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ABSTRACT

Properties estimation for quantum systems is crucial for addressing quantum
many-body problems in physics and chemistry. Recently, task-specific deep learn-
ing models have exhibited an enhanced capacity to estimate the properties, sur-
passing the performance of conventional statistical approaches. However, with
rapid escalation of quantum computers, existing learning-based models fall short
in learning from explosion of quantum data generated by the systems under dif-
ferent physical conditions. Inspired by the triumphs of Large Language Models
in Natural Language Processing and Computer Vision, we introduce Q-TAPE, a
task-agnostic pre-trained model that 1) facilitates learning of the rich information
from diverse quantum systems with different physical conditions in a fully unsu-
pervised fashion; 2) delivers high performance with limited training data, mitigat-
ing the cost for quantum data collection and reducing the time for convergence
for different supervised tasks. Extensive experiments demonstrate the promis-
ing efficacy of Q-TAPE in various tasks including classifying quantum phases of
matter on Rydberg atom model and predicting two-body correlation function on
anisotropic Heisenberg model. Source code will be made publicly available.

1 INTRODUCTION

Precise estimation of quantum system properties is essential for verifying and evaluating quantum
technologies (Huang et al., 2020; Gočanin et al., 2022). However, traditional tomographic tech-
niques struggle for a generic quantum systems due to the exponential complexity inherent in de-
scribing quantum many-body systems (Gebhart et al., 2023). Fortunately, physical systems of in-
terest such as those generated by the dynamics of a local Hamiltonian, are not generic, since their
particular structure guarantees that the full complexity of Hilbert space is in principle not required
for their accurate description (Carrasquilla et al., 2019). Numerous methods have emerged to char-
acterize quantum systems from traditional Density functional theory (DFT) (Hohenberg & Kohn,
1964), Quantum Monte Carlo (QMC) (Ceperley & Alder, 1986), to advanced variational methods
e.g. Tensor Networks (TNs) (Orús, 2019) and Neural Network Quantum States (NNQS) (Zhang &
Di Ventra, 2023). All these strategies converge on a singular aim: accurately characterize desired
properties of the quantum state using as few identical copies and measurements as possible.

Variational methods have increasingly become pivotal in addressing quantum many-body problems
in recent years (Carleo et al., 2019; Miles et al., 2023). Some methods have already integrated
quantum variational algorithms with classical machine learning models, demonstrating feasibility
in text (Yang et al., 2022) and image classification (Qi et al., 2023). These methods endeavor to
create classical parametric representations for many-body wave functions, with parameters being
refined based on the expectation values of relevant observable estimators (Huang et al., 2022b).
One notable approach within this domain is Tensor Networks (TNs). Specific frameworks like
the Matrix Product State (MPS) (Perez-Garcia et al., 2006) and Projected Entangled Pair States
(PEPS) (Corboz, 2016) break down the wave function into multiple tensor components. Another
research trajectory leverages the neural networks to serve as universal function for approximating
quantum system properties (Carleo et al., 2019; Carrasquilla et al., 2019; Zhang & Di Ventra, 2023).
Instead of regarding the properties estimation as a optimization problem, NNQS-based methods
frame it as a learning task. These methods optimize variational parameters by leveraging extensive
training data pertinent to the studied quantum system. Compared with the TNs, this class of methods
can more easily display non-local correlations, allowing in principle to capture quantum states with
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higher entanglement (Huang et al., 2022b). Moreover, NNQS can concurrently model multiple
quantum states and extract underlying features using akin model structures. However, it’s crucial
to recognize the present limitations in these variational techniques. TNs and its variants suffer the
issue of generalizability, often indicating an inability to harness knowledge from a range of states to
effectively reduce sample complexity without compromising estimation accuracy. This limitation is
not exclusive to TNs and can be observed in methodologies like the classical shadow (Huang et al.,
2020). On the other hand, while NNQS holds immense potential, it remains nascent. The application
of advanced machine learning techniques for quantum physics is still an ongoing process. Existing
NNQS-based models still fall short in learning from explosion of quantum data generated by the
systems govern by different physical conditions. Fortunately, the recent progress in the field of
machine learning, i.e. Large Language Models (LLMs), is expected to mitigate this problem.

The power of emerging LLMs (Radford et al., 2018; Brown et al., 2020) can be attributed to their
capability to engage in unsupervised pre-training from extensive corpora. The pre-training equips
LLMs with notably versatility, facilitating their application to various downstream tasks. In parallel,
thanks to the increasing scale of the quantum devices, a vast amount of quantum data are produced
by quantum measurement (Brydges et al., 2019). Such data holds intricate details about the quantum
system. The emergent challenge is designing a versatile model, analogous to LLMs, that undergoes
extensive pre-training to master these quantum intricacies.

Inspired by the concept of LLMs, we introduce a novel task-agnostic pre-trained model named Q-
TAPE that can estimate the properties of the quantum system leveraging vast quantum data. We
introduce a structured quantum dataset tailored for both digital and analog quantum computers. The
quantum data, akin to corpora in linguistic models, serve as the foundation for our model’s pre-
training. The pre-training is fully unsupervised, empowering the model learn the underlying pattern
of the examined quantum system across diverse quantum systems govern by different physical con-
ditions. For the downstream tasks, we fine-tune Q-TAPE on two typical properties estimation tasks
including classifying quantum phases of matter and predicting two-body correlation function. We
also consider two types of quantum model including the Ryberg atom model and the anisotropic
Heisenberg model. The results show its promising power for tackling properties estimation prob-
lems especially in scenarios constrained by limited data availability. The contributions are:

1) We delineate a comprehensive set of quantum data readily accessible for digital and analog quan-
tum simulators, as well as for classical simulators of moderate size. These data are used for training a
versatile pre-trained model through a fully unsupervised approach. For specialized tasks, the option
to gather specific quantum system attributes as the supervised labels is also available.

2) Unlike the development of task-specific models reliant on restricted, task-specific labeled quan-
tum data, Q-TAPE pursues an optimization objective focused on maximizing the expected log likeli-
hood of measurement bit strings. This approach is entirely unsupervised and task-agnostic, making
it possible for Q-TAPE to capture the useful pattern of a series of quantum systems. We empirically
find that the incorporation of pre-training can more accurately classify quantum phases and predict
correlation function on a resource-limited device when limited measurement records are available.

3) The amassed knowledge during the pre-training phase seamlessly transfers to the model when
employed for solving specific properties estimation problems. To embed the batch-style discrete
measurement records to a continuous space, a trainable LSTM embedding layer is attached to the
transformer decoder. The LSTM-Transformer architecture provides an innate framework for han-
dling diverse quantum data stemming from experiments conducted under varying physical condi-
tions, enabling predictions of the quantum properties to which the system is subjected, including
those that may exceed the capabilities of modern NISQ hardware for direct simulation.

2 PRELIMINARIES OF QUANTUM STATE AND QUANTUM MEASUREMENT

We introduce basic definitions and annotations of quantum computing. We refer to the work
by (Nielsen & Chuang, 2010) for details. We put the details on related work to Appendix A.

Quantum State and Density Operator. The quantum bit named as qubit is the basic unit of the
quantum system. We call the ensemble of all qubits in a (sub)system the quantum state. The qubit
is in superposition and becomes deterministic once performing measurement on it. How a quantum
state is described mathematically depends on the chosen basis state. For example, by using two
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Figure 1: Pre-training and fine-tuning for Q-TAPE. a) The output embeddings are the summation
of token embeddings, condition embeddings and position embeddings. Three embeddings corre-
spond to encode discrete measurement records, continuous physical conditions and qubit positions,
respectively. The token embeddings are replaced with the LSTM embeddings while fine-tuning. b)
The main part of the model is a multi-layers transformer decoder. Pre-training Q-TAPE is entirely
unsupervised. The output target is to approximate the classical distribution of the wave function. c)
The model for fine-tuning and pre-training share the same structure. The pre-trained parameters are
transferred to fine-tuning Q-TAPE. All the parameters are optimized by a task’s supervised loss.

orthogonal computational basis states1 |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
, one qubit can be described

mathematically as a linear combination |ϕ⟩ = α|0⟩+ β|1⟩ =
[ α
β

]
in the space C2, where α, β ∈ C

are the amplitudes satisfying |α|2 + |β|2 = 1. An alternate formulation for describing the quantum
state is possible using a tool known as the density operator or density matrix. For example, the
density matrix of |0⟩ is ρ0 = |0⟩⟨0| =

(
1 0
0 0

)
where ⟨0| denotes the conjugate transpose of |0⟩. For a

generic L-qubit quantum state with generic basis, it can be described by the so called wave function:

|Φ⟩ =
M∑

σ1=1

· · ·
M∑

σL=1

Ψ(σ1, . . . , σL)|σ1, . . . , σL⟩, (1)

where Ψ : ZL → C maps a fixed configuration σ = (σ1, . . . , σL) of L qubits to a complex number
which is the amplitude satisfying

∑M
σ1=1 · · ·

∑M
σL=1 |Ψ(σ1, . . . , σL)|2 = 1, and σi ∈ {1, . . . ,M}

is one of the M possible outcomes by performing quantum measurement on the i-th qubit. It is
formulated in a complex Hilbert space where the vector representation of the quantum state |Φ⟩ ∈
CML

and its density matrix |Φ⟩⟨Φ| ∈ CML×ML

, which becomes astronomical for large L.

Quantum Measurement. Quantum measurement is a way to observe the quantum system to find
out what is going on inside the system, and convert some of the quantum information into classical
information that humans can understand. Quantum measurement is described by a set of measure-
ment operators {Om}Mm=1 satisfying

∑
m Om = I, where M is the total number of measure-

ment operators. Measuring a qubit leads to collapse of the wave function and produces potentially
yield different outcomes. The possible outcomes correspond to the indices m of measurement op-
erators. Concretely, upon measuring the qubit ρ, the probability of getting result m is given by
p(m) = tr(ρOm). For a quantum state with L qubits, performing quantum measurement indepen-
dently on L qubits is easy to be implemented. The most common strategy is to measure each of
the qubits of the quantum system in parallel (Leibfried et al., 1996; Jullien et al., 2014). According
to the born rule of quantum mechanics, such measurement procedure outputs a measurement string
σ = (σ1, . . . , σL) where σi ∈ {1, . . . ,M} with probability |Ψ(σ1, . . . , σL)|2 given in Eq. 1.

3 Q-TAPE

As shown in Fig. 1, our model involves two steps: pre-training and fine-tuning. For pre-training, the
model is fed with unlabeled Dp, and undergoes fully unsupervised training. Subsequently, the pre-

1Computational basis states are also referred to as the Z-basis states in some literature.
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Figure 2: Process of generating the quantum dataset. a) For each qubit of the quantum system,
we perform quantum measurement using operators {Om}Mm=1 and obtain an integer outcome m
with probability p(m). b) Consider the quantum system govern by different physical conditions.
Quantum measurements are performed on an ensemble of identical quantum states evolved under
each of fixed physical conditions. Measurement can be done parallel for all the qubits of single copy
of the quantum state and outputs a measurement string. This process is applicable and feasible to
existing digital and analog quantum computers. c) The collected data are structured and packed into
a series of tensors, which can be efficiently stored into classical devices and easy to process.

trained parameters are transferred to the supervised learning phase, where all the parameters are fine-
tuned using labeled data Dt and for various downstream tasks. Finally, we evaluate the Q-TAPE’s
performance using dataset De. It is important to note that each downstream fine-tuning model
possesses separate parameters, even though they initially share the same pre-trained parameters.
One of the most notable aspects of our model is the consistent structural similarity between its
components in both pre-training and fine-tuning, with only a few small modifications when handling
different downstream tasks. We first give a big picture of the proposed Q-TAPE.

3.1 MOTIVATIONS AND OVERVIEW

Q-TAPE is analogue to the Large Language Models (LLMs). Our strategy for building quantum
datasets is conceptually equivalent to corpus used to train LLMs. Informally speaking, there is a
great conceptual agreement between the type of input data in quantum dataset and that in NLP. Each
measurement outcome σi of single qubit is analogue to the token and the number of the possible
outcomes M is likely to the vocabulary size |V|. A measurement string σ, which resembles the
sentence in texts, is a projection of the entire quantum system with correlative effects among them.
The collection of measurement records Ri comprised of many measurement strings from various
physical conditions are equivalent to the corpus gathered from various sources and genres.

These concepts have also been expressed implicitly in Sharir et al. (2020); Hibat-Allah et al. (2020);
Cha et al. (2021); Zhang & Di Ventra (2023). However, they either adopted task-specific designs
or relied on extensive quantum data pre-processing, potentially introducing biases. Our model, in
contrast, derives inspiration from LLMs but tailors the approach specifically for quantum data from
current Noisy Intermediate Scale Quantum (NISQ) devices, where the data type and data collection
strategy are described in Sec 3.2 and details can be found in Appendix B. Given the genetated
datasets, we first discuss how to unsupervisely pre-train Q-TAPE in Sec. 3.3. Afterwards the pre-
trained parameters are shared to Q-TAPE with a supervised loss, which is presented in Sec. 3.4.

3.2 DESCRIPTION OF THE QUANTUM DATASET GENERATED FROM SIMULATION

In this section, we provide an exposition on the definition and specific details of quantum dataset.
We first provide the definition of the quantum dataset in Def. 1 in which the procedures of quantum
dataset generation are provided. An easy-to-understand flowchart is also provided in Fig. 2.
Definition 1 (Quantum Dataset). The quantum dataset D = {si} consists of measurement records
of quantum states and essential characteristic variables of the quantum system. Each sample
si = (Ri, ci,pi) contains the measurement records Ri, the physical condition variables ci and
the (optional) system property variables pi. Let L denote the number of qubits of quantum systems,
K represent the number of copies of the quantum state and M denote the number of possible out-
comes by performing measurement on the single qubit. We explain their meaning in detail below.
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1) ci ∈ RC represents the physical condition variables controlling the evolution of the quantum
system. These variables can be directly obtained when initializing quantum experiments. The
types of the variables are system size, coupling strength or the coefficients of the Pauli string, etc.

2) The measurement records, denoted as Ri ∈ ZK×L, are outcomes generated by the quantum mea-
surement. We generate an ensemble of K identical quantum states evolved under a fixed physical
condition determined by ci. Afterwards quantum measurement is performed independently on
each qubit in parallel using a set of measurement operators {Om}Mm=1. Performing measure-
ment once on L qubits results in a measurement string, represented as σ = (σ1, . . . , σL) where
each σl ∈ {1, . . . ,M}. The measurement procedures above are performed on each of these K
copies. Finally, we collect K × L measurement outcomes and store them within Ri.

3) (Optional) Certain system property pi ∈ RP that represents the statistics of the quantum sys-
tem conditioned on ci, such as the entanglement entropy, purity, correlation function, etc. The
exact values of pi can be calculated by classical post-processing after a number of measure-
ment records are obtained. We treat these properties as supervised labels such that they are only
necessary for fine-tuning the machine leaning model.

3.3 UNSUPERVISED CROSS-SYSTEM PRE-TRAINING

Unlike (Czischek et al., 2022; Zhang & Di Ventra, 2023), we do not use task-specific supervised
loss or a sampling-based loss to pre-train Q-TAPE. Instead, it is pre-trained in a fully unsupervised
manner across quantum systems govern by different physical conditions, as illustrated in Fig. 1b.

Quantum Data for Fine-tuning. For both the Rydberg atom model and the anisotropic Heisenberg
model, the quantum dataset Dp = {Ri, ci}

Np

i=1 used for pre-training is constructed using the strategy
discussed in Sec. 3.2. Here we provide how to reorganize the data to adapt for pre-training Q-
TAPE. Let Kp be the number of measurement strings used for pre-training. We stack all the input
measurement records {Ri}

Np

i=1 along the first dimension and output Ein ∈ ZNpKp×L, where each
row σb ∈ ZL is a measurement sequence. We also construct the matrix Cin ∈ RNpKp×C where
each row is the physical condition cb ∈ RC determining the system from which the σb is generated.
We vary the value of Np and Kp to evaluate the Q-TAPE’s performance on different training size.
Concretely, we consider Np ∈ {25, 64, 100} and Kp ∈ {64, 128, 256, 512, 1024} for the Rydberg
atom model, and Np ∈ {20, 50, 90} and Kp ∈ {64, 128} for the anisotropic Heisenberg model.
For each training iteration, we randomly sample Bp rows of Ein and Cin. Such that the input of the
model is {(σb, cb)|σb ∈ Ein, cb ∈ Cin} with batch size Bp.

Input Embeddings. To handle various of downstream tasks, the input embedding should unam-
biguously capture the hidden patterns of the quantum system. As depicted in Fig. 1a, we con-
sider three types of embeddings as the input of our model: token embeddings, condition embed-
dings and position embeddings. Since each element of the measurement string σb is a discrete
integer σ ∈ {1, . . . ,M} which resembles to the token in NLP, We use learned embeddings to
convert the measurement string σb with additional start token s and output the token embeddings
Et ∈ RBp×(L+1)×d where d is the feature dimension and Bp is the batch size. Although the token
embeddings maintain most information of the quantum systems, we empirically find that encod-
ing the physical condition into the model can improve the performance. A Feed-Forward Network
(FFN) with one hidden layer is used to embed the physical condition cb into the feature vector
Ec ∈ RBp×d. It is a sentence-level embedding which will be added to all of the L measurement
tokens, so that we call it the global embedding. Subsequently, the input embeddings are the (broad-
casting) summation given as Eout = Et + Ec + Ep where Ep is the embeddings of the positional
encoding as the same as (Vaswani et al., 2017). The embedding Eout are then processed by deeper
layers which will be discussed in detail below.

Model Architecture. As depicted in Fig. 1b, the main part of Q-TAPE is a multi-layer transformer
decoder which originates from (Vaswani et al., 2017). The input is the embedding Eout and the
output is H ∈ RBp×(L+1)×d, which are high-order representations all the corresponding measure-
ment strings in a batch. Please refer to (Vaswani et al., 2017) for more details on transformer. We
primarily report results on the model size which is 8 heads, 4 layers and 128 hidden dimensions.
For pre-training, given a fixed qubit configuration σ = (σ1, . . . , σL), Q-TAPE attempts to approxi-
mate the classical distribution p(σ1, . . . , σL) = |Ψ(σ1, . . . , σL)|2 in Eq. 1. The decoder is used to
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approximate such joint distribution by factorizing it into a product of conditional probabilities:

p(σ1, . . . , σL|c) =
N∏
i=1

p(σi|σi−1, . . . , σ1, c), (2)

which is achieved by masked attention mechanism. We pre-train the Q-TAPE using Bp = 512 and
optimize the parameters by minimizing the average negative log-likelihood loss over dataset Dpre:

Lunsup =
1

BpKp

∑
(σ,c)∈Dpre

− log p(σ1, . . . , σL|c), (3)

which corresponds to the maximization of (conditional) likelihoods concerning the observed mea-
surement outcomes. It is entirely unsupervised, enabling the model to be trained on extensive quan-
tum datasets that encompass a wide range of physical conditions. To maintain the physical validity
that restricts the output distribution to be normalized, a general strategy is employed to fix the last
layer as the linear projection with softmax activation function, such that the output distribution sat-
isfies

∑M
σ1=1 · · ·

∑M
σL=1 p(σ1, . . . , σL) = 1 (see Appendix C for proof).

3.4 FINE-TUNING FOR PROPERTIES ESTIMATION

Fine-tuning is a straightforward process due to the inherent flexibility of the self-attention mecha-
nism in the Transformer architecture. This flexibility enables Q-TAPE to effectively model a wide
range of downstream tasks, whether it involves classifying quantum phases of matter or predicting
the entanglement entropy of quantum states. This adaptability is achieved simply by replacing the
relevant inputs and outputs as needed. Rather than the two-step model (Wang et al., 2022) that uses
the pre-trained model to generate new measurement records conditioning on the physical variables
and then predicts quantum properties based on classical shadow (Huang et al., 2020). Q-TAPE is an
end-to-end task-agnostic pre-trained model to provide properties estimation for the quantum system.

Quantum Data for Fine-tuning and Input Embeddings. The dataset Df = {(Rj , cj),pj}
Nf

i=j
are generated using the random seed different from the seed for generating Dp. Then we split Df

to construct train/test dataset Dt/De. We make sure the sampled physical conditions for pre-training
will not appear in fine-tuing, i.e. cj /∈ {ci} for j ∈ {1, . . . , Nf}. Note that the physical conditions
for fine-tuning are sampled from the same distribution as the pre-training. The details about the data
collection can be found in Appendix B. Unlike the pre-training phase that the input measurement
records is a sentence-level vector σb ∈ ZL, the input of fine-tuning becomes a batch of measurement
records Xi ∈ ZL×Kf where Kf is the number of measurement strings. The reason for such change
can be explained through both intuitive and rational perspectives. Intuitively, single measurement
string is only a glimpse and cannot reflect the whole picture of the quantum system. Rationally,
predicting the properties of the quantum system in classical computers generally requires exponen-
tial number of measurements with respect to the system size L (Huang et al., 2022a). Even though
for some quantum system with low entanglement, the number stills grows quasi-polynomially with
L (Huang et al., 2022b). Accordingly, the input of the model is replaced with {(Xj , cj),pj}Bt

j=1

where the tuple (Xj , cj) is the input, pj is the corresponding label and Bt is the batch size used for
supervised fine-tuning. However, the learned embeddings for embedding the measurement string σi

is not feasible for the batch-style records Xj . To deal with it, a Long Short-Term Memory (LSTM)
layer is attached in front of the decoder, as depicted in Fig. 1c. The LSTM layer converts the discrete
measurement records Xj and outputs the high-order embeddings Ernn ∈ RBt×L×d. The additional
embeddings including physical condition embeddings and positional embeddings are conserved and
transferred from pre-training. Thus the output embedding is given as Eout = Ernn +Ec +Ep︸ ︷︷ ︸

transferred

.

Feature Aggregation and Output Projection. The output of the L-layer transformer decoder is
H ∈ RBt×L×d where d is the hidden dimension of the LSTM and the transformer. For downstream
tasks, the decoder is initialized with the same pre-trained parameters and is fine-tuned separately.
To obtain the feature representation for each of the Bf systems govern by physical condition cj ,
a feature aggregation layer is attached after the last multi-head attention layer. This layer converts
the hidden feature H along the second axis and output H

′ ∈ RBt×d. Finally, additional linear
projection layer is employed to project the feature into the space RP used for prediction, along with
a task-dependent activated function which is taken to be tanh for predicting the correlation function,
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Figure 3: Comparison of weighted F1 score w.r.t. number of measurement strings on Rydberg atom model.
Table 1: Classification accuracy of quantum phases of matter on the Rydberg atom model with varied system
size L and varied training size Nt, where Kf is fixed to be 1024. The best results are highlighted in bold.

L = 19 L = 25 L = 31
Method

Nt = 25 Nt = 64 Nt = 100 Nt = 25 Nt = 64 Nt = 100 Nt = 25 Nt = 64 Nt = 100

RBF Kernel 91.75 92.29 93.25 88.43 92.27 94.2 88.32 90.79 92.75
NTK 92.12 92.58 93.79 89.17 94.14 95.39 86.99 92.03 92.71
PixelCNN 92.18 92.79 92.98 88.91 91.59 94.73 85.29 92.21 92.98
Neural-Classical shadow 91.73 92.64 93.61 90.57 91.32 95.91 86.38 91.79 92.51

Q-TAPE 94.14 93.38 95.95 93.95 96.51 96.05 87.95 94.95 96.67
Q-TAPE w/o pretrain 93.80 92.89 93.35 90.85 95.35 95.27 87.45 92.77 94.32

since we have the prior that each element of the label pj is in the range [−1, 1] (See Appendix B for
details). While the log-softmax is adopted for classifying quantum phases of matter.

Learning Objective. The properties estimation for the quantum system are treated as the supervised
learning tasks. Tow types of tasks are considered in this paper, including classifying quantum phases
of matter and predicting correlation function. The former belongs to the regression task, while the
latter can be regarded as a classification task. For each supervised task, we maintain a consistent
architecture within Q-TAPE. We seamlessly integrate task-specific inputs and ground-truth labels
into Q-TAPE and proceed to fine-tune all model parameters in an end-to-end manner. Given that the
training samples are {(Xj , cj),pj}Bt

j=1 where Bt is the batch size. For classifying quantum phases
of matter, pj is the one-hot label. We minimize the observed data negative log-likelihood which
yields a supervised loss for classification (with C classes):

Lsup = − 1

Bt

∑
j∈{1,...,Nt}

C∑
u=1

I [pj,u = 1] log (fθ (Xj , cj)) , (4)

where I[·] is an indicator function, Nt is the size of training dataset and fθ(·) denotes the prediction
of the model with parameters θ to be optimized. For predicting the correlation, pj is the continuous
valued label. We adopt the Root Mean Square Error (RMSE) loss:

Lsup =

√
L̃sup, L̃sup =

1

Bt

∑
j∈{1,...,Nt}

C∑
u=1

(
fθ (Xj , cj)u − pj,u

)2
. (5)

Detailed task-specific description arew given in Sec. 4 for the respective subsections.

4 EXPERIMENTS

In this section, we present Q-TAPE fine-tuning results on two quantum properties estimation tasks
including predicting correlation functions and classifying quantum phases of matter, where the for-
mer belongs to the regression task, while the latter can be regarded as a classification task. Two
types of quantum datasets generated from two different quantum models are considered – the Ryd-
berg atom model (Bernien et al., 2017) and the anisotropic Heisenberg model (Kranzl et al., 2023).

As baseline methods, we basically consider the classical shadow (Huang et al., 2020) – a learning-
free protocol for constructing the representation of an unknown quantum state. Besides, we compare
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Figure 4: The evolution of training loss and test
weighted F1 score with increasing training epochs
where Nt = 100 and Kf = 128.

64 128 256 512 1024
# Measurement Strings for Pre-training Q-TAPE
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Figure 5: The required number of epochs for each
respective model to attain 90% of its peak weighted
F1 score where Nt = 100.

with some kernel methods including Radial Basis Function (RBF) Kernel (Huang et al., 2022b) and
Neural Tangent Kernel (NTK) (Huang et al., 2022b). We further consider some advanced deep learn-
ing based methods, such as PixelCNN (Sharir et al., 2020) and a classical shadow based generative
model (NN-classical shadow) (Wang et al., 2022) for comparison.

4.1 CLASSIFYING QUANTUM PHASES OF MATTER ON RYDBERG ATOM MODEL

We first consider the Rydberg atom model with different system size L in (19, 25, 31). We pre-
train the Q-TAPE for different system sizes separately with a fixed number of sampled physical
conditions Np = 100. Each physical condition variable ci is a 4-dimensional vector denoted as
[Li,∆i,Ωi, R0/ai]

⊤ where ∆ is the detuning of a laser, Ω is the Rabi frequency and R0/a is the
interaction range. The values of these four variables can be obtained directly before initializing
the (simulated) quantum experiments. For each physical condition we generate Np = 1024 mea-
surement strings based on Pauli-6 measurement operators, such that the total number of possible
measurement outcomes is M = 6. Then Q-TAPE is pre-trained with dataset Dp. The pre-trained
parameters are transferred to fine tune the model, where the number of sampled physical conditions
Nt ∈ {25, 64, 100} and the number of measurement strings Kf ∈ {64, 128, 256, 512, 1024} for Dt

used for supervised training both vary. We fix the size of De for evaluation to be Ne = 400. Fol-
lowing (Bernien et al., 2017), we consider three categories of quantum phase, i.e., Disorder, Z2, Z3

to establish the label pj , which is a 3-dimensional one-hot vector calculated by Bloqade.jl (blo,
2023). More details about the data generation can be found in Appendix B.

We also take evaluation without pre-taining the Q-TAPE: all the parameters are initialized randomly
using a uniform distribution [−1, 1]. We split the dataset Df randomly with different training sizes
and varied number of measurement strings and use accuracy and weighted F1 score as metrics for
3-class classification. The results are listed in Tab. 1 and Q-TAPE achieves the best mean accu-
racy except for one setting L = 31 with Nt = 25. Fig. 3 shows the performance on varied input
measurement string Kf . Q-TAPE achieves the best F1 score across all systems and in particular,
outperforms by a large margin when Kf = 64. The results indicate that pre-trained Q-TAPE can
handle the input when a few number of measurement records are available, which is greatly in-
strumental due to the expensive and time-consuming (simulated) physical experiments. We further
plot the training dynamics of pre-trained Q-TAPE throughout the training epochs in Fig. 4 for each
L ∈ {19, 25, 31}, where we also plot the curve for random-initialized Q-TAPE for comparison.
Meanwhile, the required number of epoch for the model to attain 90% of its peak weighted F1 score
is provided in Fig. 5: within the same system size L, the pre-trained Q-TAPE converges faster than
the non-pre-trained version, with a lower training error and a higher test weighted F1 score.

4.2 PREDICTING CORRELATION FUNCTION ON ANISOTROPIC HEISENBERG MODEL

Next we consider a regression task – predicting correlation on the anisotropic Heisenberg model.
This quantum model inherits the long-range interactions between every two quantum sites, leading
to a complex dynamics which is hard to be described by modern computing techniques (Orús, 2019).
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Table 2: Root MSE of predicting the correlation on the anisotropic Heisenberg model with varied
system size L and training size Nt. Kf is fixed to 64. The best results are in bold.

L = 8 L = 10 L = 12
Method

Nt = 20 Nt = 50 Nt = 90 Nt = 20 Nt = 50 Nt = 90 Nt = 20 Nt = 50 Nt = 90

Classical Shadow 0.2015±0.013 0.1954±0.016 0.1967±0.015 0.2015±0.011 0.1997±0.012 0.2015±0.021 0.1991±0.027 0.2064±0.022 0.2117±0.019
RBF Kernel 0.2085±0.025 0.2077±0.023 0.2081±0.019 0.2104±0.014 0.2131±0.019 0.2079±0.017 0.2039±0.034 0.1931±0.024 0.2157±0.026
NTK 0.2062±0.018 0.2064±0.026 0.2052±0.017 0.2095±0.013 0.2085±0.018 0.2097±0.018 0.2141±0.031 0.1922±0.024 0.2105±0.022
PixelCNN 0.2257±0.015 0.2357±0.019 0.2239±0.024 0.2393±0.011 0.2289±0.023 0.2108±0.024 0.2390±0.024 0.2297±0.035 0.2267±0.038
Neural-Classical Shadow 0.2069±0.022 0.2098±0.015 0.2057±0.012 0.2078±0.017 0.2054±0.017 0.1959±0.013 0.2037±0.029 0.2021±0.019 0.2102±0.026

Q-TAPE 0.1761±0.032 0.1612±0.022 0.1697±0.025 0.1986±0.011 0.1949±0.012 0.1893±0.023 0.1989±0.023 0.1787±0.021 0.1769±0.015
Q-TAPE w/o pretrain 0.2043±0.027 0.2057±0.036 0.1949±0.027 0.2179±0.015 0.1984±0.013 0.1981±0.025 0.2040±0.028 0.2097±0.031 0.2026±0.027

Table 3: Ablation study results on condition embedding and LSTM embedding. We consider Nt =
64 with Kf = 128 for the Rydberg model, and Nt = 50 with Kf = 64 for the Heisenberg model.

Rydberg L = 19 L = 25 L = 31 Heisenberg L = 8 L = 10 L = 12

original 93.38 96.51 94.95 original 0.1612 0.1949 0.1787
w/o cond. embed. 93.29 95.96 93.52 w/o cond. embed. 0.1906 0.2095 0.1981
w/o LSTM embed. 90.75 92.18 89.65 w/o LSTM embed. 0.1929 0.1997 0.1904

We restrict the system size L in (8, 10, 12) due to memory limitations and get the ground states
of quantum systems with different physical conditions by eigenvalue decomposition. A number
of measurement records Kp = 64 along with their physical variables using Pauli-6 measurement
operators, such that the total number of measurement outcomes is M = 6. Then we pre-train the
Q-TAPE for varied number of system size independently with training size Np = 90. The data for
fine-tuning are generated in a roughly same manner as the fine-tuning. The difference is that we
calculate true values of the two-body correlation functions and collect them as the supervised labels,
which is a L× L continuous-valued matrix where each entry is in the range [−1, 1]. This matrix is
vectorized and stored to be the supervised labels. Correspondingly, the loss per training example is
defined as the mean squared error among the L×L entries between the prediction and the true label.

We vary the number of generated training samples Nt ∈ {20, 50, 90} and fix the measurement
strings Kf = 64. The RMSE on Ne = 10 is reported in Tab. 2. We can see that Q-TAPE achieves the
best performance in all settings. Learning-based models often fail to surpass the predictive accuracy
of learning-free classical shadow. Intriguingly, the pre-trained Q-TAPE stands out with a remarkable
improvement over baseline models. This suggests that the pre-trained Q-TAPE effectively extracts
necessarily information and useful patterns for predicting correlations between qubits.

4.3 FURTHER DISCUSSION

We study the effects of condition embedding and the LSTM embedding on both Rydberg atom
model and anisotropic Heisenberg model. Note that we replace the LSTM with a fully connected
layer with same input/output dimension. The results are in Tab. 3, where the results consistently
show that both embedding techniques contribute to some positive effects and suggest that these two
techniques can both help to leverage useful information from input quantum data.

5 CONCLUSION AND OUTLOOK

This paper proposes a task-agnostic pre-trained approach for estimation of the properties of the quan-
tum systems via vast quantum data. A transformer encoder, enables to learn useful hidden informa-
tion in a fully unsupervised pre-training procedure. The pre-trained parameters can be transferred
to solving downstream tasks, leading to more effective classifying quantum phases and predicting
correlation function on a resource-limited device given limited measurement records.

Limitations. In the present work, we focus on classifying quantum phases of matter and predicting
correlation functions for experiments. Though Q-TAPE can be used as a flexible model for other
quantum many body problems, such as reconstruct the density matrix, predicting entanglement en-
tropy, etc. Furthermore, we only consider pre-training the model using fixed number of measurement
strings. It is intriguing to see how the effects of varied number of measurement strings influences
the model’s performance. Additionally, the current model may not effectively characterize quantum
systems controlled by time-dependent Hamiltonians. The proposed approach is currently limited to
estimating properties for time-independent Hamiltonians. Exploring the adaptation of pre-training
methods from traditional deep learning for time-series data could be a promising direction in inves-
tigating quantum time evolution in many-body systems.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Bloqade.jl: Package for the quantum computation and quantum simulation based on the neutral-
atom architecture., 2023. URL https://github.com/QuEraComputing/Bloqade.
jl/.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith,
M Sohaib Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali Asadi, et al. Penny-
lane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.
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A RELATED WORK

A.1 PROPERTIES ESTIMATION OF QUANTUM SYSTEMS

Determining the properties of the quantum system is a long-standing problem in quantum
physics (D’Ariano et al., 2003). The main challenge is that the complexity of describing the quan-
tum system using classical computers scales exponentially with respect to the system size (Nielsen
& Chuang, 2010). Even though, in fact, the quantum systems studied in physical experiments gener-
ally can be described by a limited number of physical variables. This restriction leads to the studied
quantum systems occupy only a small part of the exponentially large Hilbert space (Carrasquilla
et al., 2019), such that they can be characterized by some classical methods within an acceptable
error.

Traditional algotithms including the QMC (Ceperley & Alder, 1986) and DFT (Hohenberg & Kohn,
1964) has made success for investigating the electronic structure (or nuclear structure), principally
the ground state of many-body systems, such as atoms, molecules, and the condensed phases (Gu-
bernatis et al., 2016). However, these methods have scalability issues and are difficult to be used to
deal with large-scale quantum many body problems. An alternative is a class of TNs methods (Orús,
2019) based on variational method and shows unprecedented performance in analyzing the charac-
teristics of ground state. This class of methods approximates the wave function by decomposition
of the high-order tensor into multiple low-rank tensors. It is then possible to predict properties of
the quantum state by the classical parametric representations of the many-body wave function.

With the continuous development of machine learning technologies, the tensor used in TNs is re-
placed with a neural network as a parametric function approximator of many-body wave functions.
Different neural network ansatz corresponds to solve quantum many-body problems with different
physical structures. For example, the 1-D array chain and the 2-D chain could be processed by the
recurrent neural networks (RNNs) (Gubernatis et al., 2016) and the convolutional neural networks
(CNNs) (Wu et al., 2019; Sharir et al., 2020), respectively.

A.2 NEURAL REPRESENTATION OF QUANTUM STATES

A comprehensive characterization of modern quantum devices entails the retrieval the useful infor-
mation from measurements on identically prepared copies of quantum states (Huang et al., 2022b).
Machine learning has been introduced to learn from experimental data and then applying that knowl-
edge to predict physical properties and even reconstruction of the quantum state (Carleo et al., 2019;
Gebhart et al., 2023). Compared with the learning-free tensor network-based methods (Shi et al.,
2006; White, 1992; Schollwöck, 2011), machine learning can effectively address some quantum
many-body problems that would be too hard to solve using classical processing alone (Huang et al.,
2022b). Numerous studies have been carried out testing different types of architectures; examples
include restricted Boltzmann machine (RBM) (Carleo & Troyer, 2017), recurrent neural networks
(RNNs) (Carrasquilla et al., 2019), convolutional neural networks (CNNs) (Wu et al., 2019; Sharir
et al., 2020), and transformers (Cha et al., 2021; Wang et al., 2022; Zhang & Di Ventra, 2023).

In terms of the optimization strategy for training the parameters, the methods can be separated in
to two categories. The first is to use sampling-based optimization techniques (Cha et al., 2021;
Zhang & Di Ventra, 2023) such as Variational Monte Carlos (VMC) (Ceperley & Alder, 1986). This
class of methods aim to reconstruct the entire quantum state wave function with high fidelity. The
second class is to use end-to-end auto-differentiation techniques to update the parameters (Eisert
et al., 2020; Xiao et al., 2022; Wu et al., 2023; Du et al., 2023). This class of methods only concern
certain type properties of the quantum system without reconstruct the entire quantum state wave
function. Although some efforts claim that the properties of quantum systems can be predicted by
pre-trained models, their optimization object is often supervised. Such that they are difficult to deal
with large-scale quantum data sets (often without supervised labels). The recent work proposed by
Zhu et al. (2022) implements a similar pre-training strategy for learning of quantum states, whereas
our approach differs from it by avoiding assumptions about knowing the prior frequency about the
measurement strings.

Our work is closely related to second class of methods. While ours employ a unsupervised pre-
training phase to extract the hidden information of the quantum systems govern by different pa-
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rameters. We find empirically that this scheme can make the model perform better under a limited
number of copies of quantum states and measurements.

B DETAILS OF THE QUANTUM DATASET GENERATION

In a word, a quantum dataset is a collection of data that describes quantum systems and their evolu-
tion. The collection of quantum data must take into account the following factors: 1) the method of
data collection must be feasible on quantum devices and not contradict the disciplines of quantum
mechanics; 2) the process of data collection is completely automated and does not require expe-
rienced experts to organize and label it and 3) the data must be structured and can be stored on
resource-limited classical devices, thus can be easy to be processed by the machine learning tech-
niques without further post-processing. The quantum dataset we established satisfies these three
points. It is also worth mentioning that our model can be used as a centralized infrastructure to
process all these data uniformly, thanks to the unsupervised learning design of the model.

In this paper, we conduct simulated experiments to generate the quantum dataset in classical com-
puters. For the anisotropic Heisenberg model, quantum measurement is performed using the Pauli-6
measurement operators such that M = 6, whereas computational basis measurement operators
are employed for the Rydberg atom model leading to M = 2. Assume that variables ci describ-
ing the physical condition lives in a finite continuous space F within the physical restriction. Let
Dp = {Ri, ci}

Np

i=1 denote the quantum dataset used for pre-training and Df = {(Ri, ci),pi}
Nf

i=1
for fine-tuning, where |Dp| = Np and |Df | = Nf . For pre-training the model, we first uniformly
sample a number of points {ci|ci ∈ F}Np

i=1. Afterwards we conduct simulated experiments for each
ci and collect the corresponding measurement records. The system property pi is not needed since
the pre-training phase is fully supervised. While for fine-tuning, we replace another random seed
and sample Nf physical conditions also within space F, resulting in {cj |cj ∈ F}Nf

j=1. Note that We
also collect the measurement records for each cj . The difference part is that we additionally cal-
culate the system property pj based on the collected measurement records and use it as supervised
labels. We further split the Df into Dt and De for training and evaluation respectively with varied
separation ratio. Please refer to the corresponding subsections in Sec. 4 and Appendix B for details
of the experimental configurations for dataset generation.

B.1 RYDBERG ATOM MODEL

Rydberg atom model is a programmable quantum simulators capable of preparing interacting qubit
systems (Bernien et al., 2017). Such quantum model can be effectively described as a two-level
quantum system consisting the ground state |g⟩ (|0⟩) and the Rydberg state |r⟩(|1⟩). The quantum
dynamics of this model is governed by the Hamiltonian

HRydberg =
∑
i

Ω

2
σi
x −

∑
i

∆ni +
∑
i<j

V0

|x⃗i − x⃗j |
ninj (6)

where σx is the PauliX matrix, Ω is the Rabi frequency, ∆ is the detuning of a laser, V0 is the
Rydberg interaction constant, i, j is the Rydberg interaction constant and x⃗i is the position vector
of the site i. ni = |ri⟩ ⟨ri| is the occupation number operator at site i, and σi

x = |gi⟩⟨ri| + |ri⟩⟨gi|
describes the coupling between the ground state |gi⟩ and the Rydberg state |ri⟩ at position i.

We follow the recent work in (Wang et al., 2022) to generate the quantum dataset. We refer the
readers to their paper for details. Here we briefly introduce the main procedures. We consider the
Rydberg atom model with system size L in {19, 25, 31}. We fix the interaction constant V0 =
862690 × 2π MHz µm6 and vary the value of Ω ∈ [0, 5] and ∆ ∈ [−10, 15] to get different
physical conditions c, where c is a 4-dimensional vector in the form [L,∆,Ω, R0/a], where R0/a
denote the interaction range with R0 = (V0/Ω)

1/6. Then the approximate ground state for diffident
physical condition is prepared by the tool Bloqade.jl (blo, 2023). This tool can also output the
measurement strings and the true phase of each physical condition. The measurement operators are
chosen to be the computational basis {|0⟩⟨0|, |1⟩⟨1|} for the quantum measurement, such that the
total number of the possible outcomes is M = 2. In this paper, three different phases are considered
including the Disordered phase, Z2 Ordered phase and Z3 Ordered phase. We sample Np = 100
physical conditions with Kp = 1024 measurement strings for pre-training, and Nt ∈ {25, 64, 100}
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physical conditions with Kt ∈ {64, 128, 256, 512, 1024} for fine-tuning. The number of physical
conditions for evaluation is fixed to be Ne = 400. The supervised labels for fine-tuning are one-hot
encoded vectors of the true phases such that the dimension (number of classes) of p is 3. Note that
it is ensured that the sampled physical conditions for pre-training will not appear in fine-tuing.

B.2 ANISOTROPIC HEISENBERG MODEL

Exploring the effects of these long-range interactions of the quantum system is essential for un-
derstanding the quantum mechanics (Bermúdez et al., 2017). In this paper, we consider the recent
progress for the long-range interactions with the experimentally realized power-law exponent of the
anisotropic Heisenberg model (Kranzl et al., 2023). The dynamics of the anisotropic Heisenberg
model is determined by the Hamiltonian

HHeisenberg =
1

3

∑
i<j

Jij(σ
i
xσ

j
x + σi

yσ
j
y + hσi

zσ
j
z), (7)

where σi
x,y,z is the Pauli matrix operated on the i-th site, h determines the Ising interactions be-

tween the magnons, and Jij is the long-range interaction strength satisfying Jij = J/|i − j|α.
We follow the configuration of (Kranzl et al., 2023) to geenrate the quantum dataset. The values
of h and J are fixed with 1 and 369 rad/s, and we vary the value of α ∈ (1, 2] uniformly. It is
extremely hard to characterize the quantum system with long-range interactions using the existing
computing techniques. Thus we restrict the system size L ∈ {8, 10, 12}. For all the system we
consider the number of measurement strings used for pre-training as Kp = 64 and vary the number
of sampled physical condition Np in {20, 50, 90}. The number of sampled physical conditions for
evaluation is set to be Ne = 10. The physical condition c is defined as a vector whose dimension
C = L2, in which each element is the coupling strength Jij for i, j ∈ {1, . . . , L}. The prob-
lem of finding the ground state is viewed as the eigenvalue decomposition problem and we obtain
the ground state for each sampled physical condition by the scipy (Virtanen et al., 2020) built-in
functions. The measurement records and the true values of the two-body correlation function are
obtained using the pennylane (Bergholm et al., 2018) toolbox. For the Anisotropic Heisenberg
Model, we consider the Pauli-6 POVM measurement operators with M = 6 outcomes, which are
given as MPauli-6 =

{
1
3 × |0⟩⟨0|, 1

3 × |1⟩⟨1|, 1
3 × |+⟩⟨+|, 1

3 × |−⟩⟨−|, 1
3 × |r⟩⟨r|, 1

3 × |l⟩⟨l|
}

, and
{|0⟩, |1⟩}, {|+⟩, |−⟩}, {|r⟩, |l⟩} stand for the eigenbases of the Pauli operators σz, σx, and σy , re-
spectively. The output two-body correlation function is a L × L matrix and each element of the
matrix is the expectation value of the observable

Oij =
1

3

(
σi
xσ

j
x + σi

yσ
j
y + σi

zσ
j
z

)
. (8)

Thus each element can be written as tr(ρOij) in the range [−1, 1], where ρ is the density matrix of
the ground state for each sampled physical condition. We flatten the correlation function matrix to
be the L2-dimensional continuous-valued vector and treat it as the supervised label for fine-tuing.

C POOF OF THE NORMALIZED OUTPUT DISTRIBUTION

In the main text, we claim that the output (classical) distribution satisfies

M∑
σ1=1

· · ·
M∑

σL=1

p(σ1, . . . , σL) = 1, (9)

as long as the last linear projection layer uses the softmax activated function. The proof is given
below.

The softmax activated function is performed on the model’s output, which is the product of con-
ditional probabilities p(σ1, . . . , σL|c) =

∏N
i=1 p(σi|σi−1, . . . , σ1, c). It is easy to check the claim

holds for L = 1. Given that the claim also holds for L = k. For L = k + 1, the following equation
then be hold:

N∑
i=1

p(σi|σi−1, . . . , σ1) = 1. (10)
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Such that

M∑
σ1=1

· · ·
M∑

σL=1

|Ψ(σ1, . . . , σk+1)|2

=

M∑
σ1=1

· · ·
M∑

σL=1

k+1∏
i=1

|Ψi(σi|σi−1, . . . , σ1)|2

=

M∑
σ1=1

· · ·
M∑

σL=1

(
k∏

i=1

|Ψi(σi|σi−1, . . . , σ1)|2
)

N∑
j=k+1

|p(σj |σj−1, . . . , σ1)|2

=

M∑
σ1=1

· · ·
M∑

σL=1

|Ψ(σ1, . . . , σk)|2

= 1

(11)

The proof then complete.

D ADDITIONAL NUMERICAL RESULTS

D.1 RESULTS OF PREDICTING THE ENTANGLEMENT ENTROPY

We take an additional downstream task: predicting the second-order Rényi entanglement entropy
− log(tr(ρ2A)) for the anisotropic Heisenberg model, where A is the left-half subsystem with system
size L/2 of the L-qubit quantum system. The number of training size is set to be Nt = 90 and the
predicted RMSE results are given in Tab. 4. It can be observed that pre-training remains effective
for predicting the entanglement entropy of the anisotropic Heisenberg model.

Table 4: The RMSE of predicting the second-order Rényi entanglement entropy for the anisotropic
Heisenberg model. We sample Np = 100 physical conditions with Kp = 1024 measurement strings
for pre-training.

Method L = 8 L = 10 L = 12

Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024 Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024 Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024

Classical Shadow 1.58282 1.56688 1.50989 1.40270 1.22974 1.72379 1.71451 1.73135 1.72740 1.68556 2.89481 2.90874 2.91391 2.90773 2.89722
RBF Kernel 0.07322 0.07160 0.07670 0.07692 0.07706 0.02539 0.02257 0.02242 0.02002 0.01983 0.08710 0.08242 0.08104 0.07081 0.07032
NTK 0.07117 0.06799 0.08834 0.08708 0.08690 0.02497 0.02221 0.02129 0.01996 0.01947 0.08432 0.08249 0.08071 0.07998 0.07381
PixelCNN 0.07198 0.07091 0.06849 0.06687 0.06784 0.01907 0.01892 0.01948 0.01952 0.02089 0.07406 0.07145 0.07107 0.06895 0.06677
Neural-Classical Shadow 0.06860 0.06415 0.06403 0.06315 0.06221 0.01844 0.01747 0.01664 0.01662 0.01657 0.07261 0.06858 0.06573 0.06156 0.05924

Q-TAPE 0.06302 0.06141 0.06104 0.05998 0.06072 0.01698 0.01623 0.01534 0.01517 0.01520 0.05861 0.05812 0.05648 0.05623 0.05597
Q-TAPE w/o Pretrain 0.06649 0.06295 0.06228 0.06071 0.06034 0.01711 0.01662 0.01696 0.01655 0.01532 0.06624 0.06542 0.06381 0.06042 0.05931

D.2 MODEL SENSITIVITY TO THE NUMBER OF MEASUREMENTS

In Sec. 4, we study the relationship between the number of measurements and the classification
accuracy of quantum phase of matters on Rydberg atom model. It is empirically evident in Fig. 3
that achieving linear growth in classification accuracy requires an exponential increase in the number
of measurements per training example. Beyond the scaling related to number of measurements, we
dive into further research on the scaling relationship between accuracy and the size of the training
set (i.e., the number of sampled physical conditions which determine the dynamics of the quantum
system). We constrain the number of measurement per example to 256 (since we find that a large
value makes the accuracy reach saturation) and the results on the 31-qubit system are listed in the
Tab. 5.

As evident from Tab. 5, accuracy approximately exhibits linear growth w.r.t. training size. This
finding consistents with theoretical results presented in (Huang et al., 2022b; Lewis et al., 2023),
which demonstrate that there exists a polynomial scaling relationship between model performance
and the size of training dataset.
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Table 5: Classification accuracy of quantum phases of matter on the Rydberg atom model with
varied training size Nt, where L = 31 and Kf = 256. The results are averaged over 3 runs with
different random seeds.

Nt = 20 Nt = 40 Nt = 60 Nt = 80

Q-TAPE 82.05 87.24 89.16 90.63
Q-TAPE w/o pretrain 79.17 81.78 85.96 88.47

D.3 FINE TUNING THE MODEL WITH OUT-OF-DISTRIBUTION DATASET

In this section, we consider fine tuning the Q-TAPE with out-of-distribution (OOD) dataset, which
means the dataset used for fine-tuning and the dataset used for pre-training come from different
distributions.

Here, we consider two different configurations to make the fine-tuning dataset out-of-distribution
from the pre-training one: the first is to re-generate the fine-tuning data by modifying the physical
variables and the second is to fine tune the model based on the parameters transferred from the model
pretrained on fewer qubits. In the following, we consider the Rydberg atom model.

Table 6: Classification accuracy of quantum phases of matter on the 31-qubit Rydberg atom model.
The pre-trained parameters are transferred from the model trained on smaller system size. The
training size is set to be Nt = 100, and the number of measurements Kf = 1024.

Q-TAPE (pre-trained on 19-qubit system) 95.74
Q-TAPE (pre-trained on 25-qubit system) 96.13
Q-TAPE (pre-trained on 31-qubit system) 96.67

Q-TAPE w/o pre-train 94.32

First, we take the evaluation that fine-tuning the model on 31-qubit system by using he parameters
pre-trained on 19 and 25-qubit system. Note that the number of qubits is also a physical variable and
we want to see if model parameters trained on small-scale systems could transfer and help model
characterize larger-scale systems. The results are listed in Tab. 6. It is evident that pre-trained
parameters transferred from small-scale systems is also useful for large-scale systems.

Table 7: Classification accuracy of quantum phases of matter on the 19-qubit Rydberg atom model.
The training size is set to be Nt = 100, and the number of measurements Kf = 1024.

no OOD OOD

Q-TAPE 95.95 84.82
Q-TAPE w/o pre-train 93.35 94.23

Second, we modify the detuning of a laser from [−10, 15] (which is exactly used in the paper) to
[−20,−10] ∪ [15, 25] to generate OOD fine-tuning dataset, on Rydberg atom model with 19 qubits.
The classification accracy are listed in Tab. 7. The pre-trained one fails to perform better than the Q-
TAPE w/o pre-train. The main reason is that the modified detuning values habe driven the quantum
evolution into a very different dynamics and the pre-trained model learns less knowledge about it.
The question of whether pre-trained Q-TAPE remains beneficial for OOD quantum datasets in other
settings remains open, and will be further explored in our future work.
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