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Abstract

To correctly use in-context information, language models (LMs) must bind entities to their
attributes. For example, given a context describing a “green square” and a “blue circle”,
LMs must bind the shapes to their respective colors. We analyze LM representations and
identify the binding ID mechanism: a general mechanism for solving the binding problem,
which we observe in every sufficiently large model from the Pythia and LLaMA families.
Using causal interventions, we show that LMs’ internal activations represent binding infor-
mation by attaching binding ID vectors to corresponding entities and attributes. We fur-
ther show that binding ID vectors form a continuous subspace, in which distances between
binding ID vectors reflect their discernability. Overall, our results uncover interpretable
strategies in LMs for representing symbolic knowledge in-context, providing a step towards
understanding general in-context reasoning in large-scale LMs.
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1. Introduction

Modern language models (LMs) excel at many reasoning benchmarks, suggesting that they
can perform general purpose reasoning across many domains. However, the mechanisms
that underlie LM reasoning remain largely unknown (Räuker et al., 2023). The deployment
of LMs in society has led to calls to better understand these mechanisms (Hendrycks et al.,
2021), so as to know why they work and when they fail (Mu and Andreas, 2020; Hernandez
et al., 2021; Vig et al., 2020b).

In this work, we seek to understand binding, a foundational skill that underlies reasoning.
How humans solve binding, i.e. recognize features of an object as bound to that object and
not to others, is a fundamental problem in psychology (Treisman, 1996). Here, we study
binding in LMs.

Binding arises any time the LM has to reason about two or more objects of the same
kind. For example, consider the following passage involving two people and two countries:

Context: Alice lives in the capital city of France. Bob lives in the capital city
of Thailand.

Question: Which city does Bob live in? (1)

In this example the LM has to represent the associations lives(Alice, Paris) and lives(Bob,
Bangkok). We call this the binding problem—for the predicate lives, Alice is bound to Paris
and Bob to Bangkok. Since predicates are bound in-context, binding must occur in the
activations, rather than in the weights as with factual recall. This raises the question: how
do LMs represent binding information in the context such that they can be later recalled?
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Figure 1: Illustration of the Binding ID mechanism. The LM learns an abstract binding ID
(drawn as triangles or squares) which distinguishes between entity-attribute pairs. Binding
functions ΓE and ΓA bind entities and attributes to their abstract binding ID, and stores
the result in the activations. To answer queries, the LM identifies the attribute that shares
the same binding ID as the queried entity.

In this work, we identify one frequently-used binding mechanism in LMs and test its
robustness and limits. The mechanism relies on binding IDs, which are abstract concepts
that LMs use internally to mark variables in the same predicate apart from variables in
other predicates (Fig. 1). We empirically argue for the existence of binding IDs using
causal mediation analysis.

Turning to the structure of binding IDs, we find that binding IDs are represented as
vectors and the binding function linearly adds binding ID vectors to representations of
variables. Further, we show that binding IDs occupy a metric subspace, in the sense that
linear combinations of binding IDs are still valid binding IDs.

Lastly, we find that binding IDs are ubiquitous and transferable. They are used by every
sufficiently large model in the LLaMa (Touvron et al., 2023) and Pythia (Biderman et al.,
2023) families, and their fidelity increases with scale.

2. Preliminaries

In this section we define the binding task and explain causal mediation analysis, our main
experimental technique.

Binding task To perform reading comprehension tasks, a necessary skill is to distinguish
between entities and bind attributes uniquely to them. We formalize this as the binding
task. The binding task consists of a set of entities E and a set of attributes A. An n-
entity instance of the binding task consists of a context that is constructed from n entities
e0, . . . , en−1 ∈ E and n attributes a0, . . . , an−1 ∈ A, and we denote the corresponding
context as c = ctxt(e0 ↔ a0, . . . , en−1 ↔ an−1). A template is used to obtain the token
representation Tok(c). For a context c, we use Ek(c) and Ak(c) to denote the k-th entity
and the k-th attribute of the context c, for k ∈ [0, n− 1]. We will drop the dependence on
c for brevity when the choice of c is clear from context.

In the capitals task, which is the main task we study for most of the paper, E is a
set of single-token names, and A is a set of single-token countries. Quote 1 is an example
instance of the capitals task with context c = ctxt(Alice ↔ France,Bob ↔ Thailand).
In this context, E0 is Alice, A0 is France, etc.

Given a context c, we are interested in the model’s behavior when queried with each
of the n entities present in c. For any k ∈ [0, n − 1], when queried with the entity Ek the
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model should place high probability on the answer matching Ak. In our running example,
the model should predict “Paris” when queried with “Alice”, and “Bangkok” when queried
with “Bob”.

Causal structure in LMs Autoregressive language models have inherent causal struc-
ture that we utilize. Let an LM have nlayers transformer layers and a dmodel-dimensional
activation space. For every token position p, we use Zp ∈ Rnlayers×dmodel to denote the stacked
set of of internal activations1 at token p. We refer to the collective internal activations of the
context as Zcontext. In addition, we denote the activations at the token for the k-th entity as
ZEk

, and for the k-th attribute as ZAk
. We will sometime write ZAk

(c), Zcontext(c), etc. to
make clear the dependence on the context c.

Zcontext can be viewed as the representation the model constructs for the context. We
thus study the structure of Zcontext using causal mediation analysis, a widely used tool for
understanding neural networks (Vig et al., 2020a; Geiger et al., 2021; Meng et al., 2022).
Causal mediation analysis involves substituting one set of activations in a network for
another, and we adopt the /. notation (from Mathematica) to denote this. For example, for
activations Z∗ ∈ Rnlayers×dmodel , and a token position p in the context, Zcontext/.{Zp → Z∗} =
[Z0, . . . , Zp−1, Z∗, Zp+1, . . . ]. Similarly, for a context c = ctxt(e0 ↔ a0, . . . , en−1 ↔ an−1),
we have c/.{Ek → e∗} = ctxt(e0 ↔ a0, . . . , e∗ ↔ ak, . . . , en−1 ↔ an−1).

3. Binding ID mechanism

We claim that to bind attributes to entities, the LM learns abstract binding IDs that it
assigns to entities and attributes, so that entities and attributes bound together have the
same binding ID (Fig. 1). In more detail, our informal description of the binding ID
mechanism is that:

1. For entity Ek, encode both the entity Ek and the binding ID k in the activations ZEk
.

2. For attribute Ak, encode both the attribute Ak and the binding ID k in the activations
ZAk

.

3. To answer a query for entity Ek, retrieve from Zcontext the attribute that shares the
same binding ID as Ek.

Further, for activations ZEk
and ZAk

, the binding ID and the entity/attribute are the only
information they contain that affects the query behavior. See Appendix A for a formal
statement.

The binding ID mechanism predicts two testable properties about Zcontext:

• Factorizability: if we replace ZAk
with ZA′

k
, then the model will bind Ek to A′

k instead
of Ak, i.e. it will believe c./{Ak → A′

k}. This is because Z ′
Ak

encodes ΓA(A
′
k, k) and ZAk

encodes ΓA(Ak, k). Substituting ZAk
→ ZA′

k
will overwrite ΓA(Ak, k) with ΓA(A

′
k, k),

causing the model to bind Ek to A′
k. We also expect ZEk

to be similarly factorizable.

• Position independence: if we e.g. swap ZA0 and ZA1 , the model still binds A0 ↔ E0

and A1 ↔ E1, because it looks up attributes based on binding ID and not position in the
context. We also expect ZEk

to have similar position independence.

1. These are the the pre-transformer layer activations, sometimes referred to as the residual stream.
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These properties can be tested by experimentally intervening on Zcontext with the relevant
substitutions, and measuring the causal effects on behavior. Appendix C and D contain
these experiments which verify the binding ID mechanism. Appendix B argues that binding
ID is the only mechanism consistent with these two properties.

(a) Pythia and LLaMa models on
capitals task

(b) Metric structure in
binding subspace

Figure 2

4. Properties of Binding ID

Additivity of binding functions A simple hypothesis is that both entity/attribute
representations and abstract binding IDs are vectors in activation space, and that the
binding function simply adds the vectors for entity/attribute and binding ID. We let the
binding ID k be represented by the pair of vectors [bE(k), bA(k)], and the representations
of entity e and attribute a be fE(e) and fA(a) respectively. Then, we hypothesize that the
binding functions can be linearly decomposed as:

ΓA(a, k) = fA(a) + bA(k), ΓE(e, k) = fE(e) + bE(k). (1)

Binding ID vectors seem intuitive and plausibly implementable by transformer circuits.
To experimentally test this, we seek to extract bA(k) and bE(k) in order to perform vector
arithmetic on them. We use (1) to extract the differences ∆E(k) := bE(k)−bE(0), ∆A(k) :=
bA(k)− bA(0). Rearranging (1), we obtain

∆A(k) = ΓA(α, k)− ΓA(α, 0), ∆E(k) = ΓE(a, k)− ΓE(a, 0). (2)

We estimate the mean differences ∆A(k) by sampling Ec,c′ [ZAk
(c)−ZA0(c

′)], and likewise for
∆E(k). In Appendix F we show that adding or subtracting the estimated mean differences
to the binding vectors successfully changes the binding information stored in the context
activations, thus validating the additivity of binding functions.

Geometry of binding vectors Using mean interventions, we find that linear interpola-
tions or extrapolations of binding vectors are also valid binding vectors. This suggests that
binding vectors occupy a continuous binding subspace. We find evidence of a metric struc-
ture in this space, such that nearby binding vectors are hard for the model to distinguish,
but far-away vectors can be reliably distinguished and thus used for the binding task (Fig.
2b). Details in Appendix F.2.
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Generality of binding ID We find that sufficiently large models in the Pythia and
LLaMa families exhibit the binding ID mechanism by measuring the effectiveness of the
mean interventions (Fig. 2a). Further, the effectiveness of the mean interventions increases
with scale, suggesting that large models converge to the same robust representational
strategy of using binding IDs.

Additional properties We additionally find that binding IDs are used across synthetic
binding tasks with different surface forms, and binding vectors from one task transfer to
other tasks. However, despite their ubiquity, binding IDs are not universal: using causal
mediations we identify an alternate binding mechanism, direct binding, that is used for a
question-answering task. Details in Appendix G.
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Appendix A. Binding ID mechanism

Formally, the binding ID mechanism states that there are binding functions ΓE(e, k) and
ΓA(a, k) that fully specify how ZE and ZA bind entities/attributes with binding IDs. Specif-
ically, if Ek = e ∈ E , then we can replace ZEk

with ΓE(e, k) without changing the query
behavior, and likewise for ZA.
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Appendix B. Necessity of Binding ID mechanism

From the factorizability of activations Zcontext we can construct candidate binding functions
ΓE as follows: For any e ∈ E and any binding ID k ∈ [0, n − 1], pick any context c such
that Ek(c) = e. Then, let ΓE(e, k) = ZEk

(c). ΓA can be constructed similarly.

From position independence we argued that the apparent positions of ZEk
and ZAk

are
mostly causally irrelevant for the belief of the LM.

Putting these two properties together, we have the finding that, for all entities e0, e1 ∈ E ,
and all attributes a0, a1 the language model have opposite beliefs in these two contexts:

Z0 := Zcontext/.{ZE0 → ΓE(e0, 0), ZA0 → ΓA(a0, 0), ZE1 → ΓE(e1, 1), ZA1 → ΓA(a1, 1)}

Z1 := Zcontext/.{ZE0 → ΓE(e0, 1), ZA0 → ΓA(a0, 0), ZE1 → ΓE(e1, 0), ZA1 → ΓA(a1, 1)}

For the LM to be able to have different behavior on Z0 and Z1, there must be something
in ΓE(e0, 0) that marks it out as corresponding to a different attribute than ΓE(e0, 1), so
that the LM knows to bind e0 to a0 in Z0 and e0 to a1 in Z1.

Now consider

Z2 := Zcontext/.{ZE0 → ΓE(e0, 0), ZA0 → ΓA(a0, 1), ZE1 → ΓE(e1, 1), ZA1 → ΓA(a1, 0)}.

Similarly, for the LM to behave differently in Z0 and Z2, there must be something in
ΓA(a0, 0) that marks it as corresponding to a different entity than ΓA(a0, 1).

Thus, it appears that the binding information must be contained in the activations ZEk

and ZAk
themselves. This leads the formulation of the binding ID mechanism:

• For all attributes a, for all entities e, and for all k ∈ [0, n − 1], ΓA(a, k) binds a to
an abstract binding ID that is referred to by the index k, and ΓE(e, k) binds e to an
abstract binding ID that is referred to by the index k

• These binding functions are highly localized to the representations of the tokens car-
rying information for a and e respectively

• There is a query mechanism that decides if ΓA(a, k) is bound to ΓE(e, l) by checking
if k is equal to l

Appendix C. Factorizability

The first property of Zcontext we test is factorizability. We first explain in more detail why
our claimed mechanism implies factorizability, then provide experimental verification.

In the binding ID mechanism, information is highly localized—it claims that informa-
tion about Ak is located at ZAk

. Therefore, we expect LMs that implement the binding
ID mechanism to have factorizable activations in that for any contexts c, c′, substituting
ZEk

(c) → ZEk
(c′) into Zcontext will cause the model to believe c/.{Ek → E′

k}, and substi-
tuting ZAk

(c) → ZAk
(c′) cause the model to believe c/.{Ak → A′

k}.
In practice, we find that the entity encoding is diffused across two token activations,

and thus for all experiments in the paper, we expand the definition of ZEk
to include the

token activations immediately after Ek. We use LLaMa 30-b unless otherwise stated.
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Figure 3: Factorizability results for each pair of attributes. Each row corresponds to query-
ing for a particular entity. Plotted are the mean log prob for all four attributes.

Experiments. To test the factorizability hypothesis, we conduct causal mediation
experiments on the capitals task with n = 2, i.e. with two entity-attribute pairs. Consider
two sets of contexts, the target context c = ctxt(e0 ↔ a0, e1 ↔ a1) and the source context
c′ = ctxt(e2 ↔ a2, e3 ↔ a3). We choose either (E0, A0) (Fig. 3a) or (E1, A1) (Fig. 3b) to
intervene on. We will intervene on either just the entity (ZEK

→ Z ′
Ek

), just the attribute,
neither, or both. The mean log probs for each of these settings are shown in Fig. 3.

The results support the factorizability hypothesis. As an example, consider Fig. 3a. In
the None setting, we see high log probs for A0 when queried for E0, and for A1 when queried
for E1. This indicates that the LM is able to solve this task. Next, consider the Attribute
intervention setting: querying for E0 now gives high log probs for A′

0, and querying for E1

gives A1 as usual. Finally, in the Both setting, A′
0 ends up bound to E′

0 as can also be seen
in the log probs.

Appendix D. Position Independence

We next turn to position independence, which is the other property we expect LMs imple-
menting the binding ID mechanism to have. This says that permuting the order of the ZEk

and ZAk
should have no effect on the output, because the LM looks only at the binding IDs

and not the positions of entities or attributes activations.

To test this experimentally, recall that transformers use positional embeddings to encode
the (relative) position of each token in the input. We can intervene on these embeddings
to “move” one of the Zk’s to another location k′. In Appendix E we describe how to do
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Figure 4: Top: Mean log probs for entity interventions. Bottom: Mean log probs for
attributes. For brevity, let Zk refer to ZEk

or ZAk
. The grey and green vertical line indicate

the starting position for Z0 and Z1 respectively. The x-axis marks Z0’s position. For every
step Z0 takes to the right, Z1 takes one step to the left. Thus, the grey line is the control
condition with no interventions, and the green line is the swapped condition where Z0 and
Z1 have swapped positions.

this for rotary position embeddings (RoPE), which underlie all the models studied in this
paper. For now, we will assume this intervention as a primitive and discuss experimental
results.

Experiments. We first intervene on the positions of the entity activations in a n = 2
context, ZE0 and ZE1 , by simultaneously shifting them by an equal and opposite amount.
We then query the model with E0 and E1 and measure the mean log prob over the two
attributes A0 and A1. We repeat the same experiment with attribute activations.

Fig. 4 shows that as predicted, position interventions result in little change in model
behavior. Consider the swapped condition at the green line. Had the binding information
been entirely encoded in position, we expect a complete switch in beliefs compared to the
control condition. In reality, we observe almost no change in mean log probs for entities and
a small change in mean log probs for attributes that is due to a position dependent bias.
We discuss the position dependent bias and other experimental details in Appendix E.

Appendix E. Details for Position Independence

We can equivalently think of Zcontext as a set of pairs: Zcontext = {(p, Zp) | p is an index for a context token}.
LMs that use Rotary Position Embedding (RoPE) (Su et al., 2021), such as those in the
LLaMa and Pythia families, have architectures that allow arbitrarily intervention on the
apparent position of an activation (p, Zp) → (p′, Zp), even if this results in overall context
activations that cannot be written down as a list of activations. This is because position in-
formation is applied at every layer, and not injected into the residual stream like in absolute
position embeddings. Specifically, equation 16 in Su et al. (2021) provides the definition of
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RoPE (recreated verbatim as follows):

q⊺mkn = (Rd
Θ,mWqxm)⊺(Rd

Θ,nWkxn) (3)

Then, making the intervention Rd
Θ,n → Rd

Θ,n∗ changes the apparent position of the activa-
tions at position n to the position at n∗.

Appendix F. Additivity

F.1. Mean interventions

To experimentally test additivity, we would like to extract bA(k) and bE(k) in order to
perform vector arithmetic on them. We use (1) to extract the differences ∆E(k) := bE(k)−
bE(0), ∆A(k) := bA(k)− bA(0). Rearranging (1), we obtain

∆A(k) = ΓA(α, k)− ΓA(α, 0), ∆E(k) = ΓE(a, k)− ΓE(a, 0). (4)

We estimate ∆A(k) by sampling Ec,c′ [ZAk
(c)− ZA0(c

′)], and likewise for ∆E(k).

In our experiments, we fix n = 2 and use 500 samples to estimate ∆E(1) and ∆A(1).
We then perform four tests. The first test is a control test where no interventions are
done. In the second test, we switch the binding ID vectors in ZA0 and ZA1 by intervening
ZA0 → ZA0 + ∆A(1), ZA1 → ZA1 − ∆A(1). In the third test, we switch the binding ID
vectors in ZE0 and ZE1 by intervening ZE0 → ZE0 +∆E(1), ZE1 → ZE1 −∆E(1). We term
these the mean intervention on attribute and entity binding IDs respectively, and expect
them to result in a complete switch in model beliefs so that the accuracy is near 0. Results
are displayed in Table 1, and show agreement with this prediction: all accuracies are below
3%.

As a further check, we intervene on both the attribute and entity IDs simultaneously,
which should cancel out and thus restore accuracy. Indeed, Table 1 shows that accuracy in
this setting is above 97%. Finally, to show that the specific directions obtained by binding
IDs matter, we apply a random rotation to the difference vectors, and perform the same
mean intervention with the rotated vectors. These random vectors have no effect on the
model behavior.

F.2. The Geometry of Binding ID Vectors

Appendix F shows that we can think of binding IDs as pairs of ID vectors, and that randomly
chosen vectors do not function as binding IDs. We next investigate the geometric structure
of valid binding vectors and find that linear interpolations or extrapolations of binding

Test condition Control Attribute Entity Both Attribute Entity Both
Querying E0 0.99 0.00 0.00 0.97 0.98 0.98 0.97
Querying E1 1.00 0.03 0.01 0.99 1.00 1.00 1.00

Table 1: Left: Mean calibrated accuracies for mean interventions on four test conditions.
Columns are the test conditions, and rows are queries. Right: Mean interventions with
random vectors.
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Figure 5: The plots show the mean median-calibrated accuracy when one pair of binding ID,
v0, is fixed at the green circle, and the other, v1, is varied. Each cell on the grid represents
a value of v1. The binding IDs b(0), b(1), and b(2) are shown as the origin of the arrows,
the end of the horizontal arrow and the end of the diagonal arrow respectively. We use
LLaMa-13b for computational reasons.

vectors are often also valid binding vectors. This suggests that binding vectors occupy a
continuous binding subspace. We find evidence of a metric structure in this space, such that
nearby binding vectors are hard for the model to distinguish, but far-away vectors can be
reliably distinguished and thus used for the binding task.

To perform our investigation, we start with an n = 2 context, and thus obtaining repre-
sentations Z0 = (ZE0 , ZA0) and Z1 = (ZE1 , ZA1). We first erase the binding information by
subtracting (∆E(1),∆A(1)) from Z1, which reduces accuracy to chance. Next, we will add
vectors v0 = (vE0 , vA0) and v1 = (vE1 , vA1) to the representations Z; if doing so restores
accuracy, then we view (vE0 , vA0) and (vE1 , vA1) as valid binding pairs.

To generate different choices of v, we take linear combinations across a two-dimensional
space. The basis vectors for this space are (∆E(1),∆A(1)) and (∆E(2),∆A(2)) obtained by
averaging across an n = 3 context. Fig. 5 shows the result for several different combinations,
where the coordinates of v0 are fixed and shown in green while the coordinates of v1 vary.
When v1 is close to v0, the LM gets close to 50% accuracy, which indicates confusion. Far
away from v1, the network consistently achieves high accuracy, demonstrating that linear
combinations of binding IDs (even with negative coefficients) are themselves valid binding
IDs.

The geometry of the binding subspace hints at circuits (Elhage et al., 2021) in LMs
that process binding vectors. For example, we speculate that certain attention heads might
be responsible for comparing binding ID vectors, since the attention mechanism computes
attention scores using a quadratic form which could provide the metric over the binding
subspace.

Appendix G. Generality and Limitations of Binding ID

The earlier sections investigate binding IDs for one particular task: the capitals task. In
this section, we evaluate their generality. We first show that binding vectors are used for
a variety of tasks and models. We then show evidence that the binding vectors are task-
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Figure 6: Left: models in Pythia and LLaMa on capitals. LLaMa-65b not present for
computational reasons. Right: LLaMa-30b on binding tasks. Unlike others, the bios task
has attributes that are several tokens long.

Task capitals parallel shapes fruits bios Zeros Random

Mean accuracy 0.88 0.87 0.71 0.80 0.47 0.30 0.31
Mean log prob -1.01 -1.07 -1.18 -1.21 -1.64 -1.86 -2.15

Table 2: The mean median calibrated accuracy and mean log prob for mean interventions
on n = 3 capitals using binding ID estimates from other tasks. Random chance has 0.33
mean accuracy.

agnostic: vectors from one task transfer across many different tasks. Finally, we show that
our mechanism is not fully universal, by exhibiting a question-answering task that uses an
alternative binding mechanism.

Generality of binding ID vectors. We evaluate the generality of binding vectors
across models and tasks. For a (model, task) pair, we evaluate the model’s mean median-
calibrated accuracy on the n = 3 context under three conditions: (1) the control condition
in which no interventions are performed, and the (2) entity and (3) attribute conditions in
which entity or attribute mean interventions are performed. The mean interventions modify
the binding pairs by a cyclic shift, and we measure accuracy according to this cyclic shift.
As shown in Figure 6, these mean interventions induce the expected behavior on most
tasks; moreover, their effectiveness increases with model scale, suggesting that perhaps
larger models generalize better because they have more robust structured representations.

Transfer across tasks. We next show that binding vectors often transfer across tasks.
Without access to the binding vectors [bE(k), bA(k)], we instead test if the difference vectors
[∆E(k),∆A(k)] from a source task, when added to binding vectors from a target task,
result in valid binding IDs. To do so, we follow a similar procedure to Appendix F.2:
First, we erase binding information by subtracting [∆E(k),∆A(k)] for the target task from
each target-task representation [ZEk

, ZAk
], which results in near-chance accuracy. Then,

we add back in [∆E(k),∆A(k)] computed from the source task with the hope of restoring
performance.

Table 2 shows results for a variety of source tasks when using capitals as the target task.
Accuracy is consistently high, even when the target task has limited surface similarity to the
target task. For example, the shapes task contains descriptions about geometrical shapes
and their colors, and parallel has a parallel sentence structure. In addition, we include
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Figure 7: Direct binding in MCQ task. Ok and Lk denote options and labels respectively.
ZL0 and ZL1 are causally irrelevant. ZO0 and ZO1 are represented by a binding function Λ0

that directly binds option and label together.

two baselines: “Zeros” corresponds to not performing the second step of re-introducing ∆’s,
and “Random” corresponds to reintroducing a randomly rotated vector (as in Table 1).
Both lead to chance accuracy. See Appendix H for more details on the tasks.

The fact that binding vectors transfer across tasks, together with the binding subspace
results from Appendix F.2, suggests that there could be a task-agnostic subspace in the
model’s activations reserved for binding vectors.

Appendix H. Binding Task Details

H.1. capitals

Construct a list of one-token names and a list of country-capital pairs that are also each
one-token wide. Then, apply the following template:

Answer the question based on the context below. Keep the answer short.

Context: {E_0} lives in the capital city of {A_0}.

{E_1} lives in the capital city of {A_1}.

Question: Which city does {qn_subject} live in?

Answer: {qn_subject} lives in the city of

The LM is expected to answer with the capital of the country that is bound to the
queried entity. Note that the LM is expected to simultaneously solve the factual recall task
of looking up the capital city of a country.

H.2. parallel

The parallel task uses the same country capital setup, but with the prompt template:

Answer the question based on the context below. Keep the answer short.

Context: {E_0} and {E_1} live in the capital cities of {A_0} and {A_1}

respectively.

Question: Which city does {qn_subject} live in?

Answer: {qn_subject} lives in the city of

14



Extended Abstract Track

How do language models bind entities in context?

This prompt format breaks the confounder in the capitals task that entity always appear
in the same sentence as attributes, suggesting binding ID is not merely a syntactic property.

H.3. fruits

The fruits task uses the same set of names, but for attributes it uses a set of common
fruits and food that are one-token wide. The prompt format is:

Answer the question based on the context below. Keep the answer short.

Context: {E_0} likes eating the {A_0}. {E_1} likes eating the {A_1} respectively.

Question: What food does {qn_subject} like?

Answer: {qn_subject} likes the

H.4. shapes

The shapes tasks have entities which are one-token wide colors, and attributes which are
one-token wide shapes. The prompt looks like:

Answer the question based on the context below. Keep the answer short.

Context: The {A_0} is {E_0}. The {A_1} is {E_1}.

Question: Which shape is colored {qn_subject}?

Answer: The {qn_subject} shape is

This task inverts the assumption that entities have to be nouns, and attributes are adjec-
tives.

H.5. Bios

This task is adapted from the bias in bios dataset De-Arteaga et al. (2019), with a prompt
format following Hernandez et al. (2023a). The entities are the set of one-token names,
and the attributes are a set of biography descriptions obtained using the procedure from
Hernandez et al. (2023a). The LM is expected to infer the occupation from this description.
This time, the attributes are typically one sentence long, and are no longer one-token wide.
We thus do not expect the mean interventions for attributes to work, although we may still
expect entity interventions to work. Just inferring the correct occupation is also a much
more challenging task than the other synthetic tasks.

The prompt format is:

Answer the question based on the context below. Keep the answer short.

Context:

About {E_0}: {A_0}

About {E_1}: {A_1}
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Question: What occupation does {qn_subject} have?

Answer: {qn_subject} has the occupation of

Appendix I. Related work

Symbolic representations in connectionist systems Many have studied how neural
networks embed concepts in activation space (Mikolov et al., 2013; Tenney et al., 2019a,b;
Rogers et al., 2021). These tend to rely on correlational rather than causal relationships,
leading to a propensity to overestimate the role of these activations (Belinkov and Glass,
2019). Our approach is centered around evaluating the representations’ causal effect on
model behavior.

Recent works (Nanda et al., 2023; Li et al., 2022) have studied representations in small
transformer based language models trained on toy algorithmic tasks. This work extends
the study of representations to large language models trained on natural language data.

Hernandez et al. (2023a) studied the representations of in-context statements and found
directions corresponding to attributes in activation space, that when injected to the acti-
vations for a subject, seem to bind the attribute to the subject. Our work extends this in
two ways. First, we test binding in a rigorous setting that requires discrimination between
choices. Second, we investigate the binding mechanism inherent in LMs instead of an ad
hoc, hand-written binding mechanism.

Knowledge recall. A line of work studies recalling factual associations that LMs
learn from pretraining (Geva et al., 2020; Dai et al., 2021; Meng et al., 2022; Geva et al.,
2023). (Hernandez et al., 2023b), in particular, concurrently studied the representation of
factual relations learned from pretraining and how they are recalled from model weights.
In contrast, we study representations of relations learned from context, and how they are
recalled from model activations.

Mechanistic Interpretability. Mechanistic interpretability aims to uncover circuits
(Elhage et al., 2021; Wang et al., 2022; Wu et al., 2023), often composed of attention heads,
that are embedded in language models. In our work, we study language model internals
on a more coarse-grained level. We identified structures in representations that have causal
influences on model behavior, but how circuits construct these representations or utilize
them is left as future work.
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