
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATED ARCHITECTURE SYNTHESIS FOR ARBI-
TRARILY STRUCTURED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a novel perspective on the architecture of Artificial Neural
Networks (ANNs). Conventional ANNs typically adopt predefined tree-like or
Directed Acyclic Graph (DAG) structures for simplicity; however, these struc-
tures restrict network collaboration and capability due to the absence of horizon-
tal and backward communication. In contrast, biological neural systems comprise
billions of neural units with highly complex connection patterns, enabling each
neuron to establish connections with others based on specific contextual require-
ments. Inspired by biological neural systems, this study proposes a new frame-
work that automatically learns to construct arbitrary graph structures during the
training process. It also introduces the concept of ”Neural Modules” to organize
neural units, which facilitates communication between any nodes. Unlike tradi-
tional ANNs that rely on DAGs, the proposed framework evolves from complete
graphs, allowing unrestricted communication between neurons—mimicking the
operational behavior of biological neural networks. Furthermore, we develop a
method to compute these arbitrary graph structures and a regularization technique
to organize them into multiple independent, balanced Neural Modules. This ap-
proach reduces overfitting and enhances efficiency through parallel computing.
Overall, our method enables ANNs to learn effective arbitrary structures analo-
gous to those of biological neural systems. It exhibits strong adaptability to var-
ious tasks and compatibility across different scenarios, with experimental results
validating its potential.

1 INTRODUCTION

This work offers a fresh viewpoint on the architecture of Artificial Neural Networks (ANNs). Tra-
ditional ANNs are often hierarchically arranged in tree-like structures or DAGs, either through pre-
defined designs or via Neural Architecture Search (NAS) methods that explore within a DAG space.
However, this conventional approach impedes effective communication among nodes and introduces
significant structural bias. In practice, existing ANN structures are optimized within a limited search
space, which constrains the potential of ANNs and prevents them from achieving their full capabil-
ities.

Our work rethinks traditional ANNs by arguing that current connectivity approaches fail to capture
the true nature of neural networks. Nodes in an asynchronous tree-like structure cannot establish
flexible connections, which hinders information transfer between neural units and leads to inherent
deficiencies. To address this limitation, we propose a method to construct a synchronous graph
structure for nodes using the introduced Neural Modules, thereby promoting collaboration among
neural units.

In fact, some prior studies have identified the issues with current ANN structures and attempted to
design cyclic graph structures for ANNs. Nevertheless, these works neither analyzed the essence of
generalized cyclic structures for ANNs nor proposed a framework to automatically formulate such
structures—analogous to biological neural networks. These gaps are precisely the academic focus
of this paper.

Our approach enables synchronous communication among all nodes within the structure and in-
troduces a method for dynamically forming these structures during the learning process. These

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

enhancements improve information transfer efficiency, thereby boosting the overall capacity of neu-
ral network (NN) architectures. By fostering collaboration among nodes and enabling automatic
structure learning, our method harnesses the collective power of neural networks, unlocking their
potential in a manner similar to biological neural networks.

It is important to note that conventional tree-like neural networks are essentially a subset of our
designed general graph structure. We clarify the inherent bias in current neural network architectures
and provide an analysis of the integration of general graph structures into neural networks in the
appendix. Within our framework, multiple neural units collaboratively and automatically execute
precise functional implementations during the learning process. Our innovation aims to bridge the
gap between ANNs and more generalized structures that resemble biological neural networks.

Designing this architecture poses significant challenges, as the framework introduces higher com-
putational demands and an increased risk of overfitting. To address these issues, we propose a novel
regularization method. This method efficiently organizes nodes into multiple independent neural
modules that can be processed in parallel on modern GPUs. It enables automatic node organiza-
tion, thereby enhancing learning efficiency, reducing overfitting, and ultimately improving overall
performance.

Our learning process demonstrates strong adaptability to diverse tasks. We evaluated our optimiza-
tion method with state-of-the-art networks, and the results show that it outperforms them in many
real-world scenarios.

In summary, the key contributions of this study are:

1. We analyze the bias in existing tree-like neural network structures and provide a detailed analysis
of our proposed architectural improvements.

2. We develop a method for ANNs to automatically learn and construct arbitrary graph structures.

3. We introduce a novel regularization technique that organizes neural units into the proposed Neural
Modules, thereby enhancing structural efficiency through parallel computing and improving perfor-
mance by reducing overfitting.

2 RELATED WORKS

To advance the existing tree-like structure for NNs, Yuan (Kun Yuan & Yan, 2020) recently provided
a topological perspective, highlighting the benefits of dense connections enabled by shortcuts in
optimization (Srivastava et al., 2015) (Sandler et al., 2018). Furthermore, sparsity constraints have
been proven effective in optimizing learned structures across various applications (Srivastava et al.,
2015) Chu et al. (2023) (Ahmed & Torresani, 2018) (He & Sun, 2016) (Huang & Weinberger, 2017).
In these approaches, the structure of NNs is organized as a DAG, whereas our work organizes it into
a more general graph structure.

Additionally, in recent years, the Cyclic Structure with the Forward-Forward Algorithm (Liang
Wei Yang & ilip S. Yu, 2024) has also attempted to design such a structure for NNs. The differ-
ences between our work and this study can be summarized as follows: First, the graph structure in
(Liang Wei Yang & ilip S. Yu, 2024) is predefined, whereas our framework automatically organizes
the graph structure. Unlike predefined designs, our framework starts with a complete graph struc-
ture, where each neural unit has the potential to connect with any other neuron. Second, (Liang
Wei Yang & ilip S. Yu, 2024) achieves an equilibrium state through repetitive loops but does not
explain the essence of the loop or the termination condition. In contrast, we conduct an in-depth
analysis of the essence of the equilibrium state. Third, (Liang Wei Yang & ilip S. Yu, 2024) does not
analyze the size of cyclic graphs for the model or how to control them—factors that are crucial for
the efficiency of the entire framework. For our framework, we propose NM regularization to control
the structural complexity, thereby enhancing the model’s performance in terms of both performance
and efficiency. Detailed analysis can be found in the appendix.

The fixed point of the implicitly hidden layer can also serve as a solution (Bai et al., 2019) (Tsuchida
& Ong, 2022) (Chu et al., 2023) Yang et al. (2022) Heaton et al. (2021) (Zucchet & Sacramento,
2022), as demonstrated in subsequent works (Bai et al., 2020) (Szekeres & Izsák, 2024) (Yang &
Liu, 2023). Departing from the infinite structure of implicitly hidden layers (Chu et al., 2023),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we organize the network into a general graph structure. Compared with implicitly hidden layers,
our method improves efficiency through parallel computing and enhances performance by reducing
overfitting.

Our work also involves NN compression. In recent years, various compression algorithms have
been developed, including quantization (Kai Han & Xu, 2020) (Mingzhu Shen & Wang) (Yang He &
Yang, 2018), low-rank approximation (Li & Shi, 2018) (Zhaohui Yang & Xu, 2019) (Xiyu Yu & Tao,
2017), knowledge distillation (Shumin Kong & Xu, 2020) (Shan You & Tao, 2018), and network
pruning (Pavlo Molchanov & Kautz., 2019). In this paper, we seek to improve weight pruning
for our framework using a method similar to (Tao Lin, 2020), which evaluates the gradient of the
pruned model and applies parameter updates to the dense model. In our framework, this process is
coordinated with an elegant regularization method to automatically allocate Neural Modules. The
detailed process is described in the algorithm provided in the appendix.

Other structures, such as OptNet, integrate quadratic optimization problems for nodes within the
same layer (Amos & Kolter, 2017) (Yan & Zhang, 2021). However, this approach introduces addi-
tional bias.

Graph Neural Networks (GNNs) are specifically designed to address the needs of geometric deep
learning (Gori et al., 2005) (Fan et al., 2019) (Scarselli et al., 2008) (Abadal et al., 2021). GNNs
adapt their structure to the input graph, capturing complex dependencies (Yong et al., 2007) (Abadal
et al., 2021) (Fout et al., 2017) (Fan et al., 2019). Notably, GNNs primarily handle graphs as input
data, which differs from our focus on constructing arbitrary graph structures for the network itself.

The flexibility of graph structures has also been explored in studies related to Reservoir Computing
(Schrauwen & Campenhout., 2007) (Zhang, 2023). These studies utilize a recurrent neural network
framework where neuron connections are established randomly, and the weights remain static after
initialization. In contrast, our Neural Module framework enables adaptive learning of both weights
and network structure during processing.

Neural Architecture Search (NAS) has evolved from computationally expensive reinforcement learn-
ing and evolutionary methods to efficient gradient-based and weight-sharing approaches (Este-
ban Real & Kurakin, 2017) (Zoph & Le, 2017) (Hieu Pham & Quoc V. Le, 2018) (Mingxing Tan
& Le, 2019) (Arber Zela & Hutter, 2020) (Joe Mellor & Crowley, 2021). Modern methods like
DARTS (Hanxiao Liu & Yang, 2019) use differentiable search. However, most NAS methods still
optimize within a tree-like structure, limiting their structural flexibility.

3 METHODOLOGY

3.1 THE MATHEMATICAL FORMALIZATION OF THE MODEL

Let N0 denote the input values fed into the input layer. Let Nm represent the nodes of the last layer,
which feed into the output values. In our work, the intermediate structure is organized as a complete
graph. The model is denoted by NMs, NMs = {N0, E1,G, Em, Nm}, where G = {E,N} and
ni ∈ N is the ith node in G, eij ∈ E is the edge from ni to nj . Let the number of nodes in N be p,
the number of nodes in N0 be |N0|, and the number of nodes in Nm be |Nm|.

3.2 MODEL STRUCTURE

In our framework, nodes are initially computed based on their input nodes, which solely distribute
features. Additionally, each node is influenced by other nodes in the complete graph G, resulting in
mutual influence between nodes.

Our structure is constructed as follows: All intermediate nodes are organized into a general graph
G̃ derived from a complete graph G where only edges with weights whose absolute values exceed a
threshold γ are retained. Within this configuration, each node is influenced by all other nodes in the
graph through the learning process. Nodes in the general graph G̃ are connected via directed edges
with learnable weights. This mechanism allows each node to not only process its own input but also
integrate information from other nodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In our framework, the structure is generated by searching within a set of complete graphs and select-
ing the top k edges using pruning techniques in each iteration. Unlike conventional NAS methods
that search within a DAG, our approach can generate arbitrary graph structures.

In the following section, we elaborate on the process of calculating node values in the graph G̃.

3.3 FORWARD PROCESS

In this paper, the value of each node is represented as x and the value of each edge is represented
as w with corresponding node and edge indices. As introduced in the previous section, these values
depend on both the nodes in N0 and other nodes in G̃. Therefore, we need a synchronization method
to handle this mutual dependence. We model this problem as a system of multivariate equations. For
the values of the nodes in G̃, we have the following equations:



w11 +
∑
j ̸=1

f(xj) · wj1 +
|N0|∑
j=1

x0
j · w1

j1 = x1

w22 +
∑
j ̸=2

f(xj) · wj2 +
|N0|∑
j=1

x0
j · w1

j2 = x2

...

wpp +
∑
j ̸=p

f(xj) · wjp +
|N0|∑
j=1

x0
j · w1

jp = xp

(1)

In the above equations, w11, w22, ..., wpp are the weight of the self-loop edges in G̃ and represent
the biases of the nodes. f is the activation function.

Let Wm be the weights of Em and X = {x1, x2, ..., xp} be the values of the nodes in G̃ . Then, the
output values Ỹ = Xm can be derived as Xm = g(f(X) ·WmT), where g is the activation function
for output.

Existing numerical methods, such as the Newton-Raphson method (Gawade, 2024), can effectively
solve the above equations. In real-world applications, besides Newton’s method, efficiency can be
optimized using iterative methods, the dichotomy method, or the secant method—provided that the
complexity of the coefficient matrix is well-controlled. Note that each variable is processed by the
activation function f , making the transformation nonlinear. For the elements in G̃, we introduce the
following theorem:
Theorem 3.1 (Universal Graph Approximation Theorem). Let F be an implicit function defined on
a compact set, which can be transformed into a continuous explicit function for all variables. In this
case, there exists a graph that can effectively approximate the function F .

3.4 BACKWARD PROCESS

To compute the gradient of the nodes in G̃, we consider the gradient of the output layer as ∇Xm =
∇Y . Similar to the forward process, the gradients of the nodes also interact with each other. Note
that each node has been processed by the activation function. Thus, we model the gradients of the
nodes in the graph as variables in the following system of equations:

∑
j ̸=1

∇xj · f ′(xj) · w1j +
|Nm|∑
j=1

∇xm
j · g′(xm

j) · wm
1j = ∇x1

∑
j ̸=2

∇xj · f ′(xj) · w2j +
|Nm|∑
j=1

∇xm
j · g′(xm

j) · wm
2j = ∇x2

...∑
j ̸=p

∇xj · f ′(xj) · wpj +
|Nm|∑
j=1

∇xm
j · g′(xm

j) · wm
pj = ∇xp

(2)

Finally, we can compute the gradient of the edges. First, for the gradient of the edges in the complete
graph G, according to the system of equations, we need to consider the gradient of each node. For

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

any jth node in the graph, the weights of the incoming edges are represented by the jth(1 ≤ j ≤ p)
of the complete graph G. For convenience, we introduce the following operator:

Hj = [f(x1), ..., f(xj−1), 1, f(xj+1), ..., f(xp)] , (3)

This operator is derived from the system of equations in the forward process. Then, using the
gradient of the jth node, its corresponding gradient for WT

:j , 1 ≤ j ≤ p in G can be formulated as
follows:

∇WT
:j = ∇xj ◦ f ′(xj) · Hj . (4)

Second, for the gradient for the edges in Em, according to the process,

∇Wm = ∇XmT ◦ g′(XmT) · f(X) . (5)

Third, for the gradient for the edges in E1, according to the process,

∇W 1 = ∇XT ◦ f ′(XT) ·X0 . (6)

At last, the standard update process for gradient-based algorithms is executed.

3.5 NEURAL MODULE OPTIMIZATION

First, we introduce the previously mentioned NM regularization. For a general graph G̃, we first
normalize the absolute value of its adjacency matrix to obtain W̃ . We then define its distance matrix
D, where each element dij ∈ D is defined as :

dij = e−w̃ij . (7)

Second, we formalize the concept of Neural Modules (NM): A Neural Module is defined as a
Strongly Connected Component (SCC) of G̃.

Third, NM regularization takes into account the number of nodes in each Neural Module. We
introduce the operator Z = [z1, z2, ..., zp], where each element zi, 1 ≤ i ≤ p in Z , zi represents the
number of nodes in the Neural Module corresponding to node ni.

Based on the inverse proportionality law in two-dimensional graph space, we introduce the repulsion
matrix R for G̃. Each element rij ∈ R is defined as

rij =
zi ∗ zj
dij

(8)

Let α be the regularization parameter. Through NM regularization, the repulsion matrix R adaptively
adjusts α in each iteration. This process facilitates the automatic organization of the graph into
balanced, appropriately sized subgraphs, forming rational Neural Modules that effectively utilize
neural units. For the ith node in G̃, 1 ≤ i ≤ p, our NM regularization is formulated as:

JNM (x:i) = J(x:i) + α

p∑
j=1

rji · w2
ji, (9)

where J denotes the objective function.

During the backpropagation process, the weight of each edge is updated as follows:
Theorem 3.2. For NM regularization, in each iteration with learning rate η, parameter wij up-
grades as follow:

wij ← wij(1− ηαrij)− η
∂J

∂wij
(10)

Thus, when rij takes a higher value, wij is more likely to approach zero.

To simplify the analysis and enhance understanding of NM regularization, we propose a theorem by
omitting the activation function and analyzing its effect under linear regression:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3.3. Under linear regression with y = Xw:i + ϵ, with ϵ ∼ N (0, δ2I) and w:i ∼
N (0, τ2diag(r:i)

−1), for NM regularization, the weight distribution is given by:

w:i ∼ N ((XTX + λdiag(r:i))
−1XT y, δ2(XTX + λdiag(r:i))

−1)), (11)

where λ = δ2

τ2 .

From the above theorem, a larger repulsion term in R brings the expectation of the weight closer to
zero and reduces its variance.

In NM regularization, for each element rij in the repulsion matrix R, a larger zi or zj increases its
value, resulting in a stronger repulsive force. Similarly, smaller elements in the distance matrix D
have the same effect. These effects can be summarized in two aspects:

Between Neural Modules: NM regularization prevents the formation of excessively large Neural
Modules, as analyzed earlier.

Within Neural Modules: NM regularization helps avoid overly complex adjacency matrices. This
is critical because overly complex adjacency matrices can lead to solution instability within Neural
Modules—often caused by coefficient matrices with high condition numbers.

Let w∗ be the parameters of global optimal model, w0 be the parameters of the original model and
w̃0 be the parameters of the optimized model by k in the first iteration. To provide convergence
guarantees for NM regularization, we establish theoretical bounds based on the following assump-
tions: The training objective is smooth, satisfying ∥∇f(w) − ∇f(v)∥ ≤ L∥w − v∥,∀w, v ∈ Rp,
for some constant L > 0. The stochastic gradients are bounded, with E∥∇w∥2 ≤ G2. Under these
assumptions, the convergence of NM regularization is presented in the following theorem:

Theorem 3.4. Let the learning rate be ζ = c√
T

, where c =
√

f(w0)−f(w∗)
LG2 and T is the number of

iterations. For a pruned model selected according to the definition of Neural Modules, the following
inequality holds in expectation over the selected edges u:

E∥∇u∥2 = O(
√

L(f(w0)− f(w∗))

T
G+ L2∥w0 − w̃0∥2). (12)

3.6 ALGORITHM

Note that directly solving Equations 1 and 2 for G̃ is computationally infeasible. Leveraging NM
regularization, our algorithm instead solves these two equations for each Neural Module individu-
ally.

In this section, we initialize the adjacency matrix of the complete graph G as K. Then, approximate
K to the coefficient matrix C using a parameter, eliminating all edges whose weights have absolute
values lower than γ.

The computation of the graph is based on a method similar to topological sorting. For each Neural
Module NMi, InArc(NMi) denotes the number of edges ejs in the approximated graph that con-
nect from node nj /∈ NMi to node ns ∈ NMi. Conversely, OutArc(NMi) represents the number
of edges ejs in the approximated graph that connect from node nj ∈ NMi to node ns /∈ NMi.
Here, |NM | denotes the number of nodes within the Neural Module.

In our algorithm, Tarjan’s algorithm (Tarjan., 1976) is used to identify strongly connected compo-
nents, which serve as the foundation for forming Neural Modules.

The algorithm is based on a generalized form of topological sorting. Each iteration consists of two
main processes: The first process involves propagation according to the traditional NN forward pro-
cess. The second process aims to handle Neural Modules as a system of equations in parallel. During
each iteration, the algorithm updates by removing irrelevant edges. In summary, our framework is
detailed in Algorithm 1, Algorithm 2, and Algorithm 3, which are provided in the appendix.

For Algorithm 1, the complexity analysis of the main part is as follows. The complexity of Tar-
jan’s algorithm is O(|N | + |E|), and the complexity of checking InArc or OutArc is O(|E|). The
complexity of solving the system of equations can be optimized to O(|NM |2), where the com-
plexity for each Neural Module (NM) has been reduced through NM regularization. Therefore, in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the worst-case scenario—where the structure is organized as a linear chain that prevents parallel
computing—the overall complexity of our propagation algorithm is O(|N | + |E| + s ∗ |NM |2)
(where s is the number of Neural Modules). If the topology supports parallel computing, the overall
complexity can be optimized to O(|N |+ |E|+max(|NM |2)).

4 EXPERIMENTS

In this section, we present experiments conducted using our Neural Modules, comparing their per-
formance with traditional NN methods and several state-of-the-art models that go beyond traditional
tree-like structures. These baselines include implicit hidden layers (DEQ), a topological approach
that models NNs as DAGs, and the recently introduced OPTNET. The results are presented in tables
for four real-world datasets.

The four datasets used in our experiments correspond to different real-life scenarios.Codon Dataset:
Comprises codon usage frequencies in genomic coding DNA from a diverse sample of organisms
across different taxa, obtained from the CUTG database. Facebook Large Page-Page Network
Dataset: Contains a webgraph of verified Facebook page-page connections. Daily and Sports Ac-
tivities Dataset: Includes motion sensor data of 19 daily and sports activities, each performed by 8
subjects in their own style for 5 minutes. Gas Sensor Dataset: Consists of measurements from 16
chemical sensors exposed to six different gases at various concentration levels. All these tasks are
classification problems, and we evaluate performance based on the error rate of each algorithm.

4.1 PERFORMANCE EVALUATION OF NEURAL MODULES BEYOND TRADITIONAL
TREE-LIKE STRUCTURES

We compared the performance of our framework with baselines that go beyond traditional tree-like
structures (e.g., DEQ and OPTNET) for neural networks of varying sizes. Through analysis of the
experimental results, we can validate our claim that our framework exhibits significant advantages
at this scale.

We assessed the effectiveness of our NMs and other methods across different node complexities to
understand how NMs perform under varying levels of complexity. The nodes were initially orga-
nized using NN, DEQ, DAG, and OPTNET, and their error rates were recorded. Our experiments
also compared the performance of NMs with two regularization strategies: the commonly used L2
regularization and the proposed NM regularization. The results, presented in Table 1, show that our
novel structure consistently achieves superior performance in most cases. Additionally, NM regu-
larization outperforms the baseline L2 regularization in most scenarios. With an optimal number of
nodes, our NM regularization achieves the best performance across all datasets.

From Table 1, we can conclude that NNs consistently exhibit improved performance when nodes
are organized into Neural Modules. The performance of our NMs can be further enhanced through
regularization, as explained earlier.

4.2 PERFORMANCE OF NEURAL MODULES WITH FF AND DARTS

To validate our approach, we conducted comparative experiments using the Cyclic Forward-Forward
algorithm (Liang Wei Yang & ilip S. Yu, 2024),by formulating the multi-class classification task as
a binary classification task on the four datasets. We also compared our method with the well-known
NAS method DARTS (Hanxiao Liu & Yang, 2019). As shown in Figure 1, our Neural Module (NM)
framework achieves higher accuracy than both the Cyclic Architecture with the Forward-Forward
Algorithm and Differential Architecture Search (DARTS).

4.3 EFFICIENCY OF NEURAL MODULES

In this section, we focus on optimizing the efficiency of Neural Modules through the application
of NM regularization. As mentioned earlier, all considered structures are subgraphs of a fully con-
nected graph. Our NM regularization serves as a powerful mechanism for structural optimization,
enhancing the effectiveness and balance of Neural Modules.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: The performance of algorithms

Condon
Methods 80 100 200 300 500 1000 3000

NN 0.151 ± 0.004 0.152 ± 0.005 0.133 ± 0.008 0.130 ± 0.006 0.180 ± 0.004 0.159 ± 0.008 0.180 ± 0.006
DEQ 0.147 ± 0.002 0.139 ± 0.004 0.128 ± 0.005 0.221 ± 0.003 0.275 ± 0.004 over time over time
DAG 0.186 ± 0.003 0.167 ± 0.003 0.150 ± 0.006 0.172 ± 0.005 0.213 ± 0.006 over time over time

OPTNET 0.140 ± 0.003 0.150 ± 0.004 0.165 ± 0.004 0.143 ± 0.006 0.166 ± 0.003 over time over time
NMs 0.157 ± 0.006 0.142 ± 0.004 0.127 ± 0.004 0.129 ± 0.003 0.155 ± 0.002 0.160 ± 0.005 0.0.179 ± 0.005

NMsL2 0.158 ± 0.004 0.136 ± 0.006 0.128 ± 0.008 0.128 ± 0.003 0.150 ± 0.002 0.159 ± 0.004 0.178 ± 0.003
NMsNM 0.155 ± 0.002 0.135 ± 0.003 0.126 ± 0.004 0.127 ± 0.005 0.151 ± 0.004 0.158 ± 0.006 0.178 ± 0.003

Activity
Methods 80 100 200 300 500 1000 3000

NN 0.379 ± 0.006 0.354 ± 0.008 0.316 ± 0.007 0.304 ± 0.006 0.295 ± 0.005 0.309 ± 0.004 0.290 ± 0.004
DEQ 0.382 ± 0.004 0.364 ± 0.003 0.332 ± 0.008 0.321 ± 0.004 0.275 ± 0.003 over time over time
DAG 0.639 ± 0.005 0.624 ± 0.005 0.538 ± 0.005 0.538 ± 0.003 0.513 ± 0.003 over time over time

OPTNET 0.382 ± 0.006 0.364 ± 0.005 0.342 ± 0.006 0.363 ± 0.003 0.407 ± 0.005 over time over time
NMs 0.350 ± 0.004 0.332 ± 0.007 0.308 ± 0.006 0.264 ± 0.002 0.263 ± 0.007 0.306 ± 0.006 0.300 ± 0.008

NMs&L1 0.348 ± 0.003 0.320 ± 0.003 0.288 ± 0.003 0.257 ± 0.002 0.260 ± 0.006 0.295 ± 0.005 0.293 ± 0.004
NMs&NM 0.364 ± 0.003 0.314 ± 0.003 0.284 ± 0.003 0.250 ± 0.003 0.248 ± 0.004 0.298 ± 0.004 0.287 ± 0.003

Facebook
Methods 80 100 200 300 500 1000 3000

NN 0.140 ± 0.006 0.130 ± 0.008 0.131 ± 0.006 0.160 ± 0.006 0.208 ± 0.006 0.167 ± 0.008 0.166 ± 0.005
DEQ 0.147 ± 0.006 0.121 ± 0.006 0.126 ± 0.005 0.169 ± 0.005 0.447 ± 0.006 over time over time
DAG 0.168 ± 0.007 0.139 ± 0.007 0.148 ± 0.004 0.159 ± 0.005 0.647 ± 0.007 over time over time

OPTNET 0.173 ± 0.004 0.144 ± 0.005 0.158 ± 0.003 0.225 ± 0.006 0.193 ± 0.005 over time over time
NMs 0.135 ± 0.003 0.120 ± 0.004 0.126 ± 0.003 0.149 ± 0.004 0.169 ± 0.005 0.170 ± 0.003 0.168 ± 0.004

NMs&L1 0.135 ± 0.002 0.120 ± 0.003 0.137 ± 0.003 0.150 ± 0.003 0.165 ± 0.006 0.167 ± 0.004 0.163 ± 0.0048
NMs&NM 0.134 ± 0.004 0.117 ± 0.003 0.129 ± 0.004 0.145 ± 0.004 0.164 ± 0.006 0.166 ± 0.005 0.162 ± 0.006

Gas
Methods 80 100 200 300 500 1000 3000

NN 0.073 ± 0.006 0.087 ± 0.005 0.090 ± 0.003 0.207 ± 0.006 0.089 ± 0.006 0.138 ± 0.007 0.112 ± 0.004
DEQ 0.102 ± 0.008 0.102 ± 0.007 0.138 ± 0.003 0.169 ± 0.007 0.447 ± 0.008 over time over time
DAG 0.118 ± 0.004 0.084 ± 0.005 0.321 ± 0.004 0.239 ± 0.008 0.160 ± 0.004 over time over time

OPTNET 0.063 ± 0.002 0.105 ± 0.002 0.105 ± 0.003 0.103 ± 0.003 0.160 ± 0.006 over time over time
NMs 0.064 ± 0.003 0.082 ± 0.004 0.157 ± 0.002 0.126 ± 0.005 0.087 ± 0.003 0.140 ± 0.004 0.116 ± 0.008

NMs&L1 0.060 ± 0.006 0.081 ± 0.004 0.165 ± 0.004 0.120 ± 0.004 0.089 ± 0.003 0.136 ± 0.003 0.110 ± 0.007
NMs&NM 0.058 ± 0.006 0.075 ± 0.003 0.154 ± 0.006 0.120 ± 0.003 0.088 ± 0.003 0.132 ± 0.003 0.108 ± 0.005

NM vs FF

condon facebook activity gas

dataset

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

e
rr

o
r

NM

FF

(a) Neural Modules vs FF

NM vs DARTS

condon facebook activity gas

dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

e
rr

o
r

NM

DARTS

(b) Neural Modules vs DARTS

Figure 1: It can be observed that our model achieves a lower error rate than both the Cyclic Forward-
Forward algorithm and DARTS.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To evaluate the efficiency of our NM regularization, we compared the model’s running time across
different complexities (represented by node counts below 300). Figure 2a shows that the efficiency
of NM regularization significantly outperforms DEQ, especially when the number of nodes is larger.
This superiority is attributed to NM regularization’s ability to create multiple independent Neural
Modules, which effectively reduce computational complexity.

For networks with a larger number of nodes, we can leverage the parallel processing capabilities
of Neural Modules to further enhance the efficiency of our framework, as discussed earlier. NM
regularization facilitates the creation of multiple independent and well-balanced Neural Modules,
which are inherently suitable for parallel computing—particularly when using GPU acceleration.
In this extension, we increased the node count from 300 to 3000 and incorporated GPU hardware
acceleration to compute the algorithms more efficiently.

0 50 100 150 200 250 300

nodes number

0

1

2

3

4

5

ru
n
n
in

g
 t
im

e

10
5

Codon DEQ

Gases DEQ

Activity DEQ

Facebook DEQ

Codon NM

Gases NM

Activity NM

Facebook NM

(a) Nodes’ number up to 300. Neural mod-
ules vs.DEQ.

500 1000 1500 2000 2500 3000

nodes number

0

0.5

1

1.5

2

2.5

ru
n
n
in

g
 t
im

e

10
7

Codon Parallel

Codon NMs

Gases Parallel

Gases NMs

Activity Parallel

Activity NMs

Facebook Parallel

Facebook NMs

(b) Nodes’ number up to 3000. NM parallel
vs. Neural modules.

Figure 2: The efficiency of NM regularization

In Figure 2b, we compared the running time of Neural Modules operating in parallel with that of
Neural Modules without parallelization for large-scale models. For these experiments, we used 12
threads. Note that Neural Modules without parallel computing would exceed the time limit for larger
node counts, so we approximated the running time using partial data. Our results indicate that the
parallel implementation of NM regularization achieves a computational speedup of approximately
10 times. This demonstrates the substantial efficiency gains achievable through parallel processing
in the context of NM regularization. In Figure 2, the unit of measurement is the second.

Note that in this experiment, we use a lower parameter γ to form more complex neural modules for
evaluating the progress of efficiency. However, to verify its performance, we adopt much simpler
neural modules to avoid overfitting.

From these experiments, it is evident that our Neural Module framework can significantly enhance
the performance of Neural Networks by evolving from tree-like structures to more general graph
structures. Despite introducing additional parameters (as analyzed in previous sections), our frame-
work enables the Neural Network structure to explore a nearly complete search space, effectively
reducing the bias associated with current tree-like structures and achieving much better performance.
Moreover, the NM regularization and parallel computing techniques we introduced further empower
our method, allowing it to be effectively applied to larger networks.

5 CONCLUSION

This study introduces a novel general graph structure for NNs, aiming to improve performance by
enabling efficient information transfer. We analyze the structural bias of current tree-like structures
and propose a synchronization method for the simultaneous calculation of node values, thereby
fostering collaboration within Neural Modules. Additionally, we propose a novel NM regulariza-
tion method that encourages the learned structure to prioritize critical connections and automati-
cally form multiple independent, balanced neural structures—facilitating more efficient computation
through parallel processing. This approach not only reduces the computational load associated with
managing a large number of nodes but also improves performance by mitigating overfitting. Quanti-
tative experimental results confirm that our proposed method outperforms traditional NN structures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing
graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys
(CSUR), 54(9):1–38, 2021.

K. Ahmed and L. Torresani. Mask connect connectivity learning by gradient descent. In ECCV,
2018.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Tonmoy Saikia Yassine Marrakchi Thomas Brox Arber Zela, Thomas Elsken and Frank Hutter.
Understanding and robustifying differentiable architecture search. In ICLR, 2020.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In NeurIPS, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in
Neural Information Processing Systems, 33:5238–5250, 2020.

Haoyu Chu, Shikui Wei, and Ting Liu. Learning robust deep equilibrium models. arXiv preprint
arXiv:2304.12707, 2023.

Shutong Ding, Tianyu Cui, Jingya Wang, and Ye Shi. Two sides of the same coin: Bridg-
ing deep equilibrium models and neural odes via homotopy continuation. arXiv preprint
arXiv:2310.09583, 2023.

Andrew Selle Saurabh Saxena Yutaka Leon Suematsu Jie Tan Quoc V. Le Esteban Real,
Sherry Moore and Alexey Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. pp. 417–426, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. In Neural Information Processing Systems, 2017.

Shashank Gawade. The newton-raphson method: A detailed analysis. In In International Journal
for Research in Applied Science and Engineering Technology 12(11):729-734, 2024.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE
International Joint Conference on Neural Networks, 2005.

Karen Simonyan Hanxiao Liu and Yiming Yang. Darts: Differentiable architecture search. In ICLR,
2019.

Zhang X. Ren S. He, K. and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

Howard Heaton, Samy Wu Fung, Aviv Gibali, and Wotao Yin. Feasibility-based fixed point net-
works. Fixed Point Theory and Algorithms for Sciences and Engineering, 2021(1):1–19, 2021.

Barret Zoph Hieu Pham, Melody Guan and Jeff Dean Quoc V. Le. Efficient neural architecture
search via parameter sharing. In ICML, 2018.

Liu Z. VanDer Maaten L. Huang, G. and K.Q.. Weinberger. Densely connected convolutional net-
works. In CVPR, 2017.

Amos Storkey Joe Mellor, Jack Turner and Elliot J Crowley. Neural architecture search without
training. In ICML, 2021.

Yixing Xu Chunjing Xu Enhua Wu Kai Han, Yunhe Wang and Chang Xu. Training binary neural
networks through learning with noisy supervision. In ICML, 2020.

Jing Shao Kun Yuan, Quanquan Li and Junjie Yan. Learning connectivity of neural networks from
a topological perspective. In ECCV, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chong Li and CJ Richard Shi. Constrained optimization based low-rank approximation of deep
neural networks. In ECCV, 2018.

Weizhi Zhang Zihe Song Jing Ma Jiawei ZhangPh Liang Wei Yang, Hengrui Zhang and ilip S. Yu.
Beyond directed acyclic computation graph with cyclic neural network. In Arxiv, 2024.

Zenan Ling, Zhenyu Liao, and Robert C Qiu. On the equivalence between implicit and explicit
neural networks: A high-dimensional viewpoint. arXiv preprint arXiv:2308.16425, 2023.

Jiaming Liu, Xiaojian Xu, Weijie Gan, Ulugbek Kamilov, et al. Online deep equilibrium learning
for regularization by denoising. Advances in Neural Information Processing Systems, 35:25363–
25376, 2022.

Ruoming Pang Vijay Vasudevan Mark Sandler Andrew Howard Mingxing Tan, Bo Chen and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

Chunjing Xu Mingzhu Shen, Kai Han and Yunhe Wang. Searching for accurate binary neural archi-
tectures. In IEEE International Conference on Computer Vision Workshops, pp. 0–0, 2019.

Stephen Tyree Iuri Frosio Pavlo Molchanov, Arun Mallya and Jan Kautz. Importance estimation for
neural network pruning. In CVPR, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

David Verstraeten Benjamin Schrauwen and Jan Van Campenhout. An overview of reservoir com-
puting: theory, applications and implementations. In In In Proceedings of the 15th european
symposium on artiffcial neural networks. p. 471-482 2007, pages 471–482, 2007.

Chao Xu Shan You, Chang Xu and Dacheng Tao. Learning with single-teacher multi-student. In
AAAI, 2018.

Shan You Shumin Kong, Tianyu Guo and Chang Xu. Learning student networks with few data. In
AAAI, 2020.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. Computer
Science, 2015.

Béla J Szekeres and Ferenc Izsák. On the computation of the gradient in implicit neural networks.
The Journal of Supercomputing, 2024.

Luis Barba Daniil Dmitriev Martin Jaggi Tao Lin, Sebastian U. Stich. Dynamic model pruning with
feedback. In ICLR, 2020.

Robert E. Tarjan. Depth-first search and linear graph algorithms. In In SIAM Journal on Computing
1 (1972), 146–160., 1976.

Russell Tsuchida and Cheng Soon Ong. When are equilibrium networks scoring algorithms? In
NeurIPS 2022 Workshop on Score-Based Methods, 2022.

Xinchao Wang Xiyu Yu, Tongliang Liu and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In CVPR, 2017.

Yan J. Luo C. Chen L. Lin Q. Yan, K. and D. Zhang. A surrogate objective framework for predic-
tion+optimization with soft constraints. 2021.

Li P. Pang T. Yang, Z. and Y. Liu. Improving adversarial robustness of deep equilibrium models
with explicit regulations along the neural dynamics. In ICML, 2023.

Zonghan Yang, Tianyu Pang, and Yang Liu. A closer look at the adversarial robustness of deep equi-
librium models. Advances in Neural Information Processing Systems, 35:10448–10461, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuanyi Dong Yanwei Fu Yang He, Guoliang Kang and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In IJCAI, 2018.

Sweah Liang Yong, Markus Hagenbuchner, Ah Chung Tsoi, Franco Scarselli, and Marco Gori.
Document mining using graph neural network. In Comparative Evaluation of XML Information
Retrieval Systems: 5th International Workshop of the Initiative for the Evaluation of XML Re-
trieval, INEX 2006, Dagstuhl Castle, Germany, December 17-20, 2006, Revised and Selected
Papers 5, pp. 458–472. Springer, 2007.

Danilo Vasconcellos Vargas Heng Zhang. A survey on reservoir computing and its interdisciplinary
applications beyond traditional machine learning. In arXiv:2307.15092, 2023.

Chuanjian Liu Hanting Chen Chunjing Xu Boxin Shi Chao Xu Zhaohui Yang, Yunhe Wang and
Chang Xu. Legonet: Efficient convolutional neural networks with lego filters. In ICML, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

Nicolas Zucchet and João Sacramento. Beyond backpropagation: bilevel optimization through im-
plicit differentiation and equilibrium propagation. Neural Computation, 34(12):2309–2346, 2022.

A THE BIAS OF THE TRADITIONAL TREE-LIKE STRUCTURE

In this section, we demonstrate that the existing tree-like neural network (NN) structure is essentially
a special case of the framework we propose for solving systems of equations. For a tree-like structure
with m levels, let Xi denote the intermediate values at the ith level and X0 represent the input
values. For brevity, biases are omitted here. The asynchronous computation process of the current
tree-like structure can be formalized within our framework as the following system of equations:

X0 ·W 1T = X1

X1 ·W 2T = X2

...

Xm−1 ·WmT = Xm.

(13)

By formatting the inputs and the values of all nodes in the neural network into a variable vector
X = (X0, X1, X2, ..., Xm), the above system can be simplified to X · CT = 0.

Furthermore, the coefficient matrix C for the tree-like structure is structured as Figure 3.
W 1 −E1 0 0 ... 0 0
0 W 2 −E2 0 ... 0 0
0 0 W 3 −E3 ... 0 0

......
0 0 0 0 ... Wm Em


Figure 3: The Coefficient C for Tree-like Structure

Here Ei denotes the identity matrix corresponding to the ith level

From this system of equations, it is evident that the traditional NN structure constitutes a special
case of our equation system, which can be solved asynchronously. In the tree-like structure, the
coefficient matrix is composed of the parameter matrices W i for each level, with these parameters
positioned near the diagonal of the matrix.

Notably, the tree-like structure imposes stricter constraints on each node within the network. Specif-
ically, if nodes in a tree structure depend exclusively on neurons from the immediately preceding
layer, their capacity to approximate complex functions is severely limited.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026


W 1 −E1 0 0 ... 0 0
V 1 W 2 −E2 0 ... 0 0
V 1 V 2 W 3 −E3 ... 0 0
......
V 1 V 2 V 3 V 4 ... Wm Em


Figure 4: The Coefficient Matrix C for DAG(e.g. Resnet)

To address this limitation, some existing works have generalized the tree-like structure to Directed
Acyclic Graphs (DAGs)—as exemplified by ResNet. In such architectures, additional weights (de-
noted as V k for the kth level) are introduced to the lower triangular region of the coefficient matrix
C. The updated matrix C is structured as Figure 4.

This modification enables more flexible and expressive models, which can better approximate com-
plex functions and handle larger datasets.

However, the lower triangular coefficient matrix still represents the limit of asynchronous struc-
tures, with the potential of the upper triangular region remaining largely untapped. In our work, we
extend asynchronous structures to synchronous ones, breaking the constraints of lower triangular
matrices and generalizing the coefficient matrix C to a full adjacency matrix of a general graph.
This generalized structure enables a more comprehensive and interconnected network, delivering
greater flexibility and performance. Ultimately, our framework transitions neural network architec-
tures from tree-based structures to general graph structures by expanding the coefficient matrix to
span all levels.

B THE RATIONALE OF INTRODUCING NEURAL MODULES

For traditional tree-like structures, the asynchronous forward and backward propagation processes
can also be interpreted as solving a system of equations. In our framework, by contrast, the NN
structure is modeled as a general graph with p nodes.

A key design choice in our model is that the diagonal elements of the network’s adjacency matrix
correspond to the bias of each node. During formulation, input- and bias-related terms are assigned
to the right-hand side of the equation system, while terms associated with node values are placed on
the left-hand side. After each neural unit is processed using the input X0, the coefficient matrix C
takes the form shown as Figure 5.

−1 w2,1 w3,1 w4,1 ... wp−1,1 wp,1

w1,2 −1 w3,2 w4,2 ... wp−1,2 wp,2

w1,3 w2,3 −1 w4,3 ... wp−1,3 wp,3

w1,4 w2,4 w3,4 −1 ... wp−1,4 wp,4

......
w1,p w2,p w3,p w4,p ... wp−1,p −1


Figure 5: The Coefficient Matrix C for Our General Graph Structure

A detailed breakdown of the coefficient matrix’s role in computation is provided in the ”Forward
Process” subsection (Section 3.3).

By design, our framework enhances the representational capacity of individual neurons, unlock-
ing the full potential of neural networks. Concurrently, it eliminates the structural bias inherent in
predefined architectures—such as traditional tree-like structures or DAGs. This innovation makes
our framework more adaptable and less constrained by fixed architectural biases, resulting in more
flexible and effective NN designs.

Solving systems of equations with large coefficient matrices C can be computationally challenging.
To address this, our framework introduces Neural Module (NM) Regularization: an approximation
method for C that integrates parallel computation to improve efficiency.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C THE CONNECTION WITH DEEP EQUILIBRIUM MODELS (DEQ)

Previous research has identified stable points in infinite-level neural networks with identical weights.
Deep Equilibrium Models (DEQ) address this phenomenon by modeling the problem across infinite
levels and simplifying it to an implicit function, where finding a fixed point is equivalent to solving
for the root of this implicit function. In our work, we demonstrate that our general graph structure
can also be managed by solving a system of functions.

In fact, DEQ focuses on infinite levels with identical weights; if we treat an infinite path as a cycle,
the core research object of DEQ is essentially a cyclic graph. In this paper, we reveal the fundamental
nature of fixed points: they are solutions within our synchronous neural module structure. Our
neural modules not only help clarify this essence but also enable concurrent visualization of implicit
functions.

Furthermore, the ”Universality of Single-Layer DEQ” establishes that multiple implicit hidden lay-
ers are equivalent to a single implicit hidden layer—imposing a fundamental limitation on DEQ’s
ability to handle multiple implicit layers. Most critically, as noted in prior work, DEQ struggles to
scale to larger numbers of nodes.

In contrast, our framework reinterprets implicit hidden layers—shifting from infinite levels to ele-
gant general graphs—to organize neural units optimally, improving both model efficiency and per-
formance. To address scalability, we introduce NM regularization, which groups nodes into indepen-
dent neural modules. Unlike DEQ, our framework provides a principled methodology for handling
multiple neural modules. Our analysis of NM regularization includes both theoretical foundations
and experimental parameter tuning, enabling effective management of large-scale graphs.

Moreover, the independent, balanced neural modules generated by our framework outperform DEQ
in both efficiency and performance (as demonstrated in experiments). These modules reduce over-
fitting (enhancing performance) and enable parallel computation (boosting efficiency)—addressing
a key gap in DEQ, which does not discuss strategies for organizing neural units to optimize these
metrics.

C.1 DEEPER INSIGHTS INTO DEQ

Despite its potential, the theoretical foundations of DEQ remain underexplored. There is a notable
lack of in-depth analysis regarding two critical questions: (1) What is the significance of fixed points
in DEQ? (2) Why do infinite sequences of identical weights lead to such fixed points? This gap
presents an opportunity for further research to clarify the behavior of neural networks with cyclic
connections and their advantages over traditional architectures.

In cyclic structures, neuronal units are interconnected and interdependent. Information flows re-
cursively through multiple iterations until the system reaches an equilibrium state, which is then
propagated to other units. This equilibrium state is, in essence, the fixed point of the implicit hidden
layers.

The propagation of information toward equilibrium (a fixed point) in cyclic structures arises from
the interdependence of neuron units. As outlined in our prior work, these units are not independent
but form a complex system of equations that must be satisfied.

In a cyclic neural network, information iterates through the network, with each unit’s state influenced
by the states of other units in the same neural module. This process continues until changes between
iterations become negligible—indicating convergence to an equilibrium state. At this fixed point,
the system’s dynamics stabilize, with no further significant changes in unit states.

This convergence to equilibrium can be analogized to numerical methods for solving systems of
equations—such as the Newton-Raphson method, an iterative technique for finding successively
better approximations to the roots of a real-valued function. Similarly, in cyclic neural networks,
information flow iterates until it finds a stable solution that satisfies the system’s equations—this
solution is the fixed point.

In summary, the propagation toward equilibrium (a fixed point) in cyclic neural networks is the
result of iteratively solving the system of equations formed by interdependent neuron units, where
the system seeks a stable state that represents its equilibrium.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D THE CONNECTION TO CYCLIC STRUCTURES WITH THE
FORWARD-FORWARD ALGORITHM

The key algorithm in cyclic FF structures involves propagating information through the cyclic graph
for a predefined number of iterations—an attempt to numerically approximate the solution to the
system of equations capturing the graph’s interdependencies. This approach relies on a fixed number
of iterative numerical steps (as analyzed earlier) but cannot guarantee deterministic outcomes under
all operating conditions.

Additionally, cyclic FF structures use a predefined graph topology, which simplifies the interrela-
tionships between nodes to suit the FF algorithm—enabling more efficient operation within the fixed
architectural framework.

In contrast, our framework searches for optimal graph structures within a complete graph space. Un-
like traditional layered architectures (where each unit may connect to any unit in adjacent layers), a
complete graph allows every neuron to connect to every other neuron. While this flexibility expands
the design space, it also introduces complexity in structure search. Thus, our framework focuses on
developing methods to search for optimized structures within this complete graph space—enhancing
both performance and efficiency.

Key Limitations of Cyclic FF Structures and Our Solutions

Cyclic FF structures suffer from three critical limitations, all of which are addressed by our frame-
work:

Limitations of Cyclic FF Structures:

A. Relies on a predefined graph structure and uses cross-entropy as a local loss function for each unit
and its neighbors (aligning with FF). This limits flexibility and relies on greedy local optimization
and introduces bias by using predefined structure.

B. Approximates the solution to the system of equations using a fixed number of iterations—failing
to guarantee deterministic results.

C. Does not account for cycle size, which critically impacts framework complexity, efficiency, and
performance.

Our Solution:

A. Our network structure is learned (not predefined). During training, neurons dynamically form
connections to generate an optimal topology.

B. For each cyclic component, we solve the system of equations directly to obtain an exact solution,
eliminating the need for iterative approximation.

C. We use NM regularization to regulate the size of neural modules (and their cyclic components)
while leveraging parallel computing to improve efficiency.

E THE CONNECTION WITH OPTNET

Earlier research on OptNet focused on modeling interconnections between nodes in the same level
of traditional tree-like structures. OptNet implements quadratic programming (QP) within these
nodes, introducing significant structural bias. Furthermore, OptNet uses parameters derived from
QP problems for backpropagation—with these parameters determined by nodes in the previous
layer—creating challenges for regularization (as discussed earlier). These flaws make it difficult
to fine-tune OptNet’s performance and overall efficiency.

In contrast, our neural modules are nonlinear and exhibit sufficient flexibility to approximate any
compact function (as guaranteed by the Universal Graph Approximation Theorem) without intro-
ducing bias. Additionally, we can easily control parameter complexity to simultaneously enhance
performance and efficiency—addressing OptNet’s core limitations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F ALGORITHM

We summarize our framework in three core algorithms: Algorithm 1 (Propagation), Algorithm 2
(Training Process), and Algorithm 3 (Prediction Process).

Algorithm 1 Propagation

1: Input: Input vector Xin; Coefficient matrix C; Input layer weights W 1; Output layer weights
Wm; Propagation type (Forward/Backward) PT ;

2: Output: Updated node value vector X
3: if PT == Forward then
4: Initialize X = Xin ·W 1T .
5: end if
6: if PT == Backward then
7: Initialize X = Xin ·Wm.
8: end if
9: Use Tarjan’s algorithm on C to identify neural modules {NMs}.

10: Initialize Node Queue = {ni|InArc(ni) = 0}.
11: Initialize NM Queue = {NMi|InArc(NMi) = 0}.
12: while Node Queue is not null and NM Queue is not null do
13: for ni in Node Queue do
14: if PT == Forward then
15: Execute forward propagation (as in traditional NNs).
16: end if
17: if PT == Backward then
18: Execute backward propagation (as in traditional NNs).
19: end if
20: Delete outgoing edges of ni from C .
21: end for
22: if PT == Forward then
23: Solve equations (1) and (9) for NMi ∈ NM Queue in parallel.
24: end if
25: if PT == Backward then
26: Solve equations (2) for NMi ∈ NM Queue in parallel.
27: end if
28: Delete edges associated with NMi ∈ NM Queue from C.
29: for ni associated with C do
30: if InArc(ni) == 0 and OutArc(ni) != 0 then
31: Enqueue ni to Node Queue.
32: end if
33: end for
34: for NMi associated with C do
35: if InArc(NMi) == 0 and NMi has edges then
36: Enqueue NMi toNM Queue.
37: end if
38: end for
39: end while
40: if PT == Forward then
41: X = f(X) (apply activation function f).
42: end if
43: if PT == Backward then
44: X = f ′(X) (apply derivative of activation function f ′).
45: end if
46: return X

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Training Process

1: Input: Initial input vector X0; Ground-truth label vector Y ; Initial adjacency matrix for the
complete graph K;Hyperparameter for thresholding (used to update γ) k; Input layer weights
W 1; Output layer weights Wm;

2: Output: K;Wm;W1;γ
3: Initiate K as a random matrix (for the complete graph).
4: while the model has not converged do:
5: Approximate K usingh hyperparameter k to obtain the coefficient matrix C.
6: Run Propagation with X0,C,W 1,Wm,Forward.
7: Compute predicted labels: Ỹ = X ·WmT .
8: Compute loss gradient ∇Y .
9: Run Propagation with∇Y ,CT ,W 1,Wm,Backward.

10: Update K using equation (4).
11: Update Wm using equation (5).
12: Update W1 using equation (6).
13: Update γ to the kth largest absolute value in K (for thresholding).
14: end while

Algorithm 3 Predicting Process

1: Input: Input vector for prediction X0; Threshold (from training) γ; Optimized adjacency matrix
(from training) K; Input layer weights W 1; Output layer weights Wm ;

2: Output: Predicted label vector Ỹ .
3: Approximate K using γ to obtain the coefficient matrix C.
4: Run Propagation with X0,C,W 1,Wm,Forward.
5: Compute Ỹ = X ·WmT .
6: return Ỹ

G THE SUPPLEMENTARY MATERIALS FOR EXPERIMENTS

This section provides detailed information about the experimental setup and analyses of NM regu-
larization.

G.1 EXPERIMENTAL ENVIRONMENT

All experiments were conducted on the hardware platform specified in Table 1.

Table 2: Experimental Environment

CPU Gen Intel(R) Core(TM) i9-12900H 2.90 GHz
Cores 16
Memory 32G
GPU NVidia GeForce RTX 3060
Graphics Memory 12G

G.2 OPTIMIZATION OF NEURAL MODULES VIA NM REGULARIZATION

As discussed earlier, NM regularization yields significant improvements in model performance and
efficiency. Here, we analyze parameter-tuning strategies for NM regularization and their relationship
to dataset complexity.

A key insight is that optimal parameter settings for NM regularization depend on dataset complexity:

Gas Dataset: Less complex; benefits from stronger regularization (reduces overfitting to simple
patterns).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.01 0.02 0.03 0.04 0.05 0.06

0.12

0.13

0.14

0.15

0.16

e
rr

o
r

k=0.008

k=0.01

k=0.012

(a) Codon Usage Dataset

0.01 0.02 0.03 0.04 0.05 0.06

0.06

0.07

0.08

0.09

0.1

0.11

e
rr

o
r

k=0.008

k=0.01

k=0.012

(b) Gas Dataset

0.01 0.02 0.03 0.04 0.05 0.06

0.11

0.115

0.12

0.125

0.13

e
rr

o
r

k=0.008

k=0.01

k=0.012

(c) Facebook Dataset

0.01 0.02 0.03 0.04 0.05 0.06

0.3

0.32

0.34

0.36

0.38

0.4

e
rr

o
r

k=0.008

k=0.01

k=0.012

(d) Activity Dataset

Figure 6: Quantitative Comparison of Topological Connectivity. Sparse connectivity metrics (e.g.,
edge density, average degree) across datasets, showing alignment with biological neural networks.

Activity Dataset: More complex; performs better with weaker regularization (preserves fine-grained
patterns).

Codon Usage Dataset: Requires larger neural modules combined with stronger regularization (bal-
ances complexity and overfitting).

Facebook Dataset: Robust to parameter variations (exhibits stable performance across a range of
regularization strengths).

These trends are visualized in Figure 6, which shows the impact of two key parameters (α and k) on
prediction error across datasets.

H THE EFFECT OF NM REGULARIZATION

Experimental results demonstrate three key benefits of NM regularization:

Captures Weight Trends: NM regularization accurately tracks weight evolution across iterations,
enabling precise weight regularization.

Forms Balanced Modules: It groups nodes into independent, balanced neural modules—reducing
redundancy and improving representational efficiency.

Boosts Parallel Efficiency: Since modules are independent, they can be processed in parallel. The
overall efficiency of the model is determined by the size of the largest module (smaller, balanced
modules minimize parallel bottlenecks).

H.1 QUANTITATIVE ANALYSIS OF NM REGULARIZATION

To formalize the effect of NM regularization, we define:

θ: Probability that an edge’s weight is less than γ (the regularization threshold) in the current itera-
tion.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

q: Number of nodes in a neural module.

The probability that a new edge integrates into a module is given by:

pmerge = 1− θq (14)

.

NM regularization dynamically adjusts this probability to balance module sizes:

For small q (small modules), it increases pmerge to encourage module growth.

For large q (large modules), it decreases pmerge to prevent excessive expansion.

This balance minimizes disparities in merge probabilities across modules of varying sizes—ensuring
the formation of compact, efficient modules (see Figure 7a).

0 2 4 6 8 10

nodes number

0

0.2

0.4

0.6

0.8

1

p
ro

b
a
b
ili

ty
 t
o
 m

e
rg

e

0 20 40 60 80 100 120 140 160 180 200

average node number for each neural module

0

1

2

3

4

5

6

7

ti
m

e
-c

o
n
s
u
m

in
g
 t
o
 s

o
lv

e
 t
h
e
 e

q
u
a
ti
o
n
s

Figure 7: (a) Merge probability vs. number of nodes per module (shows balanced growth); (b) Time
consumption vs. average module size (demonstrates parallel efficiency—smaller, balanced modules
reduce computation time).

Additionally, Figure 7b illustrates the efficiency gains from parallel computation: as module sizes
decrease (and balance improves), computation time decreases linearly—confirming that NM regu-
larization enables effective scaling to large node counts.

Figure 8 show examples of automatically generated neural module structures for each dataset (black
squares denote independent modules). These figures confirm that NM regularization produces
sparse, balanced structures that mirror the connectivity patterns of biological neural networks (as
quantitatively verified in Figure 9)

Figure 9 further quantifies this by comparing topological connectivity patterns across
datasets—confirming that our framework consistently generates structures aligned with biological
neural networks.

I THE PROOF OF THEOREM 3.1

Proof. In the forward propagation process, the system of equations defined by our general graph
structure constructs implicit functions across all nodes in a neural module. For any node ni this
implicit function can be transformed into an explicit function of the input X0.

By the Universal Approximation Theorem (Hornik et al., 1989), any continuous function f : X → R
(where X ∈ Rd is compact) can be approximated to arbitrary precision by a single hidden-layer
feed-forward network with a non-linear activation function.

Our framework satisfies this theorem’s conditions:

The system of equations includes a non-linear activation function (applied to node values in forward
propagation).

The general graph structure enables arbitrary connections between nodes—effectively acting as a
feed-forward network with flexible layer definitions.

Thus, Theorem 1 holds.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Codon Usage Dataset (b) Gas Dataset

(c) Facebook Dataset (d) Activity Dataset

Figure 8: Automatically Formed Neural Modules (Codon Usage, Gas, Facebook, and Activity
Datasets). Each black square represents an independent module.

‘

(a) Codon Usage Dataset (b) Gas Dataset

(c) Facebook Dataset (d) Activity Dataset

Figure 9: Connectivity Patterns from NM Regularization. Upper triangular adjacency matrices
(simplified for visualization) show sparse, biologically plausible connectivity.

‘

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J THE PROOF OF THEOREM 3.2

Proof. The gradient of the loss with with respect to edge wij under NM regularization is given by

∂JNM

∂wij
=

∂J

∂wij
+ αrijwij , (15)

Using stochastic gradient descent (SGD) for weight updates, the update rule becomes:

wij ← wij − η(
∂J

∂wij
+ αrijwij), (16)

where η is the learning rate.

K THE PROOF OF THEOREM 3.3

Proof. Assume the i-th column of C (weights from all nodes to node i) follows a multivariate normal
prior:

w:i ∼ N (0, τ2diag(r:i)
−1), (17)

where τ2 is the prior variance, and r:i is the vector of regularization coefficients for the i-th column.

Consider a Bayesian linear regression model for node y = Xw:i + ϵ and ϵ ∼ N (0, σ2I). The
posterior distribution of w:i substituts the Gaussian likelihood and prior::

p(w:i|y,X) ∝ p(y|X,w:i)p(w:i)

∝ exp(−∥y −Xw:i∥2

2σ2
)exp(−∥w

T
:i · diag(r:i) · w:i∥2

2τ2
)

Taking the negative logarithm (to convert to a minimization problem), the maximum a posteriori
(MAP) estimate of

argmin
w:i

{ 1

2δ2
∥y −Xw:i∥2 +

∑ rji
2τ2
∥wji∥2}, (18)

which equivalent to NM regularization as

argmin
w:i

{∥y −Xw:i∥2 + α
∑

rji∥wji∥2}. (19)

This is exactly the NM regularization objective. Thus, NM regularization corresponds to a Bayesian
prior on edge weights.

To confirm the posterior distribution, expand the log-posterior:

logp(w:i|y,X) ∝ − 1

2δ2
∥y −Xw:i∥2 −

1

2τ2
wT

:idiag(r:i)w:i

∝ − 1

2δ2
(wT

:iX
TXw:i − 2wT

:iX
T y)− 1

2τ2
wT

:idiag(r:i)w:i

∝ −1

2
wT

:i (
XTX

δ2
+

1

τ2
diag(r:i))w:i +

wT
:iX

T y

δ2

This matches the norm of a multivariate normal distribution’s log-pdf. By converting the distribution
to a normalized form, Theorem 3.3 holds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L THE PROOF OF THEOREM 3.4

Proof. By Theorem 3.4, edge weights follow a normal distribution. When pruning edges based
on the absolute value of weights (using threshold γ), the weights in each iteration follow a folded
normal distribution. For simplicity, consider the cumulative distribution function (CDF) of the
standard folded normal distribution:

P (w) = 2Φ(
w

∆
)− 1. (20)

where Φ is the CDF of the standard normal distribution, and ∆ is the scale parameter. NM regu-
larization reduces ∆ over iterations (by shrinking weights toward zero via the α ∗ rij ∗ wij . This
causes the folded normal distribution to concentrate around zero, meaning learned parameters tend
to approach zero with the decrease in ∆.

For any iteration t, let wt be the parameters of the original model and w̃t be the parameters of the
optimized model by k. The shrinkage effect of NM regularization implies:

∥wt − w̃t∥2 < ∥w0 − w̃0∥2. (21)

where w0 is the initial weight.

Follow (Tao Lin, 2020), let ζ = c√
T

, c =
√

f(w0)−f(w∗)
LG2 and T be the number of iteration.

E∥∇u∥2 ≤ f(w0)− f(w∗)

ζ(T + 1)
+ LζG2 +

L2

T + 1

T∑
t=0

E∥wt − w̃t∥2

≤ 2(f(w0)− f(w∗))

ζ(T + 1)
+ LζG2 + L2∥w0 − w̃0∥2

M THE USAGE OF LARGE LANGUAGE MODELS (LLMS) IN THIS PAPER

In this paper, Large Language Models (LLMs) were only utilized in three specific aspects, with their
application scope strictly limited to auxiliary text and code polishing:

1. Correcting grammatical errors in the manuscript;

2. Rectifying typos throughout the text;

3. Fixing minor code errors in the experimental section.

Notably, LLMs were not employed for core academic work, including the generation of key research
ideas, the derivation of critical mathematical proofs, or any other tasks that involve original academic
reasoning.

22

	Introduction
	Related Works
	Methodology
	The Mathematical Formalization of The Model
	Model Structure
	Forward Process
	Backward Process
	Neural Module Optimization
	Algorithm

	Experiments
	Performance Evaluation of Neural Modules Beyond Traditional Tree-like Structures
	Performance of Neural Modules with FF and DARTS
	Efficiency of Neural Modules

	Conclusion
	The Bias of the Traditional Tree-like Structure
	The Rationale of Introducing Neural Modules
	THE CONNECTION WITH DEEP EQUILIBRIUM MODELS (DEQ)
	Deeper Insights into DEQ

	The Connection To Cyclic Structures With The Forward-Forward Algorithm
	The Connection with OPTNET
	Algorithm
	The supplementary materials for experiments
	Experimental Environment
	Optimization of Neural Modules via NM Regularization

	The Effect of NM Regularization
	Quantitative Analysis of NM Regularization

	The Proof of Theorem 3.1
	The Proof of Theorem 3.2
	The Proof of Theorem 3.3
	The Proof of Theorem 3.4
	The Usage of Large Language Models (LLMs) in This Paper

