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ABSTRACT

We evaluate existing foundation models’ video understanding capabilities using a
carefully designed experiment protocol consisting of three hallmark tasks (action
recognition, temporal localization, and spatiotemporal localization), eight datasets
well received by the community, and four adaptation methods tailoring a foundation
model (FM) for a downstream task. Moreover, we propose a scalar VideoGLUE
score (VGS) to measure an FM’s efficacy and efficiency when adapting to general
video understanding tasks. Our main findings are as follows. First, task-specialized
models significantly outperform the six FMs studied in this work, in sharp contrast
to what FMs have achieved in natural language and image understanding. Second,
video-native FMs, whose pretraining data contains the video modality, are generally
better than image-native FMs in classifying motion-rich videos, localizing actions
in time, and understanding a video of more than one action. Third, the video-native
FMs can perform well on video tasks under light adaptations to downstream tasks
(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end
finetuning. The first two observations reveal the need and tremendous opportunities
to conduct research on video-focused FMs, and the last confirms that both tasks
and adaptation methods matter when it comes to the evaluation of FMs. We will
release our code upon acceptance.

1 INTRODUCTION

Foundation models (FMs) are a term coined by Bommasani et al. (Bommasani et al., 2021), referring
to “any model that is trained on broad data that can be adapted (e.g., finetuned) to a wide range of
downstream tasks.” Some representative FMs include but are not limited to BERT (Devlin et al.,
2018), GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), and ALIGN (Jia et al., 2021). This
work primarily investigates the video understanding capabilies of six visual and multimodal FMs:
CoCa (Yu et al., 2022), CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022), VideoMAE (Tong
et al., 2022), VATT (Akbari et al., 2021), and InternVideo (Wang et al., 2022b). These models are
selected because they are amendable for the video understanding of our interest and make their
checkpoints accessible to us.

It is nontrivial to evaluate FMs. In contrast to “specialist” models developed for a particular task,
FMs are considered as “generalists” that learn shareable meta-knowledge across tasks so that one can
quickly adapt them to achieve superior performance on various downstream tasks. Hence, both the
tasks and adaptation methods matter when it comes to evaluation. However, the community has not
reached a consensus on these two aspects. FM developers select their own different sets of downstream
tasks — interestingly, often covering no video or only appearance-rich video classification tasks
(Buch et al., 2022; Lei et al., 2023). Moreover, they rely on distinct adaptation methods, making
apples-to-apples comparisons challenging and causing mismatches with the FMs’ actual use cases.

To this end, we propose to evaluate FMs’ video understanding capabilities using a carefully designed
experiment protocol, named VideoGLUE, consisting of three hallmark tasks (action recognition,
temporal localization, and spatiotemporal localization), eight datasets well received by the research
community, and four model adaptation methods tailoring a foundation model for downstream tasks.
The tasks examine an FM from various aspects needed for understanding video. The “all-around”
adaptations represent the main use cases of FMs in the literature and, more importantly, allow us to
thoroughly probe an FM’s potential in video understanding.
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Figure 1: FMs vs. state-of-the-art task-specialized models on video understanding. Unlike natural
language and image understanding, video tasks are where FMs generally fall behind “specialists”.
VC(A), VC(M), and VC(ML) stand for appearance-focused, motion-focused, and multi-labeled video
classification, respectively. STAL stands for spatiotemporal action localization, and TAL stands for
temporal action localization. For each task, we include the (min-max) range shown in the figure.

Why do we specifically focus on videos? The main motivation is to promote video understanding in
the evaluation of FMs. More concretely, we test the following conjectures through this work. First,
FMs’ high performance on existing evaluation suites does not necessarily indicate their potential
in video since these suites either lack video-specific tasks or selectively choose video tasks whose
appearance feature is more important than motion — InternVideo (Wang et al., 2022b) is an exception
as discussed in the next paragraph. Second, many existing FMs probably cannot heed motion in
video, given that they learn primarily from static images (Radford et al., 2021; Singh et al., 2022;
Yu et al., 2022) or short video clips containing limited motion (Feichtenhofer et al., 2022; Wang
et al., 2022b). Third, popular adaptation methods (e.g., finetuning all weights) cannot supplement
FMs with all the cues needed to recognize motion-rich actions and localize entities temporally and/or
spatiotemporally. Sections 4.1 and 4.2 elaborate on this point.

While our work is not the first to emphasize the evaluation of FMs, it is unique on multiple fronts.
Unlike Elevater (Li et al., 2022a)’s target of evaluating language-augmented FMs, we consider all
FMs adaptable to video understanding. Unlike Perception Test (Authors, 2022)’s coverage of a
broad spectrum of perception tasks, we focus on video, allowing us to cover various aspects of this
vertical domain. Interestingly, many of our datasets also appear in InternVideo (Wang et al., 2022b),
a video-oriented FM. However, we promote model adaptation methods as an inherent part of the
evaluation protocol — a consistent set of diverse adaptation methods is necessary to provide FMs
ample opportunities to expose their video understanding capabilities. Moreover, unlike InternVideo’s
focus on their single FM, we evaluate FMs developed by different research groups in an uniform
experiment protocol — the first of its kind for visual and multimodal FMs, to the best of our
knowledge.

Our main findings are as follows. First, task-specialized models still significantly outperform the
six FMs studied in this work (see Figure 1), in sharp contrast to what FMs have achieved in natural
language (OpenAI, 2022; Roberts et al., 2022) and image understanding (Radford et al., 2021; Yu
et al., 2022; Chen et al., 2022). Hence, there is a need and tremendous opportunities to research
video-focused FMs. Second, video-native FMs, whose pretraining data contains the video modality,
are generally better than image-native FMs in classifying motion-rich videos, localizing actions in
time, and understanding a video of more than one action. Third, the video-native FMs can perform
well on video tasks under light adaptations to downstream tasks (e.g., freezing the FM backbones),
while image-native FMs win in full end-to-end finetuning. This observation confirms that both tasks
and adaptation methods matter when it comes to the evaluation of FMs.
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2 RELATED WORK

FMs. One common type of FMs are Large Language Models (LLMs) trained to acquire generic,
transferable, and diverse representations that can enable sample-efficient learning and knowledge
transfer across a broad range of downstream tasks. FMs are often trained with simple self-supervised
learning objectives such as predicting the next token in a sentence (e.g., GPT-3 (Brown et al., 2020),
PaLM (Chowdhery et al., 2022)), or denoising the masked tokens (e.g., BERT (Devlin et al., 2018),
UNILM (Dong et al., 2019), and BEiT (Bao et al., 2021)). An intriguing characteristic of FMs
is their ability to gradually acquire new capabilities as the model grows and the training data size
increases, despite being trained on simple learning objectives (Wei et al., 2022). For example,
PaLM (Chowdhery et al., 2022; Anil et al., 2023), a massive LM with 540 billion parameters has
started to show new capabilities in tasks such as explaining jokes, solving math, and performing
common-sense reasoning when scaled to over 100B parameters.

In addition to self-supervised transformers, FMs in computer vision also encompass transformers
specifically trained to align image-text paired data. These FMs use learning objectives include
contrastive learning (e.g., CLIP (Radford et al., 2021)), denoising masked tokens (e.g., BEiT-3 (Wang
et al., 2022a)), predicting the next token in a single modality (e.g., DALL-E (Ramesh et al., 2021)) or
in the interleaved image-text sequence (e.g., Flamingo, KOSMOS-1 (Huang et al., 2023)). Recent
FMs are also trained on a mixture of these objectives (e.g., CoCa (Yu et al., 2022), FLAVA (Singh et al.,
2022), MAE (He et al., 2022)). For example, MAE combines autoencoder reconstruction objective
jointly with the denoising objective (He et al., 2022) that was extended to video (Feichtenhofer et al.,
2022; Tong et al., 2022). In our study, we choose six representative FMs (i.e., CoCa (Yu et al.,
2022), CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022), VideoMAE (Tong et al., 2022),
VATT (Akbari et al., 2021), and InternVideo (Wang et al., 2022b)) due to their amendability on video
understanding and accessibility of checkpoints.

Evaluation of FMs. As the mission of FMs is to enable sample-efficient knowledge transfer, the
design of downstream tasks is critical to evaluate the capabilities and limitations of these models. The
evaluation of FMs is pioneered by the NLP researchers. For example, GLUE (Wang et al., 2018a) and
SuperGLUE (Wang et al., 2019) introduced a suite of tools for evaluating language understanding
tasks. The authors utilized established public benchmarks and provided tools for evaluating, probing,
and benchmarking pretrained FMs, allowing for a comparison to human baselines. ELEVATER (Li
et al., 2022a) introduced this concept to vision FMs along with a toolkit for evaluating vision-language
tasks, including knowledge augmentation, hyperparameter tuning, and three adaptation techniques.
In parallel, there have been attempts to establish a diagnostic benchmark for perceptual understanding
of the world. For instance, Perception Test (Authors, 2022) crowd-sourced 11K videos in which
about 100 users performed scripted activities. This benchmark (Authors, 2022) comprises videos
filmed by only about 100 participants, which may not provide the same level of domain coverage and
diversity as the other FM evaluation works mentioned earlier.

Evaluation of video FMs. While some vision-language FMs have incorporated video tasks, their
evaluation typically follows that of static images and neglects the unique aspects of video spatial-
temporal modeling and reasoning. To our knowledge, no previous work has been solely dedicated
to evaluating Video FMs. The closest work to ours are InternVideo (Wang et al., 2022b) and
VideoMAE (Tong et al., 2022), which introduce new FMs and show their superiority over several
dozen video datasets. There are two key differences to the prior works. First, our evaluation is
video-centric using the tasks that require motion understanding or long-term temporal reasoning.
Second, instead of promoting new video FMs, our work proposes no new models and is solely
dedicated to evaluating current and future Video FMs in an impartial reproducible experimental setup.
Concretely, our goal is to provide tools for probing and benchmarking FMs on motion tasks in various
setting include using the parameter-efficient adapter.

3 TASKS AND ADAPTATION METHODS BOTH MATTER WHEN EVALUATING FMS

This section describes our video general understanding evaluation (VideoGLUE) benchmark. We first
introduce the visual and multimodal FMs evaluated in this work. Then we discuss the video-focused
downstream tasks and methods to adapt an FM to the tasks. The former concretizes the video
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Table 1: Foundation models (FMs) studied in this work (MxM stands for Masked {Image, Language,
or Video}Modeling).

Foundation Model Modality Pretraining Data Pretraining Objective

CoCa Image + Text JFT3B + ALIGN Contrastive + Captioning
CLIP Image + Text WebImageText Contrastive
FLAVA Image + Text PMD Contrastive + MIM + MLM

VideoMAE Video K400 MVM
InternVideo Video UnlabeledHybrid MVM + Contrastive
VATT Video + Audio + Text HT100M Contrastive

Table 2: Summary of statistics, video properties, and data sources of each dataset. Tasks involved
are spatiotemporal action localization (STAL), temporal action localization (TAL), and video classifi-
cation (VC). Column "Num. videos" contains video examples in train/evaluation splits, respectively.

Task Dataset Num. videos Avg. length Data source Note

STAL AVA v2.2 210, 634 / 57, 371 15 mins Movie spatiotemporal, instance
AVA-Kinetics 354, 201 / 91, 919 10 seconds Web spatiotemporal, instance

TAL ActivityNet v1.3 10, 002 / 4, 926 5-10 mins Web temporal

VC

Kinetics400 235, 693 / 19, 165 10 seconds Web holistic, appearance
Moments-in-Time 791, 246 / 33, 898 3 seconds Web holistic, appearance
Sth-sth v2 168, 913 / 24, 777 2-6 seconds Crowd-source holistic, motion
Diving48 15, 027 / 1, 970 5 seconds Web holistic, motion
Charades 7, 811 / 1, 814 30 seconds Crowd-source multi-label, long-clip

understanding capabilities we want to evaluate from an FM, while the latter provides various paths
for an FM to showcase the corresponding capabilities.

3.1 FMS FOR VIDEO UNDERSTANDING

We are interested in examining which FMs are good at solving video tasks, what makes them better
than others in the video domain, and how to best adapt them to video understanding. Table 1 shows
the six FMs we gained access to via public repositories or personal communications.

3.2 VIDEO UNDERSTANDING TASKS

Like objects’ role in image understanding, actions are the core of video understanding, leading us to
select tasks and datasets that recognize and localize actions in time and space. Table 2 provides a
quick summary. Next, we explain the rationale behind the particular choices of datasets and postpone
the datasets’ details to the supplementary materials.

3.2.1 RECOGNIZING ACTIONS

General actions. We first include the action recognition datasets of Kinetics400 (K400) (Kay et al.,
2017), Moments-in-Time (MiT) (Monfort et al., 2019), and Charades (Sigurdsson et al., 2016),
considering their popularity that they are being complementary to each other. Regarding data sources,
K400 videos are from Youtube, MiT draws videos from different Web venues, while Charades
contains scripted videos. Regarding action labels, the datasets differ in granularities and real-life
scenarios, a verb defines an action in MiT, K400 groups actions by verb-subject pairs, and Charades
actions are about indoor activities. Regarding the average length, K400 and MiT videos are between
3 and 10 seconds, each with one action label, while Charades videos are about 30 seconds, each with
multiple actions.

Fine-grained motion-focused actions. We also include Something-something-v2 (SSv2) (Goyal
et al., 2017) and Diving48 (D48) (Li et al., 2018) as another two action recognition datasets, whose
actions are fine-grained and motion-focused. SSv2 contains 174 human hand gestures as action labels,
such as putting something into something, turning something upside down, and covering something
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with something. D48 is all about competitive diving. Notably, the foreground objects’ motion is a
more significant discriminative cue than their appearance.

3.2.2 LOCALIZING ACTIONS

The videos in action recognition are trimmed, but actions could occur anywhere in a video in the
wild. Hence, temporal and spatiotemporal action localization is also crucial to video understanding.
Accordingly, we choose three datasets for the experiments: the action localization track of ActivityNet
v1.3 (ANet) (Fabian Caba Heilbron & Niebles, 2015), Atomic Visual Actions (AVA) (Gu et al., 2018),
and AVA-Kinetics (AVA-K) (Li et al., 2020). The last two require a model to localize (and recognize)
actions in both time and space, and their underlying videos are movies and general YouTube videos,
respectively.

3.3 ADAPTATION METHODS

In this section, we detail the task-specific neural architecture design and adaptation methods when
applying FMs to downstream tasks.

3.3.1 MODIFYING FM ARCHITECTURES FOR DOWNSTREAM TASKS

Given a FM(·), we can apply FM(·) to a video clip C to extract a set of k feature maps {F}k =
FM(C), F ∈ Rn×h×w×c, where k is the number of endpoint layers from a FM, and n, h,w, c are
respectively a feature map’s length, height, width, and number of channels.

For video classification tasks, we cast a feature map F as n× h× w tokens and aggregate them into
a global representation using a learnable query token τ and lightweight cross-attention layers (Doso-
vitskiy et al., 2020). For spatiotemporal action localization, following the standard practice (Fe-
ichtenhofer et al., 2019; Tong et al., 2022), we first detect humans on key-frames using a human
detector (Ren et al., 2015), producing a set of human bounding boxes B. We then apply the RoI
pooling operation (Jaderberg et al., 2015) that takes both the feature map F and box coordinates B as
inputs and outputs one feature vector per box as the query token, τ = ROIPOOL(F,B), followed by
the same cross-attention layers as in video classification. For both groups of tasks, we stack a linear
classifier on top of the task token’s last-layer encoding for final classification:

p = LINEARCLASSIFIER(CROSSATTENTION(τ, F )). (1)

For temporal action localization, we first perform feature extraction in a sliding window manner,
resulting in a sequence of globally average pooled features {AVGPOOL(F1), · · · ,AVGPOOL(Ft)}
for each video. Following a popular choice of prior works (Alwassel et al., 2021; Ju et al., 2022; Liu
et al., 2022), we employ G-TAD (Xu et al., 2020) as our task head for predicting the action category
and its start and end timestamps.

3.3.2 ADAPTING THE MODIFIED FMS’ WEIGHTS FOR DOWNSTREAM TASKS

Adapting the modified FMs to a downstream task is to tune their weights. Then, we immediately
have two basic adaptation strategies: 1) full finetuning to update all weights in the original FM plus
the task head and 2) freezing FM weights and only updating newly added weights. The choice of
the adaptation methods depends on specific application scenarios such as computation and memory
constraints. We argue that an ideal FM should perform well across various adaptation methods to
support the breadth of use cases.

End-to-end finetuning. End-to-end finetuning is the most common FM evaluation method for videos
(Akbari et al., 2021; Feichtenhofer et al., 2022; Tong et al., 2022; Wang et al., 2022b), but it requires
the deployment of a separate and possibly expensive FM for each downstream task. When finetuning
all weights in the modified FMs, we limit cross-attention to a single transformer layer with 12 heads
and hidden size 768. We vary learning rates and weight decays for each experiment to ensure every
FM is configured to its best setup. Figure 2(a) illustrates this end-to-end finetuning.

Frozen FM. Linear probing and cross-attention based pooling over frozen FM features are routinely
used to test the strength of the FM representation (Tong et al., 2022; Yu et al., 2022; Singh et al.,
2022; He et al., 2022; Lin et al., 2022). In practice, adapting task-specific heads with a frozen FM
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Figure 2: We study four adaptation methods to apply a foundation model (FM) to video understanding
downstream tasks: (a) end-to-end finetuning, (b) frozen backbone evaluation, (c) frozen features with
multi-layer attention pooler (MLAP), and (d) a low-rank adapter.

allows us to deploy the same FM for multiple tasks. If we use light-weight heads over the FM
features, then a single FM inference can serve multiple tasks efficiently in terms of both compute and
memory. To this end, we examine two variations with a frozen FM, one with a single cross-attention
layer and the other with multiple layers. The first results in exactly the same model architectures as
in end-to-end finetuning (Figure 2(b)), and the second allows us to leverage an FM’s hierarchical
features beyond its last endpoint layer (Figure 2(c)). First, the frozen features are extracted from
the last k layers, FN−k+1, FN−k+2, ..., FN . Then, attention pooling is applied between a learnable
token τ and the features FN−k+1 using multi-head cross-attention (MHCA). The output of this layer
serves as the query token for the next round of attention pooling with the features FN−k+2. This
process is repeated for k rounds:

τN−k+1 = MLP(MHCA(τ, FN−k+1))

τN−k+2 = MLP(MHCA(τN−k+1, FN−k+2))

...

τN = MLP(MHCA(τN−1, FN ))

(2)

where k = 4 in our experiments, and the final classifier is p = LINEARCLASSIFIER(τN ).

Frozen FM with a low-rank adapter. Finally, we explore a frozen FM beyond the last k layers
using a low-rank adapter (Hu et al., 2021), which is a bottleneck architecture that projects a feature
tensor into a low-dimensional space and then up-samples to the original space. The bottleneck space’s
dimension is 64 in our experiments. Inserting a few adapter layers with trainable weights {w} into the
pretrained FM while keeping all FM’s weights frozen, the feature adapter is more parameter-efficient
than end-to-end finetuning the whole network while achieving better performance than simply adding
a task head to the frozen FM. Essentially, the adapter leads to a new F̃M with some trainable weights
{w}: F̃ = F̃M(C, {w}), such that the output feature maps remain the same in shape as the original
FM’s output (Figure 2(d)). Hence, different pooling schemes and task heads aforementioned could be
applied to the extracted feature map F̃ . For simplicity, we still choose the single-layer cross-attention
as the default task head due to its computation efficiency and performance.

The low-rank adaptation allows a single FM for multiple tasks, in contrast to the per-task models
in end-to-end finetuning. However, it incurs a per-task forward pass at inference time, being less
efficient than the task-specific heads over frozen features.

4 EXPERIMENTS

4.1 END-TO-END FINETUNING

Table 3 shows the end-to-end finetuning results of six FMs on eight datasets. We split the FMs into
two groups based on their input modalities at the time of pretraining: CoCa, CLIP, and FLAVA are
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Table 3: Evaluating FMs when adapted to video understanding tasks using end-to-end finetuning.
We report the Top-1 accuracy on K400, MiT, D48 and SSv2, MAP on Charades and ANet, and
mAP@IOU0.5 on AVA and AVA-K.

STAL TAL VC (A) VC (M) VC (ML)
Method AVA AVA-K ANet K400 MiT D48 SSv2 Charades AVG

CoCa 27.7 31.0 − 82.6 43.6 79.6 66.8 55.0 55.2
CLIP 27.1 28.9 − 81.0 39.0 75.7 46.6 54.3 52.8

FLAVA 22.0 25.6 − 79.1 38.3 72.0 61.1 48.6 49.4

VideoMAE 23.5 26.2 − 78.7 36.1 75.5 65.5 51.4 51.0
InternVideo 27.2 29.8 − 80.1 35.9 75.8 67.0 52.2 52.5

VATT 27.0 28.4 − 77.1 34.8 77.6 65.1 55.7 52.7

Task-specialized
42.3 38.9 37.5 88.6 42.7 88.9 68.7 63.2 −RAFT RAFT PRN TubeViT UniformerV2 AIM MViT MoViNet

Table 4: Evaluating FMs when adapted to video understanding using frozen features. Only weights
in the task heads are updated using the downstream tasks’ training sets.

STAL TAL VC (A) VC (M) VC (ML)
Method AVA AVA-K ANet K400 MiT D48 SSv2 Charades AVG

CoCa 23.3 24.7 33.0 73.1 32.0 34.1 41.5 8.8 31.2
CLIP 21.1 25.9 32.7 75.2 32.6 44.1 41.0 11.2 32.8

FLAVA 18.8 21.5 32.2 71.3 29.7 45.9 40.6 12.6 31.7

VideoMAE 16.0 19.9 33.0 65.1 23.0 59.5 53.9 11.3 32.6
InternVideo 13.4 15.7 33.3 69.3 26.3 55.6 58.2 13.0 33.1

VATT 20.3 22.2 35.3 75.1 32.1 49.7 57.8 33.3 39.1

image-native FMs, and VideoMAE, VATT, and InternVideo are video-native. The datasets span
spatiotemporal action localization (STAL), video classification (VC), and temporal action localization
(TAL). Note that we freeze FM weights in TAL because otherwise its full finetuning consumes
excessive memory and computation. We draw the following observations from Table 3.

FMs underperform task-specialized models on video tasks in general. Table 3’s last row collects
the state-of-the-art results on the eight datasets, each obtained by a task-specialized model with
comparable architecture or size to ours in the prior work. Specifically, those task-specialized
models are RAFT (Rajasegaran et al., 2023), PRN (Wang et al., 2021), TubeViT (Piergiovanni
et al., 2023), UniformerV2 (Li et al., 2022b), AIM (Yang et al., 2023), MViT (Fan et al., 2021)
and MoViNet (Kondratyuk et al., 2021) respectively. All six FMs significantly underform the task-
specialized models on the video tasks at the comparable model scale, indicating the lack of strong
video-focused FMs. This observation is in sharp contrast to what FMs have achieved on natural
language (OpenAI, 2022; Anil et al., 2023) and image understanding (Chen et al., 2022).

Video-native FMs outperform image-native FMs on SSv2, Charades, and ANet which require a
model to reason along the time dimension: SSv2 actions are motion-rich, Charades has multiple
actions per video, and ANet is about temporal action localization. These results strut the advantages
of video-native FMs over image-native ones and, hopefully, prompt more efforts dedicating to the
research of video-native FMs.

CoCa performs the best among image-native FMs on the video tasks. It actually gives rise to the
highest accuracy on all datasets except SSv2, Charades, and ANet probably because CoCa, pretrained
using image-text pairs, does not capture sufficient motion signals required for understanding SSv2,
and it cannot handle Charades and ANet’s complex, multiple actions per video.

4.2 FROZEN FMS

End-to-end finetuning is infeasible for some application scenarios due to FMs’ rapidly growth in
size and the consequent demands in computational resources. In the following, we evaluate frozen
FMs with various adaptation methods. Tables 4, 5, and 6 are the results of adaptation with a single
cross-attention layer, multiple cross-attention layers, and a low-rank adapter, respectively.

CLIP generally performs the best among image-native frozen FMs (Tables 4 and 5), but CoCa catches
up thanks to the low-rank adapter (Table 6). It is worth noting that this ranking of image-native
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Table 5: Evaluating FMs when adapted to video understanding using multi-layer attention pooler
(MLAP), which takes multiple frozen features from an FM as inputs and map them hierarchically
for the final task prediction. Only the multi-layer attention pooling layers are updated using the
downstream tasks’ training sets.

STAL TAL VC (A) VC (M) VC (ML)
Method AVA AVA-K ANet K400 MiT D48 SSv2 Charades AVG

CoCa 24.4 27.0 33.3 74.2 37.2 48.4 45.9 19.6 36.3
CLIP 27.7 29.6 33.9 77.1 39.0 55.8 50.1 41.5 43.3

FLAVA 21.3 23.2 32.4 71.5 34.5 58.5 43.1 38.2 39.3

VideoMAE 19.6 22.1 33.4 71.7 32.2 69.6 57.4 35.9 40.9
InternVideo 15.9 17.7 33.6 73.7 34.7 71.9 60.3 40.5 42.2

VATT 22.9 24.1 35.0 75.1 35.6 60.1 58.7 58.2 46.3

Table 6: The low-rank adapter results of FMs for video understanding. We only update the weights
of the adapter and task head while keeping the original FMs’ weights frozen.

STAL TAL VC (A) VC (M) VC (ML)
Method AVA AVA-K ANet K400 MiT D48 SSv2 Charades AVG

CoCa 26.6 28.7 − 80.9 41.4 67.1 56.1 45.8 49.0
CLIP 24.5 28.0 − 80.2 39.7 77.2 56.0 44.2 49.3

FLAVA 17.9 23.8 − 74.7 34.1 68.4 52.1 40.8 44.1

VideoMAE 16.6 23.3 − 73.6 30.6 76.0 61.4 43.0 45.9
InternVideo 19.2 25.5 − 75.5 31.3 73.6 63.9 46.2 47.7

VATT 22.3 25.8 − 75.0 36.5 68.9 63.5 53.5 49.9

frozen FMs differs from the ranking of image-native FMs in end-to-end finetuning. It seems that
CLIP’s endpoint features are more amendable to the video tasks than CoCa, but CoCa as a whole
adapts better to video under both finetuning and the adapter. Hence, it is crucial to consider adaptation
methods as an organic part of the evaluation of FMs to supply them various paths to demonstrate
their capabilities.

Video-native FMs are better than image-native FMs in understanding motion-rich SSv2 and D48,
Charades that contain multiple actions per video, and ANet for temporal action localization. This
observation is about the same as the one under end-to-end finetuning. The image-native FMs is
mainly superior on appearance-rich video datasets, where high-quality spatial perceptual features are
the key. We conjecture that the vast image data empowering image-native FMs is more diverse in
appearance than videos used to pretrain video-native FMs.

Given frozen FMs, the low-rank adapter outperforms cross-attention layers, and multiple layers of
cross-attention is better than a single cross-attention layer. Many works (Caron et al., 2021; He
et al., 2022) have shown features from different layers of a vision transformer have different attention
maps. Hence, it is potentially beneficial to have an adaptation method to leverage multiple layers of a
frozen FM. Table 5 reports the results with four cross-attention layers, whose average score per model
(across different columns) is higher than that with a single cross-attention layer (Table 4) by 18%
to 40%. The low-rank adapter (Table 6) further improves upon the cross-attention results partially
because it explores all layers of a frozen FM.

On average, image-native FMs outperform video-native FMs under end-to-end finetuning and the
adapter, but it becomes the inverse in the other two adaptation methods. The adapter experiment
paired with end-to-end finetuning experiment reveal the fact that existing image-based FMs could
be more easily adapted to video tasks when we could adjust the feature space of FMs, possibly
caused by the large-scale higher quality image(-text) pretraining datasets. On the other hand, frozen
feature experiments discussed above present us the inverse picture where video-based FM performs
better. The seemingly paradox encourages more future research on bridging the gap on video-based
pretraining with high-quality data and more effective modeling.

4.3 VIDEOGLUE SCORE: AN ATTEMPT TOWARDS RANKING FMS’ VIDEO CAPABILITIES

In this section, we consolidate our studies of the FMs with different adaptation methods on a
broad range of video tasks by considering their adaptation efficacies and efficiencies. Adaptation
methods with different numbers of trainable weights lead to incompatible comparisons. Motivated

8



Under review as a conference paper at ICLR 2024

Figure 3: FMs are equipped with different adaptation methods. Left: For each adaptation method, we
plot FMs’ averaged scores across all video tasks vs. trainable FLOPs in a log scale. Right: We plot
the overall VideoGLUE score (VGS) per FM.

by this, we propose a scalar measure, called VideoGLUE score (VGS), to capture an FM’s overall
adaptation performance on our video understanding tasks. While the VideoGLUE score may not be a
perfect metric, it condenses multiple aspects of comparison into a scalar value, enabling a simplified
comparison of FMs.

Taking the adaptation efficiency into account, we propose to use the trainable FLOPs to normalize an
adapted FM’s average score s over all tasks. The trainable FLOPs are better than tunable weights
because they allow our VGS to reflect both the model architecture’s freedom and the input data’s
impact (e.g., sequence length) on downstream tasks. Formally, denoting by Si an FM’s average score
over our video tasks under the i-th adaptation method and by Fi the corresponding trainable FLOPs
(in billion), we calculate the FM’s VGS by

VGS =

N∑
i=1

wiSi, where wi =
Ai∑N
j=1Aj

and Ai =
1

log10 Fi
, (3)

where N = 4 is the number of adaptation methods, and wi ∈ [0, 1] weigh score Si according to the
trainable FLOPs Fi.

In Figure 3 we plot the averaged score achieved by each FM under each adaptation method, re-
spectively, and compare their overall video understanding capabilities using the proposed VGS. The
changes in FMs’ ranking by different adaptation methods (see the left panel in Figure 3) reinforce
that the adaptation methods matter and should be considered an organic part of the evaluation of FMs.
On the right panel of Figure 3, we notice that the video-native FMs overall outperform image-native
FMs on our video understanding tasks, achieving averaged VGS 41.98 vs. 39.90 respectively. This is
intuitive as video-native FMs probably have a smaller domain gap to our tasks and are more capable of
temporal and motion reasoning, which are important cues for video understanding. Zooming in to the
individual FMs, we find that VATT, a video-native FM, is at the first place with VGS 45.1, followed
by the image-native CLIP with VGS 41.6. This suggests that in-domain pretraining yields overall
the best adaptation capability to video tasks, and image-native FMs could also achieve competitive
results on many but not all video understanding tasks.

5 CONCLUSION

In this report, we study three image-based and three video-based foundation models and their
adaptation capability on general video understanding tasks. Experiments are conducted on three
hallmark video tasks, eight diverse datasets with four distinct adaption methods. Our study shows
existing image-based FMs performs well on some appearance-rich video datasets, while video-based
FMs tend to achieve better on motional and temporal reasoning. Four studied adaption methods curve
different landscape, revealing the critical role of considering adaption methods as an organic part of
evaluating FMs. Finally, we propose one single metric VGS to represent the video task adaptation
efficiency of FMs. We hope our research provides useful resources for evaluating and analyzing
video foundation models, and address the current gap in foundation model evaluation within the
video domain.

9
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SUPPLEMENTARY MATERIALS

We first discuss the limitations, ethcial concerns and broader impact of this work (Section A). We detail
the datasets (Section B), models (Section C), and training setups (Section D) in the supplementary
materials to improve this work’s reproducibility. Besides, Section E includes more experimental
studies to strengthen the main text.

A LIMITATION, ETHICAL CONCERN, AND BROADER IMPACT

Limitation. VideoGLUE covers various unimodal video tasks and could be strengthened by adding
multimodal tasks like video question answering. We chose three representative FM adaptation
methods and used them to provide as uniform experiment protocols for different FMs as possible.
However, some of our observations could be flipped with the evolution of adaptation methods, which
are an active research area. We proposed a scalar score, VideoGLUE score (VGS), to capture the
efficacy and efficiency of an FM on video understanding. However, VGS might be dominated by one
or a few datasets — when it becomes a serious issue, we should probably improve the score and/or
retire the other datasets from future versions of VideoGLUE. Indeed, VGS is not a perfect score that
covers all aspects of FMs in a comprehensive manner. For example, it does not account for an FM’s
memory usage, model size, model architecture, etc. We hope future research will lead to new metrics
to complement VGS and a more comprehensive evaluation of FMs for visual tasks.

Ethical concern. We evaluate FMs on three video tasks, eight datasets in total. We select the tasks
and datasets based on their popularity and representativeness. Although carefully designed, our
benchmark inevitably inherited some ethical concerns from those datasets. For instance, many of the
datasets are curated by crawling videos from the Internet, which do not proportionately represent the
experiences of the global population and can potentially lead to biased evaluations of FMs. Moreover,
the video datasets involve human daily activities, leading to privacy concerns about the human actors
in the videos. How to evaluate FMs for video understanding in a fair and privacy-preserving manner
could be an important direction for future research.

Broader impact. Our research reveals the need and tremendous opportunities to research video-first
FMs by improving pretraining video data and methodologies. Our studies on different adaptation
methods on versatile tasks confirms that both tasks and adaptation methods matter when it comes
to the evaluation of FMs, shedding light on the already vibrant area of FM adaptations. Finally, we
hope our research could inspire research on foundation models development and video understanding
in general, along with their applications in the real world.

B VIDEO UNDERSTANDING DATASETS

B.1 APPEARANCE-FOCUSED ACTION RECOGNITION

Video classification is a task of classifying videos into pre-defined labels, with the major focus on
human actions.

Kinetics400 (Kay et al., 2017) (K400) is a large-scale, high-quality video dataset widely used as a
standard video classification benchmark. It contains more than 250k video clips with annotations
of 400 human daily actions. The actions are human focused and cover a broad range of classes
including human-human interactions and human-object interactions. Although the video clips span
10 seconds on average, many studies (Sevilla-Lara et al., 2021; Wang et al., 2018b) have pointed out
the task could be easily solved on the Kinetics datasets by inferring from the static objects appeared or
background environment — motion information is less important than the visual appearance. Hence,
we categorize Kinetics400 as an appearance-focused action classification dataset.

Moments-in-Time (Monfort et al., 2019) (MiT) is a large-scale video event classification dataset,
with one million human annotated short video clips (around 3 seconds each). The temporal span
corresponds to the averaged duration of human working memory and is a temporal envelope holding
meaningful actions between people, objects, and phenomena. Videos in MiT are annotated with 339
most used verbs in the English vocabulary.

10
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B.2 MOTION-FOCUSED ACTION RECOGNITION

Videos contain much more commonsense knowledge than still images do, such as an object’s motion
patterns and the causal consequences of an action, just to name a few. However, appearance-based
benchmarks do not evaluate a model’s understanding of such commonsense knowledge, complex
scenes, and situations. In observance of this, some video datasets have been proposed and studied in
recent years with the focus on motions and common-sensing reasoning that are prosperous in video
data.

Something-something v2 (Goyal et al., 2017) (SSv2) is a collection of around 200k videos of human
performing pre-defined, basic actions with everyday objects. There are 174 unique labels in total
depicting atomic hand manipulations, like putting something into something, turning something
upside down or covering something with something. This dataset benchmarks a model’s fine-grained
understanding capability of object motions and scene changes by making the label space atomic-
action-focused and background-invariant.

Diving48 (Li et al., 2018) (D48) is introduced to evaluate a model’s dynamic reasoning capability.
The video clips in this dataset are obtained by segmenting online videos of major diving competitions.
In total, there are around 18k videos annotated with 48 classes. Because of its standardization, the
diving scenario is purposefully chosen to avoid the scene, object, and person biases.

B.3 MULTI-LABEL DAILY ACTION CLASSIFICATION

Most of current action classification datasets involve video clips with a clean snapshot of a single
action. In contrast, humans perform daily complex activities step-by-step, simultaneously, or in an
interleaving manner. Towards more comprehensive human daily activity reasoning, Charades (Sig-
urdsson et al., 2016) is introduced. Different from web-collected datasets whose contents are more
structured, Charades is collected by crowd-sourcing from hundreds of actors recording their videos
in their own homes, acting out casual everyday activities. Charades brings in more diversity into the
video classification task due to its close-to-daily-life setting. Its videos are 30 seconds long on average
and have multi-label annotations testing models’ understanding of complex daily activities with
multiple steps. Charades provides 110k videos with 157 action classes for training and evaluation.

B.4 TEMPORAL ACTION LOCALIZATION

Natural long videos contain scene changes and semantic shifts, while most of the existing video
benchmarks formulate problems to focus on trimmed video clips. Such a gap introduces evaluation
bias as clip-level benchmarks could not reflect a model’s temporal feature discriminativeness, which
is of key importance to solve long-form video understanding tasks. To comprehend the study on
foundation models’ video capabilities, we include the temporal action localization (TAL) task in our
evaluation. The task of TAL is to predict not only the action labels but also each action instance’s
temporal boundary in untrimmed videos. We adopt ActivityNet v1.3 (Fabian Caba Heilbron &
Niebles, 2015) as the dataset for the TAL task, which contains 10, 002 untrimmed videos in training
and 4, 985 in validation. The video length in this dataset is between 5-10 minutes. In total, there are
200 types of activities annotated.

B.5 SPATIOTEMPORAL ACTION LOCALIZATION

Spatiotemporal Action Localization (STAL) is a person-centric task that asks a system to localize
actors and predict their atomic actions (Barker & Wright, 1955; Gu et al., 2018) in a transitory
duration.

In AVA (Gu et al., 2018), 15 minutes long movie clips are densely annotated at 1Hz. In the key
frames, every person is localized using a bounding box and labels corresponding to actions being
performed by the actor. The label vocabulary consists of 80 different atomic visual actions. There are
430 different movies in total.

AVA-Kinetics (Li et al., 2020) follows the same labeling protocol as AVA, while its data source comes
from the Kinetics700 (Kay et al., 2017) video pool. The dataset contains over 230k clips annotated
with the 80 AVA action classes for each of the humans in key frames.
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Figure 4: (a) Single-layer pooler head and (b) multi-layer attention pooling head for video classifica-
tion and spatiotemporal action localization.
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Figure 5: The adapter used in vision transformer. In the adapter layer, only the down-sample layer,
up-sample layer, and the scaling factor are tunable. Between the down-sample layer and up-sample
layer, an activation function is applied, which in our case is ReLU.

C MODEL DETAILS

C.1 TASK HEAD ARCHITECTURES

In Figure 4, we plot the task heads used in our video classification and spatiotemporal action
localization experiments, namely, the simple pooler head and multi-layer attention pooling head. For
temporal localization, please refer to (Xu et al., 2020) for the task head’s detailed architecture.

Figure 5 illustrates the encoder adapter layer’s architecture. In the the adapter layer, only the
down-sample layer, up-sample layer, and the scaling factor are tunable.

C.2 IMAGE-TO-VIDEO ADAPTATION

Adapting image backbones to video tasks requires us to fuse the image embeddings at some point in
the network and also introduce additional temporal information.

We consider two choices, early-fusion and late-fusion, and ablate them in the frozen feature setting
in Table 7. In both early-fusion and late-fusion, we first apply the projection layer on each frame
independently to embed pixel patches into embedding tokens. We then average-pool the embedding
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Table 7: Early vs. late fusion on image-native FMs. In this experiment, the frozen feature with a
single-layer pooler head is used.

K400 SSv2
Method Early Late Early Late

CoCa 72.7 61.4 41.5 33.3
CLIP 70.5 75.2 38.1 41.0

FLAVA 67.9 71.3 40.4 40.6

Table 8: Ablation study on the temporal positional embedding for image-to-video adaption. We
choose FLAVA (Singh et al., 2022) with the frozen feature setting in this experiment.

Temporal Positional VC (A) VC (M) VC (ML)
Embedding K400 MiT D48 SSv2 Charades

7 71.3 29.7 41.6 30.3 10.7
3 71.3 29.7 45.9 40.6 12.6

tokens from nearby frames to reduce the sequence length to n×h×w. In the early-fusion setting, we
pass all tokens together to the image backbone to extract video features. In late-fusion, we pass each
set of h×w tokens independently to the image backbone. Empirically, we find that the FLAVA (Singh
et al., 2022) and CLIP (Radford et al., 2021) models do better with late-fusion while CoCa (Yu et al.,
2022) does better with early-fusion.

Furthermore, we ablate the importance of temporal information using the frozen-features from
FLAVA (Singh et al., 2022). In Table 8, we find that adding temporal positional embedding to the
input is essential for D48 (Li et al., 2018), SSv2 (Goyal et al., 2017), and Charades (Sigurdsson et al.,
2016) while not necessary for K400 (Kay et al., 2017) and MiT (Monfort et al., 2019). This supports
our grouping that K400 and MiT are appearance-focused datasets.

Based on these findings, we use late-fusion for FLAVA (Singh et al., 2022) and CLIP (Radford et al.,
2021) and early-fusion for CoCa (Yu et al., 2022). We add learnable temporal positional embeddings
for all the image-native FMs.

D TASK-SPECIFIC HYPERPARAMETERS

In the following, we provide experiment settings and hyperparamters we used in this study. In Table 9,
we list the hyperparameters we applied in the video classification task. In Table 10, we present
the hyperparameters we used on spatiotemporal action localization. In Table 11, we present the
hyperparameters we used on temporal action localization task.

We performed a greedy search on the learning rate and weight decay in all our experiments while
keeping most other hyperparameters (e.g., data augmentation magnitude, dropout rate, drop path rate,
etc.) consistent across different models and datasets. Specifically, we start with learning rate 1e-4 and
weight decay 1e-5 and uniformly sample learning rates and weight decay factors with a rate of 5 and
10, respectively, centered around the starting points. After the first round, we pick the best-identified
learning rate and weight decay factor as the new starting point and conduct another round of sampling
with a rate of 2. We repeat another two to three rounds of hyperparameter search (with a rate of 2)
until the model’s performance converges. This process is a trade-off between computation costs and
thoroughly examining an FM’s performance under each experiment setup. The search ranges for the
learning rate and weight decay are [4e-5, 2.5e-3] and [1e-6, 1e-4], respectively. We found that the
learning rate is the most crucial factor when adapting an FM to downstream video understanding
tasks.
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Table 9: Experimental configurations for video classification tasks. We let learning rate and weight
decay to be tunable per model to allow some flexibility for task adaptations.

Config Kinetics400 Sth-sth v2 MiT Diving48 Charades
batch size 256 256 256 256 256
training epochs 150 50 50 100 50
ViT sequence length 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14
optimization
optimizer AdamW AdamW AdamW AdamW AdamW
optimizer momentum 0.9 0.9 0.9 0.9 0.9
learning rate schedule cosine decay cosine decay cosine decay cosine decay cosine decay
warmup ratio 5% 5% 5% 5% 5%
data augmentations
random horizontal flip true false true true false
aspect ratio (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0)
area ratio (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
RandAug (9, 0.5) (9, 0.5) - - -
MixUp 0.8 0.8 - - -
CutMix 1.0 1.0 - - -
evaluation
multi-clips 4 1 4 4 4
multi-views 3 3 3 3 3
segment-based sample false true false false false

Table 10: Experimental configurations for spatiotemporal action localization.
Config AVA v2.2 AVA-Kinetics
batch size 256 256
training epochs 50 50
ViT sequence length 8 × 16 × 16 8 × 16 × 16
optimization
optimizer AdamW AdamW
optimizer momentum 0.9 0.9
layer decay 0.75 0.75
learning rate schedule cosine decay cosine decay
warmup ratio 5% 5%
data augmentations
random horizontal flip true true
random scale (0.5, 2.0) (0.5, 2.0)
random color augmentation true true

Table 11: Experimental configurations for temporal action localization.
Config ActivityNet v1.3
batch size 32
training epochs 10
feature extraction
fps 15
per-clip length 16
clip stride 16
optimization
optimizer AdamW
optimizer momentum 0.9
learning rate schedule cosine decay

E MORE STUDIES

E.1 LARGE MODEL ADAPTATIONS

For the completeness of this report and reader’s reference, in Table 12 we report experimental results
under our settings with large FMs under two adaptation scenarios, namely, the frozen backbone with
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Table 12: Evaluating large-scale FMs when using (a) frozen feature with a one-layer pooler head,
and (b) low-rank adapter with frozen features. We report the Top-1 accuracy on K400, MiT, D48,
SSv2 and MAP on Charades.

VC (A) VC (M) VC (ML)
Model Method K400 MiT D48 SSv2 Charades

InternVideo-L frozen 78.6 33.7 69.6 67.4 20.9
InternVideo-L adapter 81.5 40.3 85.8 70.9 54.2

VideoMAE-v2-B/DL frozen 86.7 38.9 61.4 57.7 33.2
VideoMAE-v2-B/DL adapter 86.0 41.8 82.3 66.6 53.8

VideoMAE-v2-g frozen 59.7 20.7 42.5 44.2 12.7
VideoMAE-v2-g adapter 80.8 35.9 85.3 68.2 55.5

VideoMAE-v2-g/FT frozen 82.1 35.0 60.5 56.1 22.4
VideoMAE-v2-g/FT adapter 85.2 42.5 84.6 70.6 58.6

Table 13: Benchmark FMs adaptation on video understanding tasks under sample-efficient transfer
learning. This table shows Top-1 classification accuracy and the relative accuracy (shown in the
bracket). Results are achieved by using frozen features with pooler head.

K400 SSv2
Method 1% 10% 100% 1% 10% 100%

CoCa 27.1(37.8%) 48.9(67.0%) 73.1 5.6(13.4%) 20.9(50.4%) 41.5
CLIP 36.9(46.2%) 66.8(83.6%) 79.0 8.7(19.3%) 25.1(55.5%) 45.3

FLAVA 14.4(20.2%) 35.8(50.3%) 71.3 7.2(17.7%) 14.3(35.3%) 40.6

VideoMAE 15.5(23.9%) 32.0(49.2%) 65.0 13.7(25.4%) 30.3(56.2%) 53.9
InternVideo 20.4(29.5%) 50.2(72.4%) 69.3 19.5(33.6%) 41.1(70.7%) 58.2

VATT 34.1(45.4%) 63.7(84.8%) 75.1 12.9(22.4%) 37.6(65.0%) 57.8

pooler head and the low-rank adapter. VideoMAE-v2-B/DL (Wang et al., 2023) denotes the ViT-B
model distilled from ViT-g on the Kinetics710 datasets1. VideoMAE-v2-g (Wang et al., 2023) is the
model that pretrained on UnlabeledHybrid dataset, while VideoMAE-v2-g/FT (Wang et al., 2023)
conducts further finetuning using supervised training on Kinetics710.

E.2 SAMPLE-EFFICIENT TRANSFER LEARNING

A strong FM should be able to adapt to downstream tasks with a few training samples. In this section,
we test the adaption ability of FMs in a sample-efficient transfer learning setting. Particularly, we
freeze backbones and train a pooler head to adapt the FMs on K400 and SSv2. For either dataset,
we sample 1% and 10% data from the training set uniformly for training and evaluate on the full
evaluation dataset.

We show our experimental results in Table 13. To better understand the data efficiency, we also
show the relative Top-1 accuracy for each model (shown in the bracket), which is defined as the ratio
between accuracy with fewer training examples and the accuracy achieved using all the training data.
A higher relative Top-1 accuracy means the performance of the model is closer to its “full” capacity
under the sample-efficient setting. We notice that the best performed model on each dataset in fully
fine-tuned model also performs best in the few-shot setting. Especially, CLIP (Radford et al., 2021)
achieves 46.2% and 83.6% relative Top-1 accuracy on K400 using only 1% and 10% of the training
data, respectively. On SSv2, InternVideo (Wang et al., 2022b) achieves 33.6% and 70.6% relative
Top-1 accuracy with only 1% and 10% of the training data.

REFERENCES

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong. Vatt:
Transformers for multimodal self-supervised learning from raw video, audio and text. Advances in Neural
Information Processing Systems, 34:24206–24221, 2021.

1https://github.com/OpenGVLab/VideoMAEv2/blob/master/docs/MODEL_ZOO.md

15

https://github.com/OpenGVLab/VideoMAEv2/blob/master/docs/MODEL_ZOO.md


Under review as a conference paper at ICLR 2024

Humam Alwassel, Silvio Giancola, and Bernard Ghanem. Tsp: Temporally-sensitive pretraining of video
encoders for localization tasks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3173–3183, 2021.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri,
Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403,
2023.

Authors Authors. Perception test: A diagnostic benchmark for multimodal models. https://storage.
googleapis.com/dm-perception-test/perception_test_report.pdf, 2022.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021.

Roger G Barker and Herbert F Wright. Midwest and its children: The psychological ecology of an american
town. Marriage and family living, 1955.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 2020.

Shyamal Buch, Cristobal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos Niebles. Revisiting
the “Video” in Video-Language Understanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.
Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9650–9660, 2021.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian Goodman,
Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual language-image model.
arXiv preprint arXiv:2209.06794, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-
Wuen Hon. Unified language model pre-training for natural language understanding and generation. Advances
in neural information processing systems, 32, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet: A large-scale
video benchmark for human activity understanding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 961–970, 2015.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph
Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6824–6835, 2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition.
In ICCV, pp. 6202–6211, 2019.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as spatiotemporal
learners. arXiv preprint arXiv:2205.09113, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna
Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something something"
video database for learning and evaluating visual common sense. In Proceedings of the IEEE international
conference on computer vision, pp. 5842–5850, 2017.

16

https://storage.googleapis.com/dm-perception-test/perception_test_report.pdf
https://storage.googleapis.com/dm-perception-test/perception_test_report.pdf


Under review as a conference paper at ICLR 2024

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset of spatio-
temporally localized atomic visual actions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6047–6056, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16000–16009, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ICLR, 2021.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao Lv, Lei Cui,
Owais Khan Mohammed, Qiang Liu, et al. Language is not all you need: Aligning perception with language
models. arXiv preprint arXiv:2302.14045, 2023.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances in neural
information processing systems, 28, 2015.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li,
and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision.
In International Conference on Machine Learning, pp. 4904–4916. PMLR, 2021.

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models for efficient
video understanding. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXV, pp. 105–124. Springer, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, and Boqing Gong.
Movinets: Mobile video networks for efficient video recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16020–16030, 2021.

Jie Lei, Tamara L. Berg, and Mohit Bansal. Revealing single frame bias for video-and-language learning. In
Proceedings if the 61st Annual Meeting of the Association for Computational Linguistics, 2023.

Ang Li, Meghana Thotakuri, David A Ross, João Carreira, Alexander Vostrikov, and Andrew Zisserman. The
ava-kinetics localized human actions video dataset. arXiv preprint arXiv:2005.00214, 2020.

Chunyuan Li, Haotian Liu, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin, Yong Jae
Lee, Houdong Hu, Zicheng Liu, et al. Elevater: A benchmark and toolkit for evaluating language-augmented
visual models. arXiv preprint arXiv:2204.08790, 2022a.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. Uniformerv2: Spatiotem-
poral learning by arming image vits with video uniformer. arXiv preprint arXiv:2211.09552, 2022b.

Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without representation bias. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 513–528, 2018.

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Frozen clip models are efficient video learners. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXV, pp. 388–404. Springer,
2022.

Xiaolong Liu, Song Bai, and Xiang Bai. An empirical study of end-to-end temporal action detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20010–20019,
2022.

Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ramakrishnan, Sarah Adel Bargal, Tom Yan, Lisa
Brown, Quanfu Fan, Dan Gutfruend, Carl Vondrick, et al. Moments in time dataset: one million videos for
event understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–8, 2019. ISSN
0162-8828. doi: 10.1109/TPAMI.2019.2901464.

OpenAI. Gpt-4 technical report. https://cdn.openai.com/papers/gpt-4.pdf, 2022.

AJ Piergiovanni, Weicheng Kuo, and Anelia Angelova. Rethinking video vits: Sparse video tubes for joint
image and video learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2214–2224, 2023.

17



Under review as a conference paper at ICLR 2024

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, Christoph Feichtenhofer, and Jitendra Malik.
On the benefits of 3d pose and tracking for human action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 640–649, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831. PMLR, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. Advances in neural information processing systems, 28, 2015.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel Andor, Sharan
Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, et al. Scaling up models and data with t5x and
seqio. arXiv preprint arXiv:2203.17189, 2022.

Laura Sevilla-Lara, Shengxin Zha, Zhicheng Yan, Vedanuj Goswami, Matt Feiszli, and Lorenzo Torresani. Only
time can tell: Discovering temporal data for temporal modeling. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 535–544, 2021.

Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood
in homes: Crowdsourcing data collection for activity understanding. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp.
510–526. Springer, 2016.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach,
and Douwe Kiela. Flava: A foundational language and vision alignment model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15638–15650, 2022.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,
2018a.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems.
Advances in neural information processing systems, 32, 2019.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal
segment networks for action recognition in videos. IEEE transactions on pattern analysis and machine
intelligence, 41(11):2740–2755, 2018b.

Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao. Videomae
v2: Scaling video masked autoencoders with dual masking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14549–14560, 2023.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan
Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit pretraining for all
vision and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022a.

Xiang Wang, Zhiwu Qing, Ziyuan Huang, Yutong Feng, Shiwei Zhang, Jianwen Jiang, Mingqian Tang,
Changxin Gao, and Nong Sang. Proposal relation network for temporal action detection. arXiv preprint
arXiv:2106.11812, 2021.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu,
Zun Wang, et al. Internvideo: General video foundation models via generative and discriminative learning.
arXiv preprint arXiv:2212.03191, 2022b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

18



Under review as a conference paper at ICLR 2024

Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and Bernard Ghanem. G-tad: Sub-graph localization
for temporal action detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10156–10165, 2020.

Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. Aim: Adapting image models for
efficient video action recognition. arXiv preprint arXiv:2302.03024, 2023.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

19


	Introduction
	Related work
	Tasks and adaptation methods both matter when evaluating FMs
	FMs for video understanding
	Video understanding tasks
	Recognizing actions
	Localizing actions

	Adaptation methods
	Modifying FM architectures for downstream tasks
	Adapting the modified FMs' weights for downstream tasks

	Experiments
	End-to-end finetuning
	Frozen FMs
	VideoGLUE score: An attempt towards ranking FMs' video capabilities

	Conclusion
	Limitation, ethical concern, and broader impact
	Video understanding datasets
	Appearance-focused action recognition
	Motion-focused action recognition
	Multi-label daily action classification
	Temporal action localization
	Spatiotemporal action localization



	Model details
	Task head architectures
	Image-to-video adaptation
	Task-specific hyperparameters
	More studies
	Large model adaptations
	Sample-efficient transfer learning






