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Abstract

Machine learning methods have made substantial advances in various aspects of
physics. In particular multiple deep-learning methods have emerged as efficient
ways of numerically solving differential equations arising commonly in physics.
DeepONets [22] are one of the most prominent ideas in this theme which entails an
optimization over a space of inner-products of neural nets. In this work we study
the training dynamics of DeepONets for solving the pendulum to bring to light
some intriguing properties of it. We demonstrate that contrary to usual expectations,
test error here has its first local minima at the interpolation threshold i.e when
model size ~ training data size. Secondly, as opposed to the average end-point error,
the best test error over iterations has better dependence on model size, as in it shows
only a very mild double-descent. Lastly, we show evidence that triple-descent [1]
is unlikely to occur for DeepONets.

1 Introduction

Machine learning methods have made substantial forays into various aspects of physics like steering
a quantum system towards desired dynamics [5], computing invariants of Calabi-Yau manifolds [13]
and knots [10]. A particularly active area in this theme has been what is called “physics informed
machine learning" [15] which broadly refers to the methods used for numerically solving differential
equations using neural nets. Notable recent work in this direction includes Physics Inspired Neural
Nets ([28], [29], [30]), Neural Operators ([19], [18]), DeepONet ([22]), [6], [20]) Physics Inspired
DeepONet ([32]) and DeepRitz Method ([33]). Experiments so far suggest the method of DeepONets
([22]) to be particularly powerful and versatile.

An intriguing aspect in neural net training is that of population risk having one or two local maxima
(called “double/triple descent" respectively) w.r.t the model size and it being monotonically decreasing
for nets larger than a threshold value. Recently the importance of Double-Descent was brought to
light in [4], where it was observed for a number of models like decision trees, random features and
two-layer neural networks. Evidence for double-descent for deep NNs like ResNets and Transformers
was presented in [27], which showed epoch-wise double-descent, and also that the double-descent
curves at different training set sizes can intersect in a way s.t there can be over-parameterized nets
where using more training data hurts. Further evidence of double-descent appeared in, [31], [8] and
evidence for triple-descent has also appeared in [1].

From all these examples, a few traits have emerged which are now believed to be universal across all
supervised deep learning experiments:

* As the model size increases the minimum achievable test error can have multiple peaks
but one local maxima always occurs in the vicinity the interpolation threshold i.e when the
number of parameters is nearly the same as the training data-size.

» The above peak is exacerbated by the label noise.
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* Asymptotically in the model size the minimum achievable test error keeps decreasing.
In light of these results we ask the following questions about training a DeepONet:

Does DeepONet training have a double-descent phenomenon at the interpolation threshold i.e when
number of training data samples = the number of trainable parameters?

Does DeepONet training have a triple-descent phenomenon with the peaks of the test error vs
number of parameters curve happening at the two thresholds identified in [1]?

How are any of these peaks in the above two phenomenon affected by injecting noise into the training
data (and not the test data)?

In this work we study the properties of DeepONets from the viewpoint of understanding how the
population risk (expectation of the error over the true distribution of data) of a well-trained DeepONet
changes w.r.t model size, training data size and noise.

We note that in the setup of the last question above, we are not adding the extra noise in the test-data.
Hence this explores the phenomenon of double/triple descent in DeepONets while at the same time
testing for out-of-distribution robustness i.e DeepONet’s ability to generalize on true data while being
trained on data of lower quality.

2 The Experimental Setup

2.1 The DeepONet Architecture

The DeepONet U we use maps as, U : R™ x R — R. where m is the number of “sensor points".
Given an input (Xfunc, Tloc) € R™ x R to U, the DeepONet can be described as:

1. The branch network: This takes in as input X, and has p feedforward, fully-connected
layers with ReL.U activations. The first layer has input dimension of 7 and output dimension
w. For the subsequent p — 1 layers we set input dimension = output dimension = w.

2. The trunk network: For the same p and w as above, this takes in an input x},. € R, and
has p feedforward, fully-connected layers with ReLLU activations. The first layer has input
dimension of 1 and output dimension w and for the subsequent p — 1 layers we set input
dimension = output dimension = w.

3. The Output Layer: This computes the inner product of the outputs of the branch net and
the trunk net and adds a bias term to the result.

In our experimental study we choose m = 100 and p = 4 for all tests.

2.2 The Training Data and the Loss Function

For some “forcing function" u : R — R, and “spring constant" k (set to 1 in the experiments), the
0.D.E. to solve for the pendulum problem can be given as follows for a dynamical variable s € R,

d
d—i =g(s,u,t) = (s2,-k-sin(s1) +u)
In light of the above, each training/test data can be seen as a 3—tuple, given by (Xfunc, Tioc, Y),

where Xfune = U(Xsensors) € R™ for X¢ensors = (-7717 L2y -ens xm) € R™, where Xgensors is an m—sized
equispaced grid on the [0, 1] interval.

For our experiments, we sample u as a random linear combination of the first 20 Chebyshev polyno-
mials (of the first kind) by sampling coefficients uniform randomly from [-1,1].

Z1oc € R is a uniform random sample ~ [0, 1]. y € R is the output for the above given training points.
This is calculated as a standard O.D.E solver’s approximate solution of the pendulum O.D.E. over an
interval [0, ¢ f] where t; = x1,.. We refer the reader to [22] for more details about this type of data.

Hence for S training data samples, the /2 empirical loss is,

. 18
Lpon (DeepONet) := 3 Z (y; — DeepONet(Xfunc,i, xloc’i))2
i=1



2.3 Implementation

We train the DeepONet above on clean training data as well as when the true labels are distorted by a
standard normal additive noise at standard deviations of 0.001,0.01,0.1, 1.0. Note that we never add
noise to the test-data and hence we are implicitly testing for robustness of the training.

We train the models using deterministic-Adam (full dataset per iteration) and stochastic-Adam (mini-
batch size of 32 per iteration) [16] with a learning rate of 0.0001, (51, 82) = (0.9,0.999)) on two
datasets of different sizes ((#Train, #Test) = (1000, 200) and (5000, 1000)) measuring the best error
attained during the whole training and the average end-point error - defined as the error average over
the last 10 iterations of the training.

Our code is built on top of the work in [22], covered under the Apache-2.0 license. Our implementation
is available here. We ran all experiments on Google Colab [9] using the single GPU provided therein
(NVidia Tesla T4 or K80). The training required for this paper took approximately 70 GPU-hours.
Data used in this paper is included in the above implementation.

3 Results

In Figures 1 - 4, we show the training error attained at different model sizes (along the x-axis) on
clean data and the test error (on clean data) attained at the same model sizes - for clean training data
as well as for different levels of noise contamination in the labels of the training data as described
above.

In Figures 5 - 6 we overlay the test-error curves for both datasets (1K and 5K training samples).
(Solid lines denote #Train = 1000, dashed lines denote #Train = 5000).

In any of the plots the vertical dashed lines indicate the usually benchmarked interpolation thresholds

of number of trainable parameters = (training data size)k for k =1,2 asin [1], [27]. (Full size plots
are available at this link.)
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Figure 1: Test and train error vs model size curves for training via deterministic-Adam using 1000
training samples

End point(average) loss; § = 1000; .= 32

Bestloss; § = 1000; 8= 32 \//\’\l\/\\/\,‘w
| w0
I w0

(a) Average end-point loss

Figure 2: Test and train error vs model size curves for training via stochastic-Adam using 1000
training samples


https://anonymous.4open.science/r/investigate-deeponet
https://drive.google.com/drive/folders/13IsLf5EP-7KYxeOL7eYKUQilnFwma7HK?usp=sharing

End point (average) loss; § = 5000

/—/\M

Best loss: § = 5000

g\\

Training / Test loss

- Lt nterpoaton threshold or )

107 10° 107 10° i 10

10 0
Number of parameters Number of parameters

(a) Best loss (b) Average end-point loss

Figure 3: Test and train error vs model size curves for training via deterministic-Adam using 5000
training samples
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Figure 4: Test and train error vs model size curves for training via stochastic-Adam using 5000
training samples
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Figure 5: Test error vs model size curves for training via deterministic-Adam, #Train = 5000 vs 1000
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Figure 6: Test error vs model size curves for training via stochastic-Adam, #Train = 5000 vs 1000

4 Conclusion

From the data displayed above firstly and most crucially we observe that for the cases when the
training and the test data are uncorrupted, the first local minima of the best test error-vs-model size
curve occurs for number of parameters equal to the training-data size (the interpolation threshold) or
when slightly more than that. We note that this is contrary to the observations in [27] with standard
neural nets where they observed a local maximum of test error at the interpolation threshold and a
local minima to the left of it. So the “classical statistics" region possibly lasts longer for DeepONets,
where increasing the model size monotonically keeps benefitting.

Secondly, we note that the best loss (over iterates)-vs-model size curve has significant double-descent
only for training via stochastic-Adam. And that too is largely removed when the noise in the training
data has high enough variance - but at the cost of overparameterization not giving an advantage in
terms of getting lower test errors.

On the other hand, the average endpoint loss case always suffers from double-descent and for training
via stochastic-Adam its most pronounced relative to the magnitude of the effect for the best loss.

Thirdly, from Figures 5 and 6, we note that like in the experiments in [27], we do see situations where
having more training data hurts - but this effect is significant only for the average end-point loss and
not when measuring the best loss over iterates.

Thus combining the two points above, we motivate the proposal for preferring to use the best loss
over iterates as the result of training DeepONets as opposed to average loss at the end of the training.

Lastly, our results lead us to believe that DeepONets are unlikely to suffer from triple descent at the
locations specified in [1].

5 Future Work

In the experimental setup (Section 2) for the Branch and Trunk net, we choose both to be of the same
depth, and their intermediate layers to have the same input and output dimensions. We leave the
analysis of not using such ‘symmetric’ DeepONets to future work. Also it remains to be seen whether
the phenomenon described here holds for more complicated situations too like P.D.Es.



References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]

(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

Ben Adlam and Jeffrey Pennington. The Neural Tangent Kernel in High Dimensions: Triple
Descent and a Multi-Scale Theory of Generalization. 2020. arXiv: 2008.06786 [stat.ML].
Ben Adlam and Jeffrey Pennington. Understanding Double Descent Requires a Fine-Grained
Bias-Variance Decomposition. 2020. arXiv: 2011.03321 [stat.ML].

Mikhail Belkin, Daniel Hsu, and Ji Xu. “Two Models of Double Descent for Weak Features”.
In: SIAM Journal on Mathematics of Data Science 2.4 (Jan. 2020), pp. 1167-1180. 1ISSN: 2577-
0187. DOI: 10.1137/20m1336072. URL: http://dx.doi.org/10.1137/20M1336072.
Mikhail Belkin et al. Reconciling modern machine learning practice and the bias-variance
trade-off. 2019. arXiv: 1812.11118 [stat.ML].

Mogens Dalgaard et al. “Global optimization of quantum dynamics with AlphaZero deep
exploration”. In: npj Quantum Information 6.1 (2020), pp. 1-9.

Beichuan Deng et al. “Convergence rate of DeepONets for learning operators arising from
advection-diffusion equations”. In: arXiv preprint arXiv:2102.10621 (2021).

Weinan E and Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm
for solving variational problems. 2017. arXiv: 1710.00211 [cs.LG].

Mario Geiger et al. “Scaling description of generalization with number of parameters in deep
learning”. In: Journal of Statistical Mechanics: Theory and Experiment 2020.2 (Feb. 2020),
p. 23401. DOI: 10.1088/1742-5468/ab633c. URL: https://doi.org/10.1088/1742-
5468/ab633c.

Google Colaboratory. URL: https://colab.research.google.com/.

Sergei Gukov et al. “Learning to unknot”. In: Machine Learning: Science and Technology 2.2
(Apr. 2021), p. 25035. DOI: 10.1088/2632-2153/abe91f. URL: https://doi.org/10.
1088/2632-2153/abe91f.

Ouns El Harzli, Guillermo Valle-Pérez, and Ard A. Louis. Double-descent curves in neural
networks: a new perspective using Gaussian processes. 2021. arXiv: 2102.07238 [stat.ML].
Trevor Hastie et al. Surprises in High-Dimensional Ridgeless Least Squares Interpolation.
2020. arXiv: 1903.08560 [math.ST].

Vishnu Jejjala, Damian Kaloni Mayorga Pena, and Challenger Mishra. Neural Network Ap-
proximations for Calabi-Yau Metrics. 2021. arXiv: 2012.15821 [hep-th].

Xiaowei Jin et al. “NSFnets (Navier-Stokes flow nets): Physics-informed neural networks
for the incompressible Navier-Stokes equations”. In: Journal of Computational Physics 426
(Feb. 2021), p. 109951. 1sSN: 0021-9991. DOI: 10.1016/j . jcp . 2020 . 109951. URL:
http://dx.doi.org/10.1016/j.jcp.2020.109951.

George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Reviews
Physics 3.6 (2021), pp. 422-440.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

Ganesh Kini and Christos Thrampoulidis. Analytic Study of Double Descent in Binary Classifi-
cation: The Impact of Loss. 2020. arXiv: 2001.11572 [stat.ML].

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. “On universal approximation and
error bounds for Fourier Neural Operators”. In: arXiv preprint arXiv:2107.07562 (2021).
Nikola Kovachki et al. “Neural operator: Learning maps between function spaces”. In: arXiv
preprint arXiv:2108.08481 (2021).

Samuel Lanthaler, Siddhartha Mishra, and George Em Karniadakis. “Error estimates for deep-
onets: A deep learning framework in infinite dimensions”. In: arXiv preprint arXiv:2102.09618
(2021).

Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2021.
arXiv: 2010.08895 [cs.LG].

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear opera-
tors for identifying differential equations based on the universal approximation theorem of
operators. 2020. arXiv: 1910.03193 [cs.LG].

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and double descent curve. 2020. arXiv: 1908.05355 [math.ST].


https://arxiv.org/abs/2008.06786
https://arxiv.org/abs/2011.03321
https://doi.org/10.1137/20m1336072
http://dx.doi.org/10.1137/20M1336072
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1710.00211
https://doi.org/10.1088/1742-5468/ab633c
https://doi.org/10.1088/1742-5468/ab633c
https://doi.org/10.1088/1742-5468/ab633c
https://colab.research.google.com/
https://doi.org/10.1088/2632-2153/abe91f
https://doi.org/10.1088/2632-2153/abe91f
https://doi.org/10.1088/2632-2153/abe91f
https://arxiv.org/abs/2102.07238
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/2012.15821
https://doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1016/j.jcp.2020.109951
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2001.11572
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/1910.03193
https://arxiv.org/abs/1908.05355

[24]

[25]

[26]
[27]

(28]

[29]

(30]

[31]

[32]

[33]

Andrea Montanari et al. The generalization error of max-margin linear classifiers: High-
dimensional asymptotics in the overparametrized regime. 2020. arXiv: 1911 . 01544
[math.ST].

Ben Moseley. So, what is a physics-informed neural network? Aug. 2021. URL: https :
//benmoseley .blog/my-research/so-what-is-a-physics-informed-neural-
network/.

Preetum Nakkiran. More Data Can Hurt for Linear Regression: Sample-wise Double Descent.
2019. arXiv: 1912.07242 [stat.ML].

Preetum Nakkiran et al. Deep Double Descent: Where Bigger Models and More Data Hurt.
2019. arXiv: 1912.02292 [cs.LG].

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378 (2019), pp. 686-707.
Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations”. In: arXiv preprint
arXiv:1711.10561 (2017).

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics Informed Deep Learning
(Part IT): Data-driven Discovery of Nonlinear Partial Differential Equations”. In: arXiv preprint
arXiv:1711.10566 (2017).

S Spigler et al. “A jamming transition from under- to over-parametrization affects generaliza-
tion in deep learning”. In: Journal of Physics A: Mathematical and Theoretical 52.47 (Oct.
2019), p. 474001. DOI: 10.1088/1751-8121/ab4c8b. URL: https://doi.org/10.1088/
1751-8121/ab4c8b.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator of para-
metric partial differential equations with physics-informed DeepOnets”. In: arXiv preprint
arXiv:2103.10974 (2021).

E Weinan and Bing Yu. “The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm
for Solving Variational Problems”. In: Communications in Mathematics and Statistics 6.1
(2018).


https://arxiv.org/abs/1911.01544
https://arxiv.org/abs/1911.01544
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
https://arxiv.org/abs/1912.07242
https://arxiv.org/abs/1912.02292
https://doi.org/10.1088/1751-8121/ab4c8b
https://doi.org/10.1088/1751-8121/ab4c8b
https://doi.org/10.1088/1751-8121/ab4c8b

	Introduction
	The Experimental Setup
	The DeepONet Architecture
	The Training Data and the Loss Function
	Implementation

	Results
	Conclusion
	Future Work

