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Abstract
The identification of metaphor is a crucial pre-001
requisite for many downstream language tasks,002
such as sentiment analysis, opinion mining, and003
textual entailment. State-of-the-art systems of004
metaphor detection require training data an-005
notated based on heuristic principles such as006
Metaphor Identification Procedure (MIP) (Prag-007
glejaz Group, 2007) and Selection Preference008
Violation (SPV) (Wilks, 1975; Wilson, 2002).009
We propose an innovative approach that lever-010
ages the cognitive information of embodiment011
that can be derived from word embeddings,012
and explicitly models the process of sensori-013
motor shedding that has been demonstrated as014
essential for human metaphor processing. We015
showed that this cognitively motivated module016
is more effective and can improve the predic-017
tion of metaphoricity compared with the heuris-018
tic MIP that has been applied previously.019

1 Introduction020

Metaphor is a common type of figurative language021

that allows communicators to express novel con-022

strual (Shelley, 1890) and convey a myriad of im-023

plicit meanings (Gibbs, 2023). Effective metaphor024

processing is essential for natural language under-025

standing tasks (Rai and Chakraverty, 2020), such as026

sentiment analysis, machine translation, and textual027

entailment. (Bahdanau et al., 2014; Wu et al., 2018;028

Poria et al., 2016). As a result, NLP researchers029

have focused on the computational modeling of030

metaphor, which typically starts with the identifica-031

tion of metaphors.032

The state-of-the-art systems of metaphor identi-033

fication typically rely on two heuristic principles:034

the Metaphor Identification Procedure (MIP) (Prag-035

glejaz Group, 2007), and Selection Preference Vi-036

olation (SPV) (Wilks, 1975; Wilson, 2002). MIP037

identifies metaphors by recognizing that a word’s038

metaphorical meaning differs from its basic, ‘more039

concrete’, ‘related to bodily action’, and ‘histori-040

cally older’ meaning. SPV detects metaphors by041

identifying violations of words’ semantic selection 042

preferences in context. The modeling of MIP usu- 043

ally begins with the extraction of basic and contex- 044

tual representations of target words and then learns 045

their general differences (Li et al., 2023a; Choi 046

et al., 2021), while SPV focuses on the relation be- 047

tween target words and their contexts (Song et al., 048

2021). Despite their effectiveness, they neglect the 049

cognitive characteristics of metaphor. 050

Embodied cognition posits that all cognitive acts, 051

including language processing, are rooted in per- 052

ception and action (Wilks, 1978; King and Gen- 053

tner, 2022). Psycholinguistic evidence supports 054

that metaphor processing is also embodied (Gibbs 055

et al., 2004; Khatin-Zadeh, 2023), but the contribu- 056

tion of embodiment is dynamic. Specifically, the 057

embodiment level of a metaphorical word often 058

decreases compared to the word’s basic meaning 059

due to the structural mapping between the target 060

and source concepts (Jamrozik et al., 2016)1. For 061

example, in the metaphorical use of the verb ‘drink’ 062

in (a), the embodied features of the action ‘drink’, 063

such as ‘consumed by mouth’, and ‘the object must 064

be liquid’ are abstracted away, unlike in its literal 065

use in (b). This abstraction of sensorimotor infor- 066

mation is essential for humans to derive a metaphor- 067

ical sense of ‘drink’ (to consume a large amount 068

quickly), especially in the early stage of a metaphor 069

(Bowdle and Gentner, 2005). 070

• (a) The students drink the knowledge. 071

• (b) The horse drinks the water. 072

Therefore, we hypothesize that the explicit mod- 073

eling of embodiment change (sensorimotor shed- 074

ding) can enhance metaphor detection. To test this, 075

we developed EmbodiedBERT, a metaphor identi- 076

fication system that explicitly models the process 077

of sensorimotor shedding. Previous research has 078

1See in Appendix for a more detailed explanation of struc-
tural mapping theory
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Figure 1: The architecture of EmbodiedBERT includes:
two PLM encoders which generates the hS (representa-
tion for [CLS]), hS,t (contextual representation of the
target word), ht (basic representation of the target word);
; a suite of sensorimotor regressors (n = 11) which gen-
erate SMS,t (sensorimotor representation of the contex-
tual target) and SM t (the sensorimotor representation
of the basic target); a final binary classification module

integrated sensorimotor information for metaphor079

identification, but most of them merely use it as080

word-level feature enrichment without consider-081

ing the change in embodiment(Bulat et al., 2017;082

Wan et al., 2023). Compared to general seman-083

tic change of word in context (MIP), sensorimotor084

change offers a more cognitively motivated and085

precise method for predicting metaphoricity. In our086

study, we show that our cognitive module is indeed087

effective for predicting metaphoricity.088

2 EmbodiedBERT089

2.1 Model architecture090

EmbodiedBERT has four main components: two091

basic encoders for representing the target word’s092

contextual and basic meaning; a suite of sensorimo-093

tor regressors that maps distributional embeddings094

onto sensorimotor-related dimensions; linear lay-095

ers learning the function of MIP_SM (sensorimotor096

shedding) and SPV, and a final metaphoricity pre-097

dictor.098

Meaning Representation We use two099

roberta-base models (Liu et al., 2019) from100

Hugging Face 2 as the backbone encoder. Given101

a sentence S = {w1, . . . , wn}, the first encoder102

outputs a set of contextualized embeddings103

{hS , hS,1, . . . , hS,t, . . . , hS,n}, where hS stands104

for the global meaning of S and hS,t stands for105

the target’s contextual meaning. To extract the106

2https://huggingface.co/FacebookAI/roberta-base

target’s basic meaning, we input the target word 107

with special tokens into another encoder, resulting 108

in the basic meaning embedding ht. 109

The meaning representations were input into two 110

linear functions: SPV and MIP_SM. Firstly, SPV 111

aims to learn to contrasts a word’s contextual mean- 112

ing with the meaning of its global context. It takes 113

the concatenation of hS and hS,t and learns their 114

difference through the linear function. 115

MIP_SM transforms the encoder outputs before 116

the concatenation operation to reflect the specific 117

change in embodiment-related dimensions. It takes 118

an additional step to map distributional word em- 119

beddings onto these embodiment-related dimen- 120

sions. Specifically, we perform such a mapping 121

for both ht and hS,t, to generate SM t (basic sen- 122

sorimotor embedding) and SMS,t (contextual sen- 123

sorimotor embedding). Next, we concatenate the 124

derived SM t with ht, and SMS,t with hS,t and in- 125

put them to another linear function MIP_SM. (See 126

the next section for further details). 127

Binary classification Finally, the output hidden 128

vectors from SPV and MIP_SM are concatenated 129

together and fed into a linear layer followed by 130

a sigmoid function to predict the likelihood of a 131

target being metaphorical (Eq.1). We minimize 132

the binary cross entropy (Eq.2) and update model 133

parameters via back propagation. 134

ŷ = σ
(
WT

(
hSPV

⊕
hMIPSM

)
+ b

)
(1) 135

L =

N∑
i=1

yilogŷi + (1− yi)log(1− ŷi) (2) 136

2.2 Sensorimotor regressors 137

We obtained embodiment-related information as 138

inputs for MIP_SM by mapping distributional em- 139

beddings onto sensorimotor-related embeddings 140

(Chersoni et al., 2020). There are 11 sensorimotor 141

dimensions related to humans’ embodied experi- 142

ence of the physical world, including: Auditory, 143

Gustatory, Olfactory, Visual, Tactile, Interoceptive, 144

Hand_Arm, Foot_Leg, Head, Mouth, and Torso. A 145

word is assigned a value for each dimension which 146

reflects how strongly the concept embodied by the 147

word is experienced by the respective sensor or af- 148

fector (Lynott et al., 2020). We trained 11 mapping 149

regressors that can automatically deduct these val- 150

ues for each word from a word’s BERT embedding 151

layer (layer 0). Each of the 11 regressors is a neural 152

network mapping a 768-dimension embedding to a 153

single dimension float (two fully connected hidden 154
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layers of the size of 384 and 192 respectively, both155

activated by ReLU). The training and evaluation156

details are in the Appendix.157

3 Experiments158

3.1 Dataset159

We used VUA-20 (Leong et al., 2020) for model160

training, and VUA-18 (Leong et al., 2018) and161

VUA-verb for zero-shot transfer testing. More-162

over, to examine our model’s generalizability to163

non-VUA datasets, we also tested our model on164

MOH (Mohammad et al., 2016) and Trofi (Birke165

and Sarkar, 2006) in a zero-shot transfer setting 3.166

For all the datasets, we adopted the existing split167

of train, dev, test.168

3.2 Baseline models169

For a thorough comparison, we selected six base-170

line models:171

MELBERT (Choi et al., 2021) also uses172

roberta-base as basic encoder, and incorporates173

SPV and MIP for metaphoricity prediction. Em-174

bodiedBERT differs from it by substituting MIP175

with MIP_SM.176

SGNN (Wan et al., 2023) simply incorporates177

sensorimotor information as word-level feature en-178

richment. It concatenates words’ GloVe embed-179

dings and sensorimotor values from Lancaster Sen-180

sorimotor norm as input for a recurrent neural net-181

work for metaphoricity prediction.182

MrBERT (Song et al., 2021) explores the rela-183

tions between metaphorical verbs and their various184

contexts, and predicts whether relations are likely185

to be metaphorical.186

MisNet (Zhang and Liu, 2022) implements MIP187

and SPV with different encoding and feature con-188

catenation strategies.189

BasicBERT (Li et al., 2023b) also proposes a190

new variant MIP, which can better model the mean-191

ing discrepancy between target word in context and192

its basic meaning. Compared with their model, Em-193

bodiedBERT offers a cognitively motivated mea-194

sure of contextual meaning change.195

FrameBERT (Li et al., 2023a) also attempts196

to leverage external knowledge base FrameNet.197

It augments word embedding with self-trained198

FrameNet embedding for modelling MIP and SPV.199

3Both MOH and Trofi contain exclusively verb metaphors,
with the minor difference that the sentences in Trofi are gener-
ally longer than those in MOH.

Model Prec Rec F1

VUA-18

MrBERT 82.7 72.5 77.2
MelBERT 80.1 76.9 78.5
MisNet 80.4 78.4 79.4
FrameBERT 82.7 75.3 78.8
BasicBERT 79.5 78.5 79.0
SGNN 76.7 75.5 76.1
EmbodiedBERT 80.6 76.9 78.7

VUA-20

MrBERT - - -
MelBERT 75.9 69.0 72.3
MistNet - - -
FrameBERT 79.1 67.7 73.0
BasicBERT 73.3 73.2 73.3
SGNN - - -
EmbodiedBERT 73.6 72.2 72.9

VUA-verb

MrBERT 80.8 71.5 75.9
MelBERT 78.7 72.9 75.7
MisNet 78.3 73.6 75.9
FrameBERT - - -
BasicBERT - - -
SGNN - - -
EmbodiedBERT 76.3 76.2 76.3

Table 1: Evaluation of metaphor identification systems
on VUA datasets. Bold indicates the best, underline
indicates the second best

For all the baseline models, we directly obtain 200

the performance of these baselines from the previ- 201

ous publications. 202

3.3 Implementation 203

We finetuned the hyperparameters with grid search. 204

We increased our learning rate from 0 to 4e-5 dur- 205

ing the first two epochs and gradually decreased it. 206

We used the dropout rate of 0.2. The final model 207

was trained with a batch size of 50 by three epochs, 208

using Adam optimizer. We adopted precision, re- 209

call and f1-score as matrix for automatic evaluation. 210

The final model’s performance was obtained by av- 211

eraging the results of five runs with random seeds. 212

The experiments have been run on two NVIDA 213

GeForce RTX 3090 GPUs, with a total of 48GB 214

memory. 215

3.4 Results and discussion 216

Table 1 shows the automatic evaluation of our 217

system compared with the baseline systems for 218

metaphor detection in terms of precision, recall 219

and f1 score. 220

VUA datasets For VUA-18, EmbodiedBERT 221

achieves the forth best f1 score, while outper- 222

forming MelBERT, MrBERT and SGNN. For 223
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VUA-20, our system still outperforms MelBERT,224

but lags behind FrameBERT and BasicBERT.225

In terms of VUA-verb, our system achieves226

0.79%, 0.79% and 0.53% performance gains com-227

pared with MelBERT, MisNet and MrBERT. The228

consistent improvements over MelBERT in all229

three datasets show that modelling sensorimotor230

change (MIP_SM) is indeed effective for predict-231

ing metaphoricity, considering the major difference232

between EmbodiedBERT and MelBERT is the sub-233

stitution of MIP by MIP_SM. Also, our system234

achieves the best performance in verb metaphor235

detection (VUA-verb), which validates that senso-236

rimotor shedding is indeed an important aspect of237

verb metaphor processing, during which verbs are238

become semantically mutable to derive a metaphor-239

ical meaning (King and Gentner, 2022; Jamrozik240

et al., 2016).241

Break-down analysis by POS When breaking242

down the VUA-18 dataset by Part-of-speech (POS),243

we find that EmbodiedBERT surpasses all other244

systems except MisNet in verb metaphors (f1 =245

76.9, 1.3% gain over MelBERT)4, while achieving246

the second best in adjective (f1 = 68.0) and third247

best in adverb categories (f1 = 72.5). Our system248

does not work well for noun metaphors (f1 = 69.5)249

(see details in the Appendix). It remains unclear250

why the modelling of sensorimotor change does not251

help improve the detection of noun metaphor, a cat-252

egory that should have also demonstrated obvious253

sensorimotor changes as predicted by the Structural254

Mapping Theory.255

Break-down analysis by genre Meanwhile,256

when dividing the VUA-18 dataset by genre, our257

system outperforms all other systems in academic258

writings (f1 = 84.2, 0.4% gain over MelBERT) and259

achieves the second best in news (f1 = 78.6, 1.8%260

gain over MelBERT), which are both formal gen-261

res. Meanwhile, our system ranks the third best262

in terms of conversation (f1 = 69.9) and fiction263

(f1 = 75.3) (see details in the Appendix). This264

is relatively surprising, for we originally hypoth-265

esized that modelling sensorimotor shedding will266

help detect more novel metaphors which often ap-267

pear in conversation and fiction, for conventional268

metaphors (close to literal use) are less likely to269

show contextual change in embodiment (Bowdle270

and Gentner, 2005).271

Transfer to non-VUA datasets We also tested272

4Note that the verb metaphors in the break-down analysis
only come from VUA-18, while VUA-verb is the mixture of
data from both VUA-18 and VUA-20.

our system’s transferability to non-VUA datasets, 273

like TroFi and MOH-X, and the overall results are 274

shown in the following table. In general, our sys- 275

tem is relatively inferior compared with other sys- 276

tems in terms of zero-shot transfer ability towards 277

non-VUA datasets (MOH-X: f1 = 78.2; TroFi: f1 278

= 61.5) (see details in the Appendix). 279

Case analysis We reveal how the integration of 280

sensorimotor shedding can help the model reduce 281

both false positives and false negatives. Specif- 282

ically, we compared our model’s predictions for 283

VUA20-test with the predictions of MelBERT. For 284

the reduction of false positives, EmbodiedBERT 285

does not identify literal phrases with a minimal 286

sensorimotor change as metaphor. For example, 287

in the phrase ‘MODERN trams, as most continen- 288

tal Europeans know, neither shake nor rattle, nor 289

do they roll.’, ‘shake’ and ‘rattle’ are supposed 290

to be literal description of the tram’s movement, 291

but MELBERT predicts them to be metaphor. For 292

the reduction of false negatives, our system is more 293

skilled at identifying embodiment-based metaphors. 294

For example, it can successfully identify visual 295

metaphors like ‘hazy’ in ‘a poet’s sense of other 296

people’s very hazy’, which represents cognitive in- 297

capacity by visual haziness (see more examples in 298

the Appendix). 299

4 Conclusion 300

In this study, we contribute a novel system for 301

metaphor detection EmbodiedBERT, which explic- 302

itly models the change in sensorimtor informa- 303

tion of metaphorical words. The performance im- 304

provements over systems using MIP (general mean- 305

ing change in context) shows that the cognitive- 306

informed MIP_SM is indeed a promising predictor 307

of metaphoricity. Based on our results, we envision 308

that the incorporation of embodiment information 309

cannot only benefit metaphor detection, but also 310

many other language understanding tasks that re- 311

quire embodied experience. Therefore, a promis- 312

ing direction is to distill embodiment knowledge 313

from large language models trained on multimodal 314

inputs and apply the distilled knowledge to down- 315

stream architecture designs. 316

Limitations 317

There are some limitations to be addressed in the 318

future research. First, the modelling of sensorimo- 319

tor change highly depends on the representations of 320

basic meaning and contextual meaning of the target 321

4



word. We currently used the output by feeding sin-322

gle word into encoder to represent basic meaning,323

but a more precise of basic meaning representation324

will be beneficial, which has begun to be investi-325

gated by many researchers (e.g. Li et al. (2023a),326

Zhang and Liu (2022)).327

Second, we currently used a relatively simple328

method to derive contextual and basic sensorimo-329

tor representation. We envision that a more so-330

phisticated way of integrating sensorimotor change331

will not only improve the performance on existing332

datasets, but could also be beneficial for increas-333

ing the system’s transfer ability to detect novel334

metaphors in new datasets.335

Finally, compared with BERT, recent large lan-336

guage models presumably contain more embodi-337

ment knowledge due to more sufficient training and338

more diverse inputs, which could be a more ideal339

source for deriving embodiment representation.340
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A Appendix 482

A.1 Structural Mapping Theory 483

Structure mapping theory (Gentner, 1983) aims to 484

offer a general way of accounting for conceptual 485

analogy, of which metaphor is a specific category. 486

It proposes that any kind of analogy involves two 487

processing stages: structural alignment and projec- 488

tion. To process analogies, human begin to take 489

two entities in an analogy into comparison and 490

structurally align their corresponding properties. 491

The alignment process observes three principles: 492

one-to-one mapping, parallel connectivity, and sys- 493

tematicity. Sensorimotor features of the source 494

concept which fail to connect to the aligned system 495

due to the violation of the principles will be shed 496

away from source representation, and thus cannot 497

be projected to the target representation. 498

A.2 Text representation 499

We used the byte-pair encoding (BPE) to tokenize 500

S. Following Choi et al. (2021), we used the po- 501

sition embedding to distinguish target word and 502

its local context. Also, following Su et al. (2020), 503

after adding special tokens [CLS] and [SEP] to the 504

beginning and the end of S, we utilized the part 505

of speech (POS) information of the target word by 506

appending its POS after [SEP]. Finally, we fed the 507

element-wise addition of BPE token embedding, 508

position embedding and segment embedding of S 509

as input into the first encoder. 510

A.3 Training and evaluation of sensorimotor 511

regressors 512

To train the regressors, we adopted Lancaster Sen- 513

sorimotor Norm (Lynott et al., 2020), which con- 514

tains contains 11-dimension sensorimotor informa- 515

tion for 2,9000 English words. Meanwhile, we 516

used word embedding from BERT embedding layer 517

as input (Devlin et al., 2019). The size of overlap- 518

ping vocabulary of Lancaster Sensorimotor Norm 519

and BERT vocabulary is 11,402, and we split it 520

into training and testing with the ratio of 8:2. We 521

used mean squared error as criterion for calculating 522

loss and adopted Adam optimizer for parameter 523

updating. Our initial learning rate was 0.001 and 524

was gradually decreased by the factor of 0.1 with 525

the patience of 10. We performed 5-fold cross- 526

validation and used early stopping to save the best 527
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model based on the loss on validation set. For eval-528

uation, we used Pearson correlations of models’529

predicted values with human rating. Overall, the530

relatively high correlations suggest that our regres-531

sors can reliably deduct sensorimotor information532

from word embeddings.533

Dimension BERT

auditory 0.76
gustatory 0.78
haptic 0.79
interoceptive 0.81
olfactory 0.75
visual 0.72
foot_leg 0.74
hand_arm 0.73
head 0.61
mouth 0.73
torso 0.69
by-word 0.88

Table 2: Correlations of sensorimotor prediction with
human judgement. Bold indicates the best, underline
indicates the second best.

Dataset Model F1 Prec Rec

TroFi

MelBERT 62.0 53.4 74.1
MrBERT 72.9 73.9 72.1
MisNet - - -
FrameBERT 74.2 70.7 78.2
EmbodiedBERT 61.5 52.5 74.6

MOH-X

MelBERT 79.2 79.3 79.7
MrBERT 84.2 84.1 85.6
MisNet 83.4 84.2 84.0
FrameBERT 83.8 83.2 84.4
EmbodiedBERT 78.2 76.4 81.1

Table 3: Zero-shot transfer to non-VUA datasets. Bold
indicates the best, underline indicates the second best.

POS Model F1 Prec Rec

ADJ

MelBERT 64.4 69.4 60.1
MisNet 67.0 68.8 65.2
SGNN 70.8 - -
EmbodiedBERT 68.0 70.9 65.3

ADV

MelBERT 74.6 80.2 69.7
MisNet 73.3 76.4 70.5
SGNN 65.4 - -
EmbodiedBERT 72.5 79.5 66.6

NOUN

MelBERT 70.7 75.4 66.5
MisNet 70.6 74.4 67.2
SGNN 73.2 - -
EmbodiedBERT 69.5 76.0 64.0

VERB

MelBERT 75.1 74.2 75.9
MisNet 77.6 77.5 77.6
SGNN 76.2 - -
EmbodiedBERT 76.5 76.1 76.9

Table 4: POS-specific evaluation of different systems.
Bold indicates the best, underline indicates the second
best.

Genre Model F1 Prec Rec

Acad

MelBERT 83.9 85.3 82.5
MisNet 83.8 85.1 82.5
SGNN 76.5 - -
EmbodiedBERT 84.2 86.8 81.7

Conv

MelBERT 70.9 70.1 71.7
MisNet 71.9 71.8 72.0
SGNN 65.5 - -
EmbodiedBERT 69.9 70.3 69.5

Fict

MelBERT 75.4 74.0 76.8
MisNet 76.0 74.5 77.5
SGNN 69.0 - -
EmbodiedBERT 75.3 73.7 77.0

News

MelBERT 77.2 81 73.7
MisNet 79.7 82.6 77.0
SGNN 74.4 - -
EmbodiedX 78.6 83.0 74.7

Table 5: Genre-specific evaluation of different systems.
Acad: academic; Conv: conversation; Fict: fiction.
Bold indicates the best, underline indicates the second
best.
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Sentence True EB MB

This violent event, de-
scribed at length in hyster-
ically colourful terms, is
the only piece of history
to be woven convincingly
into the plot.

0 0 1

Hardly a page goes by
without the hapless Francis
noticing something which
reminds him, improbably,
of something else.

0 0 1

There are strict time lim-
its: generally, six years
from when damage first oc-
curred...

0 0 1

A solicitor fails to draw up
a will within a reasonable
time for a client who subse-
quently dies.

0 0 1

Children still would not
have full political status.

0 0 1

That, says Mr Tyson, has
been their only blessing.

1 1 0

But ‘posturing and pre-
tending’ went far beyond
the unions.

1 1 0

But the chief result of all
this farming was to pro-
duce huge food mountains
which we could then refuse
to give to the Third World

1 1 0

Nowadays, we all swoon
with pleasure at the sight
of a cow.

1 1 0

Though individuals are
nailed, the greatest villain
of all is the system.

1 1 0

Berry’s songs are plausi-
ble emblems of rock’n’roll
rebellion or, at any rate,
youthful hedonism.

1 1 0

Table 6: Case analysis: reduction of false positives
and negatives by EmbodiedBERT (EB) compared with
MelBERT (MB). Bold indicates the target word.
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