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Abstract

Out-of-distribution (OOD) detection and lossless compression constitute two prob-
lems that can be solved by the training of probabilistic models on a first dataset
with subsequent likelihood evaluation on a second dataset, where data distribu-
tions differ. By defining the generalization of probabilistic models in terms of
likelihood we show that, in the case of image models, the OOD generalization
ability is dominated by local features. This motivates our proposal of a Local
Autoregressive model that exclusively models local image features towards im-
proving OOD performance. We apply the proposed model to OOD detection tasks
and achieve state-of-the-art unsupervised OOD detection performance without the
introduction of additional data. Additionally, we employ our model to build a new
lossless image compressor: NeLLoC (Neural Local Lossless Compressor) and
report state-of-the-art compression rates and model size.

1 Introduction

Probabilistic modeling has achieved great success in the modeling of images. Likelihood based
models, e.g. Variational Auto-Encoders (VAE) [22], Flow [21]], Pixel CNN [49 41]] are shown to
successfully generate high quality images, in addition to estimating underlying densities.

The goal of probabilistic modelling is to use a model py to approximate the unknown data distribution

pq using the training data {z1,...,2x} ~ pg. A common method to learn parameters 6 is to
minimize some divergence between p, and py, for example, a popular choice is the KL divergence
KL(pullpa) = ~H(pa) ~ [ logpu(a)palo)d m
where the entropy of the data distribution is a constant. Since we only have access to finite p; data
samples 1, ..., Ty, the second term is typically approximated using a Monte Carlo estimation
N
1
KL(pallpe) ~ N 7; log pg(2n) — const.. (2)

Minimizing the KL divergence is therefore equivalent to Maximum Likelihood Estimation. A typical

evaluation criterion for the learned models is the test likelihood % 7121:1 log pg (), with test set
{z1,...,2m} ~ pa. We refer to this evaluation as in-distribution (ID) generalization, since both
training and test data are sampled from the same distribution p;. However, in this work, we are
interested in out-of-distribution (OOD) generalization such that the test data are drawn from p,,
where p, # pyq. To motivate our study of this topic, we firstly introduce two applications: lossless
compression and OOD detection, that both can make use of the OOD generalization property.

*Co-first author, the work was done during an internship in Huawei Noah’s Ark Lab.
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1.1 Model-based Lossless Compression

Lossless compression has a strong connection to probabilistic models [33]. Let {z1,...,za}
be test data to compress, where x,,, is sampled from some underlying distribution with PMF p,.
If py is known, we can design a compression scheme to compress each data x,, to a bit string
with length approximately — log, pd(xm As M — oo, the averaged compression length will

approach the entropy of the distribution py, that is; - Zﬂ]\le —logy pa(wm) — H(pg) where H(-)
denotes entropy. In this case, the compression length is optimal under Shannon’s source coding
theorem [45]], i.e. we cannot find another compression scheme with compression length less than
H(pg). In practice, however, the true data distribution pg is unknown and we must use a model
Po =~ pq to build the lossless compressor. Recent work successfully apply deep generative models
such as VAEs [47, 148, 23]], Flow [19, 3] to conduct lossless compression. We note that the underlying
models are designed to focus on test data that follows the same distribution as the training data,
resulting in test compression rates that depend on the ID generalization ability of the model.

However, in practical compression applications, the distribution of the incoming test data is unknown,
and is usually different from the training distribution pg: X2, = {x}, ..., 2}, } where 2’ ~ p, # pq.
To achieve good compression performance, a lossless compressor model should still be able to assign
high likelihood for these OOD data. This practical consideration motivates encouragement of the
OOD generalization ability of the model.

Empirical results [48] [19]] have shown that we can still use model py (trained to approximate pg)
in order to compress test data X2 ., with reasonable compression rates. However, the phenomenon
that these models can generalize to OOD data lacks intuition and key components, affecting this
generalization ability, remain underexplored. Consideration of recent advances in likelihood-based
OOD detection next allows us to further investigate these questions and lead to our proposal of a new
model that can encourage OOD generalization.

1.2 Likelihood-based OOD Detection

Given a set of unlabeled data, sampled from p,, and a test data 2’ then the goal of OOD detection is
to distinguish whether or not 2" originates from py. A natural approach [3] involves fitting a model
pg to approximate py and treat sample z’ as in-distribution if its (log) likelihood is larger than a
threshold; log pg(«’) > €. Therefore, a good OOD detector model should assign low likelihood
to the OOD data. In contrast to lossless compression, this motivates discouragement of the OOD
generalization ability of the model.

Surprisingly, recent work [36]] report results showing that popular deep generative models, including
e.g. VAE [22]], Flow [21] and PixelCNN [41], can assign OOD data higher density values than
in-distribution samples, where such OOD data may contain differing semantics, c.f. the samples used
for maximum likelihood training. We demonstrate this phenomenon using PixelCNN models, trained
on Fashion MNIST (CIFAR10) and tested using MNIST (SVHN). Figure[T] provides histograms of
model evaluation using negative bits-per-dimension (BPD), that is; the log, likelihood normalized
by data sample dimension (larger negative BPD corresponds to larger likelihood). We corroborate
previous work and observe that tested models assign higher likelihood to the OOD data, in both cases.
This counter intuitive phenomenon suggests that likelihood-based approaches may not make for good
OOD image detection criterion, yet encouragingly also illustrates that a probabilistic model, trained
using one dataset, may be employed to compress data originating from a different distribution with a
potentially higher compression rate. This intuition builds a connection between OOD detection and
lossless compression. Inspired by this link, we next investigate the underlying latent causes of image
model generalizability, towards improving both lossless compression and OOD detection.

2 OOD Generalizations of Probabilistic Image Models

Previous work studies the potential causes of the surprising OOD detection phenomenon: OOD data
may have higher model likelihood than ID data. For example, [37] used a typical set to reason about
the source of the effect, while the work of [40] argues that likelihoods are significantly affected by

2For a compression method like Arithmetic Coding [[50], the message length is always within two bits of
—logy, pa(xm) [33], also see Section
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Figure 1: Left: log likelihood of FashionMNIST, MNIST test data using a full PixelCNN model,
trained on FashionMNIST training set. Right: log likelihood of CIFAR10, SVHN test data using
a PixelCNN model, trained on CIFARI10 training set. The z-axis indicates the value of the log-
likelihood (negative BPD), the y-axis provides data sample counts.

image background statistics or by the size and smoothness of the background [26]. In this work,
we alternatively consider a recent hypothesis proposed by [43]] (also implicitly discussed in [24]] for
a flow-based model): low-level local features, learned by (CNN-based) probabilistic models, are
common to all images and dominate the likelihood. From the perspective of OOD generalization, this
allows formulation of the following related conjectures:

* Models can generalize to OOD images as local features are shared between image distributions.
* Models can generalize well to OOD images since local features dominate the likelihood.

In the work of [43]], the authors investigated their original hypothesis by studying the differences
between individual pixel values and neighbourhood mean values and additionally considered the
correlation between models trained on small image patches and trained, alternatively, on full images.
To further investigate this hypothesis, we rather propose to directly model the in-distribution dataset,
using only local feature information. If the hypothesis is true, then the proposed /ocal model alone
should generalize well to OOD images. By contrasting such an approach with a standard full model,
that considers both local and non-local features, we are also able to study the contribution that local
features make to the full model likelihood. We first discuss how to build a local model for the image
distribution and then use the proposed model to study generalization on OOD datasets.

2.1 Local Model Design

Autoregressive models have proven popular for modeling image datasets and common instantiations
include PixelCNN [49] 41], PixeIRNN [49] and Transformer based models [7]. Assuming data
dimension D, the Autoregressive model py(z) can be written as

D
pf(x) :p(l.l)Hp(xd'xlvaxdfl)v (3)
d=2

informally we refer to this type of model as a “full model” since it can capture all dependencies
between each dimension (pixel). Similarly, we can define a local autoregressive model p;(x) where
pixel x;;, at image row 4 column j, depends on previous pixels with fixed horizon h:

p(z) = Hp(ib”z‘j\$[i7h:¢71,j7h:j+h], T j—hij—1])s 4)
ij

with zero-padding used in cases where ¢ or j are smaller than h. Figure[2b|illustrates the resulting local
autoregressive model dependency relationships. We implement this model using a masked CNN [49],
with kernel size k=2xh+1 in our first network layer, to mask out future pixel dependency. A full
Pixel CNN model would then proceed to stack multiple masked CNN layers, where increasing kernel
depth affords receptive field increases. In contrast, we employ masked CNN with 1x 1 convolutions
in subsequent layers. Such 1x1 convolutions can model the correlation between channels, as in [21],
and additionally prevent our local model obtaining information from pixels outwith the local feature
region, defined by h. Pixel dependencies are therefore defined solely using the kernel size of the
first masked CNN layer, allowing for easy control over model local feature size. We note that the
proposed local autoregressive model can also be implemented using alternative backbones e.g. Pixel
RNN [49] or Transformers [[7]. We plot local model samples in Figure d Unlike full autoregressive
models [49, 41]], which can be used to generate semantically coherent samples, we find the samples
from the local model are locally consistent yet have no clear semantic meaning.
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(a) Full Autoregressive Model (b) Local Autoregressive Model

Figure 2: (a) full autoregressive model pixel dependencies; the distribution of the current pixel (blue)
depends on all previous pixels (red); (b) local autoregressive model dependencies, with A = 2. The
distribution of x;; (blue) depends on only the pixels in a local region (red).

2.2 Local Model Generalization

To investigate the generalization ability of our local autoregressive model, we fit the model to
Fashion MNIST (grayscale) and CIFAR10 (color) training datasets and test using in-distribution (ID)
images (respective dataset test images) and additional out-of-distribution (OOD) datasets: MNIST,
KMNIST (grayscale) and SVHN, CelebAﬂ (color). Both models use the discretized mixture of logistic
distributions [41] with 10 mixtures for the predictive distribution and a ResNet architecture [49] [14].
We use a local horizon length h=3 (kernel size k=7) for both grayscale and color image data.
We compare our local autoregressive model to a standard full autoregressive model (i.e. a standard
PixelCNN), with additional network architecture and training details found in Appendix [A] Tables|T} 2]

Table 1: Test BPD (Trained on Fashion MNIST) Table 2: Test BPD (Trained on CIFAR10)
Test Dataset Full Local Test Dataset Full Local
Fashion MNIST (ID) 2.78 2.89 CIFAR1I0 (ID) 3.12 3.25
MNIST (OOD) 1.50 1.49 SVHN (OOD) 2.13 2.13
KMNIST (OOD) 248 244 CelebA (OOD) 3.33 3.35

report comparisons in terms of BPD (where lower values entail higher likelihood) for Fasion MNIST
and CIFARI10, respectively. We observe that for in-distribution (ID) data, the full model has better
generalization ability c.f. the local model (0.11 and 0.13 BPD, respectively). This is unsurprising
as training and test data originate from the same distribution; both local and non-local features, as
learned by the full model, help ID generalization. For OOD data, we observe that the local model has
generalization ability similar to the full model, exhibiting very small empirical gaps (only ~ 0.02
BPD on average), showing that the local model alone can generalize well to OOD distributions. We
thus verify the hypothesis considered at the start of Section 2]

For simple datasets containing gray-scale images, the PixelCNN model is flexible enough to capture
both local and global features. We notice that, in Table |IL our local model exhibits even better
OOD generalization than the full model. This drives us to further study the role of non-local
features for generalization. When the local horizon size increases, the model will be able to learn
features with greater non-locality. We thus vary the local horizon size to study generalization ability
under this property, see Table 3] We find the model has poor generalization performance when
local features are too small and increasing the horizon size helps ID generalization but decreases
the OOD generalization. A consistent phenomenon is observed when considering color images,
see Appendix [B-I] We can thus conclude: non-local features are not shared between images
distributions, overfitting to non-local features will hurt generalization.

These hypotheses indicate two opposing Table 3: Generalization of local model with different hori-
strategies for the considered tasks: zon sizes. The model is trained on FashionMNIST dataset.

OOD detection: distributions are distin-

guished by dataset-unique features, thus Method h=l h=2 h=3 h=4 h=5
building non-local models, able to dis- (ID) Fashion 317 293 289 288 288
count common local features, improves (OOD) MNIST 154 148 149 150 151
the detector distinguishability power. (OOD) KMNIST 2.54 243 244 246 247

3We down-sample the original CelebA to 32x32x 3, see Appendix for details.



Lossless compression: OOD generalization is possible due to the sharing of local features between
distributions. Employing only a local model can encourage OOD generalization, by preventing the
model from over-fitting to dataset-unique features, specific to the training distribution.

Sections 3] and ] will further demonstrate how contrasting modeling strategies can benefit these tasks.

3 OOD Detection with Non-Local Model

As was discussed in Section [I.2] local image features are observed to be largely common across
the real-world image distribution and can be treated as a domain-prior. Therefore, in order to detect
whether or not an image is out-of-distribution, we can stipulate a non-local model able to discount
local features of the image distribution; denoted here p,,; (). It is however not easy to build such a
non-local model directly, since the concept of “non-local” lacks a mathematically rigorous definition.
However, we propose that a non-local model can be considered to be the complement of a local
model, from a respective full model. In the following section, we therefore propose to use a product
of experts to indirectly define p,,;(z), and demonstrate how this may be used for OOD detection.

3.1 Product of Experts and Non-Local Model

As demonstrated in Section[2.2] the full model p () and the local model p; () can be easily built for
the image distribution, e.g. a full autoregressive model and a local autoregressive model. We further
assume the full model allows the following decomposition:
pu(@)pri(z)
= P, 5)
where Z = [ pi(2)pni(x)dz is the normalizing constant. This formulation can also be thought of as
a product of experts (PoE) model [[17]] with two experts; p; (local expert) and p,,; (non-local expert).
An interesting property of the PoE model is that if a data sample 2’ has high full model probability
ps(x'), it should possess high probability mass in each of the expert componentﬂ Therefore, the
PoE model assumption is consistent with our image modelling intuition: a valid image requires both
valid local features (e.g. stroke, texture, local consistency) and valid non-local features (semantics).

pr(x)

By our model assumption, the density function of the non-local model can be formally defined and is
proportional to the likelihood ratio:

py(x)
pi(x)
where py,; () denotes the unnormalized density. For the OOD detection task, we require only p,,;(x)
in order to provide a score classifying whether or not test data x is OOD and therefore do not require
to estimate the normalization constant Z. We also note that as we increase the local horizon length
for p;, the local model will converge to a full model p; — py, and p,,;(z) = 1 becomes a constant and
inadequate for OOD detection. This further suggests the importance of using a local model. Figure 3]
shows histograms of p,,;(-) for both ID and OOD test datasets. We observe that the majority of ID
test data obtains higher likelihood than OOD data, illustrating the effectiveness of non-local models.

pnl(x) X = ﬁnl (x)y (6)

3.2 Connections to Related Methods

We highlight that the score p,,; () that we use to conduct OOD detection allows a principled likelihood
interpretation: the unnormalized likelihood of a non-local model. We believe this to be the first
time that the likelihood of a non-local model is considered in the literature. However, other likelihood
ratio variants have been previously explored for OOD detection. We briefly discuss related work and
highlight where our method differs from relevant literature.

In [40], it is assumed that each data sample x can be factorized as © = {xzp, x5}, where xy, is a
background component, characterized by population level background statistics: p,. Further, x

“This PoE property differs from a Mixture of Experts (MoE) model that linearly combines experts. If data
' has high probability in the local model (e.g. pi(z") = 0.9) but low probability in the non-local model (e.g.
pri(x’) = 0.1), the probability in the full PoE model pf(z’) o< 0.9 * 0.1 is also small. On the contrary, if we
assume py is a MoE: py = 2pi + 2 pni, then py(z’) = 0.9 and pni(z’) = 0.1 results in a high full MoE model
pr(x’) value ie. pr(x’) = 0.5 % 0.9 + 0.5 * 0.1 = 0.5. We refer to [I7] for additional PoE model details.
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Figure 3: Unnormalized log likelihood of the non-local model Fjgure 4: Samples from the lo-
Pri(x)= p’; @) for both ID test datasets (FashionMNIST, CIFAR10) cal autoregressive model, see

(x)

and OOD datasets (MNIST, SVHN). ID test datasets obtain signifi- Appendingor details.
cantly higher likelihoods, on average, in each case.

then constitutes a semantic component, characterized by patterns belonging specifically to the in-
distribution data: ps. A full model, fitted on the original data, (e.g. Flow) can then be factorized as
pr(x) = ps(xn, xs) = pu(xy)ps(zs) and the semantic model can correspondingly be defined as a
i
design a perturbation scheme and construct samples from p; () by adding random perturbation to
the input data. A further full generative model is then fitted to the samples towards estimating py.
In our method, both p;(z) and p,,; () constitute distributions of the same sample space (that of the
original image x) whereas p, and p;, in [40] form distributions in different sample spaces (that of x
and xy, respectively). Additionally, in comparison with our local and non-local experts factorization
of the model distribution, their decomposition of an image into ‘background’ and ‘semantic’ parts
may not be suitable for all image content and the construction of samples from py, () (adding random
perturbation) lacks principled explanation. In [44, 43], the score for OOD detection is defined as

ratio: p,(x) where py(z) is a full model. In order to estimate py (), the authors of [40]

s(x) = Zi—ég where py is a full model and p, is a complexity measure containing an image domain
prior. In practice, p. is estimated using a traditional compressor (e.g. PNG or FLIF), or a model
trained on an additional, larger dataset in an attempt to capture general domain information [43]].
In comparison, our method does not require the introduction of new datasets and our explicit local
feature model, p;, can be considered more transparent than PNG of FLIF. Additionally, our likelihood
ratio can be explained as the (unnormalized) likelihood of the non-local model for the in-distribution
dataset, whereas the score described by [43| 44] does not offer a likelihood interpretation. In
Section[d] we discuss how the proposed local model may be utilized to build a lossless compressor,
further highlighting the connection between our OOD detection framework and traditional lossless
compressors (e.g. PNG or FLIF). In Table[6] we report experimental results showing that a lossless
compressor based on our model significantly improves compression rates c.f. PNG and FLIF, further
suggesting the benefits of the introduced OOD detection method.

3.3 Experiments

We conduct OOD detection experiments using four different dataset-pairs that are considered chal-
lenging [36]: Fashion MNIST (ID) vs. MNSIT (OOD); Fashion MNIST (ID) vs. OMNIGLOT (OOD);
CIFAR10 (ID) vs. SVHN (OOD); CIFAR10 (ID) vs. CelebA (OOD). We actively select not to include
dataset pairs such as CIFAR10 vs. CIFAR100 or CIFAR10 vs. ImageNet since these contain duplicate
classes and cannot be treated as strictly disjoint (or OOD) datasets [44]]. Additional experimental
details are provided in Appendix [A] In Table [d] we report the ‘area under the receiver operating
characteristic curve’ (AUROC), a common measure for the OOD detection task [15]. We compare
against methods, some of which require additional label informatiorﬂ or datasets. Our method
achieves state-of-the-art performance in most cases without requiring additional information. We
observed that the model-ensemble methods, WAIC [8] and MSMA [34] can achieve higher AUROC
in the experiments involving color images yet are significantly outperformed by our approach in the
case of grayscale data. We thus evidence that our simple method is consistently more reliable than
alternative approaches and that our score function allows a principled likelihood interpretation.

>In principle methods that require labels correspond to classification, task-dependent OOD detection, which
may be considered fundamentally different from task-independent OOD detection (with access to only image
space information), see [1] for details. We compare against both classes of method, for completeness.



Table 4: OOD detection comparisons (AUROC). Higher values indicate better performance, results
are rounded to three decimal places. Results are reported in each case directly using the original
references except in the cases of ODIN [40, 29] and VIB [8]]. Results for Typicality test are from [44]],
corresponding to batches of two samples of the same type. (a) The Mahalanobis method requires
knowledge of the validation data (OOD distribution). (b) A full PixelCNN (see Appendix [A)) is
trained on the ID dataset and its likelihood evaluations are then used to calculate AUROC.

ID dataset: FashionMNIST CIFAR10
OOD dataset: MNIST Omniglot SVHN CelebA
Using Labels
ODIN [31]] 0.697 - 0.966 -
VIB [2] 0.941 0.943 0.528 0.735
Mahalanobis® [[16] 0.986 - 0.991 -
Gram-Matrix [42] - - 0.995 -
Using Additional Datasets
Outlier Exposure [16] - - 0.758 0.615
Glow diff to Tiny-Glow [43] - - 0.939 -
PCNN diff to Tiny-PCNN [43] - - 0.944 -
Not Using Additional Information

WAIC (model ensemble) [8] 0.766 0.796 1.000 -
Glow diff to PNG [43]] - - 0.754 -
PixelCNN diff to PNG [43]] - - 0.823 -
Likelihood Ratio in [40]] 0.997 - 0.912 -
MSMA KD Tree [34] 0.693 - 0.991 -

S using Glow and FLIF [44] 0.998 1.000 0.950 0.736
S using PCNN and FLIF [44] 0.967 1.000 0.929 0.535
Full PixelCNN likelihood® 0.074 0.361 0.113 0.602
Our method 1.000 1.000 0.969 0.949

4 Lossless Compression with Local Model

Recent deep generative model based compressors [47, 13,123} [18] are designed under the assumption
that data to be compressed originates from the same distribution (source) as model training data.
However, in practical scenarios, test images may come from a diverse set of categories or domains
and training images may be comparatively limited [33]]. Obtaining a single method capable of
offering strong compresson performance on data from different sources remains an open problem and
related study involves consideration of “universal” compression methods [33]]. Based on our previous
intuitions relating to generalization ability; to build such a “universal” compressor in the image
domain, we believe a promising route involves leveraging models that only depend on common local
features, shared between differing image distributions. We thus propose a new “universal” lossless
image compressor: NeLLLoC (Neural Local Lossless Compressor), built upon the proposed local
autoregressive model and the concept of Arithmetic Coding [50]. In comparison with alternative
recent deep generative model based compressors, we find that NeLLoC has competitive compression
rates on a diverse set of data, yet requires significantly smaller model sizes which in turn reduces
storage space and computation costs. We further note that due to our design choices, and in contrast
to alternatives, NeLLoC can compress images of arbitrary size.

In the remaining parts of this section, we firstly discuss NeLLoC implementation and then provide
further details on the most important resulting properties of the method.

4.1 Implementation of NeLLoC

Our NeLLoC implementation uses the same network backbone as that of our OOD detection experi-
ment (Section[3): a Masked CNN with kernel size k = 2 x h + 1 (h is the horizon size) in the first
layer and followed by several residual blocks with 1x1 convolution, see Appendix [A]for the network



architecture and training details. To realize the predictive distribution for each pixel, we propose to
use a discretized Logistic-Uniform mixture distribution, which we now introduce.

Discretized Logistic-Uniform Mixture Distribution The discretized logistic mixture distribution,
proposed by [41]], has shown promising results for the task of modeling color images. In order to
ensure numerical stability, the original implementation can provide only an (accurate) approximation
and therefore cannot be used for our task of lossless compression, which requires exact numerical
evaluation. We therefore propose to use the discretized Logistic-Uniform Mixture distribution, which
mixes the original discretized logistic mixture distribution with a discrete uniform distribution:

K
z~(1l—a) (Z m; Logistic(u;, sl)> +aU(0,...,255), (7
i=1
where U(0, . . ., 255) is the discrete uniform distribution over the support {0, ..., 255}. The proposed
mixture distribution can explicitly avoid numerical issues and its PMF and CDF can be easily evaluated
without requiring approximation. We can then use this CDF evaluation in relation to Arithmetic
Coding. In practice; we set & = 10~ to balance numerical stability and model flexibility. We use
K = 10 (mixture components) for all models in the compression task.

Arithmetic Coding Arithmetic coding (AC) [50] is a form of entropy encoding which utilizes a
(discrete) probabilistic model p(-) to map a datapoint z to an interval [0, 1]. One fraction, lying in
the interval, can then be used to represent the data uniquely. If we convert the fraction into a large
message stream, the length of the message is always within two bits of — log, p(x) [33]. Our vanilla
NeLLoC implementation makes use of the decimal version of AC. In principle, NeLLoC can also
be combined with an Asymmetric Numeral System (ANS) [[L1], which gives faster coding time yet
sacrifices compression rate. The work of [[13]] further proposed interleaved-ANS (1ANS), which
enables coding a batch of data simultaneously. In Appendix[C| we report comparison of NeLLoC-AC,
NeLLoC-ANS and NeLLoC-iANS in terms of compression rate and run timeﬂ

4.2 Properties of NeLLoC

Universal Image Compressor As discussed previously, the motivation for designing NeLLLoC is to
realize an image compressor that is applicable (generalizable) to images originating from differing
distributions. Towards this, NeLLoC conducts compression depending on local features which are
shown to constitute a domain prior for all images. In addition to universality properties, we next
discuss other important aspects towards making NeLLoC practical when considering real applications.

Arbitrary Image Size Common generative models, e.g. VAE or Flow, can only model image
distributions with fixed dimension. Therefore, lossless compressors based on such models [47, 19} 13|
18, 123]] can only compress images of fixed size. Recently, HiLLoC [48]] explore fully convolutional
networks, capable of accommodating variable size input images, yet still requires even height and
Widtlﬂ L3C [35]], based on a multi-scale autoencoder, can compress large images yet also requires
height and width to be even. NeLLoC is able to compress images with arbitrary size based on
an alternative and simple intuition: we only model the conditional distribution, based on local
neighbouring pixels. We thus do not model the distribution of the entire image and can therefore, in
contrast to HiLLoC and L3C, compress arbitrary image sizes without padding requirements.

To validate method properties, we compare the compression performance of NeLLoC with both
traditional image compressors and recently proposed generative model based compressors. We train
NeLLoC with horizon length & = 3 on two (training) datasets: CIFAR10 (32x32) and ImageNet32
(32x32) and test on the previously introduced test sets, including both ID and OOD data. We also test
on ImageNet64 with size 6464 and a full ImageNeﬂ test set (with average size 500x374). Table E]
provides details of the comparison. We find NeLLoC achieves better BPD in a majority of cases.
Exceptions include LBB [18]] having better ID generalization for CIFAR and HiLLLoC [48]] having
better OOD generalization in the full ImageNet, when the model is trained on ImageNet32.

Small Model Size In comparison with traditional codecs such as PNG or FLIF, one major limitation
of current deep generative model based compressors is that they require generation and storage of

SWe provide practical implementations of NeLLoC with different coders and pre-trained models at
https://github.com/zmtomorrow/NeLLoC.

"For images with odd height or width, padding is required.

8Images with height or width greater than 1000 are removed, resulting in a total of 49032 test images.
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models of very large size. For example, HiLLoC [48]] contains 24 stochastic hidden layers, resulting
in a capacity and parameter size of 156 MegaBytes (MB) using 32-bit floating point model weights.
This poses practical challenges relating to both storage and transmission of such models to real, often
resource-limited, edge-devices. Since NeLLoC only models the local region, a small network: three
Residual blocks with 1x1 convolutions (except the first layer) is enough to achieve state-of-the-art
compression performance. Accordingly the parameter size requirement is only 2.75 MB. We also
investigate the compression task under NeLLoC with 1 and 0O residual block, which have parameter
size of 1.34 and 0.49 MB respectively, and yet still observe respectable performance. We report
model size comparisons in Table[6] In principle, NeLLoC can be also combined with other resource
saving techniques such as binary network weights to realize the generative model components. This
would further reduce model size [4], which we consider a promising line of future investigation.

Computation Cost and Speed The computational complexity and speed for a neural based lossless
compressor depends on two stages: (1) Inference stage: in order to compress or decompress the pixel
x4, a predictive distribution of x4 needs to be generated by the probabilistic models; (2) Coding stage:
uses the pixel value x4 and its distribution to generate the binary code representing x4 (encoding) or
uses the predictive distribution and the binary code to recover x4 (decoding). The computation cost
and speed of the second stage heavily depends on the implementation (e.g. programming language)
and the choice of coding algorithms, see Appendix |C|for a discussion about how different coders
trade off between speed and accuracy. We here only discuss the computational cost pertaining to the
first inference stage, which is affected by two factors: computational complexity and parallelizability.

1. Computational complexity: given an image with size N x N, the full autoregressive model
distribution of pixel z;; depends on all previews pixels p(w;;|21.1,1.5)) and the computational cost
of conditional distribution calculation scales as O(N 2). For latent variable models (e.g. [48l147]) or
flow models (e.g. [3]) the predictive distribution of x; depends on all other pixels and therefore also
scales with O(NN?). In direct contrast, our local autoregressive model only depends on local regions
with horizon h, so computation of p(;|@[i—p:i—1,j—h:j+h]> T[i,j—h:j—1]) Scales with only O(h?)
and typically h<N in practice. This results in significant reduction of computational cost, enabling
efficient usage of NeLLoC on CPUs. In Appendix [C| we show that NeLLoC, with interleaved ANS
coder, is able to compress or decompress the CIFAR10 dataset within 0.1s per image on a CPU. This
gives us evidence, for the first time, that computation need not be a limitation of generative lossless
compression. Further implementation improvements (e.g. C++, faster coders such as tANS [12]),
will make NeLLoC a strong candidate to supersede traditional image compression methods.

2. Parallelizability: a second key property affecting compression speed is parallelizability. Neu-
ral compressors that make use of latent variable models [47, 48] can allow for the distribution
of each pixel to be independent (given decompressed latents). Flow models with an isotropic
base distribution will also result in appealing decompression times on average. However for a
full autoregressive model, the predictive distribution of each pixel must be generated in sequen-
tial order and thus the decompression stage cannot be directly parallelized. This results in the
decompression stage scaling with image size. In contrast to a full autoregressive model, where
sequential decompressing is inevitable, we note that with NeLLLoC each pixel only depends on a
local region. The fact that multiple pixels exist with non-overlapping local regions allows simul-
taneous decompression at each step, enabling parallelization. Alternatively, we can split an image
into patches and compress each patch individually, thus parallelizing the decompression phase.
Table 5| shows the compression BPD when we o .

split full ImageNet images into patches. BPD Table 5: Parallelization using patches on full Im—
slightly increases when we increase the num- 2geNet. The model uses 7 = 3" r= 1 and is
ber of patches. Splitting an image into patches trained on CIFAR10. We use e.g. *400x” to denote
assumes each patch is independent, which weak- &0 IMage 1s split into 400 patches. The reported
ens the predictive performance. This results in BPD has standard deviation ~0.02 across multiple
a trade-off between compression speed and rate: andom seeds.

~0.1 BPD overhead can offer ~x400 speed up
in compression, decompression (assuming in- _Method —Ix lex  25x  100x  400x

finite compute), potentially proving extremely  BPD 325 326 327 329 334
valuable for practical applications.




Table 6: Lossless Compression Comparisons. We compare against traditional images compression
and neural network based models. For neural models, we report results where models are trained
on CIFAR10 or ImageNet32 and tested on other ID or OOD test datasets. We use { to represent the
best ID generalization and « to represent the best OOD generalization. (a) We down-sample CelebA
to 32x32, see Appendix[A.2] (b) The BPD 3.15 reported in [48] is tested on 2000 random samples
from the full ImageNet testset, whereas we test HILLoC on the whole testset with 49032 images. The
reported BPD of NeLLoC has standard deviation ~0.02 across multiple random seeds.

Method Size(MB) CIFAR SVHN CelebA* ImgNet32 ImgNet64 ImgNet
Generic

PNG [6] N/A 5.87 5.68 6.62 6.58 5.71 5.12
WebP [30] N/A 4.61 3.04 4.68 4.68 4.64 3.66
JPEG2000 [39] N/A 5.56 4.10 5.70 5.60 5.10 3.74
FLIF [46] N/A 4.19 2.93 4.44 4.52 4.19 3.51
Train/test on one distribution 1D ID 1))

LBB [18] - k3 L - 3.88 3.70 -
IDF++[3]] - 3.26 - - 4.12 4.81 -
Trained on CIFAR 1D O0OD 00D OO0D (00))) OOD
IDF [19] 223.0 3.34 - - 4.18 3.90 -
Bit-Swap [23] 44.7 3.78 2.55 3.82 5.37 - -
HiLLoC [48] 156.4 3.32 2.29 3.54 4.89 4.46 3.42
L3C [35] 19.11 3.39 3.17 4.44 4.97 4.77 4.88
NeLLoC (r =0) 0.49 3.38 2.23 3.44 4.20 3.86 3.30
NeLLoC(r=1) 1.34 3.28 2.16 3.37 4.07 3.74 3.25
NeLLoC (r =3) 2.75 3.25 2.13* 3.35* 4.02* 3.69* 3.24*
Trained on ImgNet32 (0]0))] (0]0)D] OOD ID (0]0)D] OOD
IDF [19] 223.0 3.60 - - 4.18 3.94 -
Bit-Swap [23]] 44.9 3.97 3.00 3.87 4.23 - -
HiLLoC [48] 156.4 3.56 2.35 3.52 4.20 3.89 3.25*°
L3C [35] 19.11 4.34 3.21 4.27 4.55 4.30 4.34
NeLLoC (r =0) 0.49 3.64 2.38 3.54 3.93 3.63 3.37
NeLLoC(r=1) 134 3.56 2.26 347 3.85 3.55 3.31
NeLLoC (r =3) 2.75 3.51" 2.21 3.43" 3.82f 3.53* 3.29

5 Conclusion and Future Work

In this work, we propose the local autoregressive model to study OOD generalization in probabilistic
image modelling and establish an intriguing connection between two diverse applications: OOD
detection and lossless compression. We verify and then leveraged a hypothesis regarding local
features and generalization ability in order to design approaches towards solving these tasks. Future
work will look to study the generalization ability of probabilistic models in other domains e.g. text or
audio, in order to widen the benefits of the proposed OOD detectors and lossless compressors.
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