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Abstract

The identification of metaphor is a crucial pre-
requisite for many downstream language tasks,
such as sentiment analysis, opinion mining, and
textual entailment. State-of-the-art systems of
metaphor detection require training data an-
notated based on heuristic principles such as
Metaphor Identification Procedure (MIP) (Prag-
glejaz Group, 2007) and Selection Preference
Violation (SPV) (Wilks, 1975; Wilson, 2002).
We propose an innovative approach that lever-
ages the cognitive information of embodiment
that can be derived from word embeddings,
and explicitly models the process of sensori-
motor shedding that has been demonstrated as
essential for human metaphor processing. We
showed that this cognitively motivated module
is more effective and can improve the predic-
tion of metaphoricity compared with the heuris-
tic MIP that has been applied previously.

1 Introduction

Metaphor is a common type of figurative language
that allows communicators to express novel con-
strual (Shelley, 1890) and convey a myriad of im-
plicit meanings (Gibbs, 2023). Effective metaphor
processing is essential for natural language under-
standing tasks (Rai and Chakraverty, 2020), such as
sentiment analysis, machine translation, and textual
entailment. (Bahdanau et al., 2014; Wu et al., 2018;
Poria et al., 2016). As a result, NLP researchers
have focused on the computational modeling of
metaphor, which typically starts with the identifica-
tion of metaphors.

The state-of-the-art systems of metaphor identi-
fication typically rely on two heuristic principles:
the Metaphor Identification Procedure (MIP) (Prag-
glejaz Group, 2007), and Selection Preference Vi-
olation (SPV) (Wilks, 1975; Wilson, 2002). MIP
identifies metaphors by recognizing that a word’s
metaphorical meaning differs from its basic, ‘more
concrete’, ‘related to bodily action’, and ‘histori-
cally older’ meaning. SPV detects metaphors by

identifying violations of words’ semantic selection
preferences in context. The modeling of MIP usu-
ally begins with the extraction of basic and contex-
tual representations of target words and then learns
their general differences (Li et al., 2023a; Choi
et al., 2021), while SPV focuses on the relation be-
tween target words and their contexts (Song et al.,
2021). Despite their effectiveness, they neglect the
cognitive characteristics of metaphor.

Embodied cognition posits that all cognitive acts,
including language processing, are rooted in per-
ception and action (Wilks, 1978; King and Gen-
tner, 2022). Psycholinguistic evidence supports
that metaphor processing is also embodied (Gibbs
et al., 2004; Khatin-Zadeh, 2023), but the contribu-
tion of embodiment is dynamic. Specifically, the
embodiment level of a metaphorical word often
decreases compared to the word’s basic meaning
due to the structural mapping between the target
and source concepts (Jamrozik et al., 2016)'. For
example, in the metaphorical use of the verb ‘drink’
in (a), the embodied features of the action ‘drink’,
such as ‘consumed by mouth’, and ‘the object must
be liquid’ are abstracted away, unlike in its literal
use in (b). This abstraction of sensorimotor infor-
mation is essential for humans to derive a metaphor-
ical sense of ‘drink’ (to consume a large amount
quickly), especially in the early stage of a metaphor
(Bowdle and Gentner, 2005).

* (a) The students drink the knowledge.
¢ (b) The horse drinks the water.

Therefore, we hypothesize that the explicit mod-
eling of embodiment change (sensorimotor shed-
ding) can enhance metaphor detection. To test this,
we developed EmbodiedBERT, a metaphor identi-
fication system that explicitly models the process
of sensorimotor shedding. Previous research has

'See in Appendix for a more detailed explanation of struc-
tural mapping theory
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Figure 1: The architecture of EmbodiedBERT includes:
two PLM encoders which generates the hg (representa-
tion for [CLS]), hgs; (contextual representation of the
target word), h; (basic representation of the target word);
; a suite of sensorimotor regressors (n = 11) which gen-
erate SM s+ (sensorimotor representation of the contex-
tual target) and S M, (the sensorimotor representation
of the basic target); a final binary classification module

integrated sensorimotor information for metaphor
identification, but most of them merely use it as
word-level feature enrichment without consider-
ing the change in embodiment(Bulat et al., 2017;
Wan et al., 2023). Compared to general seman-
tic change of word in context (MIP), sensorimotor
change offers a more cognitively motivated and
precise method for predicting metaphoricity. In our
study, we show that our cognitive module is indeed
effective for predicting metaphoricity.

2 EmbodiedBERT
2.1 Model architecture

EmbodiedBERT has four main components: two
basic encoders for representing the target word’s
contextual and basic meaning; a suite of sensorimo-
tor regressors that maps distributional embeddings
onto sensorimotor-related dimensions; linear lay-
ers learning the function of MIP_SM (sensorimotor
shedding) and SPV, and a final metaphoricity pre-
dictor.

Meaning Representation We use two
roberta-base models (Liu et al.,, 2019) from
Hugging Face ? as the backbone encoder. Given
a sentence S = {wi,...,w,}, the first encoder
outputs a set of contextualized embeddings
{hs,hs1,...,hst,...,hsn}, where hg stands
for the global meaning of S and hg; stands for
the target’s contextual meaning. To extract the

*https://huggingface.co/Facebook Al/roberta-base

target’s basic meaning, we input the target word
with special tokens into another encoder, resulting
in the basic meaning embedding h;.

The meaning representations were input into two
linear functions: SPV and MIP_SM. Firstly, SPV
aims to learn to contrasts a word’s contextual mean-
ing with the meaning of its global context. It takes
the concatenation of hg and hg; and learns their
difference through the linear function.

MIP_SM transforms the encoder outputs before
the concatenation operation to reflect the specific
change in embodiment-related dimensions. It takes
an additional step to map distributional word em-
beddings onto these embodiment-related dimen-
sions. Specifically, we perform such a mapping
for both h; and hg, to generate SM; (basic sen-
sorimotor embedding) and SM g ; (contextual sen-
sorimotor embedding). Next, we concatenate the
derived SM with h;, and SM g, with hg; and in-
put them to another linear function MIP_SM. (See
the next section for further details).

Binary classification Finally, the output hidden
vectors from SPV and MIP_SM are concatenated
together and fed into a linear layer followed by
a sigmoid function to predict the likelihood of a
target being metaphorical (Eq.1). We minimize
the binary cross entropy (Eq.2) and update model
parameters via back propagation.

g=o (WT (hSPV @hMIPSM ) + b) (1)

N
L= yilogi+ (1 —y:)log(1 — i) ©))
i=1

2.2 Sensorimotor regressors

We obtained embodiment-related information as
inputs for MIP_SM by mapping distributional em-
beddings onto sensorimotor-related embeddings
(Chersoni et al., 2020). There are 11 sensorimotor
dimensions related to humans’ embodied experi-
ence of the physical world, including: Auditory,
Gustatory, Olfactory, Visual, Tactile, Interoceptive,
Hand_Arm, Foot_Leg, Head, Mouth, and Torso. A
word is assigned a value for each dimension which
reflects how strongly the concept embodied by the
word is experienced by the respective sensor or af-
fector (Lynott et al., 2020). We trained 11 mapping
regressors that can automatically deduct these val-
ues for each word from a word’s BERT embedding
layer (layer 0). Each of the 11 regressors is a neural
network mapping a 768-dimension embedding to a
single dimension float (two fully connected hidden



layers of the size of 384 and 192 respectively, both
activated by ReL.U). The training and evaluation
details are in the Appendix.

3 Experiments

3.1 Dataset

We used VUA-20 (Leong et al., 2020) for model
training, and VUA-18 (Leong et al., 2018) and
VUA-verb for zero-shot transfer testing. More-
over, to examine our model’s generalizability to
non-VUA datasets, we also tested our model on
MOH (Mohammad et al., 2016) and Trofi (Birke
and Sarkar, 2006) in a zero-shot transfer setting 3.
For all the datasets, we adopted the existing split
of train, dev, test.

3.2 Baseline models

For a thorough comparison, we selected six base-
line models:

MELBERT (Choi et al.,, 2021) also uses
roberta-base as basic encoder, and incorporates
SPV and MIP for metaphoricity prediction. Em-
bodiedBERT differs from it by substituting MIP
with MIP_SM.

SGNN (Wan et al., 2023) simply incorporates
sensorimotor information as word-level feature en-
richment. It concatenates words’ GloVe embed-
dings and sensorimotor values from Lancaster Sen-
sorimotor norm as input for a recurrent neural net-
work for metaphoricity prediction.

MrBERT (Song et al., 2021) explores the rela-
tions between metaphorical verbs and their various
contexts, and predicts whether relations are likely
to be metaphorical.

MisNet (Zhang and Liu, 2022) implements MIP
and SPV with different encoding and feature con-
catenation strategies.

BasicBERT (Li et al., 2023b) also proposes a
new variant MIP, which can better model the mean-
ing discrepancy between target word in context and
its basic meaning. Compared with their model, Em-
bodiedBERT offers a cognitively motivated mea-
sure of contextual meaning change.

FrameBERT (Li et al., 2023a) also attempts
to leverage external knowledge base FrameNet.
It augments word embedding with self-trained
FrameNet embedding for modelling MIP and SPV.

3Both MOH and Trofi contain exclusively verb metaphors,
with the minor difference that the sentences in Trofi are gener-
ally longer than those in MOH.

Model Prec Rec F1
MrBERT 827 725 712
MelBERT 80.1 769 785
MisNet 80.4 78.4 79.4
VUA-I8 . meBERT 827 753 788
BasicBERT 795 785 79.0
SGNN 76.7 755 76.1
EmbodiedBERT  80.6 76.9 78.7
MrBERT - - -
MelBERT 759 69.0 723
MistNet - - -
VUA-20 . meBERT 791 677 73.0
BasicBERT 733 732 733
SGNN - - -
EmbodiedBERT  73.6 722 729
MrBERT 80.8 715 759
MelBERT 78.7 729 75.7
MisNet 783 73.6 75.9
VUA-verb o meBERT - - -
BasicBERT - - -
SGNN - - -
EmbodiedBERT 763 762 76.3

Table 1: Evaluation of metaphor identification systems
on VUA datasets. Bold indicates the best, underline
indicates the second best

For all the baseline models, we directly obtain
the performance of these baselines from the previ-
ous publications.

3.3 Implementation

We finetuned the hyperparameters with grid search.
We increased our learning rate from 0 to 4e-5 dur-
ing the first two epochs and gradually decreased it.
We used the dropout rate of 0.2. The final model
was trained with a batch size of 50 by three epochs,
using Adam optimizer. We adopted precision, re-
call and f1-score as matrix for automatic evaluation.
The final model’s performance was obtained by av-
eraging the results of five runs with random seeds.
The experiments have been run on two NVIDA
GeForce RTX 3090 GPUs, with a total of 48GB
memory.

3.4 Results and discussion

Table 1 shows the automatic evaluation of our
system compared with the baseline systems for
metaphor detection in terms of precision, recall
and f1 score.

VUA datasets For VUA-18, EmbodiedBERT
achieves the forth best fl score, while outper-
forming MelBERT, MrBERT and SGNN. For



VUA-20, our system still outperforms MelBERT,
but lags behind FrameBERT and BasicBERT.
In terms of VUA-verb, our system achieves
0.79%, 0.79% and 0.53% performance gains com-
pared with MelBERT, MisNet and MrBERT. The
consistent improvements over MelBERT in all
three datasets show that modelling sensorimotor
change (MIP_SM) is indeed effective for predict-
ing metaphoricity, considering the major difference
between EmbodiedBERT and MelBERT is the sub-
stitution of MIP by MIP_SM. Also, our system
achieves the best performance in verb metaphor
detection (VUA-verb), which validates that senso-
rimotor shedding is indeed an important aspect of
verb metaphor processing, during which verbs are
become semantically mutable to derive a metaphor-
ical meaning (King and Gentner, 2022; Jamrozik
et al., 2016).

Break-down analysis by POS When breaking
down the VUA-18 dataset by Part-of-speech (POS),
we find that EmbodiedBERT surpasses all other
systems except MisNet in verb metaphors (f1 =
76.9, 1.3% gain over MelBERT)*, while achieving
the second best in adjective (f1 = 68.0) and third
best in adverb categories (f1 = 72.5). Our system
does not work well for noun metaphors (f1 = 69.5)
(see details in the Appendix). It remains unclear
why the modelling of sensorimotor change does not
help improve the detection of noun metaphor, a cat-
egory that should have also demonstrated obvious
sensorimotor changes as predicted by the Structural
Mapping Theory.

Break-down analysis by genre Meanwhile,
when dividing the VUA-18 dataset by genre, our
system outperforms all other systems in academic
writings (f1 = 84.2, 0.4% gain over MelBERT) and
achieves the second best in news (f1 = 78.6, 1.8%
gain over MelBERT), which are both formal gen-
res. Meanwhile, our system ranks the third best
in terms of conversation (f1 = 69.9) and fiction
(f1 = 75.3) (see details in the Appendix). This
is relatively surprising, for we originally hypoth-
esized that modelling sensorimotor shedding will
help detect more novel metaphors which often ap-
pear in conversation and fiction, for conventional
metaphors (close to literal use) are less likely to
show contextual change in embodiment (Bowdle
and Gentner, 2005).

Transfer to non-VUA datasets We also tested

“Note that the verb metaphors in the break-down analysis

only come from VUA-18, while VUA-verb is the mixture of
data from both VUA-18 and VUA-20.

our system’s transferability to non-VUA datasets,
like TroFi and MOH-X, and the overall results are
shown in the following table. In general, our sys-
tem is relatively inferior compared with other sys-
tems in terms of zero-shot transfer ability towards
non-VUA datasets (MOH-X: f1 = 78.2; TroFi: f1
= 61.5) (see details in the Appendix).

Case analysis We reveal how the integration of
sensorimotor shedding can help the model reduce
both false positives and false negatives. Specif-
ically, we compared our model’s predictions for
VUA20-test with the predictions of MelBERT. For
the reduction of false positives, EmbodiedBERT
does not identify literal phrases with a minimal
sensorimotor change as metaphor. For example,
in the phrase ‘MODERN trams, as most continen-
tal Europeans know, neither shake nor rattle, nor
do they roll.’, ‘shake’ and ‘rattle’ are supposed
to be literal description of the tram’s movement,
but MELBERT predicts them to be metaphor. For
the reduction of false negatives, our system is more
skilled at identifying embodiment-based metaphors.
For example, it can successfully identify visual
metaphors like ‘hazy’ in ‘a poet’s sense of other
people’s very hazy’, which represents cognitive in-
capacity by visual haziness (see more examples in
the Appendix).

4 Conclusion

In this study, we contribute a novel system for
metaphor detection EmbodiedBERT, which explic-
itly models the change in sensorimtor informa-
tion of metaphorical words. The performance im-
provements over systems using MIP (general mean-
ing change in context) shows that the cognitive-
informed MIP_SM is indeed a promising predictor
of metaphoricity. Based on our results, we envision
that the incorporation of embodiment information
cannot only benefit metaphor detection, but also
many other language understanding tasks that re-
quire embodied experience. Therefore, a promis-
ing direction is to distill embodiment knowledge
from large language models trained on multimodal
inputs and apply the distilled knowledge to down-
stream architecture designs.

Limitations

There are some limitations to be addressed in the
future research. First, the modelling of sensorimo-
tor change highly depends on the representations of
basic meaning and contextual meaning of the target



word. We currently used the output by feeding sin-
gle word into encoder to represent basic meaning,
but a more precise of basic meaning representation
will be beneficial, which has begun to be investi-
gated by many researchers (e.g. Li et al. (2023a),
Zhang and Liu (2022)).

Second, we currently used a relatively simple
method to derive contextual and basic sensorimo-
tor representation. We envision that a more so-
phisticated way of integrating sensorimotor change
will not only improve the performance on existing
datasets, but could also be beneficial for increas-
ing the system’s transfer ability to detect novel
metaphors in new datasets.

Finally, compared with BERT, recent large lan-
guage models presumably contain more embodi-
ment knowledge due to more sufficient training and
more diverse inputs, which could be a more ideal
source for deriving embodiment representation.
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A Appendix
A.1 Structural Mapping Theory

Structure mapping theory (Gentner, 1983) aims to
offer a general way of accounting for conceptual
analogy, of which metaphor is a specific category.
It proposes that any kind of analogy involves two
processing stages: structural alignment and projec-
tion. To process analogies, human begin to take
two entities in an analogy into comparison and
structurally align their corresponding properties.
The alignment process observes three principles:
one-to-one mapping, parallel connectivity, and sys-
tematicity. Sensorimotor features of the source
concept which fail to connect to the aligned system
due to the violation of the principles will be shed
away from source representation, and thus cannot
be projected to the target representation.

A.2 Text representation

We used the byte-pair encoding (BPE) to tokenize
S. Following Choi et al. (2021), we used the po-
sition embedding to distinguish target word and
its local context. Also, following Su et al. (2020),
after adding special tokens [CLS] and [SEP] to the
beginning and the end of S, we utilized the part
of speech (POS) information of the target word by
appending its POS after [SEP]. Finally, we fed the
element-wise addition of BPE token embedding,
position embedding and segment embedding of S
as input into the first encoder.

A.3 Training and evaluation of sensorimotor
regressors

To train the regressors, we adopted Lancaster Sen-
sorimotor Norm (Lynott et al., 2020), which con-
tains contains 11-dimension sensorimotor informa-
tion for 2,9000 English words. Meanwhile, we
used word embedding from BERT embedding layer
as input (Devlin et al., 2019). The size of overlap-
ping vocabulary of Lancaster Sensorimotor Norm
and BERT vocabulary is 11,402, and we split it
into training and testing with the ratio of 8:2. We
used mean squared error as criterion for calculating
loss and adopted Adam optimizer for parameter
updating. Our initial learning rate was 0.001 and
was gradually decreased by the factor of 0.1 with
the patience of 10. We performed 5-fold cross-
validation and used early stopping to save the best
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model based on the loss on validation set. For eval-
uation, we used Pearson correlations of models’

predicted values with human rating. Overall, the POS Model F1 Prec Rec
relatively high correlations suggest that our regres- MelBERT 644 694 060.1
sors can reliably deduct sensorimotor information ADJ MisNet 67.0 68.8 65.2
from word embeddings. SGNN 70.8 - -
EmbodiedBERT 68.0 709 65.3
Dimension  BERT MeIBERT  74.6 802 69.7
auditory 0.76 ADV MisNet 733 764 1705
gustatory 0.78 SGNN 654 - -
haptic 0.79 EmbodiedBERT 72.5 79.5 66.6
iq;efocePﬁVe 8-8; MeIBERT 707 754  66.5
oltactory 7 MisNet 706 744 672
visual 0.72 NOUN SGNN 73.2 _ _
foot_leg 0.74 EmbodiedBERT 69.5 76.0 64.0
hand_arm 0.73
mouth 0.73 VERB MisNet 716 715 77.6
torso 0.69 SGNN ) 76.2 ) )
by-word 0.88 EmbodiedBERT 76.5 76.1 76.9

Table 4: POS-specific evaluation of different systems.

Table 2: Correlations of sensorimotor prediction with o R
Bold indicates the best, underline indicates the second

human judgement. Bold indicates the best, underline

indicates the second best. best.
Dataset Model F1  Prec Rec
MelBERT 62.0 534 74.1 Genre Model F1 Prec Rec
MrBERT 72.9 739 721 MelBERT 83.9 853 825
TroFi MisNet - - - Acad  MisNet 83.8 85.1 825
FrameBERT 74.2 70.7 78.2 ad  ¢GNN 765 - -
EmbodiedBERT 61.5 52.5 74.6 EmbodiedBERT 84.2 86.8 81.
MeIBERT 792 793 797 MelBERT 70.9 70.1 71.7
MrBERT 84.2 84.1 85.6 MisNet 719 71.8 72.0
MOH-X MisNet 834 842 840 Conv ¢ \N 655 - )
FrameBERT =~ 83.8 832 844 EmbodiedBERT 69.9 703 69.5
EmbodiedBERT 78.2 76.4 81.1
MelBERT 754 740 76.8
Table 3: Zero-shot transfer to non-VUA datasets. Bold Fict MisNet 76.0 745 715
indicates the best, underline indicates the second best. SGNN 69.0 - -
EmbodiedBERT 75.3 73.7 77.0
MelBERT 772 81 737
News MisNet 79.7 82.6 77.0
SGNN 74.4 - -
EmbodiedX 78.6 83.0 74.7

Table 5: Genre-specific evaluation of different systems.
Acad: academic; Conv: conversation; Fict: fiction.
Bold indicates the best, underline indicates the second
best.



Sentence True EB MB

This violent event, de- 0 0 1
scribed at length in hyster-

ically colourful terms, is

the only piece of history

to be woven convincingly

into the plot.

Hardly a page goes by 0 0 1
without the hapless Francis

noticing something which

reminds him, improbably,

of something else.

There are strict time lim- 0 0 1
its: generally, six years

from when damage first oc-

curred...

A solicitor fails to draw up 0 0 1
a will within a reasonable

time for a client who subse-

quently dies.

Children still would not 0 0 1
have full political status.

That, says Mr Tyson, has 1 1 0
been their only blessing.

But ‘posturing and pre- 1 1 0
tending” went far beyond

the unions.

But the chief result of all 1 1 0
this farming was to pro-

duce huge food mountains

which we could then refuse

to give to the Third World

Nowadays, we all swoon 1 1 0
with pleasure at the sight

of a cow.

Though individuals are 1 1 0
nailed, the greatest villain

of all is the system.

Berry’s songs are plausi- 1 1 0
ble emblems of rock’n’roll

rebellion or, at any rate,

youthful hedonism.

Table 6: Case analysis: reduction of false positives
and negatives by EmbodiedBERT (EB) compared with
MelBERT (MB). Bold indicates the target word.
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