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ABSTRACT

This paper introduces a fresh perspective on the architecture of Artificial Neu-
ral Networks (ANNs). Conventional ANNs generally employ predefined tree-like
or Directed Acyclic Graph (DAG) structures for simplicity, yet such designs can
constrain network collaboration and capacity due to limited horizontal and back-
ward communication. By contrast, biological neural systems consist of billions
of neurons interconnected in highly complex patterns, allowing each neuron to
form context-dependent connections with others. Drawing inspiration from these
biological systems, this work proposes a framework that learns to construct ar-
bitrary graph structures during training. It also introduces “Neural Modules” as
a way to group neural units, thereby facilitating communication among arbitrary
nodes. Unlike traditional DAG-based ANNs, the proposed framework starts from
complete graphs and permits unconstrained information exchange between neu-
rons, more closely simulating the functioning of biological neural networks. Ad-
ditionally, we develop a computational method for handling such arbitrary graph
structures and a regularization strategy that organizes neurons into multiple inde-
pendent and balanced Neural Modules. This organization helps mitigate overfit-
ting and improves computational efficiency through parallelization. In summary,
our approach enables ANNs to learn flexible, arbitrary structures that resemble
those in biological systems. It demonstrates promising adaptability across differ-
ent tasks and scenarios, and experimental results support its potential.

1 INTRODUCTION

This work presents a fresh perspective on the architecture of Artificial Neural Networks (ANNs).
Conventional ANNs are typically organized in hierarchical, tree-like structures or Directed Acyclic
Graphs (DAGs), either by manual design or through Neural Architecture Search (NAS) methods that
operate within a DAG-based search space. However, such designs limit effective communication
between nodes and introduce considerable structural bias.

From a theoretical standpoint, traditional DAG structures (including trees) can be viewed as impos-
ing a topological ordering on nodes, where each node is only allowed to connect to its predecessors.
In a DAG with p nodes, this results in at most

1 + 2 + ...+ p =
p(p+ 1)

2
(1)

possible edges. In practice, existing ANN architectures are optimized within this constrained space,
which may restrict their expressive power and limit performance potential.

This study reconsiders traditional ANN design by noting that current connectivity schemes do not
fully capture desirable properties of neural computation. Nodes in asynchronous tree-like layouts
cannot form flexible connections, which impedes information flow and leads to inherent limita-
tions. To address this, we propose a method for building synchronous graph structures using mod-
ular components called Neural Modules, which facilitate collaboration among neural units. In our
framework, a graph with p nodes can have up to

p2 (2)

edges, thereby better leveraging the representational capacity of general graph topologies.

1
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Such a structure may induce a collaborative effect among the neural units in the network. The graph
framework can achieve superior performance both intuitively and theoretically, as elaborated earlier.

Prior work has recognized issues in contemporary ANN structures and attempted to introduce cyclic
graph models. However, these studies did not thoroughly analyze the role of generalized cyclic
structures in ANNs, nor did they provide a framework for automatically learning such architec-
tures—akin to biological neural networks. These gaps form the core focus of our paper.

Our approach supports synchronous communication among all nodes in the structure and introduces
a method for dynamically forming such structures during learning. These improvements enhance
information transfer efficiency and increase the overall capacity of the neural architecture. By pro-
moting node collaboration and supporting automatic structure learning, our method harnesses the
collective potential of neural units in a manner closer to biological neural networks.

It should be noted that conventional tree-structured networks are a special case of our general graph
formulation. We clarify the structural bias in existing ANN designs and provide a detailed analysis
of integrating general graph structures into neural models in the appendix. Under our framework,
multiple neural units cooperate to automatically implement specific functions during learning. Our
goal is to help narrow the gap between current ANNs and more biologically-plausible generalized
structures.

Designing such an architecture presents considerable challenges, including higher computational
costs and increased risk of overfitting. To mitigate these issues, we introduce a novel regulariza-
tion technique that organizes nodes into multiple independent Neural Modules. These modules can
be processed in parallel on modern GPUs, support automatic node organization, improve learning
efficiency, reduce overfitting, and lead to better overall performance.

Our learning framework shows strong adaptability across a variety of tasks. Experimental results
on state-of-the-art networks indicate that our method achieves competitive performance in many
real-world scenarios.

In summary, the main contributions of this work are:

1. An analysis of structural bias in existing tree-like neural networks, along with a detailed explana-
tion of our proposed architectural enhancements.

2. A method that enables ANNs to automatically learn and construct arbitrary graph structures.

3. A novel regularization approach that organizes neural units into Neural Modules, improving
structural efficiency via parallel computation and boosting performance by reducing overfitting.

2 RELATED WORKS

To advance the existing tree-like structure for NNs, Yuan (Yuan et al., 2020) recently provided
a topological perspective, highlighting the benefits of dense connections enabled by shortcuts in
optimization (Srivastava et al., 2015) (Sandler et al., 2018). Furthermore, sparsity constraints have
been proven effective in optimizing learned structures across various applications (Srivastava et al.,
2015) Chu et al. (2023) (Ahmed & Torresani, 2018) (He et al., 2016) (Huang et al., 2017). In these
approaches, the structure of NNs is organized as a DAG, whereas our work organizes it into a more
general graph structure.

Additionally, in recent years, the Cyclic Structure with the Forward-Forward Algorithm (Yang et al.,
2024) has also attempted to design such a structure for NNs. The differences between our work and
this study can be summarized as follows: First, the graph structure in (Yang et al., 2024) is pre-
defined, whereas our framework automatically organizes the graph structure. Unlike predefined
designs, our framework starts with a complete graph structure, where each neural unit has the po-
tential to connect with any other neuron. Second, (Yang et al., 2024) achieves an equilibrium state
through repetitive loops but does not explain the essence of the loop or the termination condition. In
contrast, we conduct an in-depth analysis of the essence of the equilibrium state. Third, (Yang et al.,
2024) does not analyze the size of cyclic graphs for the model or how to control them—factors that
are crucial for the efficiency of the entire framework. For our framework, we propose NM regular-
ization to control the structural complexity, thereby enhancing the model’s performance in terms of
both performance and efficiency. Detailed analysis can be found in the appendix.

2
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The fixed point of the implicitly hidden layer can also serve as a solution (Bai et al., 2019) (Tsuchida
& Ong, 2022) (Chu et al., 2023) Yang et al. (2022) Heaton et al. (2021) (Zucchet & Sacramento,
2022), as demonstrated in subsequent works (Bai et al., 2020) (Szekeres & Izsák, 2024) (Yang
et al., 2023). Departing from the infinite structure of implicitly hidden layers (Chu et al., 2023),
we organize the network into a general graph structure. Compared with implicitly hidden layers,
our method improves efficiency through parallel computing and enhances performance by reducing
overfitting.

Other structures, such as OptNet, integrate quadratic optimization problems for nodes within the
same layer (Amos & Kolter, 2017) (Yan et al., 2021). However, this approach introduces additional
bias.

Our work also involves NN compression. In recent years, various compression algorithms have been
developed, including quantization (Han et al., 2020) (Shen et al., 2019) (He et al., 2018), low-rank
approximation (Li & Shi, 2018) (Yang et al., 2019) (Yu et al., 2017), knowledge distillation (Kong
et al., 2020) (You et al., 2018), and network pruning (Molchanov et al., 2019). In this paper, we
seek to improve weight pruning for our framework using a method similar to (Lin et al., 2020),
which evaluates the gradient of the pruned model and applies parameter updates to the dense model.
In our framework, this process is coordinated with an elegant regularization method to automati-
cally allocate Neural Modules. The detailed process is described in the algorithm provided in the
appendix.

Graph Neural Networks (GNNs) are specifically designed to address the needs of geometric deep
learning (Gori et al., 2005) (Fan et al., 2019) (Scarselli et al., 2008) (Abadal et al., 2021). GNNs
adapt their structure to the input graph, capturing complex dependencies (Yong et al., 2007) (Abadal
et al., 2021) (Fout et al., 2017) (Fan et al., 2019). Notably, GNNs primarily handle graphs as input
data, which differs from our focus on constructing arbitrary graph structures for the network itself.

The flexibility of graph structures has also been explored in studies related to Reservoir Computing
(Verstraeten et al., 2007) (Vargas & Zhang, 2023). These studies utilize a recurrent neural network
framework where neuron connections are established randomly, and the weights remain static after
initialization. In contrast, our Neural Module framework enables adaptive learning of both weights
and network structure during processing.

Neural Architecture Search (NAS) has evolved from computationally expensive reinforcement learn-
ing and evolutionary methods to efficient gradient-based and weight-sharing approaches (Real et al.,
2017) (Zoph & Le, 2017) (Pham et al., 2018) (Tan et al., 2019) (Zela et al., 2020) (Mellor et al.,
2021). Modern methods like DARTS (Liu et al., 2019) use differentiable search. However, most
NAS methods still optimize within a tree-like structure, limiting their structural flexibility.

3 METHODOLOGY

3.1 THE MATHEMATICAL FORMALIZATION OF THE MODEL

Let N0 denote the input values fed into the input layer. Let Nm represent the nodes of the last layer,
which feed into the output values. In our work, the intermediate structure is organized as a complete
graph. The model is denoted by NMs, NMs = {N0, E1,G, Em, Nm}, where G = {E,N} and
ni ∈ N is the ith node in G, eij ∈ E is the edge from ni to nj . Let the number of nodes in N be p,
the number of nodes in N0 be |N0|, and the number of nodes in Nm be |Nm|.

3.2 MODEL STRUCTURE

In our framework, nodes are initially computed based on their input nodes, which solely distribute
features. Additionally, each node is influenced by other nodes in the complete graph G, resulting in
mutual influence between nodes.

Our structure is constructed as follows: All intermediate nodes are organized into a general graph
G̃ derived from a complete graph G where only edges with weights whose absolute values exceed
a threshold γ are retained. In each iteration, the weights in G are updated, with corresponding
adjustments made to G̃. Within this configuration, each node is influenced by all other nodes in the
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graph through the learning process. Nodes in the general graph G̃ are connected via directed edges
with learnable weights. This mechanism allows each node to not only process its own input but also
integrate information from other nodes.

In our framework, the architecture is generated by iteratively searching over a set of complete graphs
and selecting crucial edges through pruning. The overall pipeline is depicted in Figure 1. In each
iteration, the weights of the complete graph are updated as follows: following (Lin et al., 2020),
we compute the gradients at the nodes of the current sparse graph G̃ from the preceding backward
process and use them to update the weights of the dense underlying graph G. Subsequently, G is
pruned according to a parameter γ to obtain an updated sparse graph G̃. This updated G̃ is then
employed in both the forward and backward processes of the subsequent iteration.

(a) Update G in each iteration.
(b) G̃ is employed in Forward
Process.

(c) G̃ is employed in Backward
Process.

Figure 1: An overview of the proposed framework’s architecture.

In the following section, we elaborate on the process of calculating node values in the graph G̃.

3.3 FORWARD PROCESS

In this paper, the value of each node is represented as x and the value of each edge is represented
as w with corresponding node and edge indices. As introduced in the previous section, these values
depend on both the nodes in N0 and other nodes in G̃. Therefore, we need a synchronization method
to handle this mutual dependence. We model this problem as a system of multivariate equations. For
the values of the nodes in G̃, we have the following equations:



w11 +
∑
j ̸=1

f(xj) · wj1 +
|N0|∑
j=1

x0
j · w1

j1 = x1

w22 +
∑
j ̸=2

f(xj) · wj2 +
|N0|∑
j=1

x0
j · w1

j2 = x2

...

wpp +
∑
j ̸=p

f(xj) · wjp +
|N0|∑
j=1

x0
j · w1

jp = xp

(3)

In the above equations, w11, w22, ..., wpp are the weight of the self-loop edges in G̃ and represent
the biases of the nodes. f is the activation function.

Let Wm be the weights of Em and X = {x1, x2, ..., xp} be the values of the nodes in G̃ . Then, the
output values Ỹ = Xm can be derived as Xm = g(f(X) ·WmT ), where g is the activation function
for output.

Existing numerical methods, such as the Newton-Raphson method (Gawade, 2024), can effectively
solve the above equations. In real-world applications, besides Newton’s method, efficiency can be
optimized using iterative methods, the dichotomy method, or the secant method—provided that the
complexity of the coefficient matrix is well-controlled. Note that each variable is processed by the
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activation function f , making the transformation nonlinear. According to the Universal Approxima-
tion Theorem, there exists a graph that can effectively approximate any function. Further discussion
of this point appears in the appendix.

3.4 BACKWARD PROCESS

To ensure correctness and consistency with the forward process, the gradient at each node during
the backward process is also affected by the gradients of other nodes in G̃. Computing the gradient
of the nodes in G̃, we consider the gradient of the output layer as ∇Xm = ∇Y . Similar to the
forward process, the gradients of the nodes also interact with each other. Note that each node has
been processed by the activation function. Thus, we model the gradients of the nodes in the graph
as variables in the following system of equations:

∑
j ̸=1

∇xj · f ′(xj) · w1j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
1j = ∇x1

∑
j ̸=2

∇xj · f ′(xj) · w2j +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
2j = ∇x2

...∑
j ̸=p

∇xj · f ′(xj) · wpj +
|Nm|∑
j=1

∇xm
j · g′(xm

j ) · wm
pj = ∇xp

(4)

Finally, we can compute the gradients for the edges in the complete graph G according to the gradient
of the nodes in G̃ as (Lin et al., 2020).

Based on the system of equations, we first consider the gradient at each node. For the jth node in
the graph, the weights of its incoming edges correspond to the jth(1 ≤ j ≤ p) column of the weight
matrix in G. Since graph data does not have a layered structure, we introduce the following operator
for each node to represent its neighboring nodes:

Hj = [f(x1), ..., f(xj−1), 1, f(xj+1), ..., f(xp)] , (5)
which is derived from the system of equations in the forward pass. Then, using the gradient at the
jth node, its corresponding gradient for WT

:j , 1 ≤ j ≤ p in G can be formulated as follows:

∇WT
:j = ∇xj ◦ f ′(xj) · Hj . (6)

Second, for the gradient for the edges in Em, according to the backward process,

∇Wm = ∇XmT ◦ g′(XmT ) · f(X) . (7)

Third, for the gradient for the edges in E1, according to the backward process,

∇W 1 = ∇XT ◦ f ′(XT ) ·X0 . (8)

At last, the standard update process for gradient-based algorithms is executed.

3.5 NEURAL MODULE OPTIMIZATION

In this section, we formalize the concept of Neural Modules (NM): A Neural Module is defined as
a Strongly Connected Component (SCC) of G̃.

Directly solving Equations (3) and (4) for large networks is challenging. Note that they constructed
these equations on a general graph G̃. We then compute the solution asynchronously over G̃ using
a generalized topological sort. However, when encountering synchronously structured Neural Mod-
ules, we solve the corresponding equation system directly as the dashed box in Figure 1, as its scale
remains manageable due to the modules’ limited size.

First, we introduce the previously mentioned NM regularization. For a general graph G̃, we first
normalize the absolute value of its adjacency matrix to obtain W̃ . We then define its distance matrix
D, where each element dij ∈ D is defined as :

dij = e−w̃ij . (9)

5
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Second, NM regularization takes into account the number of nodes in each Neural Module. We
introduce the operator Z = [z1, z2, ..., zp], where each element zi, 1 ≤ i ≤ p in Z , zi represents the
number of nodes in the Neural Module corresponding to node ni.

Based on the inverse proportionality law in two-dimensional graph space, we introduce the repulsion
matrix R for G̃. Each element rij ∈ R is defined as

rij =
zi ∗ zj
dij

(10)

Let α be the regularization parameter. Through NM regularization, the repulsion matrix R adaptively
adjusts α in each iteration. This process facilitates the automatic organization of the graph into
balanced, appropriately sized subgraphs, forming rational Neural Modules that effectively utilize
neural units. For the ith node in G̃, 1 ≤ i ≤ p, our NM regularization is formulated as:

JNM (x:i) = J(x:i) + α

p∑
j=1

rji · w2
ji, (11)

where J denotes the objective function.

During the backpropagation process, the weight of each edge is updated as follows:
Theorem 3.1. For NM regularization, in each iteration with learning rate η, parameter wij up-
grades as follow:

wij ← wij(1− ηαrij)− η
∂J

∂wij
(12)

Thus, when rij takes a higher value, wij is more likely to approach zero.

To simplify the analysis and enhance understanding of NM regularization, we propose a theorem by
omitting the activation function and analyzing its effect under linear regression:
Theorem 3.2. Under linear regression with y = Xw:i + ϵ, with ϵ ∼ N (0, δ2I) and w:i ∼
N (0, τ2diag(r:i)

−1), for NM regularization, the weight distribution is given by:

w:i ∼ N ((XTX + λdiag(r:i))
−1XT y, δ2(XTX + λdiag(r:i))

−1)), (13)

where λ = δ2

τ2 .

From the above theorem, a larger repulsion term in R brings the expectation of the weight closer to
zero and reduces its variance.

In NM regularization, for each element rij in the repulsion matrix R, a larger zi or zj increases its
value, resulting in a stronger repulsive force. Similarly, smaller elements in the distance matrix D
have the same effect. These effects can be summarized in two aspects:

Between Neural Modules: NM regularization prevents the formation of excessively large Neural
Modules, as analyzed earlier.

Within Neural Modules: NM regularization helps avoid overly complex adjacency matrices. This
is critical because overly complex adjacency matrices can lead to solution instability within Neural
Modules—often caused by coefficient matrices with high condition numbers.

At last, we talk about the convergence of NM regularization. Let w∗ be the parameters of the
global optimal model, w0 be the parameters of the original model, and w̃0 be the parameters of the
optimized model in the first iteration. To provide convergence guarantees for NM regularization, we
establish theoretical bounds based on the following assumptions: The training objective is smooth,
satisfying ∥∇f(w) −∇f(v)∥ ≤ L∥w − v∥,∀w, v ∈ Rp, for some constant L > 0. The stochastic
gradients are bounded, with E∥∇w∥2 ≤ G2. Under these assumptions, the convergence of NM
regularization is presented in the following theorem:

Theorem 3.3. Let the learning rate be ζ = c√
T

, where c =
√

f(w0)−f(w∗)
LG2 and T is the number of

iterations. For a pruned model selected according to the definition of Neural Modules, the following
inequality holds in expectation over the selected edges u as G̃:

E∥∇u∥2 = O(
√

L(f(w0)− f(w∗))

T
G+ L2∥w0 − w̃0∥2). (14)

6
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3.6 ALGORITHM

As introduced before, directly solving Equations 3 and 4 for G̃ is computationally infeasible. Lever-
aging NM regularization, our algorithm instead solves these two equations for each Neural Module
individually.

In this section, we initialize the adjacency matrix of the complete graph G as K. Then, approximate
K to the coefficient matrix C from G̃, eliminating all edges whose weights have absolute values lower
than γ.

The computation of the graph is based on a method similar to topological sorting. For each Neural
Module NMi, InArc(NMi) denotes the number of edges ejs in C that connect from node nj /∈
NMi to node ns ∈ NMi. Conversely, OutArc(NMi) represents the number of edges ejs in C
that connect from node nj ∈ NMi to node ns /∈ NMi. Here, |NM | denotes the number of nodes
within the Neural Module. The complete algorithm for this process is outlined in the Appendix.

In our algorithm, we employ Tarjan’s algorithm (Tarjan, 1972) to identify strongly connected com-
ponents, which form the basis for constructing Neural Modules. Tarjan’s algorithm is the classic
method for detecting strongly connected components. While other candidate algorithms exist for
this problem, none achieve a lower time complexity. Furthermore, for very large graphs, we can
adopt the Pregel model (Malewicz et al., 2010) to handle the task in a distributed manner.

The algorithm is based on a generalized form of topological sorting. Each iteration consists of two
main processes: The first process involves propagation according to the traditional NN forward pro-
cess. The second process aims to handle Neural Modules as a system of equations in parallel. During
each iteration, the algorithm updates by removing irrelevant edges. In summary, our framework is
detailed in Algorithm 1, Algorithm 2, and Algorithm 3, which are provided in the appendix.

For Algorithm 1, the complexity analysis of the main part is as follows. The complexity of Tarjan’s
algorithm is O(|N | + |E|), and the complexity of checking InArc or OutArc is O(|E|). The com-
plexity of solving the system of equations can be optimized toO(|NM |2), where the complexity for
each Neural Module (NM) has been reduced through NM regularization as introduced in Between
Neural Modules and Within Neural Modules. Therefore, in the worst-case scenario—where the
structure is organized as a linear chain that prevents parallel computing—the overall complexity
of our propagation algorithm is O(|N | + |E| + s ∗ |NM |2) (where s is the number of Neural
Modules). If the topology supports parallel computing, the overall complexity can be optimized to
O(|N |+ |E|+max(|NM |2)).

4 EXPERIMENTS

4.1 PERFORMANCE EVALUATION OF NEURAL MODULES BEYOND TRADITIONAL
TREE-LIKE STRUCTURES

In this section, we present experiments conducted using our Neural Modules, comparing their per-
formance with traditional NN methods and several state-of-the-art models that go beyond traditional
tree-like structures. These baselines include implicit hidden layers (DEQ), a topological approach
that models NNs as DAGs, and the recently introduced OPTNET, as introduced in the Related Work
section. The results are presented in table 1 for four real-world datasets.

The four datasets used in our experiments correspond to different real-life scenarios. Codon Dataset:
Comprises codon usage frequencies in genomic coding DNA from a diverse sample of organisms
across different taxa, obtained from the CUTG database. Facebook Large Page-Page Network
Dataset: Contains a webgraph of verified Facebook page-page connections. Daily and Sports Ac-
tivities Dataset: Includes motion sensor data of 19 daily and sports activities, each performed by 8
subjects in their own style for 5 minutes. Gas Sensor Dataset: Consists of measurements from 16
chemical sensors exposed to six different gases at various concentration levels. All these tasks are
classification problems, and we evaluate performance based on the error rate of each algorithm.

We compared the performance of our framework with baselines that go beyond traditional tree-like
structures (e.g., DEQ and OPTNET as introduced in the related work section) for neural networks

7
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of varying sizes. Through analysis of the experimental results, we can validate our claim that our
framework exhibits significant advantages at this scale.

We assessed the effectiveness of our NMs and other methods across different node complexities to
understand how NMs perform under varying levels of complexity. The nodes were initially orga-
nized using NN, DEQ, DAG, and OPTNET, and their error rates were recorded. Our experiments
also compared the performance of NMs with two regularization strategies: the commonly used L2
regularization and the proposed NM regularization. The results, presented in Table 1, show that our
novel structure consistently achieves superior performance in most cases. Additionally, NM regu-
larization outperforms the baseline L2 regularization in most scenarios. With an optimal number of
nodes, our NM regularization achieves the best performance across all datasets.

From Table 1, we can conclude that NNs consistently exhibit improved performance when nodes
are organized into Neural Modules. The performance of our NMs can be further enhanced through
regularization, as explained earlier. Note that methods such as DEQ, DAG, and OPTNET may
face scalability issues or high computational overhead on large graphs, primarily because they were
originally designed for problems at the layer scale and have not been extensively optimized for
graph-level tasks.

Table 1: The performance of algorithms

Condon
Methods 80 100 200 300 500 1000 3000

NN 0.151 ± 0.004 0.152 ± 0.005 0.133 ± 0.008 0.130 ± 0.006 0.180 ± 0.004 0.159 ± 0.008 0.180 ± 0.006
DEQ 0.147 ± 0.002 0.139 ± 0.004 0.128 ± 0.005 0.221 ± 0.003 0.275 ± 0.004 over time over time
DAG 0.186 ± 0.003 0.167 ± 0.003 0.150 ± 0.006 0.172 ± 0.005 0.213 ± 0.006 over time over time

OPTNET 0.140 ± 0.003 0.150 ± 0.004 0.165 ± 0.004 0.143 ± 0.006 0.166 ± 0.003 over time over time
NMs 0.157 ± 0.006 0.142 ± 0.004 0.127 ± 0.004 0.129 ± 0.003 0.155 ± 0.002 0.160 ± 0.005 0.0.179 ± 0.005

NMsL2 0.158 ± 0.004 0.136 ± 0.006 0.128 ± 0.008 0.128 ± 0.003 0.150 ± 0.002 0.159 ± 0.004 0.178 ± 0.003
NMsNM 0.155 ± 0.002 0.135 ± 0.003 0.126 ± 0.004 0.127 ± 0.005 0.151 ± 0.004 0.158 ± 0.006 0.178 ± 0.003

Activity
Methods 80 100 200 300 500 1000 3000

NN 0.379 ± 0.006 0.354 ± 0.008 0.316 ± 0.007 0.304 ± 0.006 0.295 ± 0.005 0.309 ± 0.004 0.290 ± 0.004
DEQ 0.382 ± 0.004 0.364 ± 0.003 0.332 ± 0.008 0.321 ± 0.004 0.275 ± 0.003 over time over time
DAG 0.639 ± 0.005 0.624 ± 0.005 0.538 ± 0.005 0.538 ± 0.003 0.513 ± 0.003 over time over time

OPTNET 0.382 ± 0.006 0.364 ± 0.005 0.342 ± 0.006 0.363 ± 0.003 0.407 ± 0.005 over time over time
NMs 0.350 ± 0.004 0.332 ± 0.007 0.308 ± 0.006 0.264 ± 0.002 0.263 ± 0.007 0.306 ± 0.006 0.300 ± 0.008

NMs&L2 0.348 ± 0.003 0.320 ± 0.003 0.288 ± 0.003 0.257 ± 0.002 0.260 ± 0.006 0.295 ± 0.005 0.293 ± 0.004
NMs&NM 0.364 ± 0.003 0.314 ± 0.003 0.284 ± 0.003 0.250 ± 0.003 0.248 ± 0.004 0.298 ± 0.004 0.287 ± 0.003

Facebook
Methods 80 100 200 300 500 1000 3000

NN 0.140 ± 0.006 0.130 ± 0.008 0.131 ± 0.006 0.160 ± 0.006 0.208 ± 0.006 0.167 ± 0.008 0.166 ± 0.005
DEQ 0.147 ± 0.006 0.121 ± 0.006 0.126 ± 0.005 0.169 ± 0.005 0.447 ± 0.006 over time over time
DAG 0.168 ± 0.007 0.139 ± 0.007 0.148 ± 0.004 0.159 ± 0.005 0.647 ± 0.007 over time over time

OPTNET 0.173 ± 0.004 0.144 ± 0.005 0.158 ± 0.003 0.225 ± 0.006 0.193 ± 0.005 over time over time
NMs 0.135 ± 0.003 0.120 ± 0.004 0.126 ± 0.003 0.149 ± 0.004 0.169 ± 0.005 0.170 ± 0.003 0.168 ± 0.004

NMs&L2 0.135 ± 0.002 0.120 ± 0.003 0.137 ± 0.003 0.150 ± 0.003 0.165 ± 0.006 0.167 ± 0.004 0.163 ± 0.0048
NMs&NM 0.134 ± 0.004 0.117 ± 0.003 0.129 ± 0.004 0.145 ± 0.004 0.164 ± 0.006 0.166 ± 0.005 0.162 ± 0.006

Gas
Methods 80 100 200 300 500 1000 3000

NN 0.073 ± 0.006 0.087 ± 0.005 0.090 ± 0.003 0.207 ± 0.006 0.089 ± 0.006 0.138 ± 0.007 0.112 ± 0.004
DEQ 0.102 ± 0.008 0.102 ± 0.007 0.138 ± 0.003 0.169 ± 0.007 0.447 ± 0.008 over time over time
DAG 0.118 ± 0.004 0.084 ± 0.005 0.321 ± 0.004 0.239 ± 0.008 0.160 ± 0.004 over time over time

OPTNET 0.063 ± 0.002 0.105 ± 0.002 0.105 ± 0.003 0.103 ± 0.003 0.160 ± 0.006 over time over time
NMs 0.064 ± 0.003 0.082 ± 0.004 0.157 ± 0.002 0.126 ± 0.005 0.087 ± 0.003 0.140 ± 0.004 0.116 ± 0.008

NMs&L2 0.060 ± 0.006 0.081 ± 0.004 0.165 ± 0.004 0.120 ± 0.004 0.089 ± 0.003 0.136 ± 0.003 0.110 ± 0.007
NMs&NM 0.058 ± 0.006 0.075 ± 0.003 0.154 ± 0.006 0.120 ± 0.003 0.088 ± 0.003 0.132 ± 0.003 0.108 ± 0.005

4.2 PERFORMANCE OF NEURAL MODULES WITH FF AND DARTS

To validate our approach, we conducted comparative experiments using the Cyclic Forward-Forward
algorithm (Yang et al., 2024),by formulating the multi-class classification task as a binary classifi-
cation task on the four datasets. We also compared our method with the well-known NAS method
DARTS (Liu et al., 2019). As shown in Figure 2, our Neural Module (NM) framework achieves
higher accuracy than both the Cyclic Architecture with the Forward-Forward Algorithm and Differ-
ential Architecture Search (DARTS).
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Figure 2: It can be observed that our model achieves a lower error rate than both the Cyclic Forward-
Forward algorithm and DARTS.

4.3 PERFORMANCE OF NEURAL MODULES WITH MODERN STRUCTURES

Furthermore, to demonstrate that our Neural Modules (NMs) can be integrated into modern archi-
tectures and scale to larger problems, we evaluated their performance on CIFAR-10 and the 20
Newsgroups dataset. For CIFAR-10, we embedded our NMs within a standard ResNet by replacing
its fully connected layers with our graph-based structure. As illustrated in Figure 3a, this integration
led to a measurable improvement in accuracy. Similarly, for the 20 Newsgroups dataset, we incor-
porated the NMs into a Transformer architecture, again substituting the standard fully connected
components with our design. Figure 3b shows that this adaptation also yielded a substantial gain
in performance. Together, these results confirm that our method can be effectively combined with
contemporary architectures and enhances performance across different domains.

It is important to note that the purpose of these experiments was not to achieve state-of-the-art accu-
racy on these benchmarks, nor were the models heavily fine-tuned. Instead, our goal was to obtain
a reasonable baseline that demonstrates the capability of our framework to integrate seamlessly into
modern architectures and to handle diverse, realistic problems. The consistent improvements ob-
served validate this objective.
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Figure 3: Collectively, these results validate that our method is not only compatible with modern
architectures but also consistently enhances performance across diverse tasks.

4.4 EFFICIENCY OF NEURAL MODULES

In this section, we focus on optimizing the efficiency of Neural Modules through the application
of NM regularization. As mentioned earlier, all considered structures are subgraphs of a fully con-
nected graph. Our NM regularization serves as a powerful mechanism for structural optimization,
enhancing the effectiveness and balance of Neural Modules.
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To evaluate the efficiency of our NM regularization, we compared the model’s running time across
different complexities (represented by node counts below 300). Figure 4a shows that the efficiency
of NM regularization significantly outperforms DEQ, especially when the number of nodes is larger.
This superiority is attributed to NM regularization’s ability to create multiple independent Neural
Modules, which effectively reduce computational complexity.

For networks with a larger number of nodes, we can leverage the parallel processing capabilities
of Neural Modules to further enhance the efficiency of our framework, as discussed earlier. NM
regularization facilitates the creation of multiple independent and well-balanced Neural Modules,
which are inherently suitable for parallel computing—particularly when using GPU acceleration.
In this extension, we increased the node count from 300 to 3000 and incorporated GPU hardware
acceleration to compute the algorithms more efficiently.
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Figure 4: The efficiency of NM regularization. Measured by seconds.

In Figure 4b, we compared the running time of Neural Modules operating in parallel with that of
Neural Modules without parallelization for large-scale models. For these experiments, we used 12
threads. Note that Neural Modules without parallel computing would exceed the time limit for larger
node counts, so we approximated the running time using partial data. Our results indicate that the
parallel implementation of NM regularization achieves a computational speedup of approximately
10 times. This demonstrates the substantial efficiency gains achievable through parallel processing
in the context of NM regularization.

Note that in this experiment, we use a lower parameter γ to form more complex neural modules for
evaluating the progress of efficiency. However, to verify its performance, we adopt much simpler
neural modules to avoid overfitting.

From these experiments, it is evident that our Neural Module framework can significantly enhance
the performance of Neural Networks. By introducing additional parameters (as analyzed in previ-
ous sections), our framework enables the Neural Network structure to explore a nearly complete
search space, effectively reducing the bias associated with current tree-like structures and achieving
much better performance. Moreover, the NM regularization and parallel computing techniques we
introduced further empower our method, allowing it to be effectively applied to larger networks.

5 CONCLUSION

This study introduces a novel general graph structure for NNs, aiming to improve performance by
enabling efficient information transfer. We analyze the structural bias of current tree-like structures
and propose a synchronization method for the simultaneous calculation of node values, thereby
fostering collaboration within Neural Modules. Additionally, we propose a novel NM regulariza-
tion method that encourages the learned structure to prioritize critical connections and automati-
cally form multiple independent, balanced neural structures—facilitating more efficient computation
through parallel processing. This approach not only reduces the computational load associated with
managing a large number of nodes but also improves performance by mitigating overfitting. Quanti-
tative experimental results confirm that our proposed method outperforms traditional NN structures.
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A THE BIAS OF THE TRADITIONAL TREE-LIKE STRUCTURE

In this section, we demonstrate that the existing tree-like neural network (NN) structure is essentially
a special case of the framework we propose for solving systems of equations. For a tree-like structure
with m levels, let Xi denote the intermediate values at the ith level and X0 represent the input
values. For brevity, biases are omitted here. The asynchronous computation process of the current
tree-like structure can be formalized within our framework as the following system of equations:

X0 ·W 1T = X1

X1 ·W 2T = X2

...

Xm−1 ·WmT = Xm.

(15)

By formatting the inputs and the values of all nodes in the neural network into a variable vector
X = (X0, X1, X2, ..., Xm), the above system can be simplified to X · CT = 0.

Furthermore, the coefficient matrix C for the tree-like structure is structured as Figure 5.
W 1 −E1 0 0 ... 0 0
0 W 2 −E2 0 ... 0 0
0 0 W 3 −E3 ... 0 0

......
0 0 0 0 ... Wm Em


Figure 5: The Coefficient C for Tree-like Structure

Here Ei denotes the identity matrix corresponding to the ith level
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From this system of equations, it is evident that the traditional NN structure constitutes a special
case of our equation system, which can be solved asynchronously. In the tree-like structure, the
coefficient matrix is composed of the parameter matrices W i for each level, with these parameters
positioned near the diagonal of the matrix.

Notably, the tree-like structure imposes stricter constraints on each node within the network. Specif-
ically, if nodes in a tree structure depend exclusively on neurons from the immediately preceding
layer, their capacity to approximate complex functions is severely limited.

To address this limitation, some existing works have generalized the tree-like structure to Directed
Acyclic Graphs (DAGs)—as exemplified by ResNet. In such architectures, additional weights (de-
noted as V k for the kth level) are introduced to the lower triangular region of the coefficient matrix
C. The updated matrix C is structured as Figure 6.

W 1 −E1 0 0 ... 0 0
V 1 W 2 −E2 0 ... 0 0
V 1 V 2 W 3 −E3 ... 0 0
......
V 1 V 2 V 3 V 4 ... Wm Em


Figure 6: The Coefficient Matrix C for DAG(e.g. Resnet)

This modification enables more flexible and expressive models, which can better approximate com-
plex functions and handle larger datasets.

While lower triangular coefficient matrices typically represent the constraint of strictly causal (asyn-
chronous) structures, the upper triangular region remains largely untapped. In this work, we extend
such structures to synchronous ones by relaxing the constraint of strict lower triangularity, general-
izing the coefficient matrix C to a full adjacency matrix that can represent arbitrary directed graphs.
This allows the construction of more densely interconnected networks, offering potential for greater
flexibility. Consequently, our framework moves neural architectures from strictly tree-like, causal
dependencies toward more general graph-based structures.

B THE RATIONALE OF INTRODUCING NEURAL MODULES

For traditional tree-like structures, the asynchronous forward and backward propagation processes
can also be interpreted as solving a system of equations. In our framework, by contrast, the NN
structure is modeled as a general graph with p nodes.

A key design choice in our model is that the diagonal elements of the network’s adjacency matrix
correspond to the bias of each node. During formulation, input- and bias-related terms are assigned
to the right-hand side of the equation system, while terms associated with node values are placed on
the left-hand side. After each neural unit is processed using the input X0, the coefficient matrix C
takes the form shown as Figure 7.

−1 w2,1 w3,1 w4,1 ... wp−1,1 wp,1

w1,2 −1 w3,2 w4,2 ... wp−1,2 wp,2

w1,3 w2,3 −1 w4,3 ... wp−1,3 wp,3

w1,4 w2,4 w3,4 −1 ... wp−1,4 wp,4

......
w1,p w2,p w3,p w4,p ... wp−1,p −1


Figure 7: The Coefficient Matrix C for Our General Graph Structure

A detailed breakdown of the coefficient matrix’s role in computation is provided in the ”Forward
Process” subsection (Section 3.3).

By design, our framework enhances the representational capacity of individual neurons, unlock-
ing the full potential of neural networks. Concurrently, it eliminates the structural bias inherent in
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predefined architectures—such as traditional tree-like structures or DAGs. This innovation makes
our framework more adaptable and less constrained by fixed architectural biases, resulting in more
flexible and effective NN designs.

Solving systems of equations with large coefficient matrices C can be computationally challenging.
To address this, our framework introduces Neural Module (NM) Regularization: an approximation
method for C that integrates parallel computation to improve efficiency.

C CONNECTION WITH DEEP EQUILIBRIUM MODELS (DEQ)

Prior research has identified the existence of equilibrium states in infinitely deep weight-tied neural
networks. Deep Equilibrium Models (DEQ) formalize this concept by modeling the forward pass
as finding a fixed point of an implicit layer, effectively solving for the root of an implicit equation.
In this work, we show that the dynamics of our proposed general graph structure can similarly be
formulated and managed by solving a coupled system of equations.

Conceptually, DEQ focuses on weight-tied layers across an infinite depth. Viewing an infinite chain
as a cycle, the core computational graph of DEQ can be considered a cyclic structure. Our work
provides an alternative perspective: the fixed point found by a DEQ corresponds to a stable solu-
tion within a synchronous computational module defined by our framework. Our neural module
formulation not only helps interpret this fixed point but also facilitates the analysis of the underlying
implicit functions.

Furthermore, the architectural constraint known as the ”Universality of Single-Layer DEQ” implies
that stacking multiple implicit layers is equivalent to a single implicit layer, which inherently lim-
its the representational flexibility of deep implicit stacks. Scaling DEQs to models with a larger
effective number of distinct computational nodes also remains a practical challenge noted in the
literature.

In contrast, our framework generalizes the concept of an implicit layer. By moving from an infinite
chain to a general graph structure, we propose a more flexible way to organize neural units, aiming to
improve parameter efficiency and model performance. To address scalability, we introduce Neural
Module (NM) regularization, which encourages the formation of decoupled subgraphs or modules.
This provides a structured approach to manage multiple, potentially complex, computational sub-
graphs—an aspect less explicitly addressed in the standard DEQ formulation. Our analysis of NM
regularization includes both theoretical justification and empirical studies on parameter selection,
facilitating the handling of larger graph-based networks.

Empirically, the balanced and relatively independent neural modules formed under our framework
appear to offer advantages in terms of efficiency and task performance, as shown in our experiments.
These modules may help reduce overfitting (potentially enhancing generalization) and allow for
parallel computation (improving efficiency). This addresses a consideration not central to the DEQ
approach, which does not prescribe a specific strategy for modularizing computation to optimize
these metrics.

C.1 DEEPER INSIGHTS INTO DEQ

While promising, certain theoretical aspects of DEQs warrant further exploration. In particular, more
in-depth analysis could be beneficial for clarifying: (1) the representational role and significance of
the fixed point beyond being a computational endpoint, and (2) the precise conditions under which
weight-tied infinite-depth networks converge to such fixed points. Investigating these questions may
further elucidate the behavior and advantages of networks with cyclic computational dependencies.

In cyclic neural structures, units are interdependent. Information propagates iteratively through
the network until an equilibrium state is reached, which is then used for downstream tasks. This
equilibrium is mathematically the fixed point of the system’s transformation.

The convergence to an equilibrium emerges from the mutual dependencies between neuron units,
which form a system of equations that must be jointly satisfied. During computation in a cyclic
module, each unit’s state is updated based on the states of others in the module. This process iterates
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until the updates become negligible, signaling convergence to a stable fixed point where the system’s
dynamics are in balance.

This iterative process resembles numerical methods for solving equation systems, such as fixed-point
iteration or the Newton-Raphson method. Analogously, the cyclic network iteratively refines neu-
ronal activations until a self-consistent solution (the fixed point) satisfying the internal relationships
is found.

In summary, the equilibrium in cyclic neural networks results from an iterative process that seeks a
stable solution to the system of equations defined by the interconnected units.

D CONNECTION TO CYCLIC STRUCTURES IN THE FORWARD-FORWARD
ALGORITHM

A key mechanism in cyclic Forward-Forward (FF) structures involves propagating activations
through a cycle for a fixed number of steps. This can be seen as a finite-step numerical approxima-
tion to the solution of the equilibrium condition defined by the cycle’s connections. While efficient,
this approach may not guarantee convergence to a deterministic solution under all conditions, as it
truncates the iterative process.

Moreover, cyclic FF structures typically operate on a predefined, fixed graph topology designed to
align with the local learning rules of the FF algorithm, which favors certain architectural constraints.

In contrast, our framework explores the space of possible graph structures, effectively searching
over a complete graph where any neuron may connect to any other. This offers greater flexibility but
increases the complexity of identifying effective architectures. Therefore, our focus is on developing
methods to efficiently discover performant subgraphs within this expansive space.

D.1 KEY CONSIDERATIONS FOR CYCLIC FF STRUCTURES AND PROPOSED ALTERNATIVES

Several notable characteristics of cyclic FF structures motivate our design choices:

A. Architecture and Learning: They often rely on a predefined graph structure and employ local,
layer-wise loss functions (like cross-entropy). This can limit architectural flexibility and may intro-
duce an inductive bias based on the chosen preset topology.

B. Solution Method: They approximate the implicit system solution using a fixed, limited number
of iteration steps, which may not always yield a consistent approximation.

C. Scale Management: The size of cyclic components is typically not explicitly regulated, which
can affect computational complexity and learning dynamics.

Our framework addresses these aspects differently:

A. Our network topology is learned adaptively during training, allowing connections to form dy-
namically based on the task.

B. For identified cyclic components, we aim to solve the governing equations directly or ensure
reliable convergence, moving beyond fixed-iteration approximations.

C. We employ NM regularization to influence the scale and decoupling of neural modules, facilitat-
ing parallel computation and managing complexity.

E CONNECTION WITH OPTNET

Earlier work on OptNet integrated optimization problems, specifically quadratic programs (QPs),
as layers within neural networks, focusing on interactions between nodes. This design introduces a
strong, specific inductive bias through the QP formulation. Furthermore, OptNet’s backpropagation
requires gradients from the QP solution, which depends on the preceding layer’s output, potentially
complicating the application and tuning of standard regularization techniques. These factors can
make fine-tuning OptNet models for optimal performance and efficiency a challenging task.
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Compared to this, the neural modules in our framework are based on general nonlinear transfor-
mations. They offer substantial flexibility for function approximation, as supported by universal
approximation theorems for graph networks, without being constrained to a specific optimization-
based structure. This allows for more straightforward control over model complexity and capacity,
enabling a more direct balance between performance and efficiency—addressing some of the core
challenges associated with optimization-based layers.

F ALGORITHM

We summarize our framework in three core algorithms: Algorithm 1 (Propagation), Algorithm 2
(Training Process), and Algorithm 3 (Prediction Process).

G THE SUPPLEMENTARY MATERIALS FOR EXPERIMENTS

This section provides detailed information about the experimental setup and analyses of NM regu-
larization.

G.1 EXPERIMENTAL ENVIRONMENT

All experiments were conducted on the hardware platform specified in Table 2.

Table 2: Experimental Environment

CPU Gen Intel(R) Core(TM) i9-12900H 2.90 GHz
Cores 16
Memory 32G
GPU NVidia GeForce RTX 3060
Graphics Memory 12G

The parameter settings for the methods used in our experiments are described as Table 3.

Table 3: Parameter List

Mothods Parameters
NN learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 1; weightPenaltyL2 = 0;
DEQ learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 0.1; weightPenaltyL2 = 0;
DAG learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 0.1; weightPenaltyL2 = 0;
OPTNET learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 0.1; weightPenaltyL2 = 0;
NM learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 1; weightPenaltyL2 = 0;
NM+L2 learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 1; weightPenaltyL2 = 0; alpha = 0.001;
NM+NMS learningRate optimized with the scale; momentum = 0.5; scaling

learningRate = 1; weightPenaltyL2 = 0; alpha = 0.001;

G.2 COMPARISON WITH GNNS ON FACEBOOK DATA

As shown in Figure 8a, our Neural Modules (NMs), compared with the Modern Structure GNN, also
achieved a significant performance gain on the Facebook dataset. This experiment further validates
the effectiveness of our approach.
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Algorithm 1 Propagation

1: Input: Input vector Xin; Coefficient matrix C; Input layer weights W 1; Output layer weights
Wm; Propagation type (Forward/Backward) PT ;

2: Output: Updated node value vector X
3: if PT == Forward then
4: Initialize X = Xin ·W 1T .
5: end if
6: if PT == Backward then
7: Initialize X = Xin ·Wm.
8: end if
9: Use Tarjan’s algorithm on C to identify neural modules {NMs}.

10: Initialize Node Queue = {ni|InArc(ni) = 0}.
11: Initialize NM Queue = {NMi|InArc(NMi) = 0}.
12: while Node Queue is not null and NM Queue is not null do
13: for ni in Node Queue do
14: if PT == Forward then
15: Execute forward propagation (as in traditional NNs).
16: end if
17: if PT == Backward then
18: Execute backward propagation (as in traditional NNs).
19: end if
20: Delete outgoing edges of ni from C .
21: end for
22: if PT == Forward then
23: Solve equations (1) and (9) for NMi ∈ NM Queue in parallel.
24: end if
25: if PT == Backward then
26: Solve equations (2) for NMi ∈ NM Queue in parallel.
27: end if
28: Delete edges associated with NMi ∈ NM Queue from C.
29: for ni associated with C do
30: if InArc(ni) == 0 and OutArc(ni) != 0 then
31: Enqueue ni to Node Queue.
32: end if
33: end for
34: for NMi associated with C do
35: if InArc(NMi) == 0 and NMi has edges then
36: Enqueue NMi toNM Queue.
37: end if
38: end for
39: end while
40: if PT == Forward then
41: X = f(X) (apply activation function f ).
42: end if
43: if PT == Backward then
44: X = f ′(X) (apply derivative of activation function f ′).
45: end if
46: return X
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Algorithm 2 Training Process

1: Input: Initial input vector X0; Ground-truth label vector Y ; Initial adjacency matrix for the
complete graph K;Hyperparameter for thresholding (used to update γ) k; Input layer weights
W 1; Output layer weights Wm;

2: Output: K;Wm;W1;γ
3: Initiate K as a random matrix (for the complete graph).
4: while the model has not converged do:
5: Approximate K usingh hyperparameter k to obtain the coefficient matrix C.
6: Run Propagation with X0,C,W 1,Wm,Forward.
7: Compute predicted labels: Ỹ = X ·WmT .
8: Compute loss gradient ∇Y .
9: Run Propagation with∇Y ,CT ,W 1,Wm,Backward.

10: Update K using equation (4).
11: Update Wm using equation (5).
12: Update W1 using equation (6).
13: Update γ to the kth largest absolute value in K (for thresholding).
14: end while

Algorithm 3 Predicting Process

1: Input: Input vector for prediction X0; Threshold (from training) γ; Optimized adjacency matrix
(from training) K; Input layer weights W 1; Output layer weights Wm ;

2: Output: Predicted label vector Ỹ .
3: Approximate K using γ to obtain the coefficient matrix C.
4: Run Propagation with X0,C,W 1,Wm,Forward.
5: Compute Ỹ = X ·WmT .
6: return Ỹ
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(a) Performance on Facebook Data

Figure 8: Performance gain achieved when our Neural Modules (NMs) were compared with a Mod-
ern Structure GNN on the Facebook dataset, which substantiates the broad applicability and effec-
tiveness of our approach.
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G.3 OPTIMIZATION OF NEURAL MODULES VIA NM REGULARIZATION

As discussed earlier, NM regularization yields significant improvements in model performance and
efficiency. Here, we analyze parameter-tuning strategies for NM regularization and their relationship
to dataset complexity.
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(d) Activity Dataset

Figure 9: Quantitative Comparison of Topological Connectivity. Sparse connectivity metrics (e.g.,
edge density, average degree) across datasets, showing alignment with biological neural networks.

A key insight is that optimal parameter settings for NM regularization depend on dataset complexity:

Gas Dataset: Less complex; benefits from stronger regularization (reduces overfitting to simple
patterns).

Activity Dataset: More complex; performs better with weaker regularization (preserves fine-grained
patterns).

Codon Usage Dataset: Requires larger neural modules combined with stronger regularization (bal-
ances complexity and overfitting).

Facebook Dataset: Robust to parameter variations (exhibits stable performance across a range of
regularization strengths).

Figure 9 visualizes these trends, showing how prediction error varies across datasets with the two
key parameters α and k. The parameter k specifies the number of top edges retained, functioning
similarly to the threshold parameter γ in its effect.

H THE EFFECT OF NM REGULARIZATION

Experimental results demonstrate three key benefits of NM regularization:

Captures Weight Trends: NM regularization accurately tracks weight evolution across iterations,
enabling precise weight regularization.

Forms Balanced Modules: It groups nodes into independent, balanced neural modules—reducing
redundancy and improving representational efficiency.
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Boosts Parallel Efficiency: Since modules are independent, they can be processed in parallel. The
overall efficiency of the model is determined by the size of the largest module (smaller, balanced
modules minimize parallel bottlenecks).

H.1 QUANTITATIVE ANALYSIS OF NM REGULARIZATION

To formalize the effect of NM regularization, we define:

θ: Probability that an edge’s weight is less than γ (the regularization threshold) in the current itera-
tion.

q: Number of nodes in a neural module.

The probability that a new edge integrates into a module is given by:
pmerge = 1− θq (16)

.

NM regularization dynamically adjusts this probability to balance module sizes:

For small q (small modules), it increases pmerge to encourage module growth.

For large q (large modules), it decreases pmerge to prevent excessive expansion.

This balance minimizes disparities in merge probabilities across modules of varying sizes—ensuring
the formation of compact, efficient modules (see Figure 10a).
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Figure 10: (a) Merge probability of nodes’ number per module (shows balanced growth); (b) Time
consumption on average module size (demonstrates parallel efficiency—smaller, balanced modules
reduce computation time).

Additionally, Figure 10b illustrates the efficiency gains from parallel computation: as module sizes
decrease (and balance improves), computation time decreases linearly—confirming that NM regu-
larization enables effective scaling to large node counts.

Figure11 show examples of automatically generated neural module structures for each dataset (black
squares denote independent modules). These figures confirm that NM regularization produces
sparse, balanced structures that mirror the connectivity patterns of biological neural networks (as
quantitatively verified in Figure 12)

Figure 11 further quantifies this by comparing topological connectivity patterns across
datasets—confirming that our framework consistently generates structures aligned with biological
neural networks.

I THE PROOF OF THE UNIVERSAL APPROXIMATION

In the forward propagation process, the system of equations defined by our general graph structure
constructs implicit functions across all nodes in a neural module. For any node ni this implicit
function can be transformed into an explicit function of the input X0.
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(a) Codon Usage Dataset (b) Gas Dataset

(c) Facebook Dataset (d) Activity Dataset

Figure 11: Automatically Formed Neural Modules (Codon Usage, Gas, Facebook, and Activity
Datasets). Each black square represents an independent module.

‘

(a) Codon Usage Dataset (b) Gas Dataset

(c) Facebook Dataset (d) Activity Dataset

Figure 12: Connectivity Patterns from NM Regularization. Upper triangular adjacency matrices
(simplified for visualization) show sparse, biologically plausible connectivity.

‘
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By the Universal Approximation Theorem (Hornik et al., 1989), any continuous function f : X → R
(where X ∈ Rd is compact) can be approximated to arbitrary precision by a single hidden-layer
feed-forward network with a non-linear activation function.

Our framework satisfies this theorem’s conditions:

The system of equations includes a non-linear activation function (applied to node values in forward
propagation).

The general graph structure enables arbitrary connections between nodes—effectively acting as a
feed-forward network with flexible layer definitions.

J THE PROOF OF THEOREM 3.1

Proof. The gradient of the loss with with respect to edge wij under NM regularization is given by
∂JNM

∂wij
=

∂J

∂wij
+ αrijwij , (17)

Using stochastic gradient descent (SGD) for weight updates, the update rule becomes:

wij ← wij − η(
∂J

∂wij
+ αrijwij), (18)

where η is the learning rate.

K THE PROOF OF THEOREM 3.2

Proof. Assume the i-th column of C (weights from all nodes to node i) follows a multivariate normal
prior:

w:i ∼ N (0, τ2diag(r:i)
−1), (19)

where τ2 is the prior variance, and r:i is the vector of regularization coefficients for the i-th column.

Consider a Bayesian linear regression model for node y = Xw:i + ϵ and ϵ ∼ N (0, σ2I). The
posterior distribution of w:i substituts the Gaussian likelihood and prior::

p(w:i|y,X) ∝ p(y|X,w:i)p(w:i)

∝ exp(−∥y −Xw:i∥2

2σ2
)exp(−∥w

T
:i · diag(r:i) · w:i∥2

2τ2
)

Taking the negative logarithm (to convert to a minimization problem), the maximum a posteriori
(MAP) estimate of

argmin
w:i

{ 1

2δ2
∥y −Xw:i∥2 +

∑ rji
2τ2
∥wji∥2}, (20)

which equivalent to NM regularization as

argmin
w:i

{∥y −Xw:i∥2 + α
∑

rji∥wji∥2}. (21)

This is exactly the NM regularization objective. Thus, NM regularization corresponds to a Bayesian
prior on edge weights.

To confirm the posterior distribution, expand the log-posterior:

logp(w:i|y,X) ∝ − 1

2δ2
∥y −Xw:i∥2 −

1

2τ2
wT

:idiag(r:i)w:i

∝ − 1

2δ2
(wT

:iX
TXw:i − 2wT

:iX
T y)− 1

2τ2
wT

:idiag(r:i)w:i

∝ −1

2
wT

:i (
XTX

δ2
+

1

τ2
diag(r:i))w:i +

wT
:iX

T y

δ2
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This matches the norm of a multivariate normal distribution’s log-pdf. By converting the distribution
to a normalized form, Theorem 3.3 holds.

L THE PROOF OF THEOREM 3.3

Proof. By Theorem 3.4, edge weights follow a normal distribution. When pruning edges based
on the absolute value of weights (using threshold γ), the weights in each iteration follow a folded
normal distribution. For simplicity, consider the cumulative distribution function (CDF) of the
standard folded normal distribution:

P (w) = 2Φ(
w

∆
)− 1. (22)

where Φ is the CDF of the standard normal distribution, and ∆ is the scale parameter. NM regu-
larization reduces ∆ over iterations (by shrinking weights toward zero via the α ∗ rij ∗ wij . This
causes the folded normal distribution to concentrate around zero, meaning learned parameters tend
to approach zero with the decrease in ∆.

For any iteration t, let wt be the parameters of the original model and w̃t be the parameters of the
optimized model by k. The shrinkage effect of NM regularization implies:

∥wt − w̃t∥2 < ∥w0 − w̃0∥2. (23)

where w0 is the initial weight.

Follow (Lin et al., 2020), let ζ = c√
T

, c =
√

f(w0)−f(w∗)
LG2 and T be the number of iteration.

E∥∇u∥2 ≤ f(w0)− f(w∗)

ζ(T + 1)
+ LζG2 +

L2

T + 1

T∑
t=0

E∥wt − w̃t∥2

≤ 2(f(w0)− f(w∗))

ζ(T + 1)
+ LζG2 + L2∥w0 − w̃0∥2

M THE USAGE OF LARGE LANGUAGE MODELS (LLMS) IN THIS PAPER

In this paper, Large Language Models (LLMs) were only utilized in three specific aspects, with their
application scope strictly limited to auxiliary text and code polishing:

1. Correcting grammatical errors in the manuscript;

2. Rectifying typos throughout the text;

3. Fixing minor code errors in the experimental section.

Notably, LLMs were not employed for core academic work, including the generation of key research
ideas, the derivation of critical mathematical proofs, or any other tasks that involve original academic
reasoning.
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