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ABSTRACT

Global Covariance Pooling (GCP) has been demonstrated to improve the perfor-
mance of Deep Neural Networks (DNNs) by exploiting second-order statistics
of high-level representations. GCP typically performs classification of the covari-
ance matrices by applying matrix function normalization, such as matrix logarithm
or power, followed by a Euclidean classifier. However, covariance matrices inher-
ently lie in a Riemannian manifold, known as the Symmetric Positive Definite
(SPD) manifold. The current literature does not provide a satisfactory explanation
of why Euclidean classifiers can be applied directly to Riemannian features after
the normalization of the matrix power. To mitigate this gap, this paper provides a
comprehensive and unified understanding of the matrix logarithm and power from
a Riemannian geometry perspective. The underlying mechanism of matrix func-
tions in GCP is interpreted from two perspectives: one based on tangent classifiers
(Euclidean classifiers on the tangent space) and the other based on Riemannian
classifiers. Via theoretical analysis and empirical validation through extensive
experiments on fine-grained and large-scale visual classification datasets, we con-
clude that the working mechanism of the matrix functions should be attributed to
the Riemannian classifiers they implicitly respect.

1 INTRODUCTION

Global Covariance Pooling (GCP), a method used as a replacement for Global Average Pooling
(GAP) in aggregating the final activations of Deep Neural Networks (DNNs), has demonstrated
exceptional performance improvements across a variety of applications (Lin et al., 2015; Ionescu
et al., 2015; Li et al., 2017; Wang et al., 2017; Koniusz et al., 2017; Li et al., 2018; Wang et al.,
2020a; Rahman et al., 2020; Zhu et al., 2024). The research line of existing GCP methods mainly
focuses on improving performance by adopting different normalization methods (Ionescu et al.,
2015; Li et al., 2017; Wang et al., 2020a), exploiting richer statistics (Cui et al., 2017; Wang et al.,
2017; Koniusz et al., 2021; Rahman et al., 2023), improving covariance conditioning (Song et al.,
2022d;a), and obtaining compact representations (Gao et al., 2016; Yu & Salzmann, 2018; Lin et al.,
2018; Wang et al., 2022a). Generally speaking, a GCP meta-layer computes the covariance matrix
of the activations as the global representation, and then performs normalization either by matrix
logarithm (Ionescu et al., 2015) or matrix power (Li et al., 2017; 2018; Wang et al., 2020a). Finally,
the normalized matrices are fed into a Euclidean classifier. The square root has emerged as the most
effective normalization scheme, outperforming the logarithm counterpart by a large margin (Li et al.,
2017; Wang et al., 2020a; Song et al., 2021). The research community has provided some theoretical
support for the matrix logarithm. However, there are no intrinsic explanations for the matrix power.

The covariance matrices naturally lie in a Riemannian manifold, known as Symmetric Positive Def-
inite (SPD) manifolds (Pennec et al., 2006). For matrix logarithm, it maps SPD matrices into the
Euclidean space of the tangent space at the identity matrix. Euclidean classifiers can, therefore, be
applied after the matrix logarithm. However, the co-domain of the matrix power is still the SPD
manifold, rendering the application of Euclidean classifiers following matrix power less mathemat-
ically supported. Several works have attempted to explain the matrix power. The initial motivation
of matrix power in GCP (Li et al., 2017) is that the distance induced by the matrix square root ap-
proximates the geodesic distance under Log-Euclidean Metric (LEM) (Dryden et al., 2010). Never-
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theless, Fig. 1 shows that the gap between these two distances is still noticeable. Furthermore, Song
et al. (2021) empirically explored the benefits of approximate matrix square root over its accurate
counterpart, while Wang et al. (2020b) studied the merits of GCP from an optimization perspective.
However, none of them touch upon the fundamental reason why Euclidean classifiers can be directly
employed in the non-Euclidean co-domain of the matrix power. There appears to be a discrepancy
between theoretical principles and practical applications of matrix power and logarithm.
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PEM

Figure 1: The metric induced by the ma-
trix power is the Power Euclidean Metric
(PEM). Although PEM approaches LEM as
the power approaches 0, the distances under
PEM (θ = 0.5) and LEM still differ largely.
We visualize these two distances for 1000
random pairs of 256×256 SPD matrices. The
average difference is 335.84 ± 1.61. This in-
dicates that matrix power is not proximate to
LEM for classification under the widely used
θ = 0.5.

This study aims to offer a comprehensive theoreti-
cal understanding of the matrix logarithm/power in
GCP and reconcile the discrepancy between theory
and practice. Without loss of generality, we refer
to matrix logarithm and power collectively as matrix
functions. Given that the matrix logarithm is a Rie-
mannian logarithmic map, mapping SPD data into
the tangent space, we first systematically study Rie-
mannian logarithmic maps on SPD manifolds under
seven families of metrics, resulting in three types of
Riemannian logarithmic maps, the ones based on the
matrix logarithm, matrix power, and Log-Cholesky
Metric (LCM), respectively. Consequently, the ma-
trix logarithm in GCP establishes a tangent classi-
fier (Euclidean classifiers on the tangent space) for
covariance classification. Also, by applying a sim-
ple affine transformation, the matrix power in GCP
constructs a tangent classifier. This indicates that
we might unify both matrix logarithm and power as
tangent classifiers. However, our experiments sug-
gest that this tangent classifier explanation fails to
account for the efficacy of matrix power. As the tangent space distorts the intrinsic geometry of
manifolds, we conjecture that tangent classifiers might not be the underlying mechanisms.

To delve further, we move on to a more intrinsic explanation based on the recently developed SPD
Multinomial Logistics Regression (MLR) (Nguyen & Yang, 2023; Chen et al., 2024a;c), which
extends the Euclidean MLR (FC + softmax) into manifolds. Based on previous work (Chen et al.,
2024a), we find that matrix logarithm in GCP implicitly constructs the SPD MLR under LEM.
Furthermore, we theoretically demonstrate that the matrix power in GCP implicitly respects the SPD
MLR under PEM. These findings suggest that matrix functions in GCP can be uniformly interpreted
as Riemann classifiers. Therefore, the observed performance gap between the matrix power and
logarithm can be attributed to the characteristics of the underlying Riemannian metrics. To validate
this postulation, we conduct experiments on the ImageNet-1k (Deng et al., 2009) and three Fine-
Grained Visual Categorization (FGVC) datasets, namely Caltech University Birds (Birds) (Welinder
et al., 2010), Stanford Cars (Cars) (Krause et al., 2013), and FGVC Aircrafts (Aircrafts) (Maji
et al., 2013). The results confirm that the Riemannian classifier rather than the tangent classifier
contributes to the efficacy of matrix functions in GCP. We expect our work to pave the way for a
deeper theoretical understanding of GCP from a Riemannian perspective and inspire more research
to explore the rich SPD geometries for more effective GCP applications. We present a teaser table
in Tab. 1. Due to page limits, we put the related work in App. B and all the proofs in the appendix.
Besides, tables of notations and abbreviations are presented in App. C for better readability.

In summary, our main contributions are two-fold. (a). First intrinsic explanation for matrix nor-
malization. We explain the working mechanism of matrix functions in GCP from the perspectives of
tangent and Riemannian classifiers, and finally claim that the rationality of matrix functions should
be attributed to the Riemannian classifiers they implicitly respect. To the best of our knowledge, this
is the first Riemannian interpretation of the matrix functions in GCP. (b). Empirical validation by
extensive experiments. We validate our theoretical argument on large-scale and FGVC datasets.

Main theoretical results: Tab. 2 presents a complete list of Riemannian logarithmic maps on SPD
manifolds under different metrics. It indicates that the matrix power, with a simple affine transfor-
mation, can serve as a Riemannian logarithmic map. Since the matrix logarithm has been widely
recognized as a building component of tangent classifiers, we also expect that the matrix power
function can be explained by tangent classifiers. However, the preliminary experiments presented in
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Table 1: Main results: The working mechanisms of matrix functions in GCP are attributed to
Riemannian classifiers they implicitly respect.

Matrix function Intrinsic explanation Used in GCP Reference

Logarithm LEM-induced Riemannian Classifier Log-EMLR (Eq. (4)) (Chen et al., 2024a, Prop. 5.1)

Power PEM-induced Riemannian Classifier Pow-EMLR (Eq. (5)) Thm. 2

(B1) 

Refuted by experiments

1

Matrix 
power/logarithm

😊

Tangent Classifiers

(A1) 
Power approximates a tangent classifier

😞

Riemannian Classifiers

(B2) 
Validated empirically and 

theoretically

Similar distances 
under matrix power 

and logarithm (𝜃 → 0) 

(A0)
Previously

(A2) 
They implicitly constructs Riemannian classifiers

(respecting different metrics)

(B0)Refuted by experiments (𝜃 = 0.5)

Log respects a tangent classifier

Figure 2: Illustration on the main postulations (A0 to A2) and empirical validations (B0 to B2) of
our investigation, where θ is the power in the matrix power. Postulation A0 is adopted by (Li et al.,
2017) and is refuted by our experiments in Fig. 1 for the specific θ = 0.5. Postulation A1 is indicated
by Tab. 2 and is refuted by our experiments in Sec. 6. Postulation A2 is supported by Thm. 2 and is
validated by our experiments in Sec. 6.

Tab. 3 refute this conjecture, suggesting the existence of more fundamental mechanisms. Therefore,
we delve into this mystery in Sec. 5 by leveraging the recently developed Riemannian classifiers.
Thm. 2 indicates that matrix power in GCP implicitly establishes a Riemannian classifier for covari-
ance matrix classification. Similar results also hold for the matrix logarithm (Chen et al., 2024a).
This implies that the matrix logarithm and power can be unifiedly interpreted as essential com-
ponents of Riemannian classifiers. Tab. 4 summarizes all our theoretical findings. Sec. 6 further
validate our theoretical explanations by extensive experiments. The reasoning behind our analysis
is illustrated in Fig. 2.

2 THE GEOMETRY OF SPD MANIFOLDS

Let Sn
++ be the set of n × n SPD matrices. As shown by Arsigny et al. (2005), Sn

++ is an open
submanifold of the Euclidean space Sn of symmetric matrices. There are five popular Riemannian
metrics on SPD manifolds: Affine-Invariant Metric (AIM) (Pennec et al., 2006), Log-Euclidean
Metric (LEM) (Arsigny et al., 2005), Power-Euclidean Metric (PEM) (Dryden et al., 2010), Log-
Cholesky Metric (LCM) (Lin, 2019), and Bures-Wasserstein Metric (BWM) (Bhatia et al., 2019).
Note that when power equals 1, PEM reduces to the Euclidean Metric (EM). All of the above five
standard metrics have been generalized into parameterized families of metrics.

Thanwerdas & Pennec (2023) generalized AIM, LEM, and EM into two-parameter metrics by the
O(n)-invariant Euclidean inner product on Sn:

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V ) tr(W ), (1)

where α > 0 and β > −α/n, V,W ∈ Sn, and ⟨·, ·⟩ is the standard matrix inner product. These
generalized metrics are denoted as (α, β)-AIM, (α, β)-LEM, and (α, β)-EM, respectively. Besides,
Thanwerdas & Pennec (2022) defined the power-deformed metric g̃ of a metric g on Sn

++ as

g̃P (V,W ) =
1

θ2
gP θ ((Powθ)∗,P (V ), (Powθ)∗,P (W )) ,∀P ∈ Sn

++, V,W ∈ TPSn
++, (2)

where Powθ(P ) = P θ denotes matrix power, (Powθ)∗,P is the differential map of Powθ at P , and
TPSn

++ is the tangent space at P . Following Eq. (2), (α, β)-AIM, (α, β)-LEM, (α, β)-EM, LCM,
and BWM are generalized into power-deformed families of metrics, denoted as (θ, α, β)-AIM,
(θ, α, β)-LEM, (θ, α, β)-EM, θ-LCM, and 2θ-BWM, respectively (Thanwerdas & Pennec, 2022;
Chen et al., 2024c). Chen et al. (2024c) further shows that (θ, α, β)-LEM equals (α, β)-LEM. Be-
sides, as shown by Thanwerdas & Pennec (2022); Chen et al. (2024c), θ serves as a deformation from
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a LEM-like metric. For instance, (θ, α, β)-AIM becomes (α, β)-AIM when θ = 1 and approaching
(α, β)-LEM with θ → 0.

On the other hand, PEM was generalized into Mixed Power Euclidean Metric (MPEM) (Thanwerdas
& Pennec, 2019) by two power factors θ1 and θ2, denoted as (θ1, θ2)-EM. When θ1=θ2, MPEM
is reduced to PEM. Han et al. (2023) extended BWM into Generalized Bures-Wasserstein Metric
(GBWM) by an SPD parameter M , denoted as M -BWM. When M=I , GBWM is reduced to
BWM. We further generalize GBWM into (2θ,M)-BWM by power deformation Eq. (2).

In total, three parameters (θ, α, β) are involved in the metrics on the SPD manifold. The power
deformation θ characterizes deformation(Chen et al., 2024c; Thanwerdas & Pennec, 2022), while
(α, β) characterizes the O(n)-invariance, a powerful property in modeling covariance (Thanwerdas
& Pennec, 2023). The above metrics have shown success in various applications, due to their closed-
form expressions for Riemannian operators, such as the Riemannian logarithmic and exponential
maps. We summarize the involved Riemannian operators in App. D.2.

3 GLOBAL COVARIANCE POOLING REVISITED

GCP captures the second-order statistics of the features in the last layer of the deep network. The
standard GCP procedure comprises calculating the covariance matrix, normalization with a matrix
function, vectorization, dimensionality reduction by an FC layer, and ultimately applying a Eu-
clidean classifier. The sequence of these operations can be represented as follows:

X
Cov−−→ Σ

fM−−→ Σ̃
fvec−−→ x

fFC−−→ x̃
fEC−−→ ŷ, (3)

where fM, fvec, fFC and fEC denote the matrix function, vectorization, FC layer, and Euclidean
classifier, respectively. Typical candidates of matrix functions are matrix power and logarithm. As
softmax is the most widely used classifier, fEC always denotes the softmax in this paper. However,
our discussions can also apply to other classifiers used in GCP, such as SVM (Li et al., 2017; Wang
et al., 2020a), as other classifiers receive the FC features as their inputs.

FC + softmax is known as Euclidean Multinomial Logistics Regression (EMLR). When the matrix
function is the matrix power, we call the process fEC ◦ fFC ◦ fvec ◦ fM as the Pow-EMLR, while
the counterpart of matrix logarithm is referred to as Log-EMLR. Especially, setting power as 1/2
in GCP normally reaches the optimal performance (Li et al., 2017, Fig. 3). The Pow-EMLR and
Log-EMLR can be formally expressed as

Log-EMLR: softmax (F (fvec (mlog(S)) ;A, b)) , (4)

Pow-EMLR: softmax
(
F
(
fvec

(
Sθ

)
;A, b

))
, (5)

where F(·;A, b) denotes the FC layer with the transformation matrix A and biasing vector b.

4 MATRIX FUNCTIONS AND TANGENT CLASSIFIERS

The matrix logarithm is the Riemannian logarithmic map at the identity matrix I , mapping SPD
matrices into the tangent space TISn

++
∼= Sn. As tangent spaces are Euclidean spaces, it is natural

to exploit FC and Euclidean classifiers on TISn
++ directly. We refer to the Euclidean classifiers over

the tangent space at the identity matrix, TISn
++, as tangent classifiers. This section systematically

studies all Riemannian logarithmic maps between Sn
++ and TISn

++, under seven families of metrics.

4.1 RIEMANNIAN LOGARITHMS UNDER SEVEN DEFORMED METRICS

Table 2: LogI under seven families of metrics. θ0 = θ1+θ2
2 for (θ1, θ2)-EM, θ0 = θ for (θ, α, β)-EM

and 2θ-BWM, and (2θ, ϕ2θ(P ))-BWM.

Metric LogI P Metric LogI P

(α, β)-LEM
mlog(P )

(θ, α, β)-EM
1
θ0
(P θ0 − I)

(θ, α, β)-AIM (θ1, θ2)-EM

θ-LCM 1
θ

[
⌊L̃⌋+ ⌊L̃⌋⊤ + 2Dlog(D(L̃))

]
2θ-BWM

(2θ, P 2θ)-BWM
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The matrix logarithm is generally characterized as the Riemannian logarithm LogI at I under the
standard LEM and AIM. Inspired by this, we systematically investigate Riemannian logarithms on
SPD manifolds. Let P denote an SPD matrix and L̃ represent the Cholesky factor of P θ. Tab. 2
presents the Riemannian logarithms at I under all seven metrics, where ⌊·⌋ is the strictly lower
triangular part of a square matrix, D(·) is a diagonal matrix, and Dlog(·) is the diagonal logarithm.
We leave technical details in App. E.
Remark 1. Let us elaborate further on the parameter of GBWM in Tab. 2. Given an SPD point
P ∈ Sn

++, P -BWM coincides with the standard AIM in the neighborhood of P (Han et al., 2021).
This local property could be beneficial (Han et al., 2023). Similarly, (2θ, P 2θ)-BWM is locally
(2θ, 1, 0)-AIM, the deformed metric of the standard AIM. Please refer to App. F for technical details.

Tab. 2 implies that there are three types of LogI :

Matrix-logarithm-based: mlog(P ), (6)

Matrix-power-based:
1

θ
(P θ − I), (7)

LCM-based:
1

θ

[
⌊L̃⌋+ ⌊L̃⌋⊤ + 2Dlog(D(L̃))

]
, (8)

We denote the tangent MLR induced by Eq. (6), i.e.,Eq. (6) + vectorization + FC + softmax, as Log-
TMLR, while the counterparts of Eq. (7) and Eq. (8) is referred to as Pow-TMLR and Cho-TMLR,
respectively. Obviously, Log-TMLR is the exact Log-EMLR (Eq. (4)) used in GCP.

Table 3: Results of GCP on the ImageNet-1k and Cars datasets with Pow-TMLR or Pow-EMLR
under the architecture of ResNet-18.

Method
ImageNet-1k Cars

Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Pow-TMLR 71.62 89.73 51.14 74.29
Pow-EMLR 73 90.91 80.43 94.15

4.2 POW-TMLR VERSUS POW-EMLR

Pow-EMLR applies Euclidean MLR directly on the non-Euclidean SPD manifold, while Pow-
TMLR applies Euclidean MLR on the Euclidean space of TISn

++. In this sense, Pow-TMLR should
be more theoretically advantageous than Pow-EMLR. Moreover, the difference between Pow-EMLR
and Pow-TMLR seems to be minor. Pow-EMLR differs from Pow-TMLR only in a simple affine
transformation fθ(X) = 1

θ (X − I). Note that the composition of affine transformations remains
affine, and the FC layer is also an affine transformation. Therefore, Pow-EMLR might be viewed
as the approximation of Pow-TMLR. Based on this discussion, we hypothesize that the tangent
classifier serves as the underlying mechanism of matrix functions in GCP. If this hypothesis
holds, Pow-EMLR should perform worse or at least similarly to Pow-TMLR.

To validate this postulation, we conduct experiments on the ImageNet-1k (Deng et al., 2009) and
Stanford Cars (Cars) (Krause et al., 2013) datasets. We use the architecture of ResNet-18 and
ResNet-50 (He et al., 2016) on the ImageNet and Cars datasets, respectively. Following the clas-
sic iSQRT-COV (Li et al., 2018), we set power=1/2 and use Newton-Schulz iteration to calculate
the matrix square root. Note that Pow-EMLR under Newton-Schulz iteration is exactly the origi-
nal implementation of iSQRT-COV. As shown in Tab. 3, opposite to our hypothesis, Pow-TMLR
is inferior to Pow-EMLR for classifying covariance matrices in GCP. Similar trends are also ob-
served in additional experiments conducted on FGVC datasets, as will be presented in Sec. 6. These
findings suggest that instead of tangent classifiers, there should exist other more fundamental
mechanisms for underpinning matrix functions in GCP.

5 MATRIX FUNCTIONS AND RIEMANNIAN CLASSIFIERS

Recently, Riemannian classifiers on the SPD manifold, which can more faithfully respect the innate
geometry, have exhibited more promising performance than tangent classifiers (Nguyen & Yang,
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2023; Chen et al., 2024a;c). This section will demonstrate that matrix functions in GCP implicitly
respect Riemannian classifiers, which offers a unified theoretical explanation of the working mech-
anism of matrix functions. We start with reviewing the Riemannian SPD classifiers and then present
our theoretical analysis in detail.

5.1 SPD MULTINOMIAL LOGISTICS REGRESSION REVISITED

Inspired by (Lebanon & Lafferty, 2004; Ganea et al., 2018), some recent works (Nguyen & Yang,
2023; Chen et al., 2024a;c) extended the Euclidean MLR into SPD manifolds. We first revisit the
reformulation of the Euclidean MLR, and then move on to the SPD MLRs introduced in (Chen et al.,
2024c), especially the ones induced by (θ, α, β)-EM and (α, β)-LEM.

The Euclidean MLR calculates the probability of each class by

∀k ∈ {1, . . . , C}, p(y = k | x) ∝ exp (⟨ak, x⟩ − bk) , (9)

where x ∈ Rn is an input vector, C is the number of classes, bk ∈ R, and ak ∈ Rn\{0}. Eq. (9)
can be further rewritten as

p(y = k | x) ∝ exp (⟨ak, x− pk⟩) , (10)

where pk satisfies ⟨ak, pk⟩ = bk. As shown in the previous literature (Lebanon & Lafferty, 2004;
Ganea et al., 2018), Eq. (10) can be further reformulated by the margin distance to the hyperplane:

p(y = k | x) ∝ exp(sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
)), (11)

where pk ∈ Rn satisfying ⟨ak, pk⟩ = bk, and the hyperplane Hak,pk
is defined as:

Hak,pk
= {x ∈ Rn : ⟨ak, x− pk⟩ = 0}. (12)

Chen et al. (2024c) generalized Eqs. (11) and (12) into general manifolds and proposed the SPD
MLRs under five families of metrics. The SPD MLRs under (α, β)-LEM and (θ, α, β)-EM are

(α, β)-LEM-based: p(y = k|S) ∝ exp
[
⟨log(S)− log(Pk), Ak⟩(α,β)

]
, (13)

(θ, α, β)-EM-based: p(y = k|S) ∝ exp

[
1

θ
⟨Sθ − P θ

k , Ak⟩(α,β)
]
, (14)

where α > 0, β > −α/n, and S is an input SPD feature. Here, Pk ∈ Sn
++ and Ak ∈ TISn

++
∼= Sn

are parameters for each class k. In Eqs. (13) and (14), the formula within exp(·) can be viewed as
the counterpart of the Euclidean FC layer in SPD manifolds, extracting features to calculate softmax
probabilities.

5.2 MATRIX FUNCTIONS AS SPD MULTINOMIAL LOGISTICS REGRESSION

Under the standard LEM ((1, 0)-LEM) and PEM ((θ, 1, 0)-EM), Eqs. (13) and (14) become

LEM-based: exp [⟨log(S)− log(Pk), Ak⟩] , (15)

PEM-based: exp

[
1

θ
⟨Sθ − P θ

k , Ak⟩
]
, (16)

Eqs. (15) and (16) appear to be far away from the Log-/Pow-EMLR in GCP, as the SPD parameters
{P1...C} requires Riemannian optimization. However, Chen et al. (2024a, Prop. 5.1) show that
under the LEM-based Riemannian Stochastic Gradient Descent (RSGD) for each Pk and Euclidean
SGD for each Ak, Eq. (15) is equivalent to a Euclidean MLR optimized by the Euclidean SGD in
the co-domain of the matrix logarithm. Similar to LEM, we have the following proposition w.r.t.
PEM.
Theorem 2. [↓] Under PEM with θ > 0, optimizing each SPD parameter Pk in Eq. (16) by PEM-
based RSGD and Euclidean parameter Ak by Euclidean SGD, the PEM-based SPD MLR is equiv-
alent to a Euclidean MLR illustrated in Eq. (10) in the co-domain of ϕθ(·) : Sn

++ → Sn
++, defined

as
ϕθ(S) =

1

θ
Sθ, θ > 0,∀S ∈ Sn

++. (17)
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Table 4: Intrinsic explanations of some classifiers for GCP. For Cho-TMLR, L̃ = Chol(Sθ).
For Pow-TMLR, θ0 = θ1+θ2

2 for (θ1, θ2)-EM, θ0 = θ for (θ, α, β)-EM, θ0 = 2θ for 2θ-BWM
and (2θ, ϕ2θ(S))-BWM. Here, fs(·) denotes the softmax, F(·) denotes the FC layer, and Ṽ =
1
θ

[
⌊L̃⌋+ ⌊L̃⌋⊤ + 2Dlog(D(L̃))

]
with Sθ = L̃L̃⊤ as the Cholesky decomposition.

Log-EMLR Pow-EMLR ScalePow-EMLR Pow-TMLR Cho-TMLR

Expression fs (F (fvec (mlog(S))))
fs

(
F
(
fvec

(
Sθ

)))
(θ > 0)

fs
(
F
(
fvec

(
1
θS

θ
)))

(θ > 0) fs

(
F
(
fvec

(
1
θ0
(Sθ0 − I)

)))
fs

(
F
(
fvec

(
Ṽ
)))

Explanation SPD MLR SPD MLR SPD MLR Tangent Classifier Tangent Classifier

Metrics LEM (θ, 1, 0)-EM (θ, 1, 0)-EM (θ, α, β)-EM, (θ1, θ2)-EM,
2θ-BWM, (2θ, ϕ2θ(S))-BWM θ-LCM

Used in GCP ✓(Eq. (4)) ✓
( θ = 0.5 in Eq. (5)) ✗ ✗ ✗

Reference (Chen et al., 2024a, Prop. 5.1) Thm. 2 Thm. 2 Tab. 2 Tab. 2

We define ScalePow-EMLR as softmax
(
F
(
fvec

(
1
θS

θ
)
;A, b

))
. Then, ScalePow-EMLR respects

the SPD MLR under the standard PEM. The only difference between ScalePow-EMLR and Pow-
EMLR (Eq. (5)) is the scalar product before vectorization, which is expected to have minor effects
on DNNs. Obviously, we have

F
(
fvec

(
1

θ
Sθ

)
;A, b

)
= F

(
fvec

(
Sθ

)
; Ã, b

)
. (18)

where Ã = 1
θA. Therefore, from a forward perspective, ScalePow-EMLR is equivalent to the orig-

inal Pow-EMLR. Besides, by scaled initialization and learning rate of A, ScalePow-EMLR could
be completely equivalent to Pow-EMLR during network training. Note that this analysis cannot be
transferred into Pow-TMLR. Please refer to App. G for more details.

Therefore, the Pow-EMLR in GCP is implicitly an SPD MLR induced by (θ, 1, 0)-EM. For the
widely used matrix square root normalization, it respects the SPD MLR induced by (1/2, 1, 0)-EM.
We summarize all the findings in Tab. 4. Besides, Thm. 2 can be easily extended into the case
of θ < 0. In this case, our work can also offer theoretical insights for the inverse of covariance
(θ = −1) proposed by Rahman et al. (2023). More details are presented in App. J.

5.3 THEORETICAL INSIGHTS ON THE MATRIX POWER AND LOGARITHM

Previous studies on GCP (Li et al., 2017; Wang et al., 2020a; Song et al., 2021) have empirically
demonstrated a clear advantage of the matrix power (particularly matrix square root) over matrix
logarithm. This subsection offers novel theoretical insights to disentangle the different performance
between the matrix logarithm and power in GCP.

As shown by Tab. 4, both matrix logarithm and matrix power implicitly build SPD MLRs. However,
the Riemannian metrics they respect are different. Matrix power respects (θ, 1, 0)-EM, while matrix
logarithm respects LEM. Both (θ, 1, 0)-EM and LEM share O(n)-invariance (Chen et al., 2024c),
a powerful property in characterizing covariance matrices. Besides, (θ, 1, 0)-EM is a deformed
metric of LEM, interpolating between the standard EM (θ = 1) and LEM (θ → 0) (Thanwerdas
& Pennec, 2022). The standard EM might suffer from a swelling effect for characterizing SPD
matrices (Arsigny et al., 2005), while LEM might over-stretch the eigenvalues of SPD matrices due
to the computation of matrix logarithm (Song et al., 2021). Consequently, (θ, 1, 0)-EM represents
balanced alternatives between the standard LEM and EM. In addition, as shown by Chen et al.
(2024c, Tab. 4), (θ, 1, 0)-EM could perform better than LEM regarding SPD MLR. Therefore, the
empirical advantages of matrix power over matrix logarithm in the GCP could be attributed to the
characteristics of the underlying Riemannian metrics.

6 EXPERIMENTS

In this section, we validate the following hypothesis based on our previous theoretical analysis.

(A1) As Pow-EMLR approximates the tangent classifier Pow-TMLR, the working mechanism of
Pow-EMLR is attributed to the tangent classifier;

7
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Table 5: Results of iSQRT-COV on four datasets with different covariance matrix classifiers. The
backbone network on ImageNet is ResNet-18, while the one on the other three FGVC datasets is
ResNet-50. Power is set to be 1/2 for Pow-TMLR, ScalePow-EMLR and Pow-EMLR.

Classifier ImageNet-1k Aircrafts Birds Cars
Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Cho-TMLR N/A N/A 78.97 91.81 48.07 72.59 51.06 74.33
Pow-TMLR 71.62 89.73 69.58 88.68 52.97 77.80 51.14 74.29

ScalePow-EMLR 72.43 90.44 71.05 89.86 63.48 84.69 80.31 94.07
Pow-EMLR 73 90.91 72.07 89.83 63.29 84.66 80.43 94.15

Figure 3: The validation top-5 accuracy on the three FGVC datasets for iSQRT-COV with different
classifiers using the ResNet-50 backbone.

(A2) As both Pow-EMLR and Log-EMLR in GCP are equivalent to Riemannian classifiers, the
mechanism of matrix normalization should be attributed to Riemannian classifiers.

We implement different classifiers for covariance matrix classification, including the original Pow-
EMLR, the tangent classifiers Pow-TMLR and Cho-TMLR, and the intrinsic ScalePow-EMLR.
We use the Caltech University Birds (Birds) (Welinder et al., 2010), FGVC Aircrafts (Aircrafts)
(Maji et al., 2013), Stanford Cars (Cars) (Krause et al., 2013), and ImageNet-1k (Deng et al., 2009)
datasets. As the matrix square root is the most effective matrix function in GCP, we set power = 1/2.
In all experiments, we train the network from scratch. More implementation details are in App. H.

6.1 MAIN RESULTS

Notably, although ScalePow-EMLR is equivalent to Pow-EMLR under scaled settings, we imple-
ment them under the same network settings for a complete comparison. The results on four datasets
are shown in Tab. 5. Our main empirical observations are as follows:

(1). Pow-EMLR>Pow-TMLR. Pow-EMLR generally outperforms Pow-TMLR, especially on
Cars and Birds datasets. Recalling in Tab. 4, the expression of Pow-EMLR differs from Pow-TMLR
only in an affine transformation. However, across all four datasets, Pow-EMLR consistently sur-
passes Pow-TMLR. On the Birds and Cars datasets, Pow-EMLR outperforms Pow-TMLR by a
large margin. For example, on the Birds dataset, the top-5 accuracy of Pow-EMLR and Pow-TMLR
is 84.66% and 77.80%, respectively, whereas, on the Cars dataset, it is 94.15% and 74.29%.

(2). Pow-EMLR≈ScalePow-EMLR. Pow-EMLR shows comparable performance to ScalePow-
EMLR. Recalling in Tab. 4, the only difference between Pow-EMLR and ScalePow-EMLR is a
scalar product. Moreover, as discussed in Sec. 5.2 this minor difference can be further solved by
scaled initialization of the FC layer. Although we use the same initialization for a fair comparison,
Pow-EMLR and ScalePow-EMLR show similar performance.

(3). Pow-EMLR≫Cho-TMLR. While Cho-TMLR demonstrates the best performance on the Air-
crafts datasets, it exhibits the worst performance on the other two FGVC datasets. On the Cars and
Birds datasets, Pow-EMLR surpasses Cho-TMLR by a large margin. The unstable performance of
Cho-TMLR might be attributed to the diagonal logarithm, which might overly stretch the diagonal
elements of the Cholesky factor.

Based on the above empirical findings, we can reach the following conclusion. (A1) is refuted by
(1). The inferior performance of Pow-TMLR against Pow-EMLR in (1) indicates that Pow-EMLR
can not be simply viewed as equivalent to the tangent classifier Pow-TMLR. (A2) is validated by (2).
(2) validates our theoretical postulation that the effectiveness of matrix power should be attributed
to the Riemannian classifier it implicitly constructs.

8
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Other findings. In the first and last observations, tangent classifiers are less effective than the Rie-
mannian classifier. Tangent classifiers can distort the innate geometry of the manifold, as the tangent
space is only a local linear approximation of the manifold. In contrast, the Riemannian classifier can
faithfully respect the geometry of the manifold. Besides, although Log-EMLR coincides with both
tangent and Riemannian classifiers, the real underlying mechanism of matrix logarithm should also
be attributed to the Riemannian classifier instead of the tangent classifier.

Table 6: Ablations of Pow-EMLR, ScalePow-EMLR, and Pow-TMLR under different settings.
(a) Results of different powers under the ResNet-50.

Classifier
Aircrafts Cars

Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

Pow-TMLR-0.25 65.41 86.71 41.47 66.66
ScalePow-EMLR-0.25 72.76 90.31 61.78 84.04

Pow-EMLR-0.25 71.47 90.04 62.88 84.14

Pow-TMLR-0.5 67.9 88.75 55.01 77.95
ScalePow-EMLR-0.5 74.29 91.12 62.42 84.82

Pow-EMLR-0.5 74.17 91.21 62.83 84.85

Pow-TMLR-0.7 65.92 87.49 50.68 74.12
ScalePow-EMLR-0.7 74.26 91.15 64.22 83.67

Pow-EMLR-0.7 74.17 90.49 61.41 82.39

(b) Results under the AlexNet.

Dataset Result Pow-TMLR Pow-EMLR

Aircrafts
Top-1 Acc (%) 38.01 65.02
Top-5 Acc (%) 74.4 87.79

Cars
Top-1 Acc (%) 28.57 59.13
Top-5 Acc (%) 59.51 82.04

6.2 TRAINING DYNAMICS AND ABLATIONS

Training dynamics. Fig. 3 presents the top-5 validation accuracy curves on three FGVC datasets.
Pow-EMLR exhibits comparable performance to ScalePow-EMLR throughout the training. More-
over, Pow-EMLR consistently outperforms Pow-TMLR, particularly on the Cars and Birds datasets.
This again suggests that the effectiveness of Pow-EMLR should be attributed to the Riemannian
MLR rather than the tangent classifier. Furthermore, we note that the decreasing learning rate plays
a crucial role in Cho-TMLR. On the Aircrafts dataset, before the 50th epoch, Cho-TMLR exhibits
the worst performance among all classifiers. However, after the 50th epoch, when the learning rate
reduces, Cho-TMLR surpasses all the other classifiers. Nonetheless, on the remaining two datasets,
Cho-TMLR remains inferior throughout the training. This discrepancy may be attributed to the log-
arithm operation in Cho-TMLR. Recalling Eq. (8), there is a diagonal logarithm for the Cholesky
factor. Similar to the matrix logarithm, Eq. (8) will also over-stretch the diagonal elements of the
Cholesky factor, compromising the overall performance of Cho-TMLR.

Ablations. To further validate our postulation, we compare Pow-EMLR, SaclePow-EMLR, and
Pow-TMLR with different powers under the ResNet-50 architecture, i.e.,, θ = 0.25, 0.5, 0.7. We
also compare Pow-EMLR against Pow-TMLR under the AlexNet architecture. The ablations are
conducted on the Aircrafts and Car datasets. The results discussed below confirm again our findings
that the mechanism of matrix functions in GCP should be attributed to Riemannian classifiers.

Impact of matrix power. Following Song et al. (2021), we use accurate SVD to calculate the matrix
power and Padé approximant for backpropagation. The results are reported in Tab. 6a. Since we
use SVD for the matrix power here, the results in Tab. 6a under θ = 0.5 are slightly different from
Tab. 5. Nevertheless, Pow-EMLR consistently shows similar performance to ScalePow-EMLR and
outperforms Pow-TMLR under different powers.

Impact of architectures. We also use the vanilla AlexNet (Krizhevsky et al., 2012) as an alternative
backbone. Tab. 6b presents the comparison results under the AlexNet architecture. Consistent with
our previous observation, Pow-EMLR still outperforms Pow-TMLR.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a unified understanding of the role of matrix functions in GCP, including matrix
power and logarithm. Our study reveals that matrix functions implicitly construct Riemannian clas-
sifiers for classifying covariance matrices, thus justifying the application of the Euclidean classifier
after matrix power. We validate our findings through experiments conducted on three FGVC and
the large-scale ImageNet datasets. To the best of our knowledge, our work is the first to explain
the theoretical mechanism behind matrix functions from the perspective of Riemannian geometry.
Therefore, our work opens a novel possibility for designing GCP classifiers from a Riemannian per-
spective. As a future avenue, we will design effective GCP classifiers based on other Riemannian
MLRs (Nguyen & Yang, 2023; Chen et al., 2024c).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc Van Gool. Covariance pooling for
facial expression recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 367–374, 2018. URL https://doi.org/10.1109/
CVPRW.2018.00077.

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and simple computations
on tensors with log-Euclidean metrics. PhD thesis, INRIA, 2005. URL https://doi.org/
10.1007/11566465_15.

Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, 2009. URL https:
//doi.org/10.1515/9781400827787.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures-Wasserstein distance between positive
definite matrices. Expositiones Mathematicae, 37(2):165–191, 2019. URL https://doi.
org/10.1016/j.exmath.2018.01.002.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on Au-
tomatic Control, 58(9):2217–2229, 2013. URL https://doi.org/10.1109/TAC.2013.
2254619.

Ziheng Chen, Tianyang Xu, Xiao-Jun Wu, Rui Wang, Zhiwu Huang, and Josef Kittler. Rieman-
nian local mechanism for SPD neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 7104–7112, 2023. URL https://doi.org/10.1609/aaai.
v37i6.25867.

Ziheng Chen, Yue Song, Gaowen Liu, Ramana Rao Kompella, Xiao-Jun Wu, and Nicu Sebe.
Riemannian multinomial logistics regression for SPD neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17086–17096,
2024a. URL https://openaccess.thecvf.com/content/CVPR2024/html/
Chen_Riemannian_Multinomial_Logistics_Regression_for_SPD_Neural_
Networks_CVPR_2024_paper.html.

Ziheng Chen, Yue Song, Yunmei Liu, and Nicu Sebe. A Lie group approach to Riemannian normal-
ization for SPD neural networks. In The Twelfth International Conference on Learning Represen-
tations, 2024b. URL https://openreview.net/forum?id=okYdj8Ysru.

Ziheng Chen, Yue Song, Xiaojun, and Nicu Sebe. RMLR: Extending multinomial logistic regression
into general geometries. In Advances in Neural Information Processing Systems, 2024c. URL
https://arxiv.org/abs/2409.19433.

Ziheng Chen, Yue Song, Tianyang Xu, Zhiwu Huang, Xiao-Jun Wu, and Nicu Sebe. Adaptive
log-Euclidean metrics for SPD matrix learning. IEEE Transactions on Image Processing, 2024d.
URL https://doi.org/10.1109/TIP.2024.3451930.

Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie. Kernel pooling
for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2921–2930, 2017. URL https://doi.org/10.1109/CVPR.
2017.325.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE, 2009. URL https://doi.org/10.1109/CVPR.2009.5206848.

Ian L Dryden, Xavier Pennec, and Jean-Marc Peyrat. Power Euclidean metrics for covariance ma-
trices with application to diffusion tensor imaging. arXiv preprint arXiv:1009.3045, 2010. URL
https://arxiv.org/abs/1009.3045.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
Neural Information Processing Systems, 31, 2018. URL https://dl.acm.org/doi/10.
5555/3327345.3327440.

10

https://doi.org/10.1109/CVPRW.2018.00077
https://doi.org/10.1109/CVPRW.2018.00077
https://doi.org/10.1007/11566465_15
https://doi.org/10.1007/11566465_15
https://doi.org/10.1515/9781400827787
https://doi.org/10.1515/9781400827787
https://doi.org/10.1016/j.exmath.2018.01.002
https://doi.org/10.1016/j.exmath.2018.01.002
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1609/aaai.v37i6.25867
https://doi.org/10.1609/aaai.v37i6.25867
https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Riemannian_Multinomial_Logistics_Regression_for_SPD_Neural_Networks_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Riemannian_Multinomial_Logistics_Regression_for_SPD_Neural_Networks_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Riemannian_Multinomial_Logistics_Regression_for_SPD_Neural_Networks_CVPR_2024_paper.html
https://openreview.net/forum?id=okYdj8Ysru
https://arxiv.org/abs/2409.19433
https://doi.org/10.1109/TIP.2024.3451930
https://doi.org/10.1109/CVPR.2017.325
https://doi.org/10.1109/CVPR.2017.325
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1009.3045
https://dl.acm.org/doi/10.5555/3327345.3327440
https://dl.acm.org/doi/10.5555/3327345.3327440


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326, 2016.
URL https://doi.org/10.1109/CVPR.2016.41.

Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Junbin Gao. On Riemannian optimiza-
tion over positive definite matrices with the Bures-Wasserstein geometry. Advances in Neural
Information Processing Systems, 34:8940–8953, 2021. URL https://openreview.net/
forum?id=ZCHxGFmc62a.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Learning with symmetric positive
definite matrices via generalized Bures-Wasserstein geometry. In International Conference on
Geometric Science of Information, pp. 405–415. Springer, 2023. URL https://doi.org/
10.1007/978-3-031-38271-0_40.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016. URL https://doi.org/10.1109/CVPR.2016.90.

Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep net-
works with structured layers. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2965–2973, 2015. URL https://doi.org/10.1109/ICCV.2015.339.

Shu Kong and Charless Fowlkes. Low-rank bilinear pooling for fine-grained classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 365–374,
2017. URL https://doi.org/10.1109/CVPR.2017.743.

Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krystian Mikolajczyk. Higher-order occur-
rence pooling for bags-of-words: Visual concept detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 39(2):313–326, 2017. URL https://doi.org/10.1109/
TPAMI.2016.2545667.

Piotr Koniusz, Lei Wang, and Anoop Cherian. Tensor representations for action recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(2):648–665, 2021. URL https:
//doi.org/10.1109/TPAMI.2021.3107160.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-
grained categorization. In Proceedings of the IEEE International Conference on Computer Cision
Workshops, pp. 554–561, 2013. URL https://doi.org/10.1109/ICCVW.2013.77.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25, 2012. URL
https://doi.org//10.1145/3065386.

Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In
Proceedings of the twenty-first international conference on Machine learning, pp. 66, 2004. URL
https://doi.org/10.1145/1015330.1015333.

Peihua Li, Jiangtao Xie, Qilong Wang, and Wangmeng Zuo. Is second-order information helpful for
large-scale visual recognition? In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2070–2078, 2017. URL https://doi.org/10.1109/ICCV.2017.228.

Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global covariance
pooling networks by iterative matrix square root normalization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 947–955, 2018. URL https:
//doi.org/10.1109/CVPR.2018.00105.

Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with CNNs. arXiv preprint
arXiv:1707.06772, 2017. URL https://arxiv.org/abs/1707.06772.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear CNN models for fine-grained
visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, pp.
1449–1457, 2015. URL https://doi.org/10.1109/ICCV.2015.170.

11

https://doi.org/10.1109/CVPR.2016.41
https://openreview.net/forum?id=ZCHxGFmc62a
https://openreview.net/forum?id=ZCHxGFmc62a
https://doi.org/10.1007/978-3-031-38271-0_40
https://doi.org/10.1007/978-3-031-38271-0_40
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2015.339
https://doi.org/10.1109/CVPR.2017.743
https://doi.org/10.1109/TPAMI.2016.2545667
https://doi.org/10.1109/TPAMI.2016.2545667
https://doi.org/10.1109/TPAMI.2021.3107160
https://doi.org/10.1109/TPAMI.2021.3107160
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org//10.1145/3065386
https://doi.org/10.1145/1015330.1015333
https://doi.org/10.1109/ICCV.2017.228
https://doi.org/10.1109/CVPR.2018.00105
https://doi.org/10.1109/CVPR.2018.00105
https://arxiv.org/abs/1707.06772
https://doi.org/10.1109/ICCV.2015.170


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yu Lin, Subhransu Maji, and Piotr Koniusz. Second-order democratic aggregation. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 620–636, 2018. URL
https://doi.org/10.1007/978-3-030-01219-9_38.

Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via Cholesky decom-
position. SIAM Journal on Matrix Analysis and Applications, 40(4):1353–1370, 2019. URL
https://doi.org/10.1137/18M1221084.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021. URL
https://doi.org/10.1109/ICCV48922.2021.00986.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013. URL https://arxiv.
org/abs/1306.5151.

Xuan Son Nguyen. Geomnet: A neural network based on Riemannian geometries of SPD matrix
space and Cholesky space for 3D skeleton-based interaction recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 13379–13389, 2021. URL https:
//doi.org/10.1109/ICCV48922.2021.01313.

Xuan Son Nguyen. The Gyro-structure of some matrix manifolds. In Advances in
Neural Information Processing Systems, volume 35, pp. 26618–26630, 2022a. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
a9ad92a81748a31ef6f2ef68d775da46-Paper-Conference.pdf.

Xuan Son Nguyen. A Gyrovector space approach for symmetric positive semi-definite matrix learn-
ing. In Proceedings of the European Conference on Computer Vision, pp. 52–68, 2022b. URL
https://doi.org/10.1007/978-3-031-19812-0_4.

Xuan Son Nguyen and Shuo Yang. Building neural networks on matrix manifolds: A Gyrovector
space approach. arXiv preprint arXiv:2305.04560, 2023. URL https://dl.acm.org/doi/
10.5555/3618408.3619491.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing.
International Journal of Computer Vision, 66(1):41–66, 2006. URL https://doi.org/10.
1007/s11263-005-3222-z.

Saimunur Rahman, Lei Wang, Changming Sun, and Luping Zhou. Redro: Efficiently learning
large-sized SPD visual representation. In European Conference on Computer Vision, pp. 1–17.
Springer, 2020. URL https://doi.org/10.1007/978-3-030-58555-6_1.

Saimunur Rahman, Piotr Koniusz, Lei Wang, Luping Zhou, Peyman Moghadam, and Changming
Sun. Learning partial correlation based deep visual representation for image classification. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6231–
6240, 2023. URL https://doi.org/10.1109/CVPR52729.2023.00603.

Yue Song, Nicu Sebe, and Wei Wang. Why approximate matrix square root outperforms accurate
SVD in global covariance pooling? In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1115–1123, 2021. URL https://doi.org/10.1109/ICCV48922.
2021.00115.

Yue Song, Nicu Sebe, and Wei Wang. On the eigenvalues of global covariance pooling for fine-
grained visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45
(3):3554–3566, 2022a. URL https://doi.org/10.1109/TPAMI.2022.3178802.

Yue Song, Nicu Sebe, and Wei Wang. Fast differentiable matrix square root and inverse square root.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6):7367–7380, 2022b. URL
https://doi.org/10.1109/TPAMI.2022.3216339.

12

https://doi.org/10.1007/978-3-030-01219-9_38
https://doi.org/10.1137/18M1221084
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1109/ICCV48922.2021.00986
https://arxiv.org/abs/1306.5151
https://arxiv.org/abs/1306.5151
https://doi.org/10.1109/ICCV48922.2021.01313
https://doi.org/10.1109/ICCV48922.2021.01313
https://proceedings.neurips.cc/paper_files/paper/2022/file/a9ad92a81748a31ef6f2ef68d775da46-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a9ad92a81748a31ef6f2ef68d775da46-Paper-Conference.pdf
https://doi.org/10.1007/978-3-031-19812-0_4
https://dl.acm.org/doi/10.5555/3618408.3619491
https://dl.acm.org/doi/10.5555/3618408.3619491
https://doi.org/10.1007/s11263-005-3222-z
https://doi.org/10.1007/s11263-005-3222-z
https://doi.org/10.1007/978-3-030-58555-6_1
https://doi.org/10.1109/CVPR52729.2023.00603
https://doi.org/10.1109/ICCV48922.2021.00115
https://doi.org/10.1109/ICCV48922.2021.00115
https://doi.org/10.1109/TPAMI.2022.3178802
https://doi.org/10.1109/TPAMI.2022.3216339


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yue Song, Nicu Sebe, and Wei Wang. Fast differentiable matrix square root. In International Con-
ference on Learning Representations, 2022c. URL https://openreview.net/forum?
id=-AOEi-5VTU8.

Yue Song, Nicu Sebe, and Wei Wang. Improving covariance conditioning of the svd meta-layer by
orthogonality. In European Conference on Computer Vision, pp. 356–372. Springer, 2022d. URL
https://doi.org/10.1007/978-3-031-20053-3_21.

Yann Thanwerdas and Xavier Pennec. Exploration of balanced metrics on symmetric positive def-
inite matrices. In Geometric Science of Information: 4th International Conference, GSI 2019,
Toulouse, France, August 27–29, 2019, Proceedings 4, pp. 484–493. Springer, 2019. URL
https://doi.org/10.1007/978-3-030-26980-7_50.

Yann Thanwerdas and Xavier Pennec. The geometry of mixed-Euclidean metrics on symmetric
positive definite matrices. Differential Geometry and its Applications, 81:101867, 2022. URL
https://doi.org/10.1016/j.difgeo.2022.101867.

Yann Thanwerdas and Xavier Pennec. O (n)-invariant Riemannian metrics on SPD matrices. Linear
Algebra and its Applications, 661:163–201, 2023. URL https://doi.org/10.1016/j.
laa.2022.12.009.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A FUTURE WORK

While Chen et al. (2024c) also explored Riemannian MLRs induced by other metrics, these MLRs
involve computationally expensive Riemannian computations, rendering them unsuitable for large-
scale datasets. As a future avenue, we aim to simplify the Riemannian computations in these alter-
native Riemannian classifiers and apply them to GCP for improved covariance matrix classification.

B RELATED WORK

Global covariance pooling. GCP aims to leverage the second-order statistics of deep features to
enhance the learning competence of DNNs. DeepO2P (Ionescu et al., 2015), acknowledged as the
first end-to-end global covariance pooling network, employs matrix logarithm for the classification
of covariance matrices. This method also offers matrix backpropagation to differentiate the gradient
w.r.t the decomposition-based matrix functions. Following this pioneering work, B-CNN (Lin et al.,
2015) employs the outer product of global features and carries out element-wise power normaliza-
tion. However, there exist three limitations of the above two methods. Firstly, the high dimensional
covariance feature considerably escalates the parameters of the FC layer, thereby introducing the
risk of overfitting. Secondly, the matrix logarithm could over-stretch the small eigenvalues, under-
mining the effectiveness of GCP. Thirdly, the matrix logarithm is based on matrix decomposition,
which is computationally expensive. The subsequent research primarily focuses on four aspects: (a)
adopting richer statistical representation (Wang et al., 2017; Zheng et al., 2019; Nguyen, 2021); (b)
reducing the dimensionality of the covariance feature (Gao et al., 2016; Kong & Fowlkes, 2017; Cui
et al., 2017; Acharya et al., 2018; Rahman et al., 2020; Wang et al., 2022a); (c) investigating effec-
tive and efficient matrix normalization (Li et al., 2018; Zheng et al., 2019; Lin & Maji, 2017; Yu
et al., 2020; Song et al., 2022c;b); (d) improving covariance conditioning for better generalization
ability (Song et al., 2022d;a). In this work, we do not aim to achieve state-of-the-art performance
over the existing GCP-based methods but rather to unravel the underlying theoretical mechanism of
GCP matrix functions.

Interpretations of global covariance pooling. Along with the progress of GCP, several works
began to study its mechanism. Wang et al. (2020b) investigated the effect of GCP on deep Convo-
lutional Neural Networks (CNNs) from an optimization perspective, including accelerated conver-
gence, stronger robustness, and good generalization ability. Wang et al. (2023) further broadened
these investigations, substantiating the merits of GCP in other networks, such as vision transform-
ers (Touvron et al., 2021; Yuan et al., 2021; Liu et al., 2021) and differentiable Neural Architecture
Search (NAS) (Liu et al., 2019). Song et al. (2021) empirically studied the advantage of approximate
matrix square root over the accurate one. Wang et al. (2022a) considered the matrix power as decor-
relating representations and developed a channel-adaptive dropout to produce lower-dimensional
covariance matrices. Nevertheless, existing literature does not fully address the fundamental ques-
tion of why Euclidean classifiers operate effectively in the non-Euclidean space generated by the
matrix power. Our research fills in this theoretical gap, offering intrinsic explanations regarding the
role of the matrix functions in GCP.

Riemannian classifiers on SPD manifolds. Since the matrix logarithm is a diffeomorphism be-
tween the SPD manifold and its tangent space at the identity (Arsigny et al., 2005), the most widely
used classifier on SPD manifolds is composed of the matrix logarithm and a Euclidean classifier
(Wang et al., 2021; Chen et al., 2023; Wang et al., 2022b; Nguyen, 2022a;b; Wang et al., 2022c;
Chen et al., 2024b; Wang et al., 2024). However, this tangent classifier might distort the intrinsic
geometry of SPD manifolds. Inspired by HNNs (Ganea et al., 2018), recent studies have devel-
oped intrinsic classifiers directly on SPD manifolds. Nguyen & Yang (2023) introduced three gyro
structures on SPD manifolds induced by AIM, LEM, and LCM, respectively. Based on these gyro
structures, the authors generalize the Euclidean Multinomial Logistics Regression (MLR). Concur-
rently, Chen et al. (2024a) proposed a formula for SPD MLR under Riemannian metrics pulled back
from the Euclidean space. However, both works require specific Riemannian properties and focus on
certain metrics on SPD manifolds. Chen et al. (2024c) presented a general framework for designing
Riemannian MLRs on general geometries and showcased their framework under various metrics on
SPD manifolds, covering the SPD MLRs introduced in (Chen et al., 2024a; Nguyen & Yang, 2023).
In this paper, based on the Riemannian classifiers developed in (Chen et al., 2024c), we present an
intrinsic explanation for matrix functions in GCP.
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Table 7: Summary of notations.

Notation Explanation

Sn
++ The SPD manifold
Sn The Euclidean space of symmetric matrices
Ln The Euclidean space of n× n lower triangular matrices

TPSn
++ The tangent space at P ∈ Sn

++
gP (·, ·) or ⟨·, ·⟩P The Riemannian metric at P ∈ Sn

++
⟨·, ·⟩ or · : · The standard Frobenius inner product

LogP The Riemannian logarithm at P
Ha,p The Euclidean hyperplane
f∗,P The differential map of f at P ∈ Sn

++
f∗g The pullback metric by f from g
ad(·) The adjoint operator of linear maps
ST ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}

⟨·, ·⟩(α,β) The O(n)-invariant Euclidean inner product
g(α,β)-LE The Riemannian metric of (α, β)-LEM
g(α,β)-AI The Riemannian metric of (α, β)-AIM
g(θ,α,β)-AI The Riemannian metric of (θ, α, β)-AIM
g(α,β)-E The Riemannian metric of (α, β)-EM
g(θ,α,β)-E The Riemannian metric of (θ, α, β)-EM
g(θ1,θ2)-E The Riemannian metric of (θ1, θ2)-EM
gBW The Riemannian metric of BWM
gM -BW The Riemannian metric of M -BWM

g(2θ,M)-BW The Riemannian metric of (2θ,M)-BWM
gLC The Riemannian metric of LCM
gθ-LC The Riemannian metric of θ-LCM

fFC or F(·;A, b) The FC layer
Powθ or (·)θ The matrix power

fvec The vectorization
fEC A Euclidean classifier
mlog The matrix logarithm
LP [·] The Lyapunov operator
Chol The Cholesky decomposition

LP,M [·] The generalized Lyapunov operator
Dlog(·) The diagonal element-wise logarithm
fM The matrix function of matrix power or logarithm
⌊·⌋ The strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix

C NOTATIONS AND ABBREVIATIONS

For better clarity, we summarize all the notations in Tab. 7 and all the abbreviations in Tab. 8.

D ADDITIONAL PRELIMINARIES

D.1 PULLBACK METRICS

The power-deformed metrics on the SPD manifold are special cases of pullback metrics. Pullback
metrics are common techniques in Riemannian geometry, connecting different Riemannian metrics.
Definition 3 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is smooth. Then the pullback of g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (19)

where p ∈ M, f∗,p(·) is the differential map of f at p, and Vi ∈ TpM. If f∗g is positive definite, it
is a Riemannian metric on M, which is called the pullback metric defined by f .
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Table 8: Summary of Abbreviations.

Abbreviation Explanation

SPD Symmetric Positive Definite
GCP Global covariance pooling
GAP Global Average Pooling
LEM Log-Euclidean Metric
AIM Affine-Invariant Metric
EM Euclidean Metric

PEM Power Euclidean Metric
MPEM Mixed Power Euclidean Metric
BWM Bures-Wasserstein Metric

GBWM Generalized Bures-Wasserstein Metric
FGVC Fine-Grained Visual Categorization
MLR Multinomial Logistics Regression

EMLR Euclidean Multinomial Logistics Regression
RMLR Riemannian Multinomial Logistics Regression

SPD MLR RMLR on SPD manifolds
Log-EMLR Eq. (4)
Pow-EMLR Eq. (5)
Pow-TMLR EMLR in the tangent space generated by Eq. (7)

ScalePow-EMLR ScalePow-EMLR in Tab. 4
Cho-TMLR EMLR in the tangent space generated by Eq. (8)

D.2 RIEMANNIAN OPERATORS ON THE SPD MANIFOLD

The O(n)-invariant Euclidean inner product on Sn (Thanwerdas & Pennec, 2023) is defined as

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V ) tr(W ), (20)

where (α, β) ∈ ST with ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}, V,W ∈ Sn, and ⟨·, ·⟩ is the
standard matrix inner product.

We summarize deformed SPD metrics and associated Riemannian operators in Tab. 9 with the fol-
lowing notations. Specifically, P,Q,M ∈ Sn

++ are SPD matrices, and V,W are tangent vectors in
the tangent space at P , i.e.,TPSn

++. We denote gP (·, ·) as the Riemannian metric at P , and LogP (·)
as the Riemannian logarithm at P , respectively. Also, Chol and mlog represent the Cholesky decom-
position and matrix logarithm, with their differential maps at P denoted as Chol∗,P and mlog∗,P ,
respectively. We denote Ṽ=Chol∗,P (V ), W̃=Chol∗,P (W ), L=Chol(P ), and K=Chol(Q). ⌊·⌋
is the strictly lower part of a square matrix, D(·) is a diagonal matrix with diagonal elements of a
square matrix, and Dlog(·) is a diagonal matrix consisting of the logarithm of the diagonal entries
of a square matrix. We denote LP,M [V ] as the generalized Lyapunov operator, i.e.,the solution to
the matrix linear system MLP,M [V ]P+PLP,M [V ]M=V . When M=I , LP,I [V ] is reduced to the
Lyapunov operator, denoted as LP [V ].

E TECHNICAL DETAILS ON RIEMANNIAN LOGARITHM

We first review a well-known result for the pullback metric (Thanwerdas & Pennec, 2022, Tab. 2).
Lemma 4. Given a Riemannian metric g on the SPD manifold Sn

++ and a diffeomorphism f :

Sn
++ → Sn

++, the Riemannian logarithm ˜LogP under the pullback metric g̃ = f∗g is

˜LogPQ = (f∗,P )
−1

(
Logf(P ) f(Q)

)
, (21)

where f∗,P is the differential map at P , and Log is the Riemannian logarithm under g.

Next, we show a lemma about the scaling of a Riemannian metric.
Lemma 5. Supposing Sn

++ is endowed with a Riemannian metric g and a > 0 is a positive real
scalar, the scaling metric ag shares the same Riemannian logarithm map with g.
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Table 9: Riemannian operators and deformed metrics of seven basic metrics on SPD manifolds. Note
that for MPEM, P and Q must be commuting matrices when computing the Riemannian logarithm.

Name Riemannian Metric gP (V,W ) Riemannian Logarithm LogP Q
Deformation

(θ ̸= 0)

(α, β)-LEM
(Thanwerdas & Pennec, 2023) ⟨mlog∗,P (V ),mlog∗,P (W )⟩(α,β) (mlog∗,P )

−1 [mlog(Q)−mlog(P )] 1
θ2 Pow

∗
θ g

(α,β)-LE

(α, β)-AIM
(Thanwerdas & Pennec, 2023) ⟨P−1V,WP−1⟩(α,β) P 1/2 mlog

(
P−1/2QP−1/2

)
P 1/2 1

θ2 Pow
∗
θ g

(α,β)-AI

(α, β)-EM
(Thanwerdas & Pennec, 2023) ⟨V,W ⟩(α,β) Q− P 1

θ2 Pow
∗
θ g

(α,β)-E

(θ1, θ2)-EM
(Thanwerdas & Pennec, 2022)

1
θ1θ2

⟨Powθ1∗,P (V ),Powθ2∗,P (W )⟩ (Powθ∗,P )
−1(Qθ − P θ), with θ = (θ1 + θ2)/2 N/A

LCM (Lin, 2019)
∑

i>j ṼijW̃ij +
∑n

j=1 ṼjjW̃jjL
−2
jj (Chol−1)∗,L

[
⌊K⌋ − ⌊L⌋+ D(L)Dlog(D(L)−1D(K))

]
1
θ2 Pow

∗
θ g

LC

BWM (Bhatia et al., 2019) 1
2 ⟨LP [V ],W ⟩ (PQ)1/2 + (QP )1/2 − 2P 1

4θ2 Pow
∗
2θ g

BW

GBWM (Han et al., 2023) 1
2 ⟨LP,M [V ],W ⟩ M

(
M−1PM−1Q

)1/2
+

(
QM−1PM−1

)1/2
M − 2P 1

4θ2 Pow
∗
2θ g

M -BW

Proof. Since the Christoffel symbols of ag are identical to those of g, the geodesic functions under
both ag and g remain unchanged. This implies that the Riemannian exponential maps are the same
for ag and g. As the inverse of the Riemannian exponential maps, the Riemannian logarithm maps
under ag and g are also identical.

By the above lemmas, we can readily prove Tab. 2.

Proof. By Lem. 5, for the power-deformed metric of a metric g in Sn
++, the Riemannian logarithm

at I is the same as the counterpart under Pow∗
θ g. Therefore, in the following, without loss of

generality, we compute LogI under Pow∗
θ g. We further denote the Riemannian logarithm under g

as ¯Log.

In the following, we denote P as an SPD matrix, 0 as the n × n zero matrix, and V as a tangent
vector in TISn

++. Besides, we note that

Powθ∗,I(V ) = θV. (22)

We first deal with (α, β)-LEM and θ-LCM, as both of them are pullback metrics from the Euclidean
space. Then, we proceed to deal with other metrics

(α, β)-LEM: As shown in (Thanwerdas & Pennec, 2023), the Riemannian logarithm at I is

LogI(P ) = mlog−1
∗,I (mlog(P )−mlog(I))

= mlog(P ).
(23)

θ-LCM: We define a map as
f = ψ ◦ Chol ◦Powθ, (24)

where ψ(L) = ⌊L⌋+Dlog(D(L)) for the lower triangular matrix L. Chen et al. (2024d) shows that
LCM is the pullback metric by ψ ◦ Chol from the Euclidean space Ln of lower triangular matrices.
Therefore, Pow∗

θ g
LC is the pullback metric from Ln by f . Besides, we have the following:

f(P ) = ⌊L̃⌋+Dlog(D(L̃)), (25)
f(I) = 0, (26)

f∗,I(V ) = θ

(
⌊V ⌋+ 1

2
D(L)

)
, (27)

where L̃ = Chol(P θ). We have

LogI(P ) = (f∗,P )
−1(f(P )− f(I))

=
1

θ

[
⌊L̃⌋+ ⌊L̃⌋⊤ + 2Dlog(D(L̃))

]
.

(28)

For (θ, α, β)-EM, (θ1, θ2)-EM, (θ, α, β)-AIM, 2θ-BWM, and (2θ, P 2θ)-BWM, we denote LogI as
their logarithm at I , while ¯LogI as the logarithm under the metric before deformation. The results
can be directly obtained by Eq. (22), Lem. 4, Lem. 5, and Tab. 9.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(θ, α, β)-EM:

LogI(P ) =
1

θ
¯LogI(P

θ)

=
1

θ

(
P θ − I

)
.

(29)

(θ1, θ2)-EM: The LogI can be directly obtained by Tab. 9 and Eq. (22).

(θ, α, β)-AIM:

LogI(P ) =
1

θ
¯LogI(P

θ)

=
1

θ
mlog(P θ)

= mlog(P ).

(30)

2θ-BWM:
LogI(P ) =

1

2θ
¯LogI(P

2θ)

=
1

θ
(P θ − I).

(31)

(2θ, P 2θ)-BWM: Under M -BWM, we have

LogI(M) = 2(M
1
2 − I). (32)

Therefore, for (2θ, P 2θ)-BWM, we have

LogI(P ) =
1

2θ
¯LogI(P

2θ)

=
1

θ
(P θ − I).

(33)

F POWER-DEFORMED GBWM AS LOCAL POWER-AIM

Let us first formalize this property.
Proposition 6. For any P ∈ Sn

++ and V,W ∈ TPSn
++, we have the following:

g
(2θ,P 2θ)-BW
P (V,W ) =

1

4
g
(2θ,1,0)-AI
P (V,W ). (34)

Proof. As shown in (Bhatia, 2009), the Riemannian metric of the standard AIM ((1, 1, 0)-AIM) is

gAI
P (V,W ) = vec(V )⊤(P ⊗ P )−1vec(W ), (35)

where vec(V ) is the column vectorization of V , ⊗ is the Kronecker product.

For the (2θ, P 2θ)-BWM, we have the following:

g
(2θ,P 2θ)-BW
P (V,W ) =

1

4θ2
g
ϕ2θ(P )-BW
P̃

(Ṽ , W̃ )

=
1

4
· 1

4θ2
vec(Ṽ )⊤(P̃ ⊗ P̃ )−1vec(W̃ )

=
1

4
· 1

4θ2
gAI
P̃
(Ṽ , W̃ )

=
1

4
g
(2θ,1,0)-AI
P (V,W ),

(36)

where Ṽ = Pow2θ∗,P (V ), W̃ = Pow2θ∗,P (W ), P̃ = P 2θ, and Eq. (36) can be obtain by (Han
et al., 2023, Eq. 3)
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G ADDITIONAL DISCUSSIONS ON POW-TMLR, POW-EMLR, AND
SCALEPOW-EMLR

G.1 THE EQUIVALENCE OF POW-EMLR AND SCALEPOW-EMLR

It can be proven that Pow-EMLR is equivalent to ScalePow-EMLR under scaled initial weight and
learning rate in the FC layer. We denote the network as

x0 ∈ Rd0
g(·;Θ)−→ x ∈ Rd fFC−→ y ∈ Rc → L ∈ R, (37)

where x0, g(·; Θ), fFC, and L are the input feature, feature extraction with parameter Θ, FC layer,
and loss, respectively. The FC layers in Pow-EMLR and ScalePow-EMLR are denoted as y = Ax+b
and ȳ = 1

θ Āx̄+ b̄. We set the initial values and learning rates of A and Ā satisfying A0 = 1
θ Ā0 and

γ̄ = θ2γ, and maintain all the other settings the same. Then, we have the following for the gradient
at A = A0 (or Ā = Ā0):

∂L

∂Ā
=

1

θ

∂L

∂ȳ
x̄⊤ =

1

θ

∂L

∂y
x⊤ =

1

θ

∂L

∂A
,

∂L

∂x̄
=

1

θ
Ā⊤ ∂L

∂ȳ
= A⊤ ∂L

∂y
=
∂L

∂x
.

(38)

Under SGD, the updated values of Ā satisfying the following:

1

θ
Ā1 =

1

θ
(Ā0 + γ̄

∂L

∂Ā
)

=
1

θ
(Ā0 + γ̄

1

θ

∂L

∂A
)

=
1

θ
Ā0 + γ̄

1

θ2
∂L

∂A

= A0 + γ
∂L

∂A
= A1.

(39)

Therefore, the updated values of A and Ā still satisfy A1 = 1
θ Ā1. In addition, the gradients of

Pow-EMLR w.r.t. x and b are identical to ScalePow-EMLR w.r.t. x̄ and b̄. Therefore, Pow-EMLR
is equivalent to ScalePow-EMLR under scaled settings.

G.2 THE IN-EQUIVALENCE OF POW-EMLR AND POW-TMLR

We denote X = Sθ. Then for Pow-TMLR, we have the following

y = F
(
fvec

(
1

θ
(X + I)

)
;A, b

)
= F

(
fvec (X + I) ; Ã, b

)
= F

(
fvec (X) ; Ã, b̃

)
,

(40)

where Ã = 1
θA and b̃ = 1

θAfvec(I).

As A appears in b̃, the gradient of A is composed of two parts, one w.r.t. y and the other one
w.r.t. b̃. In contrast, in the standard FC layer y = F(X;A, b), the gradient of A is independent of
b. Therefore, Pow-TMLR cannot be simply viewed as equivalent to Pow-EMLR with transformed
initialization.

G.3 A RIEMANNIAN PERSPECTIVE OF POW-TMLR VS. POW-EMLR

Although the numerical expressions of Pow-TMLR and Pow-EMLR differ by a constant transfor-
mation, they differ fundamentally in theory: Pow-TMLR is a tangent classifier, whereas Pow-EMLR
is a Riemannian classifier.
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1. Tangent Classifier: The tangent classifier treats the entire manifold as a single tangent
space at the identity matrix. When mapping data into this tangent space, critical structural
information, such as distances and angles, cannot be preserved. This distortion undermines
classification performance. In contrast, Riemannian MLR is constructed based on Rieman-
nian geometry, fully respecting the manifold’s geometric structure.

2. Tangent as a Special Case of Riemannian Classifier. The tangent classifier can be seen
as a reduced case of the Riemannian classifier. For example, let us take Eq. (16) as an
example. When all SPD parameters Pk are set to the fixed identity matrix, Eq. (16) exactly
corresponds to Pow-TMLR.

In summary, the Riemannian classifier enjoys significant theoretical advantages over the tangent
classifier while incorporating the tangent classifier as a special case.

H ADDITIONAL EXPERIMENTAL DETAILS

H.1 DATASETS

The Caltech University Birds (Birds) (Welinder et al., 2010) dataset is composed of 11, 788 images
distributed over 200 different bird species. The FGVC Aircrafts (Aircrafts) (Maji et al., 2013) dataset
comprises 10, 000 images of 100 classes of airplanes, while the Stanford Cars (Cars) (Krause et al.,
2013) dataset consists of 16, 185 images representing 196 classes of cars. In addition to these widely
used FGVC datasets, we also evaluate our proposed theory on the large-scale ImageNet-1k (Deng
et al., 2009) dataset, which contains 1.28M training images, 50K validation images and 100K testing
images distributed across 1K classes.

H.2 IMPLEMENTATION DETAILS

We follow the official Pytorch code of iSQRT-COV1 (Li et al., 2018) to reimplement GCP. Follow-
ing (Wang et al., 2020a; Song et al., 2022a), we use ResNet-18 as our backbone network on the
ImageNet dataset, and ResNet-50 on the other three FGVC datasets. On Both the ImageNet-1k and
FGVC datasets, the ResNet-18 and ResNet-50 are trained from scratch with the GCP layer.

Following (Song et al., 2022a), we reduce the channels of the final convolutional features from 2048
to 256 for compact representation of covariance matrices, producing 256 × 256 spatial covariance
matrices. We train the network from scratch with an SGD optimizer on all datasets. For a fair
comparison, the learning settings are identical for Pow-EMLR and ScalePow-EMLR. The learning
rate is set as 1e−1.1, 5e−3, 5e−2, and 5e−2 for the convolutional layers on the ImageNet, Aircrafts,
Birds, and Cars dataset. The learning rate of the FC layer is set to be 5, 10 and 10 times larger
than the convolutional layers for the Aircrafts, Cars, and Birds datasets, respectively. We impose
a weight decay of 1e−4 on the optimizer on four datasets. On the Aircrafts dataset, the training
lasts 50 epochs with the learning rate divided by 5 at epoch 20. On the Cars and Birds datasets, the
training lasts 100 epochs with a learning rate reduction by a divisor of 10 at epoch 50.

As the matrix square root is the most effective matrix function in GCP, we set power = 1/2 for matrix
power normalization.

The experiments on ImageNet use a workstation with 32-core AMD EPYC 7302 CPU and an
NVIDIA RTX A6000, while other experiments use a workstation with 16-core AMD EPYC 7302
CPU and an NVIDIA GeForce RTX 2080 Ti GPU. Due to the heavy computational burden of
Cholesky decomposition, we do not implement Cho-TMLR on the ImageNet.

For Cho-TMLR, the learning rate is set as 1e−2, 5e−3, and 3e−3 for the convolutional layers on the
Aircrafts, Birds, and Cars dataset. The batch size on the Cars dataset is 4. On the Aircrafts dataset,
the training lasts 60 epochs with the learning rate divided by 5 at epoch 50. On the Cars and Birds
datasets, the training lasts 120 epochs with a learning rate reduction by a divisor of 10 at epoch 100.
Other settings remain the same as the ones in the main paper.

1https://github.com/jiangtaoxie/fast-MPN-COV
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For Pow-TMLR, the learning rate is set as 1e−1.1 and 5e−3 for the convolutional layers on the
ImageNet and the other three FGVC datasets. The batch size on the Cars dataset is set as 6. Other
settings remain the same as the ones in the main paper.

H.3 EXPERIMENTS ON THE SECOND-ORDER TRANSFORMER

Table 10: Comparison of Pow-EMLR, ScalePow-EMLR and Pow-TMLR under the SoT-7 backbone
on the ImageNet-1k dataset.

Classifier Top-1 Acc (%) Top-5 Acc (%)

Pow-TMLR 75.79 92.91
ScalePow-EMLR 76.14 93.18

Pow-EMLR 76.11 93.05

To further validate our findings, we follow Song et al. (2022b) to conduct experiments using the
Second-order Transformer (SoT) (Xie et al., 2021) on the ImageNet-1k dataset. Specifically, we use
the 7-layer SoT (SoT-7) architecture as the backbone network and train the model up to 250 epochs
with a batch size of 512, keeping the other settings the same as Song et al. (2022b).

As shown in Tab. 10, Pow-EMLR still achieves similar performance to ScalePow-EMLR, but outper-
forms Pow-TMLR. These results further support our claim that tangent classifiers cannot adequately
explain the matrix functions used in GCP, while the underlying mechanism can be better explained
by our Riemannian perspective.

I PROOF OF THM. 2

This proposition is mainly inspired by Thm. 5 in (Chen et al., 2024a). However, all the results in
(Chen et al., 2024a) require the metric to be a pullback metric from a standard Euclidean space,
while the metric in our Thm. 2 is a pullback metric from the SPD manifold. Nevertheless, we still
can reach similar theoretical results. We first recap RSGD and then begin to present our proof.

RSGD (Bonnabel, 2013) is formulated as

W̄ = ExpW (−γΠW (∇W f)) (41)

where ExpW is the Riemannian exponential map at W , and ΠW maps the Euclidean gradient ∇W f
to the Riemannian gradient, and γ denotes learning rate.

We denote (1, 0)-EM as EM, and the metric tensor of it as gE. Instead of providing an ad hoc proof
exclusively for PEM, we present the following two more general lemmas.
Lemma 7. Given a diffeomorphism ϕ : Sn

++ → Sn
++, ϕ induces a pullback metrics on Sn

++ from
{Sn

++, g
E}, denoted as gϕ-E. The gϕ-E-induced SPD MLR is

p(y = k|S) ∝ exp [⟨ϕ(S)− ϕ(Pk), ϕ∗,I(Ak)⟩] , (42)

where S ∈ Sn
++ is an input feature, Pk ∈ Sn

++ and Ak ∈ Sn are parameters for each class k.

Proof. According to Chen et al. (2024c, Thm. 3.3), the Riemannian MLR based on gϕ-E is given as

p(y = k|S) ∝ exp
[
gϕ-E
Pk

(LogPk
S,PTI→Pk

Ak)
]

= exp [⟨ϕ(S)− ϕ(Pk), ϕ∗,I(Ak)⟩] , (43)

where Eq. (43) can be obtained by the properties of deformed metrics (Thanwerdas & Pennec, 2022,
Tab. 2) and EM (Thanwerdas & Pennec, 2023, Tab. 3).

Following the notations in Lem. 7, we have the following lemma.
Lemma 8. Supposing ϕ∗,I is the identity map and each SPD parameter Pk (Euclidean parameter
Ak) in Eq. (42) is optimized by gϕ-E-based RSGD (Euclidean SGD), the gϕ-E-based SPD MLR is
equivalent to a Euclidean MLR illustrated in Eq. (10) in the co-domain of ϕ.
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Proof. We first show the projection operator ΠP at P ∈ Sn
++ under gϕ-E, and then move on to the

equivalence.

For any smooth function f : Sn
++ → R on Sn

++ endowed with gϕ-E, we denote its Euclidean and
Riemannian gradient at P ∈ Sn

++ as ∇P f and ∇̃P f , respectively. Then, for any V ∈ TPSn
++, we

have
⟨∇̃P f, V ⟩P = V (f) ⇒ ⟨ϕ∗,P ∇̃P f, ϕ∗,PV ⟩ = ⟨∇P f, V ⟩

⇒ ΠP (∇P f) = ϕ−1
∗,P ◦ (ad(ϕ∗,P ))−1

(∇P f) ,
(44)

where ad(·) is the adjoint operator of the linear map.

According to Eq. (10), we define a Euclidean MLR in the codomain of ϕ as

p(y = k | S) ∝ exp(⟨ϕ(S)− P̄k, Āk)⟩), with P̄k, Āk ∈ Sn. (45)

We call this classifier ϕ-EMLR.

Following Lem. 7, the SPD MLR under gϕ-E is

p(y = k | S) ∝ exp(⟨ϕ(S)− ϕ(Pk), Ãk⟩), with Pk ∈ Sn
++, Ãk ∈ Sn. (46)

Supposing the SPD MLR and ϕ-EMLR satisfying P̄k = ϕ(Pk). Other settings of the network are
all the same, indicating the Euclidean gradients satisfying

∂L

∂P̄k
=

∂L

∂ϕ(Pk)
. (47)

The updates of P̄k in the ϕ-EMLR is

P̄ ′
k = P̄k − γ

∂L

∂P̄k
. (48)

The updates of Pk in the SPD MLR is

P ′
k = ExpPk

(−γΠPk
(∇Pk

f))

= ϕ−1

[
ϕ(Pk)− γ (ad(ϕ∗,P ))

−1

(
∂L

∂Pk

)]
.

(49)

Therefore ϕ(P ′
k) satisfies

ϕ(P ′
k) = ϕ(Pk)− γ (ad(ϕ∗,P ))

−1

(
∂L

∂Pk

)
= ϕ(Pk)− γ (ad(ϕ∗,P ))

−1 ◦ ad(ϕ∗,Pk
)

(
∂L

∂ϕ(Pk)

)
= ϕ(Pk)− γ

∂L

∂ϕ(Pk)

= P̄ ′
k.

(50)

The second equation comes from the Euclidean chain rule of differential. Let Y = ϕ(X), then we
have

∂L

∂Y
: dY =

∂L

∂Y
: ϕ∗,X(dX)

= ad(ϕ∗,X)

(
∂L

∂Y

)
: dX,

(51)

where · : · means Frobenius inner product.

The equivalence of Āk and Ãk is obvious. Since both forward and backward processes of Eq. (45)
and Eq. (46) are identical, by natural induction, the lemma can be proven.

When θ > 0, simple computation shows that (θ, 1, 0)-EM is the pullback metric of EM by ϕθ with
ϕθ∗,I as an identity map. According to Lems. 7 and 8, one can readily prove Thm. 2.
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J ADDITIONAL DISCUSSIONS ON THM. 2

In Lem. 8, ϕ∗,I is required to be identity map. However, Lem. 8 can be extended into the case where
ϕ∗,I is not the identity map, which will further extend Thm. 2 into the case of θ < 0.

Following the notations in Lem. 7, let ϕ : Sn
++ → Sn

++ be a diffeomorphism, whose differential at
I , i.e.,ϕ∗,I is not an identity map. As ϕ is a diffeomorphism, the differential map ϕ∗,I : TISn

++ →
Tϕ(I)Sn

++ is a linear isomorphism, i.e.,a bijection preserving linear operations. Therefore, we can
identify Ãk = ϕ∗,I(Ak) with Ak in Eq. (42), and the SPD MLR under gϕ-E is simplified as

p(y = k|S) ∝ exp
[
⟨ϕ(S)− ϕ(Pk), Ãk⟩

]
, (52)

where Ãk ∈ Sn. As a direct corollary, all the proof in Lem. 8 can be transferred to the case where
ϕ∗,I is not an identity.
Corollary 9. Supposing ϕ : Sn

++ → Sn
++ is a diffeomorphism and each SPD parameter Pk (Eu-

clidean parameter Ak) in Eq. (52) is optimized by gϕ-E-based RSGD (Euclidean SGD), the gϕ-E-
based SPD MLR is equivalent to a Euclidean MLR in the co-domain of ϕ.

As a direct application of Cor. 9, Thm. 2 can be generalized into the case of θ < 0. We generalize
the definition of ϕθ as

ϕθ(S) =
1

|θ|
Sθ,∀S ∈ Sn

++, with θ ̸= 0. (53)

Obviously, ϕθ : Sn
++ → Sn

++ is still a diffeomorphism. By Cor. 9, we can readily obtain the
following results.
Corollary 10. Under PEM with θ ̸= 0, optimizing each SPD parameter Pk in Eq. (52) by PEM-
based RSGD and Euclidean parameter Ak by Euclidean SGD, the PEM-based SPD MLR is equiv-
alent to a Euclidean MLR illustrated in Eq. (10) in the co-domain of ϕθ(·).

Rahman et al. (2023) adopted the inverse of the covariance matrix for GCP. Cor. 10 indicates that
our framework can also explain the underlying mechanism of the inverse in (Rahman et al., 2023).
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