

000 AUTOMATED ARCHITECTURE SYNTHESIS FOR ARBI- 001 TRARILY STRUCTURED NEURAL NETWORKS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 This paper introduces a fresh perspective on the architecture of Artificial Neu-
012 ral Networks (ANNs). Conventional ANNs generally employ predefined tree-like
013 or Directed Acyclic Graph (DAG) structures for simplicity, yet such designs can
014 constrain network collaboration and capacity due to limited horizontal and back-
015 ward communication. By contrast, biological neural systems consist of billions
016 of neurons interconnected in highly complex patterns, allowing each neuron to
017 form context-dependent connections with others. Drawing inspiration from these
018 biological systems, this work proposes a framework that learns to construct ar-
019 bitrary graph structures during training. It also introduces “Neural Modules” as
020 a way to group neural units, thereby facilitating communication among arbitrary
021 nodes. Unlike traditional DAG-based ANNs, the proposed framework starts from
022 complete graphs and permits unconstrained information exchange between neu-
023 rons, more closely simulating the functioning of biological neural networks. Ad-
024 ditionally, we develop a computational method for handling such arbitrary graph
025 structures and a regularization strategy that organizes neurons into multiple inde-
026 pendent and balanced Neural Modules. This organization helps mitigate overfit-
027 ting and improves computational efficiency through parallelization. In summary,
028 our approach enables ANNs to learn flexible, arbitrary structures that resemble
029 those in biological systems. It demonstrates promising adaptability across differ-
030 ent tasks and scenarios, and experimental results support its potential.

031 1 INTRODUCTION 032

033 This work presents a fresh perspective on the architecture of Artificial Neural Networks (ANNs).
034 Conventional ANNs are typically organized in hierarchical, tree-like structures or Directed Acyclic
035 Graphs (DAGs), either by manual design or through Neural Architecture Search (NAS) methods that
036 operate within a DAG-based search space. However, such designs limit effective communication
037 between nodes and introduce considerable structural bias.

038 From a theoretical standpoint, traditional DAG structures (including trees) can be viewed as impos-
039 ing a topological ordering on nodes, where each node is only allowed to connect to its predecesors.
040 In a DAG with p nodes, this results in at most

$$041 \quad 042 \quad 043 \quad 1 + 2 + \dots + p = \frac{p(p + 1)}{2} \quad (1)$$

044 possible edges. In practice, existing ANN architectures are optimized within this constrained space,
045 which may restrict their expressive power and limit performance potential.

046 This study reconsiders traditional ANN design by noting that current connectivity schemes do not
047 fully capture desirable properties of neural computation. Nodes in asynchronous tree-like layouts
048 cannot form flexible connections, which impedes information flow and leads to inherent limita-
049 tions. To address this, we propose a method for building synchronous graph structures using mod-
050 ular components called Neural Modules, which facilitate collaboration among neural units. In our
051 framework, a graph with p nodes can have up to

$$052 \quad 053 \quad p^2 \quad (2)$$

edges, thereby better leveraging the representational capacity of general graph topologies.

Such a structure may induce a collaborative effect among the neural units in the network. The graph framework can achieve superior performance both intuitively and theoretically, as elaborated earlier.

Prior work has recognized issues in contemporary ANN structures and attempted to introduce cyclic graph models. However, these studies did not thoroughly analyze the role of generalized cyclic structures in ANNs, nor did they provide a framework for automatically learning such architectures—akin to biological neural networks. These gaps form the core focus of our paper.

Our approach supports synchronous communication among all nodes in the structure and introduces a method for dynamically forming such structures during learning. These improvements enhance information transfer efficiency and increase the overall capacity of the neural architecture. By promoting node collaboration and supporting automatic structure learning, our method harnesses the collective potential of neural units in a manner closer to biological neural networks.

It should be noted that conventional tree-structured networks are a special case of our general graph formulation. We clarify the structural bias in existing ANN designs and provide a detailed analysis of integrating general graph structures into neural models in the appendix. Under our framework, multiple neural units cooperate to automatically implement specific functions during learning. Our goal is to help narrow the gap between current ANNs and more biologically-plausible generalized structures.

Designing such an architecture presents considerable challenges, including higher computational costs and increased risk of overfitting. To mitigate these issues, we introduce a novel regularization technique that organizes nodes into multiple independent Neural Modules. These modules can be processed in parallel on modern GPUs, support automatic node organization, improve learning efficiency, reduce overfitting, and lead to better overall performance.

Our learning framework shows strong adaptability across a variety of tasks. Experimental results on state-of-the-art networks indicate that our method achieves competitive performance in many real-world scenarios.

In summary, the main contributions of this work are:

1. An analysis of structural bias in existing tree-like neural networks, along with a detailed explanation of our proposed architectural enhancements.
2. A method that enables ANNs to automatically learn and construct arbitrary graph structures.
3. A novel regularization approach that organizes neural units into Neural Modules, improving structural efficiency via parallel computation and boosting performance by reducing overfitting.

2 RELATED WORKS

To advance the existing tree-like structure for NNs, Yuan (Yuan et al., 2020) recently provided a topological perspective, highlighting the benefits of dense connections enabled by shortcuts in optimization (Srivastava et al., 2015) (Sandler et al., 2018). Furthermore, sparsity constraints have been proven effective in optimizing learned structures across various applications (Srivastava et al., 2015) Chu et al. (2023) (Ahmed & Torresani, 2018) (He et al., 2016) (Huang et al., 2017). In these approaches, the structure of NNs is organized as a DAG, whereas our work organizes it into a more general graph structure.

Additionally, in recent years, the Cyclic Structure with the Forward-Forward Algorithm (Yang et al., 2024) has also attempted to design such a structure for NNs. The differences between our work and this study can be summarized as follows: First, the graph structure in (Yang et al., 2024) is pre-defined, whereas our framework automatically organizes the graph structure. Unlike predefined designs, our framework starts with a complete graph structure, where each neural unit has the potential to connect with any other neuron. Second, (Yang et al., 2024) achieves an equilibrium state through repetitive loops but does not explain the essence of the loop or the termination condition. In contrast, we conduct an in-depth analysis of the essence of the equilibrium state. Third, (Yang et al., 2024) does not analyze the size of cyclic graphs for the model or how to control them—factors that are crucial for the efficiency of the entire framework. For our framework, we propose NM regularization to control the structural complexity, thereby enhancing the model’s performance in terms of both performance and efficiency. Detailed analysis can be found in the appendix.

108 The fixed point of the implicitly hidden layer can also serve as a solution (Bai et al., 2019) (Tsuchida
 109 & Ong, 2022) (Chu et al., 2023) Yang et al. (2022) Heaton et al. (2021) (Zucchetti & Sacramento,
 110 2022), as demonstrated in subsequent works (Bai et al., 2020) (Szekeres & Izsák, 2024) (Yang
 111 et al., 2023). Departing from the infinite structure of implicitly hidden layers (Chu et al., 2023),
 112 we organize the network into a general graph structure. Compared with implicitly hidden layers,
 113 our method improves efficiency through parallel computing and enhances performance by reducing
 114 overfitting.

115 Other structures, such as OptNet, integrate quadratic optimization problems for nodes within the
 116 same layer (Amos & Kolter, 2017) (Yan et al., 2021). However, this approach introduces additional
 117 bias.

118 Our work also involves NN compression. In recent years, various compression algorithms have been
 119 developed, including quantization (Han et al., 2020) (Shen et al., 2019) (He et al., 2018), low-rank
 120 approximation (Li & Shi, 2018) (Yang et al., 2019) (Yu et al., 2017), knowledge distillation (Kong
 121 et al., 2020) (You et al., 2018), and network pruning (Molchanov et al., 2019). In this paper, we
 122 seek to improve weight pruning for our framework using a method similar to (Lin et al., 2020),
 123 which evaluates the gradient of the pruned model and applies parameter updates to the dense model.
 124 In our framework, this process is coordinated with an elegant regularization method to automatically
 125 allocate Neural Modules. The detailed process is described in the algorithm provided in the
 126 appendix.

127 Graph Neural Networks (GNNs) are specifically designed to address the needs of geometric deep
 128 learning (Gori et al., 2005) (Fan et al., 2019) (Scarselli et al., 2008) (Abadal et al., 2021). GNNs
 129 adapt their structure to the input graph, capturing complex dependencies (Yong et al., 2007) (Abadal
 130 et al., 2021) (Fout et al., 2017) (Fan et al., 2019). Notably, GNNs primarily handle graphs as input
 131 data, which differs from our focus on constructing arbitrary graph structures for the network itself.

132 The flexibility of graph structures has also been explored in studies related to Reservoir Computing
 133 (Verstraeten et al., 2007) (Vargas & Zhang, 2023). These studies utilize a recurrent neural network
 134 framework where neuron connections are established randomly, and the weights remain static after
 135 initialization. In contrast, our Neural Module framework enables adaptive learning of both weights
 136 and network structure during processing.

137 Neural Architecture Search (NAS) has evolved from computationally expensive reinforcement learning
 138 and evolutionary methods to efficient gradient-based and weight-sharing approaches (Real et al.,
 139 2017) (Zoph & Le, 2017) (Pham et al., 2018) (Tan et al., 2019) (Zela et al., 2020) (Mellor et al.,
 140 2021). Modern methods like DARTS (Liu et al., 2019) use differentiable search. However, most
 141 NAS methods still optimize within a tree-like structure, limiting their structural flexibility.

3 METHODOLOGY

3.1 THE MATHEMATICAL FORMALIZATION OF THE MODEL

147 Let N^0 denote the input values fed into the input layer. Let N^m represent the nodes of the last layer,
 148 which feed into the output values. In our work, the intermediate structure is organized as a complete
 149 graph. The model is denoted by $NMs, NMs = \{N^0, E^1, \mathcal{G}, E^m, N^m\}$, where $\mathcal{G} = \{E, N\}$ and
 150 $n_i \in N$ is the i th node in \mathcal{G} , $e_{ij} \in E$ is the edge from n_i to n_j . Let the number of nodes in N be p ,
 151 the number of nodes in N^0 be $|N^0|$, and the number of nodes in N^m be $|N^m|$.

3.2 MODEL STRUCTURE

155 In our framework, nodes are initially computed based on their input nodes, which solely distribute
 156 features. Additionally, each node is influenced by other nodes in the complete graph \mathcal{G} , resulting in
 157 mutual influence between nodes.

158 Our structure is constructed as follows: All intermediate nodes are organized into a general graph
 159 $\tilde{\mathcal{G}}$ derived from a complete graph \mathcal{G} where only edges with weights whose absolute values exceed
 160 a threshold γ are retained. In each iteration, the weights in \mathcal{G} are updated, with corresponding
 161 adjustments made to $\tilde{\mathcal{G}}$. Within this configuration, each node is influenced by all other nodes in the

graph through the learning process. Nodes in the general graph $\tilde{\mathcal{G}}$ are connected via directed edges with learnable weights. This mechanism allows each node to not only process its own input but also integrate information from other nodes.

In our framework, the architecture is generated by iteratively searching over a set of complete graphs and selecting crucial edges through pruning. The overall pipeline is depicted in Figure 1. In each iteration, the weights of the complete graph are updated as follows: following (Lin et al., 2020), we compute the gradients at the nodes of the current sparse graph $\tilde{\mathcal{G}}$ from the preceding backward process and use them to update the weights of the dense underlying graph \mathcal{G} . Subsequently, \mathcal{G} is pruned according to a parameter γ to obtain an updated sparse graph $\tilde{\mathcal{G}}$. This updated $\tilde{\mathcal{G}}$ is then employed in both the forward and backward processes of the subsequent iteration.

Figure 1: An overview of the proposed framework’s architecture.

In the following section, we elaborate on the process of calculating node values in the graph $\tilde{\mathcal{G}}$.

3.3 FORWARD PROCESS

In this paper, the value of each node is represented as x and the value of each edge is represented as w with corresponding node and edge indices. As introduced in the previous section, these values depend on both the nodes in N^0 and other nodes in $\tilde{\mathcal{G}}$. Therefore, we need a synchronization method to handle this mutual dependence. We model this problem as a system of multivariate equations. For the values of the nodes in $\tilde{\mathcal{G}}$, we have the following equations:

$$\begin{cases} w_{11} + \sum_{j \neq 1} f(x_j) \cdot w_{j1} + \sum_{j=1}^{|N^0|} x_j^0 \cdot w_{j1}^1 = x_1 \\ w_{22} + \sum_{j \neq 2} f(x_j) \cdot w_{j2} + \sum_{j=1}^{|N^0|} x_j^0 \cdot w_{j2}^1 = x_2 \\ \dots \\ w_{pp} + \sum_{j \neq p} f(x_j) \cdot w_{jp} + \sum_{j=1}^{|N^0|} x_j^0 \cdot w_{jp}^1 = x_p \end{cases} \quad (3)$$

In the above equations, $w_{11}, w_{22}, \dots, w_{pp}$ are the weight of the self-loop edges in $\tilde{\mathcal{G}}$ and represent the biases of the nodes. f is the activation function.

Let W^m be the weights of E^m and $X = \{x_1, x_2, \dots, x_p\}$ be the values of the nodes in $\tilde{\mathcal{G}}$. Then, the output values $\tilde{Y} = X^m$ can be derived as $X^m = g(f(X) \cdot W^{mT})$, where g is the activation function for output.

Existing numerical methods, such as the Newton-Raphson method (Gawade, 2024), can effectively solve the above equations. In real-world applications, besides Newton’s method, efficiency can be optimized using iterative methods, the dichotomy method, or the secant method—provided that the complexity of the coefficient matrix is well-controlled. Note that each variable is processed by the

activation function f , making the transformation nonlinear. According to the Universal Approximation Theorem, there exists a graph that can effectively approximate any function. Further discussion of this point appears in the appendix.

3.4 BACKWARD PROCESS

To ensure correctness and consistency with the forward process, the gradient at each node during the backward process is also affected by the gradients of other nodes in $\tilde{\mathcal{G}}$. Computing the gradient of the nodes in $\tilde{\mathcal{G}}$, we consider the gradient of the output layer as $\nabla X^m = \nabla Y$. Similar to the forward process, the gradients of the nodes also interact with each other. Note that each node has been processed by the activation function. Thus, we model the gradients of the nodes in the graph as variables in the following system of equations:

$$\begin{cases} \sum_{j \neq 1} \nabla x_j \cdot f'(x_j) \cdot w_{1j} + \sum_{j=1}^{|N^m|} \nabla x_j^m \cdot g'(x_j^m) \cdot w_{1j}^m = \nabla x_1 \\ \sum_{j \neq 2} \nabla x_j \cdot f'(x_j) \cdot w_{2j} + \sum_{j=1}^{|N^m|} \nabla x_j^m \cdot g'(x_j^m) \cdot w_{2j}^m = \nabla x_2 \\ \dots \\ \sum_{j \neq p} \nabla x_j \cdot f'(x_j) \cdot w_{pj} + \sum_{j=1}^{|N^m|} \nabla x_j^m \cdot g'(x_j^m) \cdot w_{pj}^m = \nabla x_p \end{cases} \quad (4)$$

Finally, we can compute the gradients for the edges in the complete graph \mathcal{G} according to the gradient of the nodes in $\tilde{\mathcal{G}}$ as (Lin et al., 2020).

Based on the system of equations, we first consider the gradient at each node. For the j th node in the graph, the weights of its incoming edges correspond to the j th ($1 \leq j \leq p$) column of the weight matrix in \mathcal{G} . Since graph data does not have a layered structure, we introduce the following operator for each node to represent its neighboring nodes:

$$\mathcal{H}_j = [f(x_1), \dots, f(x_{j-1}), 1, f(x_{j+1}), \dots, f(x_p)], \quad (5)$$

which is derived from the system of equations in the forward pass. Then, using the gradient at the j th node, its corresponding gradient for $W_{:j}^T$, $1 \leq j \leq p$ in \mathcal{G} can be formulated as follows:

$$\nabla W_{:j}^T = \nabla x_j \circ f'(x_j) \cdot \mathcal{H}_j. \quad (6)$$

Second, for the gradient for the edges in E^m , according to the backward process,

$$\nabla W^m = \nabla X^{mT} \circ g'(X^{mT}) \cdot f(X). \quad (7)$$

Third, for the gradient for the edges in E^1 , according to the backward process,

$$\nabla W^1 = \nabla X^T \circ f'(X^T) \cdot X^0. \quad (8)$$

At last, the standard update process for gradient-based algorithms is executed.

3.5 NEURAL MODULE OPTIMIZATION

In this section, we formalize the concept of Neural Modules (NM): **A Neural Module is defined as a Strongly Connected Component (SCC) of $\tilde{\mathcal{G}}$.**

Directly solving Equations (3) and (4) for large networks is challenging. Note that they constructed these equations on a general graph $\tilde{\mathcal{G}}$. We then compute the solution asynchronously over $\tilde{\mathcal{G}}$ using a generalized topological sort. However, when encountering synchronously structured Neural Modules, we solve the corresponding equation system directly as the dashed box in Figure 1, as its scale remains manageable due to the modules' limited size.

First, we introduce the previously mentioned NM regularization. For a general graph $\tilde{\mathcal{G}}$, we first normalize the absolute value of its adjacency matrix to obtain \tilde{W} . We then define its distance matrix D , where each element $d_{ij} \in D$ is defined as :

$$d_{ij} = e^{-\tilde{w}_{ij}}. \quad (9)$$

270 Second, NM regularization takes into account the number of nodes in each Neural Module. We
 271 introduce the operator $\mathcal{Z} = [z_1, z_2, \dots, z_p]$, where each element $z_i, 1 \leq i \leq p$ in \mathcal{Z} , z_i represents the
 272 number of nodes in the Neural Module corresponding to node n_i .

273 Based on the inverse proportionality law in two-dimensional graph space, we introduce the repulsion
 274 matrix R for $\tilde{\mathcal{G}}$. Each element $r_{ij} \in R$ is defined as
 275

$$276 \quad r_{ij} = \frac{z_i * z_j}{d_{ij}} \quad (10)$$

278 Let α be the regularization parameter. Through NM regularization, the repulsion matrix R adaptively
 279 adjusts α in each iteration. This process facilitates the automatic organization of the graph into
 280 balanced, appropriately sized subgraphs, forming rational Neural Modules that effectively utilize
 281 neural units. For the i th node in $\tilde{\mathcal{G}}$, $1 \leq i \leq p$, our NM regularization is formulated as:
 282

$$283 \quad J_{NM}(x_{:i}) = J(x_{:i}) + \alpha \sum_{j=1}^p r_{ji} \cdot w_{ji}^2, \quad (11)$$

285 where J denotes the objective function.
 286

287 During the backpropagation process, the weight of each edge is updated as follows:

288 **Theorem 3.1.** *For NM regularization, in each iteration with learning rate η , parameter w_{ij} up-
 289 grades as follow:*

$$290 \quad w_{ij} \leftarrow w_{ij} \left(1 - \eta \alpha r_{ij} \right) - \eta \frac{\partial J}{\partial w_{ij}} \quad (12)$$

292 Thus, when r_{ij} takes a higher value, w_{ij} is more likely to approach zero.
 293

294 To simplify the analysis and enhance understanding of NM regularization, we propose a theorem by
 295 omitting the activation function and analyzing its effect under linear regression:

296 **Theorem 3.2.** *Under linear regression with $y = Xw_{:i} + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \delta^2 I)$ and $w_{:i} \sim$
 297 $\mathcal{N}(0, \tau^2 \text{diag}(r_{:i})^{-1})$, for NM regularization, the weight distribution is given by:*

$$298 \quad w_{:i} \sim \mathcal{N}((X^T X + \lambda \text{diag}(r_{:i}))^{-1} X^T y, \delta^2 (X^T X + \lambda \text{diag}(r_{:i}))^{-1}), \quad (13)$$

299 where $\lambda = \frac{\delta^2}{\tau^2}$.
 300

301 From the above theorem, a larger repulsion term in R brings the expectation of the weight closer to
 302 zero and reduces its variance.

303 In NM regularization, for each element r_{ij} in the repulsion matrix R , a larger z_i or z_j increases its
 304 value, resulting in a stronger repulsive force. Similarly, smaller elements in the distance matrix D
 305 have the same effect. These effects can be summarized in two aspects:
 306

307 **Between Neural Modules:** NM regularization prevents the formation of excessively large Neural
 308 Modules, as analyzed earlier.

309 **Within Neural Modules:** NM regularization helps avoid overly complex adjacency matrices. This
 310 is critical because overly complex adjacency matrices can lead to solution instability within Neural
 311 Modules—often caused by coefficient matrices with high condition numbers.

312 At last, we talk about the convergence of NM regularization. Let w^* be the parameters of the
 313 global optimal model, w_0 be the parameters of the original model, and \tilde{w}_0 be the parameters of the
 314 optimized model in the first iteration. To provide convergence guarantees for NM regularization, we
 315 establish theoretical bounds based on the following assumptions: The training objective is smooth,
 316 satisfying $\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|, \forall w, v \in \mathbb{R}^p$, for some constant $L > 0$. The stochastic
 317 gradients are bounded, with $\mathbb{E}\|\nabla w\|^2 \leq G^2$. Under these assumptions, the convergence of NM
 318 regularization is presented in the following theorem:

319 **Theorem 3.3.** *Let the learning rate be $\zeta = \frac{c}{\sqrt{T}}$, where $c = \sqrt{\frac{f(w_0) - f(w^*)}{LG^2}}$ and T is the number of
 320 iterations. For a pruned model selected according to the definition of Neural Modules, the following
 321 inequality holds in expectation over the selected edges u as $\tilde{\mathcal{G}}$:*

$$323 \quad \mathbb{E}\|\nabla u\|^2 = \mathcal{O}\left(\sqrt{\frac{L(f(w_0) - f(w^*))}{T}} G + L^2 \|w_0 - \tilde{w}_0\|^2\right). \quad (14)$$

324
325

3.6 ALGORITHM

326
327
328

As introduced before, directly solving Equations 3 and 4 for $\tilde{\mathcal{G}}$ is computationally infeasible. Leveraging NM regularization, our algorithm instead solves these two equations for each Neural Module individually.

329
330
331
332

In this section, we initialize the adjacency matrix of the complete graph \mathcal{G} as \mathcal{K} . Then, approximate \mathcal{K} to the coefficient matrix \mathcal{C} from $\tilde{\mathcal{G}}$, eliminating all edges whose weights have absolute values lower than γ .

333
334
335
336
337

The computation of the graph is based on a method similar to topological sorting. For each Neural Module NM_i , $InArc(NM_i)$ denotes the number of edges e_{js} in \mathcal{C} that connect from node $n_j \notin NM_i$ to node $n_s \in NM_i$. Conversely, $OutArc(NM_i)$ represents the number of edges e_{js} in \mathcal{C} that connect from node $n_j \in NM_i$ to node $n_s \notin NM_i$. Here, $|NM|$ denotes the number of nodes within the Neural Module. The complete algorithm for this process is outlined in the Appendix.

338
339
340
341
342

In our algorithm, we employ Tarjan’s algorithm (Tarjan, 1972) to identify strongly connected components, which form the basis for constructing Neural Modules. Tarjan’s algorithm is the classic method for detecting strongly connected components. While other candidate algorithms exist for this problem, none achieve a lower time complexity. Furthermore, for very large graphs, we can adopt the Pregeal model (Malewicz et al., 2010) to handle the task in a distributed manner.

343
344
345
346
347

The algorithm is based on a generalized form of topological sorting. Each iteration consists of two main processes: The first process involves propagation according to the traditional NN forward process. The second process aims to handle Neural Modules as a system of equations in parallel. During each iteration, the algorithm updates by removing irrelevant edges. In summary, our framework is detailed in Algorithm 1, Algorithm 2, and Algorithm 3, which are provided in the appendix.

348
349
350
351
352
353
354
355
356

For Algorithm 1, the complexity analysis of the main part is as follows. The complexity of Tarjan’s algorithm is $\mathcal{O}(|N| + |E|)$, and the complexity of checking InArc or OutArc is $\mathcal{O}(|E|)$. The complexity of solving the system of equations can be optimized to $\mathcal{O}(|NM|^2)$, where the complexity for each Neural Module (NM) has been reduced through NM regularization as introduced in **Between Neural Modules** and **Within Neural Modules**. Therefore, in the worst-case scenario—where the structure is organized as a linear chain that prevents parallel computing—the overall complexity of our propagation algorithm is $\mathcal{O}(|N| + |E| + s * |NM|^2)$ (where s is the number of Neural Modules). If the topology supports parallel computing, the overall complexity can be optimized to $\mathcal{O}(|N| + |E| + \max(|NM|^2))$.

357
358
359

4 EXPERIMENTS

360
361
362
363

4.1 PERFORMANCE EVALUATION OF NEURAL MODULES BEYOND TRADITIONAL TREE-LIKE STRUCTURES

364
365
366
367
368

In this section, we present experiments conducted using our Neural Modules, comparing their performance with traditional NN methods and several state-of-the-art models that go beyond traditional tree-like structures. These baselines include implicit hidden layers (DEQ), a topological approach that models NNs as DAGs, and the recently introduced OPTNET, as introduced in the Related Work section. The results are presented in table 1 for four real-world datasets.

369
370
371
372
373
374
375
376
377

The four datasets used in our experiments correspond to different real-life scenarios. Codon Dataset: Comprises codon usage frequencies in genomic coding DNA from a diverse sample of organisms across different taxa, obtained from the CUTG database. Facebook Large Page-Page Network Dataset: Contains a webgraph of verified Facebook page-page connections. Daily and Sports Activities Dataset: Includes motion sensor data of 19 daily and sports activities, each performed by 8 subjects in their own style for 5 minutes. Gas Sensor Dataset: Consists of measurements from 16 chemical sensors exposed to six different gases at various concentration levels. All these tasks are classification problems, and we evaluate performance based on the **error rate** of each algorithm.

We compared the performance of our framework with baselines that go beyond traditional tree-like structures (e.g., DEQ and OPTNET as introduced in the related work section) for neural networks

378 of varying sizes. Through analysis of the experimental results, we can validate our claim that our
 379 framework exhibits significant advantages at this scale.
 380

381 We assessed the effectiveness of our NMs and other methods across different node complexities to
 382 understand how NMs perform under varying levels of complexity. The nodes were initially organized
 383 using NN, DEQ, DAG, and OPTNET, and their error rates were recorded. Our experiments
 384 also compared the performance of NMs with two regularization strategies: the commonly used L2
 385 regularization and the proposed NM regularization. The results, presented in Table 1, show that our
 386 novel structure consistently achieves superior performance in most cases. Additionally, NM regu-
 387 larization outperforms the baseline L2 regularization in most scenarios. With an optimal number of
 388 nodes, our NM regularization achieves the best performance across all datasets.
 389

390 From Table 1, we can conclude that NNs consistently exhibit improved performance when nodes
 391 are organized into Neural Modules. The performance of our NMs can be further enhanced through
 392 regularization, as explained earlier. Note that methods such as DEQ, DAG, and OPTNET may
 393 face scalability issues or high computational overhead on large graphs, primarily because they were
 394 originally designed for problems at the layer scale and have not been extensively optimized for
 395 graph-level tasks.
 396

397
 398 Table 1: The performance of algorithms

Methods	80	100	200	Condon 300	500	1000	3000
NN	0.151 ± 0.004	0.152 ± 0.005	0.133 ± 0.008	0.130 ± 0.006	0.180 ± 0.004	0.159 ± 0.008	0.180 ± 0.006
DEQ	0.147 ± 0.002	0.139 ± 0.004	0.128 ± 0.005	0.221 ± 0.003	0.275 ± 0.004	over time	over time
DAG	0.186 ± 0.003	0.167 ± 0.003	0.150 ± 0.006	0.172 ± 0.005	0.213 ± 0.006	over time	over time
OPTNET	0.140 ± 0.003	0.150 ± 0.004	0.165 ± 0.004	0.143 ± 0.006	0.166 ± 0.003	over time	over time
NMs	0.157 ± 0.006	0.142 ± 0.004	0.127 ± 0.004	0.129 ± 0.003	0.155 ± 0.002	0.160 ± 0.005	0.179 ± 0.005
NMs&L2	0.158 ± 0.004	0.136 ± 0.006	0.128 ± 0.008	0.128 ± 0.003	0.150 ± 0.002	0.159 ± 0.004	0.178 ± 0.003
NMs&NM	0.155 ± 0.002	0.135 ± 0.003	0.126 ± 0.004	0.127 ± 0.005	0.151 ± 0.004	0.158 ± 0.006	0.178 ± 0.003
Methods	80	100	200	Activity 300	500	1000	3000
NN	0.379 ± 0.006	0.354 ± 0.008	0.316 ± 0.007	0.304 ± 0.006	0.295 ± 0.005	0.309 ± 0.004	0.290 ± 0.004
DEQ	0.382 ± 0.004	0.364 ± 0.003	0.332 ± 0.008	0.321 ± 0.004	0.275 ± 0.003	over time	over time
DAG	0.639 ± 0.005	0.624 ± 0.005	0.538 ± 0.005	0.538 ± 0.003	0.513 ± 0.003	over time	over time
OPTNET	0.382 ± 0.006	0.364 ± 0.005	0.342 ± 0.006	0.363 ± 0.003	0.407 ± 0.005	over time	over time
NMs	0.350 ± 0.004	0.332 ± 0.007	0.308 ± 0.006	0.264 ± 0.002	0.263 ± 0.007	0.306 ± 0.006	0.300 ± 0.008
NMs&L2	0.348 ± 0.003	0.320 ± 0.003	0.288 ± 0.003	0.257 ± 0.002	0.260 ± 0.006	0.295 ± 0.005	0.293 ± 0.004
NMs&NM	0.364 ± 0.003	0.314 ± 0.003	0.284 ± 0.003	0.250 ± 0.003	0.248 ± 0.004	0.298 ± 0.004	0.287 ± 0.003
Methods	80	100	200	Facebook 300	500	1000	3000
NN	0.140 ± 0.006	0.130 ± 0.008	0.131 ± 0.006	0.160 ± 0.006	0.208 ± 0.006	0.167 ± 0.008	0.166 ± 0.005
DEQ	0.147 ± 0.006	0.121 ± 0.006	0.126 ± 0.005	0.169 ± 0.005	0.447 ± 0.006	over time	over time
DAG	0.168 ± 0.007	0.139 ± 0.007	0.148 ± 0.004	0.159 ± 0.005	0.647 ± 0.007	over time	over time
OPTNET	0.173 ± 0.004	0.144 ± 0.005	0.158 ± 0.003	0.225 ± 0.006	0.193 ± 0.005	over time	over time
NMs	0.135 ± 0.003	0.120 ± 0.004	0.126 ± 0.003	0.149 ± 0.004	0.169 ± 0.005	0.170 ± 0.003	0.168 ± 0.004
NMs&L2	0.135 ± 0.002	0.120 ± 0.003	0.137 ± 0.003	0.150 ± 0.003	0.165 ± 0.006	0.167 ± 0.004	0.163 ± 0.0048
NMs&NM	0.134 ± 0.004	0.117 ± 0.003	0.129 ± 0.004	0.145 ± 0.004	0.164 ± 0.006	0.166 ± 0.005	0.162 ± 0.006
Methods	80	100	200	Gas 300	500	1000	3000
NN	0.073 ± 0.006	0.087 ± 0.005	0.090 ± 0.003	0.207 ± 0.006	0.089 ± 0.006	0.138 ± 0.007	0.112 ± 0.004
DEQ	0.102 ± 0.008	0.102 ± 0.007	0.138 ± 0.003	0.169 ± 0.007	0.447 ± 0.008	over time	over time
DAG	0.118 ± 0.004	0.084 ± 0.005	0.321 ± 0.004	0.239 ± 0.008	0.160 ± 0.004	over time	over time
OPTNET	0.063 ± 0.002	0.105 ± 0.002	0.105 ± 0.003	0.103 ± 0.003	0.160 ± 0.006	over time	over time
NMs	0.064 ± 0.003	0.082 ± 0.004	0.157 ± 0.002	0.126 ± 0.005	0.087 ± 0.003	0.140 ± 0.004	0.116 ± 0.008
NMs&L2	0.060 ± 0.006	0.081 ± 0.004	0.165 ± 0.004	0.120 ± 0.004	0.089 ± 0.003	0.136 ± 0.003	0.110 ± 0.007
NMs&NM	0.058 ± 0.006	0.075 ± 0.003	0.154 ± 0.006	0.120 ± 0.003	0.088 ± 0.003	0.132 ± 0.003	0.108 ± 0.005

422
 423
 424
 425 4.2 PERFORMANCE OF NEURAL MODULES WITH FF AND DARTS
 426

427 To validate our approach, we conducted comparative experiments using the Cyclic Forward-Forward
 428 algorithm (Yang et al., 2024), by formulating the multi-class classification task as a binary classifi-
 429 cation task on the four datasets. We also compared our method with the well-known NAS method
 430 DARTS (Liu et al., 2019). As shown in Figure 2, our Neural Module (NM) framework achieves
 431 higher accuracy than both the Cyclic Architecture with the Forward-Forward Algorithm and Differ-
 432 ential Architecture Search (DARTS).

Figure 2: It can be observed that our model achieves a lower error rate than both the Cyclic Forward-Forward algorithm and DARTS.

4.3 PERFORMANCE OF NEURAL MODULES WITH MODERN STRUCTURES

Furthermore, to demonstrate that our Neural Modules (NMs) can be integrated into modern architectures and scale to larger problems, we evaluated their performance on CIFAR-10 and the 20 Newsgroups dataset. For CIFAR-10, we embedded our NMs within a standard ResNet by replacing its fully connected layers with our graph-based structure. As illustrated in Figure 3a, this integration led to a measurable improvement in accuracy. Similarly, for the 20 Newsgroups dataset, we incorporated the NMs into a Transformer architecture, again substituting the standard fully connected components with our design. Figure 3b shows that this adaptation also yielded a substantial gain in performance. Together, these results confirm that our method can be effectively combined with contemporary architectures and enhances performance across different domains.

It is important to note that the purpose of these experiments was not to achieve state-of-the-art **accuracy** on these benchmarks, nor were the models heavily fine-tuned. Instead, our goal was to obtain a reasonable baseline that demonstrates the capability of our framework to integrate seamlessly into modern architectures and to handle diverse, realistic problems. The consistent improvements observed validate this objective.

Figure 3: Collectively, these results validate that our method is not only compatible with modern architectures but also consistently enhances performance across diverse tasks.

4.4 EFFICIENCY OF NEURAL MODULES

In this section, we focus on optimizing the efficiency of Neural Modules through the application of NM regularization. As mentioned earlier, all considered structures are subgraphs of a fully connected graph. Our NM regularization serves as a powerful mechanism for structural optimization, enhancing the effectiveness and balance of Neural Modules.

To evaluate the efficiency of our NM regularization, we compared the model’s running time across different complexities (represented by node counts below 300). Figure 4a shows that the efficiency of NM regularization significantly outperforms DEQ, especially when the number of nodes is larger. This superiority is attributed to NM regularization’s ability to create multiple independent Neural Modules, which effectively reduce computational complexity.

For networks with a larger number of nodes, we can leverage the parallel processing capabilities of Neural Modules to further enhance the efficiency of our framework, as discussed earlier. NM regularization facilitates the creation of multiple independent and well-balanced Neural Modules, which are inherently suitable for parallel computing—particularly when using GPU acceleration. In this extension, we increased the node count from 300 to 3000 and incorporated GPU hardware acceleration to compute the algorithms more efficiently.

Figure 4: The efficiency of NM regularization. Measured by seconds.

In Figure 4b, we compared the running time of Neural Modules operating in parallel with that of Neural Modules without parallelization for large-scale models. For these experiments, we used 12 threads. Note that Neural Modules without parallel computing would exceed the time limit for larger node counts, so we approximated the running time using partial data. Our results indicate that the parallel implementation of NM regularization achieves a computational speedup of approximately 10 times. This demonstrates the substantial efficiency gains achievable through parallel processing in the context of NM regularization.

Note that in this experiment, we use a lower parameter γ to form more complex neural modules for evaluating the progress of efficiency. However, to verify its performance, we adopt much simpler neural modules to avoid overfitting.

From these experiments, it is evident that our Neural Module framework can significantly enhance the performance of Neural Networks. By introducing additional parameters (as analyzed in previous sections), our framework enables the Neural Network structure to explore a nearly complete search space, effectively reducing the bias associated with current tree-like structures and achieving much better performance. Moreover, the NM regularization and parallel computing techniques we introduced further empower our method, allowing it to be effectively applied to larger networks.

5 CONCLUSION

This study introduces a novel general graph structure for NNs, aiming to improve performance by enabling efficient information transfer. We analyze the structural bias of current tree-like structures and propose a synchronization method for the simultaneous calculation of node values, thereby fostering collaboration within Neural Modules. Additionally, we propose a novel NM regularization method that encourages the learned structure to prioritize critical connections and automatically form multiple independent, balanced neural structures—facilitating more efficient computation through parallel processing. This approach not only reduces the computational load associated with managing a large number of nodes but also improves performance by mitigating overfitting. Quantitative experimental results confirm that our proposed method outperforms traditional NN structures.

540 REFERENCES
541

542 Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing
543 graph neural networks: A survey from algorithms to accelerators. *ACM Computing Surveys
(CSUR)*, 54(9):1–38, 2021.

545 Karim Ahmed and Lorenzo Torresani. Maskconnect: Connectivity learning by gradient descent. In
546 *European Conference on Computer Vision (ECCV)*, 2018.

548 Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
549 In *International Conference on Machine Learning (ICML)*, pp. 136–145, 2017.

550 Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In *Advances in Neural
551 Information Processing Systems (NeurIPS)*, 2019.

553 Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. *Advances in
554 Neural Information Processing Systems (NeurIPS)*, 33:5238–5250, 2020.

555 Haoyu Chu, Shikui Wei, and Ting Liu. Learning robust deep equilibrium models. *arXiv preprint
556 arXiv:2304.12707*, 2023.

558 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
559 networks for social recommendation. In *The World Wide Web Conference (WWW)*, pp. 417–426,
560 2019.

561 Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
562 convolutional networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.

564 Shashank Gawade. The newton-raphson method: A detailed analysis. *International Journal for
565 Research in Applied Science and Engineering Technology (IJRASET)*, 12(11):729–734, 2024.

566 Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
567 In *IEEE International Joint Conference on Neural Networks (IJCNN)*, volume 2, pp. 729–734,
568 2005.

570 Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu, and Chang Xu. Training binary
571 neural networks through learning with noisy supervision. In *International Conference on Machine
572 Learning (ICML)*, 2020.

573 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
574 nition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

576 Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
577 deep convolutional neural networks. In *International Joint Conference on Artificial Intelligence
(IJCAI)*, 2018.

579 Howard Heaton, Samy Wu Fung, Aviv Gibali, and Wotao Yin. Feasibility-based fixed point net-
580 works. *Fixed Point Theory and Algorithms for Sciences and Engineering*, 2021(1):1–19, 2021.

582 Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely con-
583 nected convolutional networks. In *IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)*, 2017.

585 Shumin Kong, Tianyu Guo, Shan You, and Chang Xu. Learning student networks with few data. In
586 *AAAI Conference on Artificial Intelligence (AAAI)*, 2020.

588 Chong Li and C. J. Richard Shi. Constrained optimization based low-rank approximation of deep
589 neural networks. In *European Conference on Computer Vision (ECCV)*, 2018.

590 Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
591 with feedback. In *International Conference on Learning Representations (ICLR)*, 2020.

593 Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
594 *International Conference on Learning Representations (ICLR)*, 2019.

594 Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser,
 595 and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In *ACM SIGMOD
 596 International Conference on Management of Data*, pp. 135–146, 2010.

597

598 Joe Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
 599 training. In *International Conference on Machine Learning (ICML)*, 2021.

600 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 601 for neural network pruning. In *IEEE Conference on Computer Vision and Pattern Recognition
 602 (CVPR)*, 2019.

603

604 Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
 605 search via parameter sharing. In *International Conference on Machine Learning (ICML)*, 2018.

606 Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
 607 Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In *International
 608 Conference on Machine Learning (ICML)*, 2017.

609

610 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 611 bilenetv2: Inverted residuals and linear bottlenecks. In *IEEE/CVF Conference on Computer Vi-
 612 sion and Pattern Recognition (CVPR)*, 2018.

613 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 614 The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2008.

615

616 Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. Searching for accurate binary neural
 617 architectures. In *IEEE International Conference on Computer Vision Workshops (ICCVW)*, pp.
 618 0–0, 2019.

619 Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. *arXiv preprint
 620 arXiv:1505.00387*, 2015.

621

622 Béla J. Szekeres and Ferenc Izsák. On the computation of the gradient in implicit neural networks.
 623 *The Journal of Supercomputing*, 2024.

624

625 Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
 626 Quoc V. Le. MnasNet: Platform-aware neural architecture search for mobile. In *IEEE Conference
 627 on Computer Vision and Pattern Recognition (CVPR)*, 2019.

628

629 Robert E. Tarjan. Depth-first search and linear graph algorithms. *SIAM Journal on Computing*, 1
 (2):146–160, 1972.

630

631 Russell Tsuchida and Cheng Soon Ong. When are equilibrium networks scoring algorithms? In
 632 *NeurIPS 2022 Workshop on Score-Based Methods*, 2022.

633

634 Danilo Vasconcellos Vargas and Heng Zhang. A survey on reservoir computing and its interdis-
 635 ciplinary applications beyond traditional machine learning. *arXiv preprint arXiv:2307.15092*,
 2023.

636

637 David Verstraeten, Benjamin Schrauwen, and Jan Van Campenhout. An overview of reservoir com-
 638 puting: Theory, applications and implementations. In *Proceedings of the 15th European Sympo-
 639 sium on Artificial Neural Networks (ESANN)*, pp. 471–482, 2007.

640

641 Kai Yan, Jie Yan, Chuan Luo, Liting Chen, Qingwei Lin, and Dongmei Zhang. A surrogate objective
 framework for prediction+optimization with soft constraints. In *NeurIPS*, 2021.

642

643 Liang Wei Yang, Hengrui Zhang, Weizhi Zhang, Zihe Song, Jing Ma, Jiawei Zhang, and Philip S.
 644 Yu. Beyond directed acyclic computation graph with cyclic neural network. *arXiv preprint
 645 arXiv:2402.13041*, 2024.

646

647 Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen, Chunjing Xu, Boxin Shi, Chao Xu, and
 Chang Xu. Legonet: Efficient convolutional neural networks with lego filters. In *International
 Conference on Machine Learning (ICML)*, 2019.

648 Zonghan Yang, Tianyu Pang, and Yang Liu. A closer look at the adversarial robustness of deep
 649 equilibrium models. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:10448–
 650 10461, 2022.

651 Zonghan Yang, Peng Li, Tianyu Pang, and Yang Liu. Improving adversarial robustness of deep equi-
 652 librium models with explicit regulations along the neural dynamics. In *International Conference
 653 on Machine Learning (ICML)*, 2023.

654 Sweah Liang Yong, Markus Hagenbuchner, Ah Chung Tsoi, Franco Scarselli, and Marco Gori.
 655 Document mining using graph neural network. In *International Workshop of the Initiative for the
 656 Evaluation of XML Retrieval (INEX)*, pp. 458–472, 2007.

657 Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning with single-teacher multi-student. In
 658 *AAAI Conference on Artificial Intelligence (AAAI)*, 2018.

659 Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
 660 rank and sparse decomposition. In *IEEE Conference on Computer Vision and Pattern Recognition
 661 (CVPR)*, 2017.

662 Kun Yuan, Quanquan Li, Jing Shao, and Junjie Yan. Learning connectivity of neural networks from
 663 a topological perspective. In *European Conference on Computer Vision (ECCV)*, 2020.

664 Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
 665 Understanding and robustifying differentiable architecture search. In *International Conference
 666 on Learning Representations (ICLR)*, 2020.

667 Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In *International
 668 Conference on Learning Representations (ICLR)*, 2017.

669 Nicolas Zuchet and João Sacramento. Beyond backpropagation: Bilevel optimization through
 670 implicit differentiation and equilibrium propagation. *Neural Computation*, 34(12):2309–2346,
 671 2022.

672

A THE BIAS OF THE TRADITIONAL TREE-LIKE STRUCTURE

673 In this section, we demonstrate that the existing tree-like neural network (NN) structure is essentially
 674 a special case of the framework we propose for solving systems of equations. For a tree-like structure
 675 with m levels, let X^i denote the intermediate values at the i th level and X^0 represent the input
 676 values. For brevity, biases are omitted here. The asynchronous computation process of the current
 677 tree-like structure can be formalized within our framework as the following system of equations:

$$\begin{cases} X^0 \cdot W^{1T} = X^1 \\ X^1 \cdot W^{2T} = X^2 \\ \dots \\ X^{m-1} \cdot W^{mT} = X^m. \end{cases} \quad (15)$$

678 By formatting the inputs and the values of all nodes in the neural network into a variable vector
 679 $\mathcal{X} = (X^0, X^1, X^2, \dots, X^m)$, the above system can be simplified to $\mathcal{X} \cdot \mathcal{C}^T = 0$.

680 Furthermore, the coefficient matrix \mathcal{C} for the tree-like structure is structured as Figure 5.

$$\begin{pmatrix} W^1 & -E^1 & 0 & 0 & \dots & 0 & 0 \\ 0 & W^2 & -E^2 & 0 & \dots & 0 & 0 \\ 0 & 0 & W^3 & -E^3 & \dots & 0 & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & W^m & E^m \end{pmatrix}$$

690 Figure 5: The Coefficient \mathcal{C} for Tree-like Structure

691 Here E^i denotes the identity matrix corresponding to the i th level

From this system of equations, it is evident that the traditional NN structure constitutes a special case of our equation system, which can be solved asynchronously. In the tree-like structure, the coefficient matrix is composed of the parameter matrices W^i for each level, with these parameters positioned near the diagonal of the matrix.

Notably, the tree-like structure imposes stricter constraints on each node within the network. Specifically, if nodes in a tree structure depend exclusively on neurons from the immediately preceding layer, their capacity to approximate complex functions is severely limited.

To address this limitation, some existing works have generalized the tree-like structure to Directed Acyclic Graphs (DAGs)—as exemplified by ResNet. In such architectures, additional weights (denoted as V^k for the k th level) are introduced to the lower triangular region of the coefficient matrix \mathcal{C} . The updated matrix \mathcal{C} is structured as Figure 6.

$$\begin{pmatrix} W^1 & -E^1 & 0 & 0 & \dots & 0 & 0 \\ V^1 & W^2 & -E^2 & 0 & \dots & 0 & 0 \\ V^1 & V^2 & W^3 & -E^3 & \dots & 0 & 0 \\ \dots & & & & & & \\ V^1 & V^2 & V^3 & V^4 & \dots & W^m & E^m \end{pmatrix}$$

Figure 6: The Coefficient Matrix \mathcal{C} for DAG(e.g. Resnet)

This modification enables more flexible and expressive models, which can better approximate complex functions and handle larger datasets.

While lower triangular coefficient matrices typically represent the constraint of strictly causal (asynchronous) structures, the upper triangular region remains largely untapped. In this work, we extend such structures to synchronous ones by relaxing the constraint of strict lower triangularity, generalizing the coefficient matrix \mathcal{C} to a full adjacency matrix that can represent arbitrary directed graphs. This allows the construction of more densely interconnected networks, offering potential for greater flexibility. Consequently, our framework moves neural architectures from strictly tree-like, causal dependencies toward more general graph-based structures.

B THE RATIONALE OF INTRODUCING NEURAL MODULES

For traditional tree-like structures, the asynchronous forward and backward propagation processes can also be interpreted as solving a system of equations. In our framework, by contrast, the NN structure is modeled as a general graph with p nodes.

A key design choice in our model is that the diagonal elements of the network’s adjacency matrix correspond to the bias of each node. During formulation, input- and bias-related terms are assigned to the right-hand side of the equation system, while terms associated with node values are placed on the left-hand side. After each neural unit is processed using the input X^0 , the coefficient matrix \mathcal{C} takes the form shown as Figure 7.

$$\begin{pmatrix} -1 & w_{2,1} & w_{3,1} & w_{4,1} & \dots & w_{p-1,1} & w_{p,1} \\ w_{1,2} & -1 & w_{3,2} & w_{4,2} & \dots & w_{p-1,2} & w_{p,2} \\ w_{1,3} & w_{2,3} & -1 & w_{4,3} & \dots & w_{p-1,3} & w_{p,3} \\ w_{1,4} & w_{2,4} & w_{3,4} & -1 & \dots & w_{p-1,4} & w_{p,4} \\ \dots & & & & & & \\ w_{1,p} & w_{2,p} & w_{3,p} & w_{4,p} & \dots & w_{p-1,p} & -1 \end{pmatrix}$$

Figure 7: The Coefficient Matrix \mathcal{C} for Our General Graph Structure

A detailed breakdown of the coefficient matrix’s role in computation is provided in the “Forward Process” subsection (Section 3.3).

By design, our framework enhances the representational capacity of individual neurons, unlocking the full potential of neural networks. Concurrently, it eliminates the structural bias inherent in

756 predefined architectures—such as traditional tree-like structures or DAGs. This innovation makes
 757 our framework more adaptable and less constrained by fixed architectural biases, resulting in more
 758 flexible and effective NN designs.

759 Solving systems of equations with large coefficient matrices \mathcal{C} can be computationally challenging.
 760 To address this, our framework introduces Neural Module (NM) Regularization: an approximation
 761 method for \mathcal{C} that integrates parallel computation to improve efficiency.

764 C CONNECTION WITH DEEP EQUILIBRIUM MODELS (DEQ)

766 Prior research has identified the existence of equilibrium states in infinitely deep weight-tied neural
 767 networks. Deep Equilibrium Models (DEQ) formalize this concept by modeling the forward pass
 768 as finding a fixed point of an implicit layer, effectively solving for the root of an implicit equation.
 769 In this work, we show that the dynamics of our proposed general graph structure can similarly be
 770 formulated and managed by solving a coupled system of equations.

771 Conceptually, DEQ focuses on weight-tied layers across an infinite depth. Viewing an infinite chain
 772 as a cycle, the core computational graph of DEQ can be considered a cyclic structure. Our work
 773 provides an alternative perspective: the fixed point found by a DEQ corresponds to a stable solution
 774 within a synchronous computational module defined by our framework. Our neural module
 775 formulation not only helps interpret this fixed point but also facilitates the analysis of the underlying
 776 implicit functions.

777 Furthermore, the architectural constraint known as the "Universality of Single-Layer DEQ" implies
 778 that stacking multiple implicit layers is equivalent to a single implicit layer, which inherently limits
 779 the representational flexibility of deep implicit stacks. Scaling DEQs to models with a larger
 780 effective number of distinct computational nodes also remains a practical challenge noted in the
 781 literature.

782 In contrast, our framework generalizes the concept of an implicit layer. By moving from an infinite
 783 chain to a general graph structure, we propose a more flexible way to organize neural units, aiming to
 784 improve parameter efficiency and model performance. To address scalability, we introduce Neural
 785 Module (NM) regularization, which encourages the formation of decoupled subgraphs or modules.
 786 This provides a structured approach to manage multiple, potentially complex, computational sub-
 787 graphs—an aspect less explicitly addressed in the standard DEQ formulation. Our analysis of NM
 788 regularization includes both theoretical justification and empirical studies on parameter selection,
 789 facilitating the handling of larger graph-based networks.

790 Empirically, the balanced and relatively independent neural modules formed under our framework
 791 appear to offer advantages in terms of efficiency and task performance, as shown in our experiments.
 792 These modules may help reduce overfitting (potentially enhancing generalization) and allow for
 793 parallel computation (improving efficiency). This addresses a consideration not central to the DEQ
 794 approach, which does not prescribe a specific strategy for modularizing computation to optimize
 795 these metrics.

797 C.1 DEEPER INSIGHTS INTO DEQ

799 While promising, certain theoretical aspects of DEQs warrant further exploration. In particular, more
 800 in-depth analysis could be beneficial for clarifying: (1) the representational role and significance of
 801 the fixed point beyond being a computational endpoint, and (2) the precise conditions under which
 802 weight-tied infinite-depth networks converge to such fixed points. Investigating these questions may
 803 further elucidate the behavior and advantages of networks with cyclic computational dependencies.

804 In cyclic neural structures, units are interdependent. Information propagates iteratively through
 805 the network until an equilibrium state is reached, which is then used for downstream tasks. This
 806 equilibrium is mathematically the fixed point of the system's transformation.

808 The convergence to an equilibrium emerges from the mutual dependencies between neuron units,
 809 which form a system of equations that must be jointly satisfied. During computation in a cyclic
 module, each unit's state is updated based on the states of others in the module. This process iterates

810 until the updates become negligible, signaling convergence to a stable fixed point where the system’s
 811 dynamics are in balance.

812
 813 This iterative process resembles numerical methods for solving equation systems, such as fixed-point
 814 iteration or the Newton-Raphson method. Analogously, the cyclic network iteratively refines neu-
 815 ronal activations until a self-consistent solution (the fixed point) satisfying the internal relationships
 816 is found.

817 In summary, the equilibrium in cyclic neural networks results from an iterative process that seeks a
 818 stable solution to the system of equations defined by the interconnected units.

819
 820 **D CONNECTION TO CYCLIC STRUCTURES IN THE FORWARD-FORWARD**
 821 **ALGORITHM**
 822

823
 824 A key mechanism in cyclic Forward-Forward (FF) structures involves propagating activations
 825 through a cycle for a fixed number of steps. This can be seen as a finite-step numerical approxima-
 826 tion to the solution of the equilibrium condition defined by the cycle’s connections. While efficient,
 827 this approach may not guarantee convergence to a deterministic solution under all conditions, as it
 828 truncates the iterative process.

829 Moreover, cyclic FF structures typically operate on a predefined, fixed graph topology designed to
 830 align with the local learning rules of the FF algorithm, which favors certain architectural constraints.

831 In contrast, our framework explores the space of possible graph structures, effectively searching
 832 over a complete graph where any neuron may connect to any other. This offers greater flexibility but
 833 increases the complexity of identifying effective architectures. Therefore, our focus is on developing
 834 methods to efficiently discover performant subgraphs within this expansive space.

835
 836 **D.1 KEY CONSIDERATIONS FOR CYCLIC FF STRUCTURES AND PROPOSED ALTERNATIVES**
 837

838 Several notable characteristics of cyclic FF structures motivate our design choices:

839
 840 **A. Architecture and Learning:** They often rely on a predefined graph structure and employ local,
 841 layer-wise loss functions (like cross-entropy). This can limit architectural flexibility and may intro-
 842 duce an inductive bias based on the chosen preset topology.

843
 844 **B. Solution Method:** They approximate the implicit system solution using a fixed, limited number
 845 of iteration steps, which may not always yield a consistent approximation.

846
 847 **C. Scale Management:** The size of cyclic components is typically not explicitly regulated, which
 848 can affect computational complexity and learning dynamics.

849 Our framework addresses these aspects differently:

850
 851 **A. Our network topology is learned adaptively during training,** allowing connections to form dy-
 852 namically based on the task.

853
 854 **B. For identified cyclic components, we aim to solve the governing equations directly or ensure**
 855 reliable convergence, moving beyond fixed-iteration approximations.

856
 857 **C. We employ NM regularization to influence the scale and decoupling of neural modules,** facilitat-
 858 ing parallel computation and managing complexity.

859
 860 **E CONNECTION WITH OPTNET**
 861

862 Earlier work on OptNet integrated optimization problems, specifically quadratic programs (QPs),
 863 as layers within neural networks, focusing on interactions between nodes. This design introduces a
 864 strong, specific inductive bias through the QP formulation. Furthermore, OptNet’s backpropagation
 865 requires gradients from the QP solution, which depends on the preceding layer’s output, potentially
 866 complicating the application and tuning of standard regularization techniques. These factors can
 867 make fine-tuning OptNet models for optimal performance and efficiency a challenging task.

864 Compared to this, the neural modules in our framework are based on general nonlinear transfor-
 865 mations. They offer substantial flexibility for function approximation, as supported by universal
 866 approximation theorems for graph networks, without being constrained to a specific optimization-
 867 based structure. This allows for more straightforward control over model complexity and capacity,
 868 enabling a more direct balance between performance and efficiency—addressing some of the core
 869 challenges associated with optimization-based layers.

870 871 F ALGORITHM 872

873 We summarize our framework in three core algorithms: Algorithm 1 (Propagation), Algorithm 2
 874 (Training Process), and Algorithm 3 (Prediction Process).

875 876 G THE SUPPLEMENTARY MATERIALS FOR EXPERIMENTS 877

878 This section provides detailed information about the experimental setup and analyses of NM regu-
 879 larization.

880 G.1 EXPERIMENTAL ENVIRONMENT 881

882 All experiments were conducted on the hardware platform specified in Table 2.

883
884 Table 2: Experimental Environment
885

CPU	Gen Intel(R) Core(TM) i9-12900H 2.90 GHz
Cores	16
Memory	32G
GPU	NVidia GeForce RTX 3060
Graphics Memory	12G

886 The parameter settings for the methods used in our experiments are described as Table 3.

887
888 Table 3: Parameter List
889

Mothods	Parameters
NN	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 1; weightPenaltyL2 = 0;
DEQ	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 0.1; weightPenaltyL2 = 0;
DAG	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 0.1; weightPenaltyL2 = 0;
OPTNET	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 0.1; weightPenaltyL2 = 0;
NM	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 1; weightPenaltyL2 = 0;
NM+L2	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 1; weightPenaltyL2 = 0; alpha = 0.001;
NM+NMS	learningRate optimized with the scale; momentum = 0.5; scaling learningRate = 1; weightPenaltyL2 = 0; alpha = 0.001;

914 G.2 COMPARISON WITH GNNs ON FACEBOOK DATA 915

916 As shown in Figure 8a, our Neural Modules (NMs), compared with the Modern Structure GNN, also
 917 achieved a significant performance gain on the Facebook dataset. This experiment further validates
 the effectiveness of our approach.

918
919
920
921
922

Algorithm 1 Propagation

1: **Input:** Input vector X^{in} ; Coefficient matrix \mathcal{C} ; Input layer weights W^1 ; Output layer weights
925 W^m ; Propagation type (Forward/Backward) PT ;
926
2: **Output:** Updated node value vector X
927
3: **if** $PT ==$ Forward **then**
928 4: Initialize $X = X^{in} \cdot W^{1T}$.
929 5: **end if**
930 6: **if** $PT ==$ Backward **then**
931 7: Initialize $X = X^{in} \cdot W^m$.
932 8: **end if**
933 9: Use Tarjan's algorithm on \mathcal{C} to identify neural modules {NMs}.
934 10: Initialize $Node_Queue = \{n_i | InArc(n_i) = 0\}$.
935 11: Initialize $NM_Queue = \{NM_i | InArc(NM_i) = 0\}$.
936 12: **while** $Node_Queue$ is not null and NM_Queue is not null **do**
937 13: **for** n_i in $Node_Queue$ **do**
938 14: **if** $PT ==$ Forward **then**
939 15: Execute forward propagation (as in traditional NNs).
940 16: **end if**
941 17: **if** $PT ==$ Backward **then**
942 18: Execute backward propagation (as in traditional NNs).
943 19: **end if**
944 20: Delete outgoing edges of n_i from \mathcal{C} .
945 **end for**
946 22: **if** $PT ==$ Forward **then**
947 23: Solve equations (1) and (9) for $NM_i \in NM_Queue$ in parallel.
948 24: **end if**
949 25: **if** $PT ==$ Backward **then**
950 26: Solve equations (2) for $NM_i \in NM_Queue$ in parallel.
951 27: **end if**
952 28: Delete edges associated with $NM_i \in NM_Queue$ from \mathcal{C} .
953 **for** n_i associated with \mathcal{C} **do**
954 30: **if** $InArc(n_i) == 0$ and $OutArc(n_i) != 0$ **then**
955 31: Enqueue n_i to $Node_Queue$.
956 32: **end if**
957 **end for**
958 **for** NM_i associated with \mathcal{C} **do**
959 35: **if** $InArc(NM_i) == 0$ and NM_i has edges **then**
960 36: Enqueue NM_i to NM_Queue .
961 37: **end if**
962 **end for**
963 **end while**
964 **if** $PT ==$ Forward **then**
965 41: $X = f(X)$ (apply activation function f).
966 **end if**
967 **if** $PT ==$ Backward **then**
968 44: $X = f'(X)$ (apply derivative of activation function f').
969 **end if**
970 **return** X

968
969
970
971

972
973
974**Algorithm 2** Training Process

1: **Input:** Initial input vector X^0 ; Ground-truth label vector Y ; Initial adjacency matrix for the
2: complete graph \mathcal{K} ; Hyperparameter for thresholding (used to update γ) k ; Input layer weights
3: W^1 ; Output layer weights W^m ;
4: **Output:** $\mathcal{K}; W^m; W_1; \gamma$
5: Initiate \mathcal{K} as a random matrix (for the complete graph).
6: **while** the model has not converged **do**:
7: Approximate \mathcal{K} using k to obtain the coefficient matrix \mathcal{C} .
8: Run Propagation with $X^0, \mathcal{C}, W^1, W^m$, Forward.
9: Compute predicted labels: $\tilde{Y} = X \cdot W^{mT}$.
10: Compute loss gradient ∇Y .
11: Run Propagation with $\nabla Y, \mathcal{C}^T, W^1, W^m$, Backward.
12: Update \mathcal{K} using equation (4).
13: Update W^m using equation (5).
14: Update W_1 using equation (6).
15: Update γ to the k th largest absolute value in \mathcal{K} (for thresholding).
16: **end while**

990
991
992**Algorithm 3** Predicting Process

1: **Input:** Input vector for prediction X^0 ; Threshold (from training) γ ; Optimized adjacency matrix
2: (from training) \mathcal{K} ; Input layer weights W^1 ; Output layer weights W^m ;
3: **Output:** Predicted label vector \tilde{Y} .
4: Approximate \mathcal{K} using γ to obtain the coefficient matrix \mathcal{C} .
5: Run Propagation with $X^0, \mathcal{C}, W^1, W^m$, Forward.
6: Compute $\tilde{Y} = X \cdot W^{mT}$.
7: **return** \tilde{Y}

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

(a) Performance on Facebook Data

1022
1023
1024
1025

Figure 8: Performance gain achieved when our Neural Modules (NMs) were compared with a Modern Structure GNN on the Facebook dataset, which substantiates the broad applicability and effectiveness of our approach.

1026
1027

G.3 OPTIMIZATION OF NEURAL MODULES VIA NM REGULARIZATION

1028
1029
1030

As discussed earlier, NM regularization yields significant improvements in model performance and efficiency. Here, we analyze parameter-tuning strategies for NM regularization and their relationship to dataset complexity.

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

(a) Codon Usage Dataset

(b) Gas Dataset

(c) Facebook Dataset

(d) Activity Dataset

1042

Figure 9: Quantitative Comparison of Topological Connectivity. Sparse connectivity metrics (e.g., edge density, average degree) across datasets, showing alignment with biological neural networks.

1043

A key insight is that optimal parameter settings for NM regularization depend on dataset complexity:

1058
1059
1060
1061

Gas Dataset: Less complex; benefits from stronger regularization (reduces overfitting to simple patterns).

1062
1063

Activity Dataset: More complex; performs better with weaker regularization (preserves fine-grained patterns).

1064

Codon Usage Dataset: Requires larger neural modules combined with stronger regularization (balances complexity and overfitting).

1066
1067
1068

Facebook Dataset: Robust to parameter variations (exhibits stable performance across a range of regularization strengths).

1069
1070
1071

Figure 9 visualizes these trends, showing how prediction error varies across datasets with the two key parameters α and k . The parameter k specifies the number of top edges retained, functioning similarly to the threshold parameter γ in its effect.

1072
1073
1074

H THE EFFECT OF NM REGULARIZATION

1075
1076
1077
1078

Experimental results demonstrate three key benefits of NM regularization:

1079

Captures Weight Trends: NM regularization accurately tracks weight evolution across iterations, enabling precise weight regularization.

Forms Balanced Modules: It groups nodes into independent, balanced neural modules—reducing redundancy and improving representational efficiency.

1080 Boosts Parallel Efficiency: Since modules are independent, they can be processed in parallel. The
 1081 overall efficiency of the model is determined by the size of the largest module (smaller, balanced
 1082 modules minimize parallel bottlenecks).

1084 H.1 QUANTITATIVE ANALYSIS OF NM REGULARIZATION

1085 To formalize the effect of NM regularization, we define:

1087 θ : Probability that an edge's weight is less than γ (the regularization threshold) in the current iteration.

1089 q : Number of nodes in a neural module.

1091 The probability that a new edge integrates into a module is given by:

$$1092 p_{\text{merge}} = 1 - \theta^q \quad (16)$$

1094 NM regularization dynamically adjusts this probability to balance module sizes:

1096 For small q (small modules), it increases p_{merge} to encourage module growth.

1097 For large q (large modules), it decreases p_{merge} to prevent excessive expansion.

1099 This balance minimizes disparities in merge probabilities across modules of varying sizes—ensuring
 1100 the formation of compact, efficient modules (see Figure 10a).

1112 (a) Merge probability of nodes' number per module. (b) Time consumption on average module
 1113 size.

1114 Figure 10: (a) Merge probability of nodes' number per module (shows balanced growth); (b) Time
 1115 consumption on average module size (demonstrates parallel efficiency—smaller, balanced modules
 1116 reduce computation time).

1118 Additionally, Figure 10b illustrates the efficiency gains from parallel computation: as module sizes
 1119 decrease (and balance improves), computation time decreases linearly—confirming that NM regu-
 1120 larization enables effective scaling to large node counts.

1121 Figure 11 show examples of automatically generated neural module structures for each dataset (black
 1122 squares denote independent modules). These figures confirm that NM regularization produces
 1123 sparse, balanced structures that mirror the connectivity patterns of biological neural networks (as
 1124 quantitatively verified in Figure 12)

1126 Figure 11 further quantifies this by comparing topological connectivity patterns across
 1127 datasets—confirming that our framework consistently generates structures aligned with biological
 1128 neural networks.

1130 I THE PROOF OF THE UNIVERSAL APPROXIMATION

1132 In the forward propagation process, the system of equations defined by our general graph structure
 1133 constructs implicit functions across all nodes in a neural module. For any node n_i this implicit
 function can be transformed into an explicit function of the input X^0 .

1188 By the Universal Approximation Theorem (Hornik et al., 1989), any continuous function $f : \mathcal{X} \rightarrow \mathbb{R}$
 1189 (where $\mathcal{X} \in \mathbb{R}^d$ is compact) can be approximated to arbitrary precision by a single hidden-layer
 1190 feed-forward network with a non-linear activation function.

1191 Our framework satisfies this theorem's conditions:

1193 The system of equations includes a non-linear activation function (applied to node values in forward
 1194 propagation).

1195 The general graph structure enables arbitrary connections between nodes—effectively acting as a
 1196 feed-forward network with flexible layer definitions.

1198 J THE PROOF OF THEOREM 3.1

1200 *Proof.* The gradient of the loss with respect to edge w_{ij} under NM regularization is given by

$$1202 \frac{\partial J_{NM}}{\partial w_{ij}} = \frac{\partial J}{\partial w_{ij}} + \alpha r_{ij} w_{ij}, \quad (17)$$

1204 Using stochastic gradient descent (SGD) for weight updates, the update rule becomes:

$$1206 w_{ij} \leftarrow w_{ij} - \eta \left(\frac{\partial J}{\partial w_{ij}} + \alpha r_{ij} w_{ij} \right), \quad (18)$$

1208 where η is the learning rate. \square

1209 K THE PROOF OF THEOREM 3.2

1212 *Proof.* Assume the i -th column of \mathcal{C} (weights from all nodes to node i) follows a multivariate normal
 1213 prior:

$$1214 w_{:i} \sim \mathcal{N}(0, \tau^2 \text{diag}(r_{:i})^{-1}), \quad (19)$$

1215 where τ^2 is the prior variance, and $r_{:i}$ is the vector of regularization coefficients for the i -th column.

1216 Consider a Bayesian linear regression model for node $y = Xw_{:i} + \epsilon$ and $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. The
 1217 posterior distribution of $w_{:i}$ substitutes the Gaussian likelihood and prior::

$$1219 p(w_{:i}|y, X) \propto p(y|X, w_{:i})p(w_{:i}) \\ 1220 \propto \exp\left(-\frac{\|y - Xw_{:i}\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|w_{:i}^T \cdot \text{diag}(r_{:i}) \cdot w_{:i}\|^2}{2\tau^2}\right)$$

1224 Taking the negative logarithm (to convert to a minimization problem), the maximum a posteriori
 1225 (MAP) estimate of

$$1226 \arg \min_{w_{:i}} \left\{ \frac{1}{2\delta^2} \|y - Xw_{:i}\|^2 + \sum \frac{r_{ji}}{2\tau^2} \|w_{ji}\|^2 \right\}, \quad (20)$$

1228 which equivalent to NM regularization as

$$1229 \arg \min_{w_{:i}} \left\{ \|y - Xw_{:i}\|^2 + \alpha \sum r_{ji} \|w_{ji}\|^2 \right\}. \quad (21)$$

1232 This is exactly the NM regularization objective. Thus, NM regularization corresponds to a Bayesian
 1233 prior on edge weights.

1234 To confirm the posterior distribution, expand the log-posterior:

$$1235 \log(p(w_{:i}|y, X)) \propto -\frac{1}{2\delta^2} \|y - Xw_{:i}\|^2 - \frac{1}{2\tau^2} w_{:i}^T \text{diag}(r_{:i}) w_{:i} \\ 1236 \propto -\frac{1}{2\delta^2} (w_{:i}^T X^T X w_{:i} - 2w_{:i}^T X^T y) - \frac{1}{2\tau^2} w_{:i}^T \text{diag}(r_{:i}) w_{:i} \\ 1238 \propto -\frac{1}{2} w_{:i}^T \left(\frac{X^T X}{\delta^2} + \frac{1}{\tau^2} \text{diag}(r_{:i}) \right) w_{:i} + \frac{w_{:i}^T X^T y}{\delta^2}$$

1242 This matches the norm of a multivariate normal distribution's log-pdf. By converting the distribution
 1243 to a normalized form, Theorem 3.3 holds. \square
 1244

1245 L THE PROOF OF THEOREM 3.3

1246 *Proof.* By Theorem 3.4, edge weights follow a normal distribution. When pruning edges based
 1247 on the absolute value of weights (using threshold γ), the weights in each iteration follow a **folded**
 1248 **normal distribution**. For simplicity, consider the cumulative distribution function (CDF) of the
 1249 standard folded normal distribution:
 1250

$$1252 \quad P(w) = 2\Phi\left(\frac{w}{\Delta}\right) - 1. \quad (22)$$

1253 where Φ is the CDF of the standard normal distribution, and Δ is the scale parameter. NM regu-
 1254 larization reduces Δ over iterations (by shrinking weights toward zero via the $\alpha * r_{ij} * w_{ij}$). This
 1255 causes the folded normal distribution to concentrate around zero, meaning learned parameters tend
 1256 to approach zero with the decrease in Δ .
 1257

1258 For any iteration t , let w_t be the parameters of the original model and \tilde{w}_t be the parameters of the
 1259 optimized model by k . The shrinkage effect of NM regularization implies:

$$1260 \quad \|w_t - \tilde{w}_t\|^2 < \|w_0 - \tilde{w}_0\|^2. \quad (23)$$

1261 where w_0 is the initial weight.

1262 Follow (Lin et al., 2020), let $\zeta = \frac{c}{\sqrt{T}}$, $c = \sqrt{\frac{f(w_0) - f(w^*)}{LG^2}}$ and T be the number of iteration.
 1263

$$1264 \quad \begin{aligned} \mathbb{E}\|\nabla u\|^2 &\leq \frac{f(w_0) - f(w^*)}{\zeta(T+1)} + L\zeta G^2 + \frac{L^2}{T+1} \sum_{t=0}^T \mathbb{E}\|w_t - \tilde{w}_t\|^2 \\ 1265 &\leq \frac{2(f(w_0) - f(w^*))}{\zeta(T+1)} + L\zeta G^2 + L^2\|w_0 - \tilde{w}_0\|^2 \end{aligned}$$

1266 \square

1267 M THE USAGE OF LARGE LANGUAGE MODELS (LLMs) IN THIS PAPER

1268 In this paper, Large Language Models (LLMs) were only utilized in three specific aspects, with their
 1269 application scope strictly limited to auxiliary text and code polishing:

- 1270 1. Correcting grammatical errors in the manuscript;
- 1271 2. Rectifying typos throughout the text;
- 1272 3. Fixing minor code errors in the experimental section.

1273 Notably, LLMs were *not* employed for core academic work, including the generation of key research
 1274 ideas, the derivation of critical mathematical proofs, or any other tasks that involve original academic
 1275 reasoning.

1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295