
Under review as submission to TMLR

Efficient Privacy-Preserving Federated Learning With Selec-
tive Parameter Encryption

Anonymous authors
Paper under double-blind review

Abstract

Federated learning trains machine learning models on distributed devices by aggregating
local model updates instead of local data. However, privacy concerns arise as aggregating
local models on the server may expose sensitive information through inversion attacks. Thus,
privacy-preserving methods, such as homomorphic encryption (HE), then become necessary
for FL training. However, despite HE’s advantages, applying it to FL training suffers
from impractical overheads, especially for foundation models. In this paper, we present
an efficient, privacy-preserving federated learning framework that uses selective parameter
encryption with theoretical guarantees. Our approach proposes to selectively encrypt sensitive
parameters, significantly reducing both computation and communication overheads during
training while providing a quantifiable privacy guarantee. Our framework shows considerable
overhead reduction, particularly for large foundation models (e.g. ∼100x reduction for
GPT-2), demonstrating its potential for scalable HE-based FL deployment.

1 Introduction

Federated learning allows distributed clients to collectively train a global model without directly sharing
data. Instead of uploading raw data to a central server for training, clients train models locally and share
their model updates with the server, where the model updates are then averaged based on the aggregation
functions (McMahan et al., 2017) to obtain a global model. While federated learning ensures that local raw
data does not leave their original locations, it remains vulnerable to eavesdroppers and malicious servers
that might exploit plaintext model updates to reconstruct sensitive training data (Fig. 1 (left)), i.e., gradient
inversion attacks (Zhu et al., 2019; Criswell et al., 2014; Bhowmick et al., 2018; Hitaj et al., 2017; Han et al.,
2023; Hatamizadeh et al., 2022; Fowl et al., 2022). This poses a privacy vulnerability especially when local
models are trained on small local datasets (e.g., smartphone text data for large language models). Local
models derived from these small datasets inherently contain fine-grained information, making it easier for
adversaries to extract sensitive information from local models.

Existing defense methods that reduce privacy leakage include differential privacy (DP) (Truex et al., 2019;
Byrd & Polychroniadou, 2020) and secure aggregation (Bonawitz et al., 2017; So et al., 2022). DP adds
noise to original model updates but may result in model performance degradation due to the privacy noises
introduced. On the other hand, secure aggregation employs zero-sum masks to shield local model updates,
ensuring that individual updates remain private. However, secure aggregation demands additional interactive
synchronization steps and is sensitive to client dropout, making it less practical in real-world FL applications,
where the environments of clients are unstable and may face challenges such as unreliable internet connections
and software crashes. Compared with the methods above, homomorphic encryption (HE) (Paillier, 1999;
Gentry, 2009; Fan & Vercauteren, 2012; Brakerski et al., 2014; Cheon et al., 2017) offers a robust post-quantum
secure solution that protects local models against attacks and provides privacy guarantee while introducing
minimal model performance degradation. As shown in Fig. 1 (middle), HE-based federated learning (FedHE)
encrypts local models on clients and performs model aggregation over ciphertexts on the server to protect
against privacy attacks, which has been adopted by several FL systems (Roth et al., 2022; IBM, 2022; Zhang
et al., 2020; Du et al., 2023) and domain-specific applications (Stripelis et al., 2021; Yao et al., 2023).

1



Under review as submission to TMLR

Despite these advantages, homomorphic encryption remains a complex cryptographic foundation with
significant computation overheads (as shown in Fig. 1 (right)) for real-world FL applications. Prior FedHE
solutions mainly employ existing generic HE methods without sufficient optimization for real-world FL
deployment (Roth et al., 2022; IBM, 2022; Zhang et al., 2020; Du et al., 2023). The scalability of encrypted
computation and communication during federated training then becomes a bottleneck, restricting its feasibility
for real-world scenarios. The computation overhead of HE is particularly noticeable, commonly ∼15x increase
in both computation and communication, both growing linearly w.r.t. the size of models (Cheon et al., 2017;
Gouert et al., 2022). Especially across resource-constrained devices, encrypted computing and communication
of large models might take considerably longer than the actual model training.

To address these challenges, we propose an efficient homomorphic-encryption-based privacy-preserving FL
solution with Selective Parameter Encryption for practical deployment1. Our method significantly
reduces communication and computation overheads, enabling efficient HE-based federated learning. We
further provide the first theoretical framework to quantify the privacy guarantee of selective encryption, which
indicates a significant improvement over random encryption and differential privacy, with the important
observation that most existing models follow Log-Normal Mixture distributions. Extensive experiments
validate our privacy quantification framework.
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Figure 1: (left) Data Reconstruction Attacks: an adversarial server can recover local training data from local model updates and
global model at last round; (middle) HE-based Federated Aggregation: models are encrypted and the server acts as a computing
service without access to models; (right) Computation and Communication Overhead for Aggregating Fully Encrypted Models:
compared with Nvidia Flare (Nvidia, 2021) (which does not have provable selective parameter encryption), overheads include
encryption/decryption and encrypted aggregation.

Key contributions:

• We propose Selective Parameter Encryption in §3 that selectively encrypts the most privacy-
sensitive parameters to minimize encrypted model updates and reduce overheads while providing a
privacy guarantee quantified by our proposed privacy analysis framework.

• We provide the theoretical framework for quantifying the privacy guarantee of selective homomorphic
encryption in §4. Selective Parameter Encryption requires significantly less encryption over random
selection with provable guarantee validated empirically.

• Extensive experiments in §5 show that the optimized system achieves significant overhead reduction
while preserving privacy against state-of-the-art ML privacy attacks, e.g., ∼1000x reduction for
ResNet, and ∼100x reduction for GPT-2, demonstrating its potential for real-world deployments.

2 Related Work

Privacy Attacks On FL. Threats and attacks on privacy in federated learning have been studied in recent
years (Mothukuri et al., 2021). Data reconstruction attacks (Criswell et al., 2014; Bhowmick et al., 2018; Hitaj

1We integrate our work with an open-source federated learning platform.
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et al., 2017) exploit local models (or local model updates) to revert sensitive information or even reconstruct
the training data. With direct access to more fine-grained local models trained on a smaller dataset (Wang
et al., 2019), the adversary can have a higher chance of a successful attack. Moreover, further attacks can be
performed using GAN-based attacks to even fully recover the original data (Hitaj et al., 2017). The majority
of the privacy attacks can be traced back to the direct exposure of plaintext accesses to local models to other
parties.

Non-HE Defense Mechanisms. Local differential privacy has been adopted to protect local model updates
by adding differential noise on the client side before the server-side aggregation (Truex et al., 2019; Byrd
& Polychroniadou, 2020) where privacy guarantee requires large-scale statistical noise on fine-grained local
updates that generally degrades model performance (Truex et al., 2020). On the other hand, other work
proposes to apply zero-sum masks (usually pair-wise) to mask local model updates such that any individual
local update is indistinguishable to the server (Bonawitz et al., 2017; So et al., 2022). However, such a strategy
introduces several challenges including key/mask synchronization requirements and federated learner dropouts.
Compared to these solutions providing privacy protection in FL, HE is non-interactive and dropout-resilient
(vs. general secure aggregation protocols (Bonawitz et al., 2017; So et al., 2022)) and it introduces negligible
model performance degradation (vs. noise-based differential privacy solutions (Truex et al., 2019; Byrd
& Polychroniadou, 2020)). The comparison of HE vs other privacy-preserving primitives can be found in
Table 1.

Model
Degradation Overheads Client

Dropout
Interactive

Sync
Differential Privacy With noise Light Robust No
Secure Aggregation Exact Medium Susceptible Yes

Homomorphic
Encryption Exact Heavy Robust No

Table 1: Comparison of Differential Privacy, Secure Aggregation, and Homomorphic Encryption

Existing HE-based FL Work. Existing HE-based FL work either apply restricted HE schemes (e.g., additive
scheme Paillier) (Zhang et al., 2020; Fang & Qian, 2021; Jiang et al., 2021) without extensibility to further
FL aggregation functions or provide a generic but impractical HE implementation on FL aggregation (Jiang
et al., 2021; Du et al., 2023; Ma et al., 2022), including industrial platforms such as IBM FL (IBM, 2022),
while leaving the key issue with impractical HE overheads as an unresolved question. In our work, we propose
a novel Selective Parameter Encryption optimization scheme that largely reduces the overheads as well as
provides the first theoretical framework to quantify the privacy guarantee of selective encryption, which
makes HE-based FL viable and provable in practical deployments.

Parameter Selection in ML. Selective encryption of models has been explored in prior work, particularly in
single-client-server machine learning setups for training and inference. For instance, Sphinx (Tian et al., 2022)
employs a hybrid approach, utilizing HE for bias parameters while applying DP to the remaining parameters.
However, unlike our privacy sensitivity-based method, Sphinx does not easily satisfy the challenges in model
and dataset diversity in FL. Similarly, other approaches (Tian et al., 2021) face limitations in FL due to
their reliance on specific model architectures, overly coarse layer-wise selection strategies, and the absence of
robust privacy quantification.

3 Federated Learning With Selective Parameter Encryption

We overview Selective Parameter Encryption in FL in §3.1, define the threat model in §3.2, describe the
general algorithmic design of HE-based FL in §3.3, and explain how Selective Parameter Encryption optimizes
the overheads in §3.4.

3.1 Methodology Overview

Figure 2 overviews major stages in our efficient HE-based federated training, including i Encryption key
agreement: the clients generate HE keys using the threshold HE key agreement protocol or trusted key
authority; ii Encryption mask calculation: the clients and the server apply Selective Parameter Encryption
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Figure 2: Federated Learning Pipeline With Selective Parameter Encryption: in the Encryption Key Agreement stage,
clients can either use distributed threshold key agreement protocol or outsource a trusted key authority. We simplify the
illustration here by abstracting the key pair of the public key and secret key (partial secret keys if using threshold protocol) as
one key; in the Encryption Mask Calculation stage, clients use local datasets to calculate local model sensitivity maps which
are homomorphically aggregated at the server to generate an encryption mask; in the Encrypted Federated Learning stage,
clients use homomorphic encryption with encryption mask to protect local model updates where the server aggregates them but
does not have access to sensitive local models.

to agree on a selective encryption mask; and iii Encrypted federated learning: at each round, the clients
selectively encrypt local models using the HE key and the encryption mask for efficient encrypted aggregation
at the server.

3.2 Threat Model

We define a semi-honest adversary A that can corrupt the aggregation server or any subset of local clients. A
follows the protocol but tries to learn as much information as possible. Loosely speaking, when A corrupts a
subset of clients, the security definition requires that only the private information in local models from the
corrupted clients will be learned by A.

When A corrupts both the aggregation server and a number of clients, the default setup where the private
key is shared with all clients (also with corrupted clients) will allow A to decrypt local models from benign
clients (by combining encrypted local models received by the corrupted server and the private key received
by any corrupted client). This issue can be mitigated by adopting the threshold or multi-key variant of HE
where decryption must be collaboratively performed by a certain number of clients (Aloufi et al., 2021; Ma
et al., 2022; Du et al., 2023). Since the multi-key homomorphic encryption issue is not the focus of this
work, in the rest of the paper we default to a single-key setup, but provide details on threshold homomorphic
encryption federated learning and microbenchmarks in Appendix §A.4.

3.3 Algorithm for HE-Based Federated Aggregation

Privacy-preserving federated learning leverages homomorphically encrypted aggregation functions to enable
the aggregation server to combine local model parameters without viewing them in their unencrypted form. We
primarily focus on FedAvg (McMahan et al., 2017), which has been proved as still one of the best-performing
federated aggregation strategies while maintaining computational simplicity (Wang et al., 2022).

Our HE-based secure aggregation algorithm can be summarized as: given an aggregation server and N
clients, each client i ∈ [N ] owns a local dataset Di and initializes a local model Wi with the aggregation
weighing factor αi; the key authority or the distributed threshold key agreement protocol generates a key
pair (pk, sk) and the crypto context, then distributes the key pair and crypto context to clients and only the
crypto context, which is public, to the server. The clients and the server then collectively calculate a global
encryption mask M for Selective Parameter Encryption also using homomorphic encryption. At each
round t ∈ [T ], the server performs the aggregation

[Wglob] =
N∑

i=1
αi[[M⊙Wi]] +

N∑
i=1

αi((1−M)⊙Wi), (1)
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Algorithm 1 HE-Based Federated Aggregation
Input : [[W]]: the fully encrypted model;

[W]: the partially encrypted model;
p: the ratio of parameters for selective encryption;
b: (optional) differential privacy parameter;

Setup : // Key Authority Generate Key
(pk, sk)← HE.KeyGen(λ);
// Local Sensitivity Map Calculation
for each client i ∈ [N ] do in parallel

Wi ← Init(W);
Si ← Sensitivity(W, Di);
[[Si]]← Enc(pk, Si);
Send [[Si]] to server;

end
// Server Encryption Mask Aggregation
[[M]]← Select(

∑N
i=1 αi[[Si]], p);

Train :
for t = 1, 2, . . . , T do

for each client i ∈ [N ] do in parallel
if t = 1 then

Receive [[M]] from server;
M← HE.Dec(sk, [[M]]);

end
if t > 1 then

Receive [Wglob] from server;
Wi ← HE.Dec(sk,M⊙ [Wglob]) + (1−M)⊙ [Wglob];

end
Wi ← Train(Wi, Di);
// Additional Differential Privacy
if Add DP then

Wi ←Wi + Noise(b);
end
[Wi]← HE.Enc(pk,M⊙Wi) + (1−M)⊙Wi;
Send [Wi] to server S;

end
// Server Model Aggregation
[Wglob]←

∑N
i=1 αi[[M⊙Wi]] +

∑N
i=1 αi((1−M)⊙Wi);

end

where [Wglob] is the partially-encrypted global model, Wi is the i-th plaintext local model with [[]] indicating
the portion of the model that is fully encrypted, αi is the aggregation weight for client i, and M is the global
model encryption mask (details in Algorithm 1).

We only need one HE multiplicative depth in our algorithm for weighting, which is preferred to reduce HE
multiplication operations. Our method can also be easily extended to support more FL aggregation functions
with HE by encrypting and computing the new parameters in these algorithms (e.g. FedProx (Li et al.,
2020)). We will explain how the encryption mask M is formalized in the next subsection.

3.4 Selective Parameter Encryption

Fully encrypted models can guarantee no access to plaintext local models from the adversary at a cost of
high overheads. However, previous work on privacy leakage analysis shows that “partial transparency”, e.g.
hiding parts of the models (Hatamizadeh et al., 2022; Mo et al., 2020), can limit an adversary’s ability to
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Figure 3: Selective Parameter Encryption: in the initialization stage, clients first calculate privacy sensitivities on the
model using its own dataset and local sensitivities will be securely aggregated to a global model privacy map. The encryption
mask will be then determined by the privacy map and a set selection value p per overhead requirements and privacy guarantee.
Only the masked parameters will be aggregated in the encrypted form.

perform privacy attacks like gradient inversion attacks (Lu et al., 2022). Combined with the observation
that the overheads of HE are directly related to the size of encrypted model parameters Ma et al. (2022),
we propose Selective Parameter Encryption to selectively encrypt the most privacy-sensitive parameters to
reduce overheads while providing quantifiable privacy; see Figure 3.

Step 1: Privacy Leakage Analysis on Clients. We adopt sensitivity Novak et al. (2018); Sokolić et al.
(2017); Mo et al. (2020) for measuring the general privacy risk on model gradients with respect to the input
data. Formally, given model W and K data samples with input matrix X and ground truth label vector y,
we compute the sensitivity for each parameter wm as 1

K

∑K
k=1 ∥Jk,m∥ , where Jk,m can be approximate by the

gradient ∂2ℓ(X,y,W)
∂xk∂wm

, ℓ(·) is the loss function given X, y and W, and ∥·∥ calculates the absolute value. The
intuition is to calculate how much the gradient of the parameter will change for each data point k. Each
client i then sends the encrypted sensitivity [[Si]] to the server.

Different parts of a model contribute to attacks by revealing uneven amounts of information. Using this
insight, we propose to only select and encrypt parts of the model that are more important and susceptible to
attacks to reduce HE overheads while preserving adequate privacy.

Step 2: Encryption Mask Agreement across Clients. The sensitivity map is dependent on the model
and also the data. With potentially heterogeneous data distributions, the server aggregates local sensitivity
maps to a global privacy map

∑N
i=1 αi[[Si]]. The global encryption mask M is then configured using a

privacy-overhead ratio p ∈ [0, 1], i.e., the ratio of selecting the most sensitive parameters for encryption. The
global encryption mask is then shared among clients as part of the federated learning configuration.

4 Quantifying Privacy Of Selective Parameter Encryption

Although sensitivity calculation provides guidance on selecting important model parameters, to the best of
our knowledge there is no existing work that successfully quantifies the privacy guarantee from the model
parameter sensitivity. In this section, we provide proof to analyze the privacy guarantee of Selective Parameter
Encryption via integrating the theoretical framework of privacy budget analysis (Dwork, 2006).

4.1 Encrypted Aggregation Quantified in Privacy Budget

We utilize the differential privacy theory as the basis of privacy guarantee in our approach. Since we adopt
selective parameter encryption instead of encrypting the whole model, the information-theoretic differential
privacy (Dwork, 2006) cannot be directly applied to our framework. Thus, we adopt a hybrid framework that
bounds the computational power of the assumed adversary (Beimel et al., 2008; Vadhan, 2017).
Definition 4.1 (Computational (ϵ|n)-Differential Privacy (Beimel et al., 2008; Vadhan, 2017)). A randomized
algorithm S satisfies computational (ϵ|n)-differential privacy if for any two adjacent datasets D1 and D2 that
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Figure 4: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3t): calculated
parameter sensitivity follows a Log-Normal Mixture distribution, allowing a smaller privacy budget to achieve the same privacy.
Similar results on Llama 3.2 can be found in Figure 29.

vary by one data point, and for any possible output O ⊆ Range(F), given some negligible function δ(n) for
poly(n)-bit strings, the following inequality holds2:

Pr [S (D1) ∈ O] ≤ eϵ Pr [S (D2) ∈ O] + δ(n). (2)

Computational (ϵ|n)-differential privacy can be achieved by adding the (0-centered) Gaussian mechnism (Dwork
et al., 2006a) on model updates. Noises are sampled on a variance σ2 = 2∆f2 log( 1.25

δ )
ϵ2 , where non-zero δ = δ(n)

and ∆f is the function sensitivity as the maximum difference in the output of a function f . δ(n) is quantified
by computational indistinguishability of homomorphic encryption (see Appendix §A.11).

To simplify our quantification process, we adopt the pure DP format by leveraging differential privacy
mechanism conversion from approximate DP (Gaussian) to pure DP (Laplace) via zCDP (Bun & Steinke,
2016) (more in Appendix §A.12). The Laplace scale parameter b can be chosen as b = ∆f

ϵ , such that the
Laplace Mechanism satisfies ϵ-privacy.

4.2 Selective Parameter Encryption by Privacy Theory

Lemma 4.2 (Sequential Composition (Dwork et al., 2006b)). If S1(x) satisfies ϵ1-privacy and S2(x) satisfies
ϵ2-privacy, then the mechanism G(x) = (S1(x),S2(x)) that releases both results satisfies (ϵ1 + ϵ2)-privacy.

Based on Lemma 4.2, letting J =
∑N

i=1
∆fi

b , we can quantify the privacy of Full DP, random parameter
encryption, and Selective Parameter Encryption.
Remark 4.3 (Achieving J-Privacy by Laplace Mechanism on All Model Parameters). If we add Laplace noise
on all parameters with fixed noise scale b, it satisfies J-privacy.
Remark 4.4 (Achieving (1− p)J-Privacy by Random Encryption). If we randomly select model parameters
with ratio p for homomorphic encryption and add Laplace noise on the remaining parameters, it satisfies
(1− p)J-privacy.
Theorem 4.5 (rJ-Privacy by Selective Parameter Encryption). Suppose the sensitivity data follows a
distribution with density function p(x), x ∈ [0, xmax]. Applying homomorphic encryption on partial model
parameters Θ and Laplace Mechanism on the remaining parameters [N ]/Θ with fixed noise scale b satisfies
rJ-privacy with the budget ratio

r = 1
µ

∫ Q1−p

0
xp(x)dx, (3)

2We omitted the boolean circuit transformation to better align with typical DP definitions.
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where p is the fraction of homomorphically encrypted parameters, and µ and Q1−p are the mean and (1−p)th

quantile of p(x) respectively.

The proof of Theorem 4.5 can be found in Appendix §A.13.
Remark 4.6. Let b0, b1, and b2 respectively be the scales of Laplace noises necessary for no encryption,
(uniform) random encryption, and selective encryption to reach the desired protection level (approximating
using J0 = J1 = J2). We will have the relation: b0 = 1

1−p b1 = 1
r b2.

Letting ∆f ∼ D, it is clear that the quantification of privacy guarantee from our Selective Parameter
Encryption depends on the distribution of the actual parameter distribution D of a given model.

Key Observation. Our extensive experiments indicate that a noticeable collection of popular models’
parameters can be closely modeled by the Log-Normal Mixture distribution (as shown by the Transformer-3t
example in Fig. 4a and Fig. 4b, with more models in Appendix §A.17). Assuming the sensitivity distribution
of a given model follows a Log-normal Mixture distribution D′ (µi as log mean and σi as log variance),
Selective Parameter Encryption requires only r portion of the privacy budget of complete privacy with the
same privacy guarantee, where

r =

∑
i

λi

σi

∫ F −1(1−p)
0 exp

(
− (ln x−µi)2

2σi
2

)
dx

√
2π

∑
i λi exp

(
µi + σ2

i

2

) . (4)

Compared with random encryption, Selective Parameter Encryption provides much stronger privacy preser-
vation with the same encryption ratio (validated in §5.4). Such a framework can also fit any sensitivity
distributions (Uniform and Exponential in Appendix §A.15 and §A.16).

5 Evaluation

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Figure 5: Computation (first) and Communication (second) Overhead Comparison For Models of Different Sizes (logarithmic
scale): 10% Encryption is based on our selection strategy and 50% encryption is based on random.

In this section, we focus on the evaluation results to show how our proposed Selective Parameter Encryption
largely mitigates these overheads for real-world deployment but still guarantees adequate defense against
privacy attacks. We also provide the validation of our proposed theoretical privacy quantification. Note that
additional experimental results regarding other aspects in FL systems are included in Appendix §A.20.

5.1 Experiment Setup

Models. We test our framework on models in different ML domains with different sizes including open-source
LLMs (more details in Appendix §A.20).
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Figure 6: Time Distribution of A Training Cycle on ResNet-50 on our industrial deployment platform: plaintext FL (left),
HE with full encryption (middle), and HE with selective encryption (right). MLOps test env has a bandwidth of 20 MB/s
(Multiple AWS Region). The optimization setup uses an encryption mask with an encrypted ratio s = 0.01. Detailed training
configuration can be found in Appendix §A.32.
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Figure 7: Language Model Inversion Attacks (Deng et al., 2021) on GPT-2 with the wikitext Dataset: Red indicates
falsely-inverted words and Yellow indicates correctly-inverted words.

Figure 8: Selection Protection Against Gradient Inversion Attack (Zhu et al., 2019) On LeNet with the CIFAR-100 Dataset:
attack results when protecting random parameters (first) vs protecting top-s sensitive parameters (second). Each configuration
is attacked 10 times and the best-recovered image is selected.
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Attack Dataset. MNIST dataset (70k images), the CIFAR-100 dataset (50k images), and the WIKITEXT
dataset (100m tokens).

HE Libraries. We implement our HE core using both PALISADE and TenSEAL. Unless otherwise specified,
our results show the evaluation of the PALISADE version.

Default Crypto Parameters. Unless otherwise specified, we choose the multiplicative depth of 1, the
scaling factor bit digit of 52, an HE packing batch size of 4096, and a security level of 128 as our default HE
cryptographic parameters during the evaluation.

Machines. (1) For microbenchmarking HE overheads, we use an Intel 8-core 3.60GHz i7-7700 CPU with 32
GB memory and an NVIDIA Tesla T4 GPU; (2) For real MLOps system experiments: we use machines with
Intel 6-core 3.70GHz i7-8700K CPU, 64GB memory and NVIDIA GeForce GTX 1080 Ti as clients and an
M3 Pro 11-core CPU with 18 GB memory as the aggregation server; (3) For attacking experiments, we use 6
NVIDIA DGX H100 GPUs with 720 GPU hours.

5.2 Optimized Overheads

We first examine the overhead optimization gains from Selective Parameter Encryption. Fig. 5 microbench-
marks the overhead reduction from only encrypting certain parts of models, where both overheads are nearly
proportional to the size of encrypted model parameters, which is coherent with the general relationship be-
tween HE overheads and input sizes. Note that after 10% encryption per our Selective Parameter Encryption,
the overheads are close to the ones of plaintext aggregation.

Fig. 6 dissects the training cycle overhead distribution for the HE framework (both with and without
optimizations) and the plaintext framework respectively. Note that here we only consider the cost distribution
of a single round instead of the entire federated training. This is because, with proper CKKS crypto parameter
setup, the model training accuracy of encrypted training has a marginal difference compared to the one of
plaintext training even considering the fact that encrypted training has approximate computation under the
hood (experimental results regarding this part can be found in Table 5 in Appendix). For a medium-sized
model, the majority of overheads (both computation and communication) are shifted to HE-related steps in
the full HE mode (w/o optimization) compared to the plaintext mode. However, when optimized by Selective
Parameter Encryption, the overheads from HE dramatically drop such that the local training step becomes
the majority again.

5.3 Effectiveness of Selective Encryption Defense

To evaluate the defense effectiveness of Selective Parameter Encryption, we encrypt model parameters per
parameter sensitivity and perform inversion attacks (CV: DLG (Zhu et al., 2019); NLP: TAG (Deng et al.,
2021)).

Defense effectiveness on CV tasks. We use image samples from CIFAR-100 to calculate the parameter
sensitivities of the model. In the DLG attack experiments, we use Multi-scale Structural Similarity Index
(MSSSIM), Visual Information Fidelity (VIF), and Universal Quality Image Index (UQI) as metrics to
measure the similarity between recovered images and original training images to measure the attack quality
hence the privacy leakage. In Fig. 8, compared to random encryption selection where encrypting 42.5% of
the parameters can start to protect against attacks, our top-5% encryption selection according to the model
privacy map only alone can defend against the attacks, meaning lower overall overhead with the same amount
of privacy protection.

Defense effectiveness on NLP tasks. We use language samples from the wikitext dataset in our experiment.
As shown in Fig. 7, with our sensitivity map indicating the top 1% privacy-sensitive parameters, our encryption
mask can prevent inversion attacks that yield better defense results than randomly encrypting 10% of the
model parameters.

Empirical Selection Recipe. In Table 2, we show that empirically, encrypting the top-10% most sensitive
parameters tends to be adequate to defend against inversion attacks (Hatamizadeh et al., 2022), but up to
90% are needed for random encryption. We provide the detailed quantitative evaluation in Appendix A.19.
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Model Size
Selective Encryption Random Encryption

Minimum
Encryption

Ratio
Attack Score

Minimum
Encryption

Ratio
Attack Score

LeNet 88,648 0.05 0.1411 ± 0.0487 0.11 0.1835 ± 0.0720
CNN 2202,660 0.001 0.1640 ± 0.0530 0.007 0.1861 ± 0.0494

ResNet-18 11,220,132 0.001 0.1792 ± 0.1234 0.05 0.1458 ± 0.0732
Transformer-3f 10,702,129 0.1 0.0000 ± 0.0000 0.9 0.2000 ± 0.1672
Transformer-3 10,800,433 0.1 0.0000 ± 0.0000 0.9 0.9750 ± 0.0415
Transformer-S 53,091,409 0.1 0.0000 ± 0.0000 0.6 0.0875 ± 0.0573

GPT-2 124,439,808 0.01 0.0875 ± 0.0935 0.4 0.0644 ± 0.0720
Table 2: Defense Effectiveness on CV and NLP Models: each configuration is attacked 10 times and the best attack score
is recorded (VIF for CV tasks and Reconstruction Accuracy for NLP tasks). The minimum encryption ratios are selected as
the smallest encryption ratio observed that reduces the attack score to below a certain level (0.2 for VIF of images and 0.1 for
Reconstruction Accuracy of texts). The largest encryption ratio used will be recorded if the method fails to provide the desired
protection level.

Model Enc
Ratio

Minimum Laplace Scale r1 r2
Full
DP

Random
+ DP

Selective
+ DP Exp. Theo. Exp. Theo.

LeNet 0.005 0.11 0.09 0.09 0.8182 0.9950 0.8182 0.8094
TF-3 0.01 0.013 0.013 0.003 1.0000 0.9995 0.2308 0.8850
TF-3f 0.01 0.0125 0.0125 0.0025 1.0000 0.9999 0.2000 0.9587
TF-3t 0.01 0.013 0.012 0.004 0.9231 0.9990 0.3077 0.9214

Table 3: Quantifying Privacy of Selective Parameter Encryption: r1 and r2 represent the ratio of sum induced by the random
encryption and selective encryption respectively. The minimum Laplace scales are taken based on the smallest scale of the
Laplace noises that reduces the attack score to a desired level. The theoretical value of r1 is one minus the encryption ratio and
that of r2 is calculated based on the corresponding sensitivity data.

5.4 Privacy Guarantee Quantification

To validate Remark 4.6, we fix the encryption ratio for both random and selective encryption on each selected
model and gradually increase the noise scales. When all the encryption methods reach a predefined protection
level, we record the minimum noise scale needed and calculate the experimental ratios to make comparison
with the theoretical values. The encryption ratio is chosen to be small so that we can observe the influence
of the Laplace noises by ensuring the attack score not to be too low at first. As in Table 3, the four cases
show with acceptable errors that our theorem provides an upper bound for differential privacy budget of the
random and selective encryption methods.

6 Conclusion

In this paper, we propose the first practical homomorphic-encryption-based privacy-preserving FL solution
with Selective Parameter Encryption to support efficient federated training. Selective Parameter Encryption
selectively encrypts the most privacy-sensitive parameters to minimize the size of encrypted model updates to
reduce overheads while providing privacy guarantees quantifiable by our proposed theoretical privacy analysis
framework. Future work includes: i) further improving the performance of threshold HE in the less trusted
FL setting; ii) investigating the impact of client data heterogeneity Mendieta et al. (2022); Guleria et al.
(2024); and iii) the potential relationship between explainable ML and our privacy sensitivity calculation.

11



Under review as submission to TMLR

References
Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy

Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large neural networks
on encrypted data, 2011.

Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. Computing blindfolded on data homomorphically
encrypted under multiple keys: A survey. ACM Computing Surveys (CSUR), 54(9):1–37, 2021.

Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs.
Multiparty computation with low communication, computation and interaction via threshold fhe. In
Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pp. 483–501.
Springer, 2012.

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on Information and System
Security (TISSEC), 9(1):1–30, 2006.

Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultaneously solving how
and what. In Advances in Cryptology–CRYPTO 2008: 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings 28, pp. 451–468. Springer, 2008.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated learning. arXiv preprint arXiv:1812.00984, 2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1175–1191, 2017.

Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold encryption without
random oracles. In Cryptographers’ Track at the RSA Conference, pp. 226–243. Springer, 2006.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of cryptography conference, pp. 635–658. Springer, 2016.

David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party computation for federated
learning in financial applications. In Proceedings of the First ACM International Conference on AI in
Finance, pp. 1–9, 2020.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I 23, pp. 409–437. Springer, 2017.

John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Complete control-flow integrity for commodity
operating system kernels. In 2014 IEEE symposium on security and privacy, pp. 292–307. IEEE, 2014.

Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran,
and Caiwen Ding. TAG: Gradient attack on transformer-based language models. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2021, pp. 3600–3610, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.305. URL https:
//aclanthology.org/2021.findings-emnlp.305.

12



Under review as submission to TMLR

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Weidong Du, Min Li, Liqiang Wu, Yiliang Han, Tanping Zhou, and Xiaoyuan Yang. A efficient and robust
privacy-preserving framework for cross-device federated learning. Complex & Intelligent Systems, pp. 1–15,
2023.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and programming,
pp. 1–12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Advances in Cryptology-EUROCRYPT 2006: 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28-June 1, 2006. Proceedings 25, pp. 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006b.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE 51st
annual symposium on foundations of computer science, pp. 51–60. IEEE, 2010.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive, Paper 2012/144, 2012. URL https://eprint.iacr.org/2012/144. https://eprint.iacr.org/
2012/144.

Haokun Fang and Quan Qian. Privacy preserving machine learning with homomorphic encryption and
federated learning. Future Internet, 13(4):94, 2021.

Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom Goldstein.
Decepticons: Corrupted transformers breach privacy in federated learning for language models. arXiv
preprint arXiv:2201.12675, 2022.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pp. 169–178, 2009.

Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. New insights into fully homomorphic
encryption libraries via standardized benchmarks. Cryptology ePrint Archive, 2022.

Arpit Guleria, J Harshan, Ranjitha Prasad, and BN Bharath. On homomorphic encryption based strategies
for class imbalance in federated learning. arXiv preprint arXiv:2410.21192, 2024.

Shanshan Han, Baturalp Buyukates, Zijian Hu, Han Jin, Weizhao Jin, Lichao Sun, Xiaoyang Wang, Chulin
Xie, Kai Zhang, Qifan Zhang, et al. Fedmlsecurity: A benchmark for attacks and defenses in federated
learning and llms. arXiv preprint arXiv:2306.04959, 2023.

Ali Hatamizadeh, Hongxu Yin, Holger R Roth, Wenqi Li, Jan Kautz, Daguang Xu, and Pavlo Molchanov.
Gradvit: Gradient inversion of vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10021–10030, 2022.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information leakage
from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 603–618, 2017.

13



Under review as submission to TMLR

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

IBM. Ibmfl crypto. https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_
fhe_pytorch/pytorch_classifier_aggregator.ipynb, 2022. Accessed: 2023-1-25.

Zhifeng Jiang, Wei Wang, and Yang Liu. Flashe: Additively symmetric homomorphic encryption for cross-silo
federated learning. arXiv preprint arXiv:2109.00675, 2021.

Weizhao Jin, Bhaskar Krishnamachari, Muhammad Naveed, Srivatsan Ravi, Eduard Sanou, and Kwame-Lante
Wright. Secure publish-process-subscribe system for dispersed computing. In 2022 41st International
Symposium on Reliable Distributed Systems (SRDS), pp. 58–68. IEEE, 2022.

Peeter Laud and Long Ngo. Threshold homomorphic encryption in the universally composable cryptographic
library. In International Conference on Provable Security, pp. 298–312. Springer, 2008.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

Jiahao Lu, Xi Sheryl Zhang, Tianli Zhao, Xiangyu He, and Jian Cheng. April: Finding the achilles’ heel on
privacy for vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10051–10060, 2022.

Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated learning based on
multi-key homomorphic encryption. International Journal of Intelligent Systems, 37(9):5880–5901, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen. Local learning
matters: Rethinking data heterogeneity in federated learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8397–8406, 2022.

Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Hamed Haddadi, and Soteris Demetriou. Layer-wise
characterization of latent information leakage in federated learning. In ICLR Distributed and Private
Machine Learning workshop, 2020.

Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gautam
Srivastava. A survey on security and privacy of federated learning. Future Generation Computer Systems,
115:619–640, 2021.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Sensitivity
and generalization in neural networks: an empirical study. In International Conference on Learning
Representations, 2018.

Nvidia. Nvidia flare federated learning with homomorphic encryption. https://developer.nvidia.com/
blog/federated-learning-with-homomorphic-encryption, 2021. Accessed: 2023-1-25.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in
Cryptology—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18, pp. 223–238. Springer, 1999.

Holger R Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-Ting Hsieh, Kristopher Kersten,
Ahmed Harouni, Can Zhao, Kevin Lu, et al. Nvidia flare: Federated learning from simulation to real-world.
arXiv preprint arXiv:2210.13291, 2022.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

14



Under review as submission to TMLR

Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and Salman
Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning.
Proceedings of Machine Learning and Systems, 4:694–720, 2022.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep neural
networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil Dhinagar, Umang Gupta, Chrysovalantis Anastasiou,
Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M Thompson, et al. Secure neuroimaging
analysis using federated learning with homomorphic encryption. In 17th International Symposium on
Medical Information Processing and Analysis, volume 12088, pp. 351–359. SPIE, 2021.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic gradient
descent with double-pass error-compensated compression. In International Conference on Machine Learning,
pp. 6155–6165. PMLR, 2019.

Han Tian, Chaoliang Zeng, Zhenghang Ren, Di Chai, Junxue Zhang, Kai Chen, and Qiang Yang. Sphinx:
Enabling privacy-preserving online learning over the cloud. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 2487–2501. IEEE, 2022.

Jinyu Tian, Jiantao Zhou, and Jia Duan. Probabilistic selective encryption of convolutional neural networks
for hierarchical services. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2205–2214, 2021.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM workshop on
artificial intelligence and security, pp. 1–11, 2019.

Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed: Federated learning
with local differential privacy. In Proceedings of the third ACM international workshop on edge systems,
analytics and networking, pp. 61–66, 2020.

Salil Vadhan. The complexity of differential privacy. Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, pp. 347–450, 2017.

Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the unreasonable
effectiveness of federated averaging with heterogeneous data. arXiv preprint arXiv:2206.04723, 2022.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond inferring
class representatives: User-level privacy leakage from federated learning. In IEEE INFOCOM 2019-IEEE
conference on computer communications, pp. 2512–2520. IEEE, 2019.

Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. Fedgcn: Convergence and communication
tradeoffs in federated training of graph convolutional networks. Advances in neural information processing
systems, 2023.

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. Batchcrypt: Efficient
homomorphic encryption for cross-silo federated learning. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

15



Under review as submission to TMLR

• HE.KeyGen(λ): given the security parameter λ, the key generation algorithm outputs a key
pair (pk, sk) and the related cryptographic context.

• HE.Enc(pk, m):the encryption algorithm takes in pk and a plaintext message m, then outputs
the ciphertext c.

• HE.Eval(c, f):the encrypted evaluation algorithm takes in a ciphertext message c and a function
f , then outputs the computation result c′.

• HE.Dec(sk, c′):the encryption algorithm takes in sk and a ciphertext message c′, then outputs
the plaintext m′.

Figure 9: General Scheme of Homomorphic Encryption

A Appendix

Preliminaries

A.1 Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive that allows computation to be performed on encrypted
data without revealing the underlying plaintext. It usually serves as a foundation for privacy-preserving
outsourcing computing models. HE has generally four algorithms (KeyGen, Enc, Eval, Dec) as defined in
Figure 9. The fundamental concept is to encrypt data prior to computation, perform the computation on the
encrypted data without decryption, and then decrypt the resulting ciphertext to obtain the final plaintext.

Since FL model parameters are usually not integers, our method is built on the Cheon-Kim-Kim-Song (CKKS)
scheme (Cheon et al., 2017), a (leveled) HE variant that can work with approximate numbers.

A.2 Federated Learning

Federated learning is first proposed in (McMahan et al., 2017), which builds distributed machine learning
models while keeping personal data on clients. Instead of uploading data to the server for centralized training,
clients process their local data and share updated local models with the server. Model parameters from a
large population of clients are aggregated by the server and combined to create an improved global model.

The FedAvg (McMahan et al., 2017) is commonly used on the server to combine client updates and produce
a new global model. At each round, a global model Wglob is sent to N client devices. Each client i performs
gradient descent on its local data with E local iterations to update the model Wi. The server then does a
weighted aggregation of the local models to obtain a new global model, Wglob =

∑N
i=1 αiWi, where αi is the

weighting factor for client i.

Typically, the aggregation runs using plaintext model parameters through a central server (in some cases, via
a decentralized protocol), giving the server visibility of each local client’s model in plaintext.

Key Management And Threshold HE

A.3 HE Key Management

Our general system structure assumes the existence of a potentially compromised aggregation server, which
performs the HE-based secure aggregation. Alongside this aggregation server, there also exists a trusted key
authority server that generates and distributes HE keys and related crypto context files to authenticated
parties (as described previously in Algorithm 1 in the main paper. We assume there is no collusion between
these two servers.
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Moreover, secure computation protocols for more decentralized settings without an aggregation server are also
available using cryptographic primitives such as Threshold HE (Aloufi et al., 2021), Multi-Key HE (Aloufi
et al., 2021), and Proxy Re-Encryption (Ateniese et al., 2006; Jin et al., 2022). In such settings, secure
computation and decryption can be collaboratively performed across multiple parties without the need for a
centralized point. We plan to introduce a more decentralized version in the future. Due to the collaborative
nature of such secure computation, the key management will act more as a coordination point instead of a
trusted source for key generation.

A.4 FL With Threshold HE
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Figure 10: Microbenchmark of Threshold-HE-Based FedAvg Implementation: with the x-axis showing the sizes of vectors
being aggregated, we use a two-party threshold setup. Both the single-key variant and the threshold variant are configured
with an estimated precision of 36 for a fair comparison. Note that bars represent communication overheads and lines represent
computation overheads.

The threshold variant of HE schemes is generally based on Shamir’s secret sharing (Shamir, 1979) (which is
also implemented in PALISADE). Key generation/agreement and decryption processes are in an interactive
fashion where each party shares partial responsibility for the task. Threshold key generation results in each
party holding a share of the secret key and threshold decryption requires each party to partially decrypt
the final ciphertext result and merge to get the final plaintext result. We provide benchmarkings of the
threshold-HE-based FedAvg implementation in Figure 10.

Framework and Platform Deployment

A.5 Software Framework: Homomorphic Encryption In Federated Learning

In this part, we will illustrate how we design our HE-based aggregation from a software framework perspective.

Figure 11 provides a high-level design of our framework, which consists of three major layers:

• Crypto Foundation. The foundation layer is where Python wrappers are built to realize HE func-
tions including key generation, encryption/decryption, secure aggregation, and ciphertext serialization
using open-sourced HE libraries;

• ML Bridge. The bridging layer connects the FL system orchestration and cryptographic functions.
Specifically, we have ML processing APIs to process inputs to HE functions from local training
processes and outputs vice versa. Additionally, we realize the optimization module here to mitigate
the HE overheads;

• FL Orchestration. The FL system layer is where the key authority server manages the key
distribution and the (server/client) managers and task executors orchestrate participants.
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Figure 11: Framework Structure: our framework consists of a three-layer structure including Crypto Foundation to support
basic HE building blocks, ML Bridge to connect crypto tools with ML functions, and FL Orchestration to coordinate different
parties during a task.

Our layered design makes the HE crypto foundation and the optimization module semi-independent, allowing
different HE libraries to be easily switched in our system and further FL optimization techniques to be easily
added to the system.

A.6 Framework APIs

Table 4 shows the framework APIs in our system related to HE.

API Name Description

pk, sk = key_gen(params) Generate a pair of HE keys
(public key and private key)

1d_local_model = flatten(local_model) Flatten local trained model
tensors into a 1D local model

enc_local_model = enc(pk, 1d_model) Encrypt the 1D model
enc_global_model = he_aggregate(

enc_models[n], weight_factors[n])
Homomorphically aggregate

a list of 1D local models
dec_global_model = dec(sk, enc_global_model) Decrypt the 1D global model

global_model = reshape(
dec_global_model, model_shape)

Reshape the 1D global model
back to the original shape

Table 4: HE Framework APIs

A.7 Deploy Anywhere: A Deployment Platform MLOps For Edges/Cloud

We implement our deployment-friendly platform such that our system can be easily deployed across cloud
and edge devices. Before the training starts, a user uploads the configured server package and the local
client package to the web platform. The server package defines the operations on the FL server, such as the
aggregation function and client sampling function; the local client package defines the customized model
architecture to be trained (model files will be distributed to edge devices in the first round of the training).
Both packages are written in Python. The platform then builds and runs the docker image with the uploaded
server package to operate as the server for the training with edge devices configured using the client package.

As shown in Figure 12, during the training, users can also keep tracking the learning procedure including
device status, training progress/model performance, and system overheads (e.g., training time, communication
time, CPU/GPU utilization, and memory utilization) via the web interface. Our platform keeps close track
of overheads, which allows users to in real-time pinpoint HE overhead bottlenecks if any.
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Figure 12: Deployment Interface Example: Overhead distribution monitoring on each edge device (e.g. Desktop (Ubuntu),
Laptop (MacBook), and Raspberry Pi 4), which can be used to pinpoint HE overhead bottlenecks and guide optimization.

Additional Definitions And Proofs

A.8 Adjacent Datasets

Definition A.1 (Adjacent Datasets). Two datasets D1 and D2 are said to be adjacent if they differ in the
data of exactly one individual. Formally, they are adjacent if:

|D1∆D2| = 1

A.9 Laplace Mechanism

Definition A.2 (Laplace mechanism). Given a function f : D → R,

where D is the domain of the dataset and d is the dimension of the output, the Laplace mechanism adds
Laplace noise to the output of f .

Let b be the scale parameter of the Laplace distribution, which is given by:

Lap(x | b) = 1
2b

e− |x|
b

Given a dataset D, the Laplace mechanism F is defined as:

M(D) = f(D) + Lap(0 | b)d

A.10 Differential Privacy Sensitivity

Definition A.3 (Differential Privacy Sensitivity). To ensure ϵ-privacy, we need to determine the appropriate
scale parameter b. The DP sensitivity ∆f of a function f is the maximum difference in the output of f when
applied to any two adjacent datasets:

∆f = max
D1,D2:|D1∆D2|=1

∥f (D1)− f (D2)∥1 .
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Definition A.4 (Gradient-Based Sensitivity). For a function f : Rn 7→ R, its gradient-based sensitivity
∆f ∈ Rn can be evaluated as its gradient

∆f = ∂f(D)
∂D

.

As mentioned by Section 3.4, we adopt the gradient of f as sensitivity (see Definition A.4) which appears
to be different from the form in Definition A.3. However, we argue that this notion is loosely compatible
with the use of differential privacy if we view it as an extension to the continuous case, i.e., |D1 −D2| = 1 is
replaced with |D1 −D2| ≤ ε for some small ε.

A.11 Proof of Base Full Encryption Protocol

In this subsection, we prove the privacy of base protocol where homomorphic-encryption-based federated
learning utilizes the full model parameter encryption (i.e., the selective parameter encryption rate is set to be
1 ). We define the adversary in Definition A.5 and privacy in Definition A.7.
Definition A.5 (Single-Key Adversary). A semi-honest adversary A can corrupt (at the same time) any
subset of n learners and the aggregation server, but not at the same time.

Note that the ref of the proof assumes the single-key setup and the privacy of the threshold variant of
HE-FL (as shown in Definition A.6) can be easily proved by extending the proofs of threshold homomorphic
encryption (Boneh et al., 2006; Laud & Ngo, 2008; Asharov et al., 2012).
Definition A.6 (Threshold Adversary). A semi-honest adversary AT ⟨ can corrupt (at the same time) any
subset of n− k learners and the aggregation server.
Definition A.7 (Privacy). A homomorphic-encryption federated learning protocol π is simulation secure in
the presence of a semi-honest adversary A, there exists a simulator S in the ideal world that also corrupts the
same set of parties and produces an output identically distributed to A’s output in the real world.

Ideal World. Our ideal world functionality F interacts with learners and the aggregation server as follows:

• Each learner sends a registration message to F for a federated training model task Wglob. F determines a
subset N ′ ⊂ N of learners whose data can be used to compute the global model Wglob.

• Both honest and corrupted learners upload their local models to F .

• If local models W⃗ of learners in N ′ are enough to compute Wglob, F sends Wglob ←
∑N ′

i=1 αiWi to all
learners in N ′, otherwise F sends empty message ⊥.

Real World. In real world, F is replaced by our protocol described in Algorithm 1 with full model parameter
encryption.

We describe a simulator S that simulates the view of the A in the real-world execution of our protocol. Our
privacy definition A.7 and the simulator S prove both confidentiality and correctness. We omit the simulation
of the view of A that corrupts the aggregation server here since the learners will not receive the ciphertexts
of other learners’ local models in the execution of π thus such a simulation is immediate and trivial.

Simulator. In the ideal world, S receives λ and 1n from F and executes the following steps:

1. S chooses a uniformly distributed random tape r.
2. S runs the key generation function to sample pk: (pk, sk)← HE .KeyGen(λ).
3. For a chosen ith learner, S runs the encryption function to sample: (ci)← HE .Enc(pk, r|Wi|).
4. S repeats Step 3 for all other learners to obtain c⃗, and runs the federated aggregation function f to

sample: (cglob)← HE .Eval(⃗c, f).

The execution of S implies that:

{(ci, cglob)} s≡
{(

HE .Enc(pk, Wi), HE .Eval(W⃗, f)
)}
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Thus, we conclude that S’s output in the ideal world is computationally indistinguishable from the view of A
in a real world execution:

{S (1n, (λ))} s≡ {viewπ (λ)},

where view is the view of A in the real execution of π.

A.12 Quantifying negligible privacy value in full encryption

Given a security parameter λ that denotes the desired security level of the scheme, i.e., λ-bit security, we can
obtain a relaxed catastrophic failure probability δ0 = 1

2λ , which satisfies (ϵapprox, δ0)-DP under approximate
DP (Gaussian mechanism), where ϵapprox = 0. Note that, in general for approximate DP, the Gaussian
mechanism will not actually release the entire dataset under catastrophic failure probability, rather it fails
gracefully, thus δ0 is a good approximation of the catastrophic failure probability under the failure of the
security scheme.

With (ϵapprox, δ0)-DP, we can switch the pure DP we used in our paper to approximate DP and use Advanced
Composition (Dwork et al., 2010) (Theorem 3.20) to get a tight composition. On the other hand, to compose
the privacy of (ϵapprox, δ0)-DP under the Gaussian mechanism into our current pure DP composition in
the paper, we can also use Lemma 3.7 (Bun & Steinke, 2016) to obtain a partial converse (up to a loss in
parameters) from approximate DP to pure DP via zCDP:
With

δ0 = 1
2λ

, (5)

ρ = ϵapprox + 2 ln 1
δ0
− 2

√
ln 1

δ0
(ϵapprox + ln 1

δ0
), (6)

ϵ0 =
√

2ρ, (7)

we can have ϵ0 =
√

2ϵapprox + 2 ln 1
1

2λ

− 2
√

ln 1
1

2λ

(ϵapprox + ln 1
1

2λ

).

Let ϵapprox = 10−12 and λ = 128 for 128-bit security, we can have a negligible ϵ0 = 9.97 ∗ 10−07. Note that
ϵapprox = 10−12 is a really conservative value for estimating privacy from encryption, when ϵapprox = 0 we
can have ϵ0 ≃ 0. Thus, we have ϵ0-DP from security of encryption, where ϵ0 ≃ 0.

A.13 Proof of rJ-Privacy by Selective Parameter Encryption

Proof. The mean value of sensitivity within [0, Q1−p] is calculated by

E[X|X ≤ Q1−p] = 1
1− p

∫ Q1−p

0
xp(x)dx.

Suppose the total number of parameters is n, the ratio is then obtained as

r =
n(1− p) 1

1−p

∫ Q1−p

0 xp(x)dx

nµ
= 1

µ

∫ Q1−p

0
xp(x)dx.

Therefore, the total privacy budget is

J ′ =
∑

i∈[N ]/S

∆fi

b
= r

N∑
i=1

∆fi

b
= rJ.
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A.14 Proof of Privacy Budget Relationship Under Different Parameter Encryption Options

Proof. bm induces the privacy budget of ε
(m)
i = ∆fi

bm
for the encryption method indicated by m. The total

privacy budgets for all the methods are then given by

J0 =
∑

i

ε
(0)
i = 1

b0

∑
i

∆fi,

J1 = (1− p)
∑

i

ε
(1)
i = 1− p

b1

∑
i

∆fi,

J2 = r
∑

i

ε
(2)
i = r

b2

∑
i

∆fi.

When the methods reach a similar protection level (approximating using J0 = J1 = J2), we have the relation
above by canceling out the term

∑
i ∆fi.

A.15 Selective Parameter Encryption Privacy Proof Under Uniform Distribution

Assume ∆f ∼ U(0, 1) where U represents the uniform distribution, we can have the following privacy
quantification.
Remark A.8 (Achieving (1−p)2J-Privacy by Sensitive Parameter Selection (Uniformly Distributed Sensitivity)).
If we select the most sensitive parameters with ratio p for homomorphic encryption and add Laplace noise on
remaining parameters, it satisfies (1− p)2J-Privacy.

Proof. For a uniform distribution with density function p(x) = 1
xmax

, x ∈ [0, xmax], mean µ = 1
2 xmax, and

(1− p)th quantile Q1−p = (1− p)xmax,

r = 2
xmax

∫ (1−p)xmax

0

x

xmax
dx = (1− p)2.

Uniform distribution is a conservative estimation of the sensitivity distribution. In our experiments, the
obtained sensitivity data is mostly right-skewed and can be well modeled by the mixture of several log-normal
distributions (see the case of Transformer-3 as shown in Figure 13). However, it is hard to analytically depict
the conclusion for log-normal distributions, so we provide Remark A.9 as a demonstration of the right-skewed
case with the simpler exponential distribution.

A.16 Selective Parameter Encryption Privacy Proof Under Exponential Distribution

Remark A.9 (Achieving (p ln p−p+1)J-Privacy by Sensitive Parameter Encryption (Exponentially Distributed
Sensitivity)).

Proof. For an exponential distribution with density function p(x) = λe−λx, mean µ = 1
λ , and (1 − p)th

quantile Q1−p = − ln p
λ . The corresponding ratio is then

r = λ

∫ − ln p
λ

0
λxe−λxdx = p ln p− p + 1.

Taking Transformer-3t as an example, the estimated privacy budget ratio for sensitivity data under different
distributions is presented in Figure 4b. It is clear from the figure that a better fitting of the sensitivity data
distribution yields a better estimation of the privacy budget ratio. Note that the estimation here is imperfect
since finding the best fitting is not the main concern of our study, but is sufficient to show the correctness of
our theorem.
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(b) Estimation of the Privacy Budget Ratio
Figure 13: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3).
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(b) Estimation of the Privacy Budget Ratio
Figure 14: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3f).
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(b) Estimation of the Privacy Budget Ratio
Figure 15: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-S).

A.17 Sensitivity Distribution and Privacy Budget Ratio of the Models Included

Figure 13, 14, 15, 16, 17, 18, and 19 show that the log-normal mixture model is a good fitting on the models
we use for our evaluation experiments.
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(b) Estimation of the Privacy Budget Ratio
Figure 16: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (GPT-2).
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(b) Estimation of the Privacy Budget Ratio
Figure 17: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (LeNet).

10
7

10
5

10
3

10
1

Sensitivity

0

2

4

6

8

10

12

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio
Figure 18: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (CNN).

Supporting Materials for Defense Effectiveness Experiments

A.18 Parameter Sensitivity Map for LeNet

Figure 20 visualizes the parameter sensitivity map of LeNet.

24



Under review as submission to TMLR

10
10

10
8

10
6

10
4

10
2

10
0

10
2

Sensitivity

0

2

4

6

8

10
Pe

rc
en

ta
ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio
Figure 19: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (ResNet-18).

Conv_Layer1 Conv_Layer3Conv_Layer2 Conv_Layer4 Linear_Classifier
Figure 20: Model Privacy Map Calculated by Sensitivity on LeNet: darker color indicates higher sensitivity. Each subfigure
shows the sensitivity of parameters of the current layer. The sensitivity of parameters is imbalanced and many parameters have
very little sensitivity (its gradient is hard to be affected by tuning the data input for attack).

A.19 Defense Effectiveness on CV and NLP Models

Figure 21 and 22 are used for the records of Table 2.
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Figure 21: Results for Selected CV Models

A.20 Experiments on Quantifying Privacy

Figure 23 shows the privacy guarantee of Selective Parameter Encryption using the equivalent privacy budget.

Additional Experiments

We evaluate the HE-based training overheads (without our optimization in place) across various FL training
scenarios and configurations. This analysis covers diverse model scales, HE cryptographic parameter
configurations, client quantities involved in the task, and communication bandwidths. This helps us to

25



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Transformer-3

No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6 0.8
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Transformer3-f

No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Transformer-S
No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6
Encryption Ratio

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

Gpt-2
No Encryption
Selective Encryption
Random Encryption

Figure 22: Results for Selected NLP Models

identify bottlenecks in the HE process throughout the entire training cycle. We also benchmark our framework
against other open-source HE solutions to demonstrate its advantages.

A.21 Parameter Efficiency Techniques in HE-Based FL

Table 6 shows the optimization gains by applying model parameter efficiency solutions in HE-Based FL.

A.22 Results on Different Scales of Models

We evaluate our framework on models with different size scales and different domains, from small models
like the linear model to large foundation models such as Vision Transformer (Dosovitskiy et al., 2020) and
BERT (Devlin et al., 2018). As Table 5 show, both computational and communicational overheads are
generally proportional to model sizes.

Table 5 illustrates more clearly the overhead increase from the plaintext federated aggregation. The
computation fold ratio is in general 5x ∼ 20x while the communication overhead can jump to a common
15x. Small models tend to have a higher computational overhead ratio increase. This is mainly due to the
standard HE initialization process, which plays a more significant role when compared to the plaintext cost.
The communication cost increase is significant for models with sizes smaller than 4096 (the packing batch
size) numbers. Recall that the way our HE core packs encrypted numbers makes an array whose size is
smaller than the packing batch size still requires a full ciphertext.
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Figure 23: Defense Effectiveness of DP Noises of Different Scales Under Three Protection Methods: an encryption ratio is
fixed for each model from the beginning to guarantee a good attack performance at first. Each configuration is attacked 10 times
and the best attack score is recorded. The experiments are repeated for at least three different sets of applied DP noises.

Model Model Size HE
Time (s)

Non-HE
Time (s)

Comp
Ratio Ciphertext Plaintext Comm

Ratio
Linear Model 101 0.216 0.001 150.85 266.00 KB 1.10 KB 240.83
TimeSeries
Transformer 5,609 2.792 0.233 12.00 532.00 KB 52.65 KB 10.10

MLP (2 FC) 79,510 0.586 0.010 60.46 5.20 MB 311.98 KB 17.05
LeNet 88,648 0.619 0.011 57.95 5.97 MB 349.52 KB 17.50

RNN(2 LSTM
+ 1 FC) 822,570 1.195 0.013 91.82 52.47 MB 3.14 MB 16.70

CNN (2 Conv
+ 2 FC) 1,663,370 2.456 0.058 42.23 103.15 MB 6.35 MB 16.66

MobileNet 3,315,428 9.481 1.031 9.20 210.41 MB 12.79 MB 16.45
ResNet-18 12,556,426 19.950 1.100 18.14 796.70 MB 47.98 MB 16.61
ResNet-34 21,797,672 37.555 2.925 12.84 1.35 GB 83.28 MB 16.60
ResNet-50 25,557,032 46.672 5.379 8.68 1.58 GB 97.79 MB 16.58
GroupViT 55,726,609 86.098 19.921 4.32 3.45 GB 212.83 MB 16.61

Vision
Transformer 86,389,248 112.504 17.739 6.34 5.35 GB 329.62 MB 16.62

BERT 109,482,240 136.914 19.674 6.96 6.78 GB 417.72 MB 16.62
Llama 2 6.74 B 13067.154 2423.976 5.39 417.43 GB 13.5 GB 30.92

Table 5: Vanilla Fully-Encrypted Models of Different Sizes: with 3 clients; Comp Ratio is calculated by time costs of HE over
time costs of Non-HE; Comm Ratio is calculated by file sizes of HE over file sizes of Non-HE. CKKS is configured with default
crypto parameters.

A.23 Results on Different Cryptographic Parameters

We evaluate the impacts of variously-configured cryptographic parameters. We primarily look into the packing
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Models PT (MB) CT Opt
(MB)

ResNet-18
(12 M)

(Tang et al., 2019)
47.98 796.70 MB 19.03

BERT
(110 M)

(Hu et al., 2021)
417.72 6.78 GB 16.66

Table 6: Parameter Efficiency Overhead: PT means plaintext and CT means ciphertext. Communication reductions are 0.60
and 0.96.

HE
Batch
Size

Scaling
Bits

Comp
(s)

Comm
(MB)

Model Test
Accuracy

∆ (%)
1024 14 8.834 407.47 -0.28
1024 20 7.524 407.47 -0.21
1024 33 7.536 407.47 0
1024 40 7.765 407.47 0
1024 52 7.827 407.47 0
2048 14 3.449 204.50 -0.06
2048 20 3.414 204.50 -0.13
2048 33 3.499 204.50 0
2048 40 3.621 204.50 0
2048 52 3.676 204.50 0
4096 14 1.837 103.15 -1.85
4096 20 1.819 103.15 0.32
4096 33 1.886 103.15 0
4096 40 1.998 103.15 0
4096 52 1.926 103.15 0

Table 7: Computational & Communicational Overhead of Different Crypto Parameter Setups: tested with CNN (2 Conv+ 2
FC) and on 3 clients; model test accuracy ∆s is the difference between the best plaintext global model and the best global
encrypted global models.

batch size and the scaling bits. The packing batch size determines the number of slots packed in a single
ciphertext while the scaling bit number affects the “accuracy” (i.e., how close the decrypted ciphertext result
is to the plaintext result) of approximate numbers represented from integers.

From Table 7, the large packing batch sizes in general result in faster computation speeds and smaller overall
ciphertext files attributed to the packing mechanism for more efficiency. However, the scaling factor number
has an almost negligible impact on overheads.

Unsurprisingly, it aligns with the intuition that the higher bit scaling number results in higher “accuracy” of
the decrypted ciphertext value, which generally means the encrypted aggregated model would have a close
model test performance to the plaintext aggregated model. However, it is worth mentioning that since CKKS
is an approximate scheme with noises, the decrypted aggregated model can yield either positive or negative
model test accuracy ∆s, but usually with a negative or nearly zero ∆.

A.24 Impact from Number of Clients

As real-world systems often experience a dynamic amount of participants within the FL system, we evaluate
the overhead shift over the change in the number of clients. Figure 24a breaks down the cost distribution
as the number of clients increases. With a growing number of clients, it also means proportionally-added
ciphertexts as inputs to the secure aggregation function thus the major impact is cast on the server. When
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the server is overloaded, our system also supports client selection to remove certain clients without largely
degrading model performance.
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Figure 24: Results on Different Number of Clients and Communication Setup

A.25 Communication Cost on Different Bandwidths

FL parties can be allocated in different geo-locations which might result in communication bottlenecks.
Typically, there are two common scenarios: (inter) data centers and (intra) data centers. In this part, we
evaluate the impact of the bandwidths on communication costs and how it affects the FL training cycle. We
categorize communication bandwidths using 3 cases:

• Infiniband (IB): communication between intra-center parties. 5 GB/s as the test bandwidth.

• Single AWS Region (SAR): communication between inter-center parties but within the same geo-region
(within US-WEST). 592 MB/s as the test bandwidth.

• Multiple AWS Region (MAR): communication between inter-center parties but across the different
geo-region (between US-WEST and EU-NORTH). 15.6 MB/s as the test bandwidth.

As shown in Figure 24b, we deploy our system on 3 different geo-distributed environments, which are operated
under different bandwidths. It is obvious that the secure HE functionality has an enormous impact on
low-bandwidth environments while medium-to-high-bandwidth environments suffer limited impact from
increased communication overhead during training cycles, compared to Non-HE settings.

A.26 Different Encryption Selections

Table 8 shows the overhead reductions with different selective encryption rates.

A.27 Comparison with Other FL-HE Frameworks

Comparison with other popular HE-based FL work can be found in Table 9.

We compare our framework to the other open-sourced FL frameworks with HE capability, namely NVIDIA
FLARE (NVIDIA) and IBMFL.
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Selection Comp
(s) Comm Comp

Ratio
Comm
Ratio

Enc w/ 0% 17.739 329.62 MB 1.00 1.00
Enc w/ 10% 30.874 844.49 MB 1.74 2.56
Enc w/ 30% 50.284 1.83 GB 2.83 5.69
Enc w/ 50% 70.167 2.83 GB 3.96 8.81
Enc w/ 70% 88.904 3.84 GB 5.01 11.93
Enc w/ All 112.504 5.35 GB 6.34 16.62

Table 8: Overheads With Different Parameter Selection Configs Tested on Vision Transformer: “Enc w/ 10%” means performs
encrypted computation only on 10% of the parameters; all computation and communication results include overheads from
plaintext aggregation for the rest of the parameters.

Features IBMFL Nvidia FLARE Ours
Homomorphic Encryption ✓ ✓ ✓

Threshold Key Management ✗ ✗ ✓

Selective Parameter Encryption ✗ ⃝ ✓

Encrypted Foundation Model Training ⃝ ⃝ ✓

Table 9: Comparison with Existing HE-Based FL Systems: ⃝ implies limited support. For Selective Parameter Encryption,
FLARE offers the (random) partial encryption option which does not have clear indications of privacy impacts; for Encrypted
Foundation Model Training, the other two platforms require massive resources to train foundation models in encrypted federated
learning.

Both NVIDIA and IBMFL utilize Microsoft SEAL as the underlying HE core, with NVIDIA using Open-
Minded’s python tensor wrapper over SEAL and TenSEAL; IBMFL using IBM’spython wrapper over SEAL
and HELayers (HELayers also has an HElib version). Our HE core module can be replaced with different
available HE cores, to give a more comprehensive comparison, we also implement a TenSEAL version of our
framework for evaluation.

Table 10 demonstrates the performance summary of different frameworks using an example of a CNN
model with 3 clients. Our PALISADE-powered framework has the smallest computational overhead due
to the performance of the PALISADE library. In terms of communication cost, our system (PALISADE)
comes second after IBMFL’s smallest file serialization results due to the efficient packing of HELayers’ Tile
tensors (Aharoni et al., 2011).

Note that NVIDIA’s TenSEAL-based realization is faster than the TenSEAL variant of our system. This is
because NVIDIA scales each learner’s local model parameters locally rather than weighing ciphertexts on the
server. This approach reduces the need for the one multiplication operation usually performed during secure
aggregation (recall that HE multiplications are expensive). However, such a setup would not suit the scenario
where the central server does not want to reveal its weighing mechanism per each individual local model to
learners as it reveals partial (even full in some cases) information about participants in the system.

A.28 Change in Attack Performance over Training

This experiment is used to study the attack performance at different stages of model training. We use
Transformer-3 to illustrate the trend as shown in Figure 25. The encryption ratio for random and selective
encryption is selected as 0.0005 to guarantee the attack performance at the beginning of the training. The
results indicate that the attack performance decreases as the model is trained to be more and more useful,
which makes sense since the importance of information contained in the gradient is expected to drop gradually
as the training goes toward convergence. Note that the experiment is conducted on only one model because
this part is not the main concern of our study. A more comprehensive setup should include multiple CV and
NLP models.
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Frameworks HE Core Key
Management Comp (s) Comm

(MB)

HE
Multi-Party

Functionalities

Ours PALISADE ✓ 2.456 105.72 PRE,
ThHE

Ours (w/ Opt) PALISADE ✓ 0.874 16.37 PRE,
ThHE

Ours SEAL
(TenSEAL) ✓ 3.989 129.75 —

Nvidia FLARE
(9a1b226)

SEAL
(TenSEAL) ✓ 2.826 129.75 —

IBMFL
(8c8ab11)

SEAL
(HELayers) ⃝ 3.955 86.58 —

Plaintext — — 0.058 6.35 —
Table 10: Different Frameworks: tested with CNN (2 Conv + 2 FC) and on 3 clients; Github commit IDs are specified. For key
management, our work uses a key authority server; FLARE uses a security content manager; IBMFL currently provides a local
simulator.
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Figure 25: Attack Performance on Transformer-3 over Batch Iterations. Each configuration is attacked 10 times and the best
score is recorded. The experiment is repeated on 10 different data points and their mean is presented.

A.29 Overhead Analysis of Parameter Selection

Using the same setup on ResNet-50, we conducted experiments on the overhead introduced by parameter
selection to find a selective encryption mask in the initial stage.

The two key steps of parameter selection, namely privacy sensitivity calculation and encrypted global mask
agreement, cost 113.8 s and 273.6 s respectively, while the overhead reduction during the entire training
task from selective parameter encryption results in 25342.4 s (please refer to the updated Figure for more
details) compared to full parameter encryption. This result demonstrates that despite the additional overhead
introduced by the parameter selection steps, our method still improves the encrypted FL overheads by a
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substantial margin. Additionally, the global mask can be easily reused in different training tasks for the same
model architecture with similar data distribution, and the overhead of parameter selection can be further
amortized in practice.

A.30 Client Data Distribution Impact on Sensitivity

Figure 27 shows the difference in sensitivity distribution of Resnet50 under two different client data distribu-
tions. The two sensitivity distributions still preserve the characteristics of log-normal mixture distribution,
but it is noticeable a slight change in aspects like their mode, range, etc. This observation suggests that
alternative global mask aggregation functions, such as maximum-based aggregation, might outperform our
current weighted averaging method in terms of privacy protection. It is worth future work to investigate this
specific aspect of our selective encryption.
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Figure 27: Deviation of Sensitivity Distribution Induced by Different Client Data Distribution: two client data distributions
constructed from the ImageNet dataset with 100 images from distinct classes sampled at equal intervals. Distribution 1 contains
data with labels of [0, 1, 2, 3, 5] while Distribution 2 contains data whose labels span across 0 to 400.

To further investigate this aspect, experimental setups in the previous work Mendieta et al. (2022); Guleria
et al. (2024) for the FL data heterogeneity can be considered in future work on this topic regarding privacy
sensitivity calculation.

A.31 Analysis on Newer LLMs

Figure 28 and Figure 29 show how our method performs on newer LLMs from the Llama-3.2 collection. The
experimental results indicate that newer LLMs align closely with the findings observed in our experiments on
earlier models.

32



Under review as submission to TMLR

10
12

10
9

10
6

10
3

10
0

Sensitivity

0

1

2

3

4

5

6

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

Figure 28: Sensitivity Distribution of Llama-3.2-1B
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Figure 29: Sensitivity Distribution of Llama-3.2-3B
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A.32 MLOps Running Example Configuration

1 common_args:
2 training_type: "cross_silo"
3 scenario: "horizontal"
4 random_seed: 0
5

6 data_args:
7 dataset: "cifar100"
8 partition_method: "hetero"
9 partition_alpha: 0.5

10

11 model_args:
12 model: "resnet50"
13

14 train_args:
15 federated_optimizer: "FedAvg"
16 client_num_in_total: 3
17 client_num_per_round: 3
18 comm_round: 5
19 epochs: 1
20 batch_size: 10
21 client_optimizer: sgd
22 learning_rate: 0.03
23 weight_decay: 0.001
24

25 validation_args:
26 frequency_of_the_test: 5
27

28 device_args:
29 worker_num: 2
30 using_gpu: true
31 gpu_mapping_file: config/gpu_mapping.yaml
32

33 comm_args:
34 backend: "MQTT_S3"
35 mqtt_config_path: config/mqtt_config.yaml
36 s3_config_path: config/s3_config.yaml
37

38 fhe_args:
39 enable_fhe: true
40 scheme: ckks
41 batch_size: 8192
42 scaling_factor: 52
43 file_loc: "resources/cryptoparams/"
44

Figure 30: ResNet-50 MLOps Training Configuration
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