game theory, researchers have
found that humans typically do not optimize expected mon-
etary returns (Bernoulli, 1954), which would correspond
to optimizing across a statistical ensemble. Instead, they
seem to optimize along individual time trajectories, cor-
responding to different behavioral protocols unless mone-
tary returns are state-independent, i.e., independent of the
current wealth level. Optimization along time trajectories
can be implemented by a state-dependent transformation of
monetary returns chosen so as to make changes in the trans-
formed quantity ergodic. Optimizing expected values of
these changes then also optimizes long-term growth along
an individual trajectory. As for the autonomous car, so for
the human, it appears more natural to care about long-term
performance. For the individual person, it typically does
not matter whether a particular investment pays off when
averaged over a statistical ensemble—instead, what matters
is whether or not investing according to some protocol pays
off in the long run in the single trajectory.

Motivated by economics, in particular, by utility (Bernoulli,
1954) and prospect (Kahneman & Tversky, 1997) theory,
the field of risk-sensitive RL (Prashanth et al., 2022) has
emerged. In most of risk-sensitive RL, e.g., algorithms us-
ing an entropic risk measure, the agents try to optimize the
expected value of transformed returns. By learning with
transformed returns, the agents can achieve higher perfor-
mance with lower variance. Utility and prospect theory do
not consider potential non-ergodicity. Instead, these theories
rely on psychological arguments to argue that some humans
are more “risk-averse” than others. Peters & Adamou (2018)
have shown how acknowledging non-ergodicity and that hu-
mans are more likely to optimize the long-term return than
an average over an ensemble of infinitely many trajectories
can recover widespread transformations used in utility the-
ory. Empirical research (Meder et al., 2021; Vanhoyweghen
et al., 2022) has further shown that this treatment can better
predict actual human behavior. The ergodicity perspective
does not rely on psychology as an explanation; instead, it
explains psychological observations. It is, in this sense,
more fundamental and, as a result, more general, namely
applicable to cases where psychology cannot be invoked,
particularly to inanimate optimizers such as machines de-
void of a psyche.

Inspired by Peters & Adamou (2018), we analyze for which
dynamics a popular transformation from risk-sensitive RL
optimizes the long-term return. Further, we propose an
algorithm for learning a suitable transformation when the
reward function is unknown, which is the typical setting in

RL.

Contributions. In this paper, we make the following contri-
butions:

• We illustrate and assess the impact of non-ergodic re-
turns on RL algorithm policies through an intuitive ex-
ample. This showcases the implications of optimizing
for the expected value in non-ergodic settings—which
we commonly encounter in RL problems—and makes
a case for the need for an ergodicity transformation.

• We propose a transformation that can convert a trajec-
tory of returns into a trajectory with ergodic increments.
This enables off-the-shelf RL algorithms to optimize
their long-term return instead of the conventional ex-
pected value, resulting in more robust policies without
developing novel RL algorithms.

• We demonstrate the performance of this transformation
in an intuitive example and, as a proof-of-concept, on
standard RL benchmarks. In particular, we show that
our transformation indeed yields more robust policies
when returns are non-ergodic.

2. Problem setting
We consider a standard RL setting in which an agent with
states s ∈ S ⊆ Rn in the state space S and actions a ∈ A ⊆
Rm in the action space A shall learn a policy π : S → A.
Its performance is measured by an unknown reward function
r : S × A → R. The agent’s goal is to maximize the
accumulated rewards r(tk) it receives during a trajectory,
i.e., the return R(T) at tk = T ,

R(T) =

T∑
τk=0

r(τk), (1)

where r(tk) := r(s(tk), a(tk)). For this, the agent interacts
with its environment by selecting actions, receiving rewards,
and utilizing this feedback to learn an optimal policy. The
RL problem is inherently stochastic, as it involves learning
from finite samples, often within stochastic environments
and with potentially stochastic policies. In standard RL, we,
therefore, typically aim at maximizing the expected value
of (1) (cf. the “reward hypothesis” stated by Sutton & Barto
(2018, p. 53))

E

[
T∑

τk=0

r(τk)

]
. (2)

Nonetheless, this conventional approach may encounter
challenges when the dynamics are non-ergodic. To illustrate
this point, we consider an instructive example introduced by
Peters (2019).

2

Non-ergodicity in reinforcement learning

0 200 400 600 800 1,000

10−20

100

1020

tk

R
(t

k
)

Figure 1. Simulation of the coin toss experiment. We simulate the
game for 1000 time steps and 10 agents. The dashed red horizontal
line marks the initial reward of 100, and the dashed blue ascending
line the expected value. After 1000 time steps, all agents end up
with a lower return than they started with (note the logarithmic
scaling of the y-axis).

2.1. Illustrative example

Imagine an agent starting with an initial reward of r(t0) =
100 is offered the following game. We toss a (fair) coin. If
it comes up heads, the agent wins 50 % of its current return.
If it comes up tails, the agent loses 40 %. Mathematically,
this translates to

r(tk) =

{
0.5R(tk − 1) if η = 1,

−0.4R(tk − 1) otherwise,

where η is a Bernoulli random variable with equal probabil-
ity for both outcomes.

When analyzing the game dynamics, we find that the agent
receives an expected reward r(tk) equal to 5 % of its current
return. Consequently, the expected return for any trajectory
length T appears favorable, growing exponentially with T :

E
π
[R(T)] = 100 · 1.05T .

However, when we simulate the game for ten agents and
1000 time steps, we find that all of them end up having a
return of almost zero (see Figure 1). The reason is that the
coin toss game is non-ergodic. If the dynamics of a stochas-
tic process are non-ergodic, the average over infinitely many
samples may be arbitrarily different from the average over a
single but infinitely long trajectory. Translated to the coin
toss example, if we simulate infinitely many trajectories of
the game, each of finite duration T , we obtain a small set
of agents that end up exponentially “rich” so that averag-
ing over all of them, i.e., taking the expected value, yields
100 · 1.05T . However, if we increase the duration, T → ∞,
the set of agents ending up exponentially rich shrinks ex-
ponentially to measure zero. That is, if we only simulate
one agent for T → ∞ and average over time, we receive
a time average limT→∞

1
T

∑T
τk=0 r(τk) = 0 almost surely.

Hulme et al. (2023) provide a more detailed analysis of the
statistical properties of the coin-toss game in their appendix.

To define ergodicity properly and connect it explicitly to
RL, let us abstract from the coin-toss example and consider
an arbitrary discrete-time stochastic process X . We can
now generate multiple realizations of this process, in the
example, by playing the game multiple times. Let X(j)(tk)
denote the value of realization j at time step tk. The process
X is ergodic if, for any time step tk and realization i,

lim
N→∞

1

N

N∑
j=1

X(j)(tk) = lim
T→∞

1

T

T∑
τk=1

X(i)(τk) (3)

almost surely. The left hand side is E[X(tk)], the expected
value of X at time tk. The right-hand side is the time aver-
age of realization i. For an ergodic process, these averages
are equal. In the RL setting, we are interested in whether or
not the rewards r(tk) are ergodic:

E[r(tk)] = lim
T→∞

1

T

T∑
τk=1

r(τk) = lim
T→∞

R(T)

T
(4)

almost surely. For ergodic rewards, maximizing the ex-
pected value at each step corresponds to maximizing the
long-term growth rate of the return for any given realization.
However, as the coin-toss example demonstrates, when re-
wards are non-ergodic, optimizing the expected value may
yield policies with negative long-term growth rate.

2.2. Solving the ergodicity problem

Redefining the optimization objective of RL algorithms
may require a complete redesign. Alternatively, we can
take existing algorithms and modify the returns to make
their increments ergodic. Peters & Adamou (2018) have
shown, in a continuous-time setting, that for a broad class
of stochastic processes, we can find transformations h(R)
such that their increments ∆h are ergodic and follow a
standard Brownian motion. In our discrete-time setting, this
translates to

h(R(tk + 1)) = h(R(tk)) + µ+ σv(tk), (5)

with drift µ, volatility σ, and standard normal random vari-
able v(tk). For our purposes, where we want to learn a
transformation h from data instead of deriving it analyti-
cally as Peters & Adamou (2018), it even suffices if v(tk)
has finite variance, i.e., it does not have to be normally
distributed.

In the following, we assess the performance of standard
RL algorithms in the coin toss game, with and without a
transformation h. We then propose an algorithm for learning
a transformation h with ergodic increments and relate our
findings to risk-sensitive RL.

3

Non-ergodicity in reinforcement learning

3. RL with non-ergodic dynamics
For the coin toss example, we can easily verify that the
dynamics are non-ergodic. Optimizing the expected value
then yields a “policy” in which the agent decides to play the
game, leading to ruin in the long run almost surely. While
standard RL algorithms aim to optimize the expected value,
they need to approximate it from finitely many samples.
Thus, in this section, we evaluate whether a standard RL
algorithm indeed proposes a detrimental policy and discuss
how we can transform the returns to prevent this. In the
version presented in the previous section, the coin toss game
offers the agent a binary decision: either play or not. Here,
we make the game slightly more challenging by letting
the agent decide how much of its current return (“wealth”)
it invests at each time step. Thus, we have a continuous
variable F ∈ [0, 1] and the reward dynamics are

r(tk) =

{
0.5FR(tk − 1) if η = 1,

−0.4FR(tk − 1) otherwise.

We use the popular proximal policy optimization (PPO)
algorithm (Schulman et al., 2017), leveraging the implemen-
tation provided by Raffin et al. (2021) without changing any
hyperparameters to learn a policy. Having trained a policy
for 1 × 105 episodes, we execute it 100 times for 1000 time
steps and show the first ten trajectories in Figure 2(a). We
see that all ten agents end up with a return lower than the
initial reward of 100. While this could still be caused by a
bad choice of agents, it is confirmed by computing statistics
over all 100 trajectories. When computing the median of
the return after 1000 time steps, we obtain 2.5 × 10−4, i.e.,
the average agent ends up with a return close to zero. The
mean over all agent yields 115. That is, a small subset of
agents obtains a high return. This confirms the discussion
from the previous section. Even if it only approximates the
expected value, PPO does learn a policy that leads to ruin
for most agents.

One possibility for coping with non-ergodic dynamics is
finding a suitable transformation. For the coin toss game,
where the dynamics are relatively straightforward and the
outcomes are fully known, we can analytically identify an
appropriate transformation: the logarithm (Hulme et al.,
2023, Appendix). We subsequently train the PPO algorithm
once more with the logarithmic transformation. Specifi-
cally, we redefine the rewards as r̃(tk) := log(R(tk)) −
log(R(tk−1)). As before, we run 100 experiments for 1000
time steps each and show the first ten trajectories in Fig-
ure 2(b). We see that all agents end up with a significantly
higher return than the initial reward. A statistical analysis
confirms this observation, yielding a median return of 5645
and a mean of 15 883. Both values substantially surpass
those obtained by the agents trained with untransformed
returns.

This evaluation underscores that standard RL algorithms
may inadvertently learn policies leading to unfavorable out-
comes for most agents when dealing with non-ergodic dy-
namics. Furthermore, it demonstrates that an appropriate
transformation can mitigate this.
Remark 3.1. The quantitative results clearly differ between
runs, as the environment and training process are stochas-
tic. Nevertheless, the qualitative results are consistent: the
training with transformed returns results in better perfor-
mance. With transformed returns, the agents sometimes get
trapped in local optima with F = 0, which still results in
significantly higher returns for the average agent.

4. Learning an ergodicity transformation
In scenarios like the coin toss game, due to the perfect infor-
mation of future returns, it is possible to derive a suitable
transformation analytically—for a more detailed discussion,
we refer the reader to Peters & Adamou (2018). However,
the true power of reinforcement learning (RL) lies in its
ability to handle complex environments for which we lack
accurate analytical expressions. Therefore, it is desirable to
learn transformations directly from data.

The central characteristic of the transformation is that it
should render the increments of the transformed return er-
godic. Ideally, we aim for a transformation whose incre-
ments are independent and identically distributed (i.i.d.).
However, determining this i.i.d. property with a high de-
gree of accuracy, especially from real-world data, can be
challenging. Instead, we approximate the behavior of the
transform to that of a variance-stabilizing transform.
Definition 4.1 (Bartlett (1947)). A variance stabilizing
transform is defined as

h(x) =

x∫
0

1√
v(u)

du,

with variance function v(u) describing the variance of a
random variable as a function of its mean.

A variance stabilizing transform aims to transform a given
time series into one with constant variance, independent of
the mean (Bartlett, 1947). This is a generalization of our
desired i.i.d. property as if the transformation h(R(tk)) has
i.i.d. increments, then the increments also have constant
variance, independent of the mean. Thus, our objective
becomes finding a variance stabilizing transform following
Definition 4.1. In our case, as we want to stabilize the
variance of the increments, we adapt the original definition
of the variance function v(u) in Definition 4.1 to

v(u) = Var[R(tk+1)−R(tk) | R(tk) = u].

This variance function represents the variance of the fol-
lowing increment as a function of the current transformed

4

Non-ergodicity in reinforcement learning

0 200 400 600 800 1,000
10−9

10−4

101

106

tk

R
(t

k
)

(a) Without transformation.

0 200 400 600 800 1,000
101

102

103

104

tk

(b) With transformation.

Figure 2. Learning bet strategies for the adapted coin toss game. Without transformation, most agents end up losing, while they end up
winning with transformation.

return.

The approach for estimating v(u) from data is inspired by
the additivity and variance stabilization method for regres-
sion (Tibshirani, 1988). Estimating v(u) first involves plot-
ting R(tk) against log((R(tk+1) − R(tk) − µ̂)2), with µ̂
the empirical mean of the increments. In our setting, the
mean of the increments of the original untransformed pro-
cess may not be constant throughout a trajectory. Hence,
assuming a constant µ̂ results in small values having an
over-estimated variance and large values having an under-
estimated variance. The straightforward way to fix this
would be to estimate µ(u) as a function of u; however, this
introduces a further estimation problem. Instead, we can
estimate the second moment function and use this as a proxy
for the variance function,

µ2(u) = E[(R(tk+1)−R(tk))
2 | R(tk) = u].

In Appendix A.1, we show that µ2(u) ∝ v(u), which is
satisfactory for our needs as if the process R(tk) has i.i.d.
increments, then so will the process a ·R(tk) for any a ∈ R.

To estimate the function log(µ2(u)) we plot R(tk) against
log((R(tk+1)−R(tk))

2). Then, fitting a curve represents
taking the expected value. We use the locally estimated
scatter-plot smoothing (LOESS) method (Cleveland, 1979).
The reason behind estimating log(µ2(u)) is that this guar-
antees µ2(u) always to be positive, which is vital as the
variance stabilizing transform requires us to take the square
root. This approach follows the reasoning by Tibshirani
(1988) .

Having derived this transformation, we apply it to the coin
toss game. We first collect a return trajectory with F = 1.
Based on this trajectory, we learn an ergodicity transfor-
mation following the steps described in this section. Then,

0 200 400 600 800 1,000

101

103

105

107

tk

R
(t

k
)

Figure 3. Learning bet strategies for the adapted coin toss game
with learned transformation. Similar to the logarithm, also with
the learned transformation, the majority of the agents ends up
winning.

5

Non-ergodicity in reinforcement learning

we again train a PPO agent but feed it the increments of
transformed returns as previously with the logarithmic trans-
formation. As before, we execute the learned policy 100
times for 1000 time steps each and show rollouts for the first
ten agents in Figure 3. Also with this transformation, most
agents end up learning winning strategies. The statistics
confirm this: across all 100 agents, we have a median return
of around 17 517 and an average return of around 956 884.
Thus, we conclude that we can learn a suitable transforma-
tion from data, enabling PPO to learn a policy that benefits
individual agents in the long run.

5. Risk-sensitive RL
The ergodicity transformation serves as a means for RL
agents to optimize the long-term performance of individual
returns, enabling the learning of robust policies, as demon-
strated in Figure 3. Another approach to improving the
robustness of RL algorithms is through risk-sensitive RL.
While risk-sensitive RL is not motivated by ergodicity, it
also proposes transforming returns. Inspired by Peters &
Adamou (2018), we can analyze these transformations and
determine under which dynamics they yield transformed
returns with ergodic increments. This analysis allows us to
gain insights into which type of transformation may offer
robust performance in which settings.

Here, we focus on the exponential transformation,

hrs(R) := β exp(βR),

where β ∈ R \{0} is a hyperparameter with β < 0 the
“risk-averse”, and β > 0 “risk-seeking” case. If this trans-
formation were an ergodicity transformation, then its incre-
ments hrs(R(tk))−hrs(R(tk −1)) would follow (5). If we
now assume that the dynamics of the return R(tk) belong to
the class of Itô processes, i.e., a general class of stochastic
processes, we can derive a concrete equation describing the
return dynamics. This derivation becomes relatively techni-
cal, and we defer it to the appendix (Appendix A.2). Here,
we only present the result and discuss its implications. We
can derive the return dynamics as

Rt =
1

β
ln

∣∣∣∣σβ
∣∣∣∣+ 1

β
ln

∣∣∣∣µσ t+Wt +
β

σ

∣∣∣∣. (6)

The obtained return dynamics are logarithmic in time. Loga-
rithmic returns (or regrets) are common in the RL literature.
Consider a scenario where a robot arm must reach a set
point, and the reward is defined as the negative distance
to that set point. Initially, rapid progress can be made by
moving quickly in the roughly correct direction. As the
robot gets closer, the movement becomes more fine-grained
and slower, resulting in slower progress. By using an ex-
ponential transformation, we counteract this phenomenon,
ensuring that all time steps contribute equally to the return.

We next apply the exponential transformation to the coin-
toss game and test both the “risk-averse” and the “risk-
seeking” setting. For the risk-seeking setting (β > 0), we
quickly run into numerical problems. The coin-toss problem
has itself exponential dynamics, and thus, returns can get
large. Exponentiating those again lets us reach the limits
of machine precision. For the risk-averse setting (β < 0),
we consistently learn constant policies with F = 0. While
this is still better than the policies standard PPO learned, it
cannot compete with the results from Figure 3.

This outcome is not surprising. From an ergodicity perspec-
tive, the exponential transformation is only suitable if the
dynamics are logarithmic. The dynamics of the coin-toss
game are exponential, which is precisely the inverse behav-
ior. Thus, we would not expect the transformation to yield
good policies, as is confirmed by our experiments.

6. Ergodicity in RL and related work
The coin-toss game is an excellent example to illustrate the
problem of maximizing the expected value of non-ergodic
rewards. When maximizing non-ergodic rewards, we may
end up with a policy that receives an arbitrarily high return
with probability zero but leads to failure almost surely. Also
in less extreme cases, the expected value prefers risky poli-
cies if their return in case of success outweighs the failure
cases. This results in learning non-robust policies, a behav-
ior frequently observed in standard RL algorithms (Amodei
et al., 2016; Leike et al., 2017; Russell et al., 2015).

Non-ergodicity is not unique to the coin-toss game. Peters &
Klein (2013) have shown that geometric Brownian motion
(GBM) is a non-ergodic stochastic process. GBM is com-
monly used to model economic processes, a domain where
RL algorithms are increasingly applied (Charpentier et al.,
2021; Zheng et al., 2022). Thus, especially in economics,
ergodicity should not simply be assumed. Nevertheless, the
example of GBM is also informative for other applications.
Generally, RL is most interesting when the environment dy-
namics are too complex to model, i.e., we usually deal with
nonlinear dynamics. If already a linear stochastic process
such as GBM is non-ergodic, we cannot assume ergodicity
for the general dynamics we typically consider in RL.

Another way of “ergodicity-breaking” is often motivated us-
ing the example of Russian roulette (Ornstein, 1973). When
multiple people play Russian roulette for one round each,
and their average outcome is considered, the probability of
death is one in six. However, if a single person plays the
game infinitely many times, that person will eventually die
with probability one. In the context of RL, this is akin to
the presence of absorbing barriers or safety thresholds that
an agent must not cross. Particularly in RL applications
where the consequences of failure can be catastrophic, such

6

Non-ergodicity in reinforcement learning

as in autonomous driving (Brunke et al., 2022), these safety
thresholds become vital.

Consequently, in the literature on Markov decision pro-
cesses (MDPs), we find work that argues about the (non-
)ergodicity of MDPs; see, for instance, Chapter 10 by Sutton
& Barto (2018) or Chapter 8 by Puterman (2014). Therein,
the notion of ergodicity is mainly used to describe MDPs
in which every state will be visited eventually. Following
this notion, there has been work within the RL community
that provides guarantees while explicitly assuming ergodic-
ity (Pesquerel & Maillard, 2022; Ok et al., 2018; Agarwal
et al., 2022) or by guaranteeing to avoid any states within
an “absorbing” barrier, i.e., only exploring an ergodic sub-
MDP (Turchetta et al., 2016; Heim et al., 2020). For Q-
learning, Majeed & Hutter (2018) has shown convergence
even for non-ergodic and non-MDP processes. Nevertheless,
none of these works, as a consequence of non-ergodicity,
question the use of the expectation operator in the objective
function.

In this paper, we have proposed transforming returns to deal
with non-ergodic rewards. In the previous section, we have
shown how a popular transformation from risk-sensitive
RL (Mihatsch & Neuneier, 2002; Shen et al., 2014; Fei
et al., 2021; Noorani & Baras, 2021; Noorani et al., 2022;
Prashanth et al., 2022) can be motivated from an ergodicity
perspective. Reward-weighted regression (Peters & Schaal,
2007; 2008; Wierstra et al., 2008; Abdolmaleki et al., 2018;
Peng et al., 2019) also proposes to use transformations, but
the transformations are typically justified using intuitive
arguments instead of from an ergodicity perspective. In-
terestingly, most existing work also uses an exponential
transformation, which is the cornerstone of risk-sensitive
control. Thus, the analysis we have done for risk-sensitive
RL also applies to reward-weighted regression.

Another approach that optimizes transformed re-
turns is Bayesian optimization for iterative learning
(BOIL) (Nguyen et al., 2020). BOIL is developed for
hyperparameter optimization. While this setting differs
from the one we consider, we show in Appendix A.2 that
the transformation used in BOIL can be replaced with ours,
leading to similar or better results.

Through the ergodicity transformation, we seek to optimize
the long-term performance of RL agents. Improving the
long-term performance of RL agents in continuous tasks is
also the goal of average reward RL. The idea of optimizing
the average reward criterion originated in dynamic program-
ming (Howard, 1960; Blackwell, 1962; Veinott, 1966), and
has already in the early days of RL been taken up to de-
velop various algorithms, see, for instance, the survey by
Mahadevan (1996). Also in recent years, the average reward
criterion has been used for novel RL algorithms (Zhang &
Ross, 2021; Wei et al., 2020; 2022). In average reward RL,

we still take the expected value of the reward function and
let time go to infinity. Were the reward function ergodic, it
would not matter whether we first take the expected value
or first let time go to infinity. However, for a non-ergodic
function, it does. In average reward RL, we first take the
expected value. For the coin-toss game, that would yield
an optimization criterion that grows exponentially while the
set of agents that obtain a return larger than zero shrinks to
a set of measure zero as time goes to infinity. Thus, average
reward RL may fall into the same trap as conventional RL
when dealing with non-ergodic reward functions.

7. Proof-of-concept
The coin-toss game, while illustrative, represents a simpli-
fied scenario. To establish the broader applicability of the
ergodicity perspective and associated transformations in RL,
we conducted experiments on two classical RL benchmarks:
the cart-pole system and the reacher, using the implemen-
tations provided by Brockman et al. (2016). Both envi-
ronments feature discrete action spaces. Thus, instead of
PPO, which is designed for continuous action spaces, we
use the REINFORCE algorithm (Williams, 1992). The RE-
INFORCE algorithm is a Monte Carlo algorithm. It always
collects a return trajectory and then uses this trajectory to
update its weights. In our setting, this is advantageous as
it allows us to learn a transformation using the collected
trajectory.

We here compare two settings. First, we train the algorithm
in the standard way. Second, after collecting a return tra-
jectory, we first derive the transformation, transform the
returns, and then use the transformed returns to update the
REINFORCE algorithm. In the plots, we always show
the untransformed returns. In both settings, we change
the length of pole and links for cart-pole and reacher, re-
spectively, during testing to evaluate the robustness of the
learned policies. Further details on hyperparameter choices
are provided in Appendix A.4.

Cart-pole. In the cart-pole environment, the objective is to
maintain the pole in an upright position for as long as possi-
ble. To evaluate the long-term performance of the ergodicity
transformation, we train the algorithm using episode lengths
of 100 time steps but test it with episodes lasting 200 time
steps. Thus, as we see in Figure 4(a), the return during
testing is higher than during training. We can also see that
for ergodic REINFORCE, the agent is close to the optimal
reward of 200 during testing. The standard REINFORCE
algorithm performs significantly worse. Thus, we can see
that leveraging the ergodicity transformation improves the
long-term performance compared to the standard algorithm.

Reacher. In the reacher environment, we aim to track a
set point with the end of the last link. Thus, extending the

7

Non-ergodicity in reinforcement learning

0 0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

Training Phase Testing Phase

Number of episodes

R
(T

)
ergodic
standard

(a) Cart-pole.

0 2,000 4,000 6,000

−200

−150

−100

−50

Training Phase Testing Phase

Number of episodes

(b) Reacher.

Figure 4. Ergodic vs. standard REINFORCE on common benchmarks. For the cart-pole, we see slight improvements when using the
ergodicity transformation, while for the reacher, only ergodic REINFORCE learns a successful policy.

episode length does not make sense in this setting. How-
ever, this is unnecessary to demonstrate the advantage of
using the ergodicity transformation. In Figure 4(b), we see
that, while both algorithms successfully improve their return
during training, ergodic REINFORCE even more than stan-
dard REINFORCE, ergodic REINFORCE can generalize
to the new link length and mass during testing. Standard
REINFORCE ends up with close to minimal reward during
testing.

8. Conclusions and limitations
This paper discussed the impact of ergodicity on the choice
of the optimization criterion in RL. If the rewards are non-
ergodic, focusing on the expected return yields non-robust
policies that we currently find with conventional RL algo-
rithms. An alternative to changing the objective and, with
this, having to come up with entirely new RL algorithms is
trying to find an ergodicity transformation. We presented a
method for learning an ergodicity transformation that con-
verts a time series of returns into a time series with ergodic
increments. Then, optimizing the expected value of those
ergodic increments is equivalent to maximizing the long-
term growth rate of the return. We further showed how the
ergodicity perspective provides a theoretical foundation for
transformations used in risk-sensitive RL. We demonstrated
the effectiveness of the proposed transformation on standard
RL benchmark environments.

This paper is the first step toward acknowledging non-
ergodicity of reward functions and focusing on the long-term
return and, with that, robustness in RL. This opens various
directions for future research. Firstly, addressing the chal-
lenge of transforming returns in RL algorithms that update

weights incrementally rather than relying on episodic data
remains an open question. Secondly, our transformation cur-
rently focuses solely on the current return, but returns may
also depend on the current state of the system, suggesting
the possibility of state-dependent transformations. Thirdly,
extending this research to multi-agent RL could be promis-
ing, building on insights by Fant et al. (2023) and Peters
& Adamou (2022) regarding the impact of non-ergodicity
on the emergence of cooperation in biological multi-agent
systems. Finally, investigating the connection between opti-
mizing time-average growth rates instead of expected values
and discount factors, as explored by Adamou et al. (2021),
could make the discount factor as a hyperparameter in RL
dispensable.

References
Abdolmaleki, A., Springenberg, J. T., Degrave, J., Bohez, S.,

Tassa, Y., Belov, D., Heess, N., and Riedmiller, M. Rela-
tive entropy regularized policy iteration. arXiv preprint
arXiv:1812.02256, 2018.

Adamou, A., Berman, Y., Mavroyiannis, D., and Peters, O.
Microfoundations of discounting. Decision Analysis, 18
(4):257–272, 2021.

Agarwal, M., Bai, Q., and Aggarwal, V. Regret guarantees
for model-based reinforcement learning with long-term
average constraints. In Uncertainty in Artificial Intelli-
gence, pp. 22–31, 2022.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565, 2016.

8

Non-ergodicity in reinforcement learning

Bartlett, M. S. The use of transformations. Biometrics, 3
(1):39–52, 1947.

Bernoulli, D. Exposition of a new theory on the measure-
ment of risk. Econometrica, 22(1):23–36, 1954.

Bertsekas, D. Reinforcement Learning and Optimal Control.
Athena Scientific, 2019.

Blackwell, D. Discrete dynamic programming. The Annals
of Mathematical Statistics, pp. 719–726, 1962.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
arXiv preprint arXiv:1606.01540, 2016.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou,
S., Panerati, J., and Schoellig, A. P. Safe learning in
robotics: From learning-based control to safe reinforce-
ment learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

Charpentier, A., Elie, R., and Remlinger, C. Reinforce-
ment learning in economics and finance. Computational
Economics, pp. 1–38, 2021.

Cleveland, W. S. Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statisti-
cal Association, 74(368):829–836, 1979.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Fant, L., Mazzarisi, O., Panizon, E., and Grilli, J. Stable
cooperation emerges in stochastic multiplicative growth.
Physical Review E, 108(1):L012401, 2023.

Fei, Y., Yang, Z., and Wang, Z. Risk-sensitive reinforce-
ment learning with function approximation: A debiasing
approach. In International Conference on Machine Learn-
ing, pp. 3198–3207. PMLR, 2021.

Heim, S., von Rohr, A., Trimpe, S., and Badri-Spröwitz,
A. A learnable safety measure. In Conference on Robot
Learning, pp. 627–639, 2020.

Howard, R. A. Dynamic Programming and Markov Pro-
cesses. John Wiley, 1960.

Hulme, O., Vanhoyweghen, A., Connaughton, C., Peters,
O., Steinkamp, S., Adamou, A., Baumann, D., Ginis,
V., Verbruggen, B., Price, J., and Skjold, B. Reply to”
the limitations of growth-optimal approaches to decision
making under uncertainty”. Econ Journal Watch, 20(2):
335–348, 2023.

Itô, K. Stochastic integral. Proceedings of the Imperial
Academy, 20(8):519–524, 1944.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13(4):455, 1998.

Kahneman, D. and Tversky, A. Prospect theory: An analysis
of decision under risk. Econometrica, 47(2):263–292,
1997.

Kloeden, P. E. and Platen, E. Numerical Solution of Stochas-
tic Differential Equations. Springer Berlin, Heidelberg,
1992.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,
T., Lefrancq, A., Orseau, L., and Legg, S. AI safety
gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Mahadevan, S. Average reward reinforcement learning:
Foundations, algorithms, and empirical results. Machine
Learning, 22:159–195, 1996.

Majeed, S. J. and Hutter, M. On Q-learning convergence for
non-Markov decision processes. In International Joint
Conference on Artificial Intelligence, pp. 2546–2552,
2018.

Meder, D., Rabe, F., Morville, T., Madsen, K. H., Koudahl,
M. T., Dolan, R. J., Siebner, H. R., and Hulme, O. J.
Ergodicity-breaking reveals time optimal decision mak-
ing in humans. PLoS Computational Biology, 17(9):
e1009217, 2021.

Mihatsch, O. and Neuneier, R. Risk-sensitive reinforcement
learning. Machine Learning, 49(2):267–290, 2002.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pp. 1928–
1937, 2016.

Nguyen, V., Schulze, S., and Osborne, M. Bayesian op-
timization for iterative learning. Advances in Neural
Information Processing Systems, pp. 9361–9371, 2020.

Noorani, E. and Baras, J. S. Risk-sensitive reinforce: A
Monte Carlo policy gradient algorithm for exponential
performance criteria. In IEEE Conference on Decision
and Control, pp. 1522–1527, 2021.

9

Non-ergodicity in reinforcement learning

Noorani, E., Mavridis, C., and Baras, J. Risk-sensitive
reinforcement learning with exponential criteria. arXiv
preprint arXiv:2212.09010, 2022.

Ok, J., Proutiere, A., and Tranos, D. Exploration in struc-
tured reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 2018.

Ornstein, D. S. An application of ergodic theory to prob-
ability theory. The Annals of Probability, 1(1):43–58,
1973.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Pesquerel, F. and Maillard, O.-A. IMED-RL: Regret optimal
learning of ergodic Markov decision processes. Advances
in Neural Information Processing Systems, pp. 26363–
26374, 2022.

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
International Conference on Machine Learning, pp. 745–
750, 2007.

Peters, J. and Schaal, S. Learning to control in operational
space. The International Journal of Robotics Research,
27(2):197–212, 2008.

Peters, O. The ergodicity problem in economics. Nature
Physics, 15(12):1216–1221, 2019.

Peters, O. and Adamou, A. The time interpretation of ex-
pected utility theory. arXiv preprint arXiv:1801.03680,
2018.

Peters, O. and Adamou, A. The ergodicity solution of the
cooperation puzzle. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 380(2227):20200425, 2022.

Peters, O. and Klein, W. Ergodicity breaking in geometric
Brownian motion. Physical Review Letters, 110(10):
100603, 2013.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A.
Robust adversarial reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2817–2826.
PMLR, 2017.

Powell, W. B. Reinforcement Learning and Stochastic Opti-
mization. John Wiley & Sons, 2021.

Prashanth, L., Fu, M. C., et al. Risk-sensitive reinforcement
learning via policy gradient search. Foundations and
Trends® in Machine Learning, 15(5):537–693, 2022.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Russell, S., Dewey, D., and Tegmark, M. Research prior-
ities for robust and beneficial artificial intelligence. AI
Magazine, 36(4):105–114, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. Risk-
sensitive reinforcement learning. Neural Computation,
26(7):1298–1328, 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of Go without
human knowledge. Nature, 550(7676):354–359, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, 2018.

Tibshirani, R. Estimating transformations for regression via
additivity and variance stabilization. Journal of the Amer-
ican Statistical Association, 83(402):394–405, 1988.

Turchetta, M., Berkenkamp, F., and Krause, A. Safe explo-
ration in finite Markov decision processes with Gaussian
processes. Advances in Neural Information Processing
Systems, 2016.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI Confer-
ence on Artificial Intelligence, pp. 2094–2100, 2016.

Vanhoyweghen, A., Verbeken, B., Macharis, C., and Ginis,
V. The influence of ergodicity on risk affinity of timed
and non-timed respondents. Scientific Reports, 12(1):1–9,
2022.

Veinott, A. F. On finding optimal policies in discrete dy-
namic programming with no discounting. The Annals of
Mathematical Statistics, 37(5):1284–1294, 1966.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

10

Non-ergodicity in reinforcement learning

Wang, Z. and de Freitas, N. Theoretical analysis of
bayesian optimisation with unknown gaussian process
hyper-parameters. arXiv preprint arXiv:1406.7758, 2014.

Wei, C.-Y., Jahromi, M. J., Luo, H., Sharma, H., and Jain,
R. Model-free reinforcement learning in infinite-horizon
average-reward Markov decision processes. In Inter-
national Conference on Machine Learning, pp. 10170–
10180, 2020.

Wei, H., Liu, X., and Ying, L. A provably-efficient model-
free algorithm for infinite-horizon average-reward con-
strained markov decision processes. In AAAI Conference
on Artificial Intelligence, pp. 3868–3876, 2022.

Wierstra, D., Schaul, T., Peters, J., and Schmidhuber,
J. Episodic reinforcement learning by logistic reward-
weighted regression. In International Conference on
Artificial Neural Networks, pp. 407–416, 2008.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

Zhang, Y. and Ross, K. W. On-policy deep reinforcement
learning for the average-reward criterion. In International
Conference on Machine Learning, pp. 12535–12545,
2021.

Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., and Socher,
R. The AI economist: Taxation policy design via two-
level deep multiagent reinforcement learning. Science
Advances, 8(18):eabk2607, 2022.

11

Non-ergodicity in reinforcement learning

A. Appendix
A.1. Proportionality of variance and second-moment functions

The variance-stabilizing transform h(x) is unique up to linear transformations. That is, the function ah(x) + b for a ∈ R+,
b ∈ R will also produce a time series with the desired properties. Thus, we only need to estimate the variance function up to
a scalar multiplier. In the following, we approximate µ2(u) := E[(R(tk+1)−R(tk))

2 | R(tk) = u] using a Taylor series
expansion and show that v(u) ∝ µ2(u). In particular, we have

µ2(u) = E[(R(tk+1)−R(tk))
2 | R(tk) = u]

= E[R(tk+1)
2 | R(tk) = u]

− 2E[R(tk+1) | R(tk) = u][R(tk) | R(tk) = u]

+ E[R(tk)
2 | R(tk) = u]

= E[R(tk+1)
2 | R(tk) = u]

− 2uR[R(tk+1) | R(tk) = u] + u2. (7)

We now perform a second-order Taylor expansion with the function h−1 on the random variable h(R(tk+1)) to find
E[R(tk+1) | R(tk) = u],

E[R(tk+1) | R(tk) = u]

=E[h−1(h(R(tk+1))) | R(tk) = u]

=E[h−1(h(u) + h(R(tk+1))− h(u)) | R(tk) = u]

≃E[h−1(h(u)) + (h−1)′(h(u))(h(R(tk+1))− h(u))

+
1

2
(h−1)′′(h(u))(h(R(tk+1))− h(u))2 | R(tk) = u]

=m1(h
−1)′(h(u)) +

m2

2
(h−1)′′(h(u)).

In the final step, as h(u) is a function that transforms the original time series into a time series with independent increments,
we can assume that, for all n ∈ N,

E[(h(R(tk+1))− h(u))n | R(tk) = u] = mn ∈ R .

That is, the moments of the transformed increments are stationary over the state space. We can then use the inverse-function
rule to calculate the derivatives as

(h−1)′(h(u)) =
1

h′(h−1(h(u)))
=

1

h′(u)

(h−1)′′(h(u)) =
−h′′(h−1(h(u)))

h′(h−1(h(u)))3
=

−h′′(u)

h′(u)3
.

Hence, we have

E[R(tk+1)
2 | R(tk) = u] ≃ u+

m1

h′(u)
− m2h

′′(u)

2h′(u)3
.

We use a similar method to find E[R(tk+1)
2 | R(tk) = u]. However, this time, we perform the Taylor expansion with the

squared-inverse function h−2(x) := (h−1(x))2,

E[R(tk+1)
2 | R(tk) = u]

=E[h−2(h(R(tk+1))) | R(tk) = u]

≃u2 +m1(h
−2)′(h(u)) +

m2

2
(h−2)′′(h(u)).

We can use the chain rule to calculate the derivatives of the squared-inverse function,

(h−2)′(h(u)) = 2(h−1)′(h(u))h−1(h(u))
2u

h′(u)

12

Non-ergodicity in reinforcement learning

and

(h−2)′′(h(u)) = 2((h−1)′′(h(u))h−1(h(u)) + (h−1)′(h(u))2)

=
−2uh′′(u)

h′(u)3
+

2

h′(u)2
.

Hence, we have

E[R(tk+1)
2 | R(tk) = u] ≃ u2 +

2um1

h′(u)
− m2uh

′′(u)

h′(u)3
+

m2

h′(u)2
.

Substituting into (7) gives us

µ2(u) = E[R(tk+1)
2 | R(tk) = u]

− 2uE[R(tk+1) | R(tk) = u] + u2

≃
(
u2 +

2um1

h′(u)
− m2uh

′′(u)

h′(u)3
+

m2

h′(u)2

)
− 2u

(
u+

m1

h′(u)
− m2h

′′(u)

2h′(u)3

)
+ u2

=
m2

h′(u)2
.

Finally, we can use the fundamental theorem of calculus on Definition 4.1 to get

v(u) =
1

h′(u)2
=⇒ µ2(u) ∝ v(u) (approximately).

A.2. Derivation of the risk-sensitive reward function (6)

For the sake of clarity, we perform our analysis in continuous time. We assume that the return follows an arbitrary Itô
process

dR = f(R) dt+ g(R) dW (t), (8)

where f(R) and g(R) are arbitrary functions of R and W (t) is a Wiener process. This captures a large class of stochastic
processes, as both f and g can be nonlinear and even stochastic. Assume now that the risk-sensitive transformation hrs

extracts an ergodic observable from (8). Then, its increments follow a Brownian motion, i.e., the continuous-time version
of (5):

dhrs = µdt+ σ dW (t). (9)

As we know hrs, we now seek to find f and g for which (9) holds.

Following Itô’s lemma (Itô, 1944), we can write dR as

dR =

(
∂R

∂t
+ µ

∂R

∂hrs
+

1

2
σ2 ∂

2R

∂h2
rs

)
dt+ σ

∂R

∂hrs
dW (t). (10)

As we can invert hrs(R) such that R(hrs) =
ln(hrs

β)
β and since the inverse is twice differentiable, we can insert it into (10)

and obtain

dR =

(
µ

βhrs
− 1

2

σ2

βh2
rs

)
dt+

σ

βhrs
dW (t)

=

(
µ

β2 exp(βR)
− 1

2

σ2

β3 exp(2βR)

)
dt (11)

+
σ

β2 exp(βR)
dW (t).

This equation provides valuable insights into the role of β. Specifically, it highlights that the volatility term (the coefficient
of dW (t)) is always positive, regardless of the sign of β. However, the drift term (the coefficient of dt) depends on the sign

13

Non-ergodicity in reinforcement learning

of β. For β < 0, the drift term is positive, while for β > 0, it starts negative when β is small and then turns positive as β
increases.

From an ergodicity perspective, the risk-averse variant with β < 0 is suitable when (11) exhibits a positive drift, while the
risk-seeking variant with β > 0 is more appropriate when (11) has a negative drift. This aligns with intuitive reasoning:
when the drift is negative, there is limited gain from caution, and one might choose to go all in and hope for luck. This is
also the case when the drift is too small to outweigh the volatility.

The differential dynamics in (11) have a closed-form solution. We start the derivations by simplifying (11). We introduce
k(R) := σ

β2 exp(βR) and cv := σ
µ , which results in

dR =

(
1

cv
k(R) +

1

2
k(R)k′(R)

)
dt+ k(R) dW (t).

From this, we can see that the resulting stochastic differentiable equation belongs to the class of reducible SDEs and has a
known, general solution (Kloeden & Platen, 1992, pp. 123–124):

Rt = ℓ−1

(
1

cv
t+Wt + l(0)

)
,

where ℓ(r) :=
∫ r ds

k(s) =
∫ r β2

σ exp(βs)ds. Now, we need to find an expression for ℓ(R):

ℓ(R) =

∫ R β2

σ
exp(βs) ds =

β

σ
exp(βR).

This expression is invertible,

ℓ−1(R) =
1

β
ln

∣∣∣∣σβ
∣∣∣∣+ 1

β
ln|R|.

Thus, we finally obtain (6):

Rt = ℓ−1

(
1

cv
t+Wt + l(0)

)
= ℓ−1

(
µ

σ
t+Wt +

β

σ

)
=

1

β
ln

∣∣∣∣σβ
∣∣∣∣+ 1

β
ln

∣∣∣∣µσ t+Wt +
β

σ

∣∣∣∣.
A.3. Hyperparameter optimization

Besides the experiments presented in the main body, we also compared our learned transformation in a hyperparameter
optimization task with the BOIL (Bayesian optimization for iterative learning) algorithm (Nguyen et al., 2020). Before
presenting the results, we briefly introduce BOIL.

A.3.1. BAYESIAN OPTIMIZATION FOR ITERATIVE LEARNING

Boil aims to train a machine learning algorithm given a d-dimensional hyperparameter x ∈ X ⊂ Rd for T iterations. This
process produces training evaluations R(· | x, T) with T ∈ [Tmin, Tmax]. These evaluations could generally be returns
of an episode in RL or training accuracies in deep learning. Here, we focus on episode returns in reinforcement learning.
Given the raw training curve R(· | x, T), BOIL assumes an underlying, smoothed black-box function f and then aims to
find x∗ = argmaxx∈X f(x, Tmax). This black-box function is modeled as a Gaussian process (GP), and the next set of
hyperparameters is selected using a variation (Wang & de Freitas, 2014) of the expected improvement (Jones et al., 1998)
algorithm.

Existing Bayesian optimization approaches for hyperparameter optimization typically define the objective function as an
average loss over the final learning episodes. This ignores how stable the performance is and might be misleading due to
the noise and fluctuations of observed episode returns, especially during early stages of training. Therefore, in BOIL, the
authors propose compressing the whole learning curve into a numeric score via a preference function. In particular, they use

14

Non-ergodicity in reinforcement learning

Table 1. Hyperparameters for the experiments in Section 7.

Cart-pole Reacher

Discount rate 0.99 0.99
Training episodes 1000 500
Test episodes 100 100
Training episode length 100 200
Test episode length 200 200
Epochs 10 10
Nodes in the actor neural network 16 64
Learning rate 0.0007 0.001

the Sigmoid function (specifically, the Logistic function) to compute this “utility score” as

y = ŷ(R,m0, g0) = R(· |, x, T) · ℓ(· | m0, g0)

=

t∑
u=1

R(u | x, T)
1 + exp(−g0(u−m0))

, (12)

where · is a dot product, and the Logistic function ℓ(· | m0, g0) is parameterized by a growth parameter g0 defining the
slope and the middle point of the curve m0. The choice of the Sigmoid function is mainly motivated by intuitive arguments.
Since early weights are small, less credit is given to fluctuations at the initial stages, making it less likely for the surrogate
function to be biased toward randomly well-performing settings. As weights monotonically increase, hyperparameters with
improving performance are preferred. As weights saturate, stable, high-performing configurations are preferred over short
“performance spikes” which often characterize unstable training. The score assigns higher values to the same performance if
it is being maintained over more episodes.

The intuition provided by Nguyen et al. (2020) is that the optimal parameters m0, g0 will lead to a better fit of the GP,
resulting in better prediction and optimization performance. The authors then parameterize the GP log marginal likelihood
in terms of m0 and g0 and optimize both parameters using multi-start gradient descent.

A.3.2. COMPARISON

We tried to apply BOIL to the coin toss game, i.e., we tried to optimize hyperparameters for an RL algorithm on the coin
toss game using BOIL. Unfortunately, we there ran into numerical problems caused by the large values the return can have
in some runs. Therefore, we compare BOIL to our learned transformation on the same benchmarks as we used in Section 7
as they were also used by Nguyen et al. (2020). However, instead of learning policies, we optimize hyperparameters of deep
RL algorithms that try to learn those policies. This is slightly different from the setting we designed our transformation
for, and in that sense, it also challenges its generality. The used deep RL algorithms are the double deep Q-networks
(DDQN) (Van Hasselt et al., 2016) algorithm for the cart-pole and the advantage actor-critic (A2C) algorithm (Mnih et al.,
2016) for the reacher. In both cases, we tune the learning rate(s) and the discount factor. We adopt the code from Nguyen
et al. (2020), only adding the ergodicity transformation but without changing any parameter settings.

We show the mean and standard deviation of the average return over five training runs in Figure 5. The general, non-
parametric transformation proposed in this paper achieves comparable performance as the tuned Sigmoid from Nguyen
et al. (2020) on the cart-pole system and can outperform it on the reacher. This shows that while BOIL relies on intuitive
arguments to develop a parametric transformation, we can achieve at least an en-par performance with a non-parametric
transformation motivated by basic principles. Further, Nguyen et al. (2020) showed significant benefits of BOIL over existing
hyperparameter optimization methods based on Bayesian optimization. Thus, coming up with reward transformations,
in general, can significantly enhance learning. While the transformation in BOIL is designed for a specific setting, our
transformation has a more universal character and is applicable in more diverse settings.

A.4. Hyperparameter choices

The hyperparameter choices for the experiments in Section 7 are provided in Table 1.

15

Non-ergodicity in reinforcement learning

0 100 200 300 400 500
0

50

100

150

200

Episode

A
ve

ra
ge

R
ew

ar
d

Ergodic
BOIL

(a) Cart-pole.

0 100 200 300 400 500
−100

−80

−60

−40

−20

0

Episode

Ergodic
BOIL

(b) Reacher.

Figure 5. Comparison of BOIL and our transformation for hyperparameter optimization of deep RL algorithms. Our non-parametric
transformation performs at least en par with state-of-the-art hyperparameter optimization algorithms.

16

