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ABSTRACT

Vision Transformer and its variants have demonstrated great potential in various
computer vision tasks. But conventional vision transformers often focus on global
dependency at a coarse level, which suffer from a learning challenge on global
relationships and fine-grained representation at a token level. In this paper, we
introduce Multi-scale Attention Fusion into transformer (MAFormer), which ex-
plores local aggregation and global feature extraction in a dual-stream framework
for visual recognition. We develop a simple but effective module to explore the
full potential of transformers for visual representation by learning fine-grained
and coarse-grained features at a token level and dynamically fusing them. Our
Multi-scale Attention Fusion (MAF) block consists of: i) a local window atten-
tion branch that learns short-range interactions within windows, aggregating fine-
grained local features; ii) global feature extraction through a novel Global Learn-
ing with Down-sampling (GLD) operation to efficiently capture long-range con-
text information within the whole image; iii) a fusion module that self-explores the
integration of both features via attention. Our MAFormer achieves state-of-the-art
performance on common vision tasks. In particular, MAFormer-L achieves 85.9%
Top-1 accuracy on ImageNet, surpassing CSWin-B and LV-ViT-L by 1.7% and
0.6% respectively. On MSCOCO, MAFormer outperforms the prior art CSWin by
1.7% mAPs on object detection and 1.4% on instance segmentation with similar-
sized parameters, demonstrating the potential to be a general backbone network.

1 INTRODUCTION

Transformers have prevailed in computation vision since the breakthrough of ViT [Dosovitskiy et al.
(2020), attaining excellent results in various visual tasks, including image recognition, object detec-
tion, and semantic segmentation. Despite these progress, the global self-attention mechanism in line
with ViT [Li et al.| (2021a) has a quadratic computation complexity to the input image size, which
is insufferable for high-resolution scenes. To reduce the complexity, several variants have been in-
troduced to replace global self-concern with local self-concern. Swin Transformer Liu et al.| (2021}
with a hierarchical architecture partitions input features into non-overlapping windows and shifts the
window positions by layer. After that various window partition mechanisms are designed for better
local feature capturing. Shuffle Transformer Huang et al.| (2021} revisits the ShuffleNet |Ma et al.
(2018) and embeds the spatial shuffle in local windows to intensify their connections. While these
local window-based attention methods have achieved excellent performance, even better than the
convolutional neural network (CNN) counterparts (e.g., ResNet|He et al.|(2016)), they suffer from a
learning challenge on the global relationship that is indispensable for a better feature representation.

Another line of research efforts focuses on combining CNNs with transformers, which are trade-
offs between local patterns and global patterns. CvT [Zhang et al.| (2020) transforms the linear
projection in the self-attention block into convolution projection. CoatNet|Yan et al.[(2021)) merges
depth-wise convolution with self-attention via simple relative attention and stacks convolution and
attention layers in a principled way. DS-Net Mao et al.| (2021) proposes a dual-stream framework
that fuses convolution and self-attention via cross-attention, where each form of scale learns to
align with the other. However, as shown in DS-Net Mao et al.| (2021)), convolution and attention
hold intrinsically conflicting properties that might cause ambiguity in training. For instance, the
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Figure 1: Architecture of MAFormer. We utilize the MAF block in the first two stages, which in-
corporates a Local Aggregation branch and a Global Learning with Down Sampling (GLD) branch.
Both streams are fed into a fusion module to improve the capability of feature representation.

long-range information captured by global self-attention could perturb the neighboring details of
convolution in high-resolution feature maps, compromising both global and local representations.

In this paper, we develop a Multi-scale Attention Fusion transformer (MAFormer), which explores
local aggregation and global feature extraction in a dual-stream transformer framework. To avoid the
incompatibility between convolution and self-attention, we apply local window attention to extract
fine-grained feature representation. We also design a Global Learning with Down-sampling (GLD)
module to extract global features, which captures coarse-grained features based on the full-sized
input. We further encode token-level location information of the input into global representations
via positional embeddings. Moreover, we describe two dual-stream architectures based on different
fusion strategies, particularly the Multi-scale Attention Fusion (MAF) scheme that can fully explore
the potential of both features. Its effectiveness can be explained by the fact that MAF block can en-
hance the interaction between each local-global token pair, where local features and global features
are co-trained in a unified framework, formulating a more ample and informative representation.
The contributions of this work are concluded as follows.

1. A MAFormer network is introduced to extract and fuse fine-grained and coarse-grained
features at a token level, which can self-explore the integration of both features via attention
to improve the representation capacity for the input image.

2. A local window attention branch is first introduced to learn the short-range interactions
within local windows. We further introduce a Global Learning with Down-sampling (GLD)
module on the dual branch, which efficiently captures the long-range context information
within the whole image.

3. We develop two dual-stream architectures based on different fusion strategies, particularly
the Multi-scale Attention Fusion (MAF) scheme that can fully explore the potential of both
features.

4. Without bells and whistles, the proposed MAFormer outperforms prior vision Transformers
by large margins in terms of recognition performance. We also achieve state-of-the-art
results over the previous best CSWin for object detection and instance segmentation with
similar parameters.
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2 RELATED WORK

2.1 VISION TRANSFORMERS

Self-attention based architectures, in particular Transformers|Vaswani et al.|(2017)), have become the
dominant model for Natural Language Processing (NLP). Motivated by the success, ViT|Dosovitskiy
et al.| (2020) applies a pure-transformer architecture to images by splitting an image into patches
and equating them with tokens (words), which shows strong performance on image classification
tasks [Deng et al.| (2009). Many efforts have been devoted to applying ViT for various vision tasks
since, including object detection |Carion et al.[(2020); Zhu et al.| (2020); Roh et al.|(2021)), semantic
segmentation (Cheng et al.| (2021)); [Strudel et al.| (2021); Xie et al.| (2021) , pose estimation |Li et al.
(2021b); [Yang et al.| (2020); |Yuan et al.| (2021b)), re-identification |He et al| (2021}, and low-level
image processing |Chen et al| (2021b). These results further validate the outstanding generality of
the transformer as a visual backbone.

2.2 LOCAL WINDOW ATTENTION-BASED TRANSFORMERS

Vision transformers demonstrate a high capability in modeling the long-range dependencies, which
is especially helpful for handling high-resolution inputs in downstream tasks. However, such meth-
ods adopt the original full self-attention and their computational complexity is quadratic to the image
size. To reduce the cost, some recent vision Transformers |Liu et al.| (2021)); [Vaswani et al.| (2021)
adopt the local window self-attention mechanism Ramachandran et al.[(2019) and its shifted/haloed
version that adds the interaction across different windows. To enlarge the receptive field, axial self-
attention [Ho et al.| (2019) and criss-cross attention |Huang et al.| (2019) propose calculating atten-
tion within stripes along horizontal or/and vertical axis instead of fixing local windows as squares.
The method [Dong et al.| (2021) presents the Cross-Shaped Window self-attention,performs the self-
attention calculation in the horizontal and vertical stripes in parallel, with each stripe obtained by
splitting the input feature into stripes of equal width.

2.3 CONVOLUTION IN TRANSFORMERS

According to recent analysis [Peng et al.| (2021); Dai et al.| (2021)), convolution networks and trans-
formers hold different merits. While the convolution operation guarantees a better generalization and
fast convergence, thanks to its inductive bias, attention formulate networks with higher model capac-
ity. Therefore, combining convolutional and attention layers can joint these advantages and achieve
better generalization and capacity at the same time. Some existing transformers explore the hybrid
architecture to incorporate both operations for better visual representation. Comformer |Peng et al.
(2021) proposes the Feature Coupling Unit to fuse convolutional local features with transformer-
based global representations in an interactive fashion. CvT Wu et al.[(2021) designs convolutional
token embedding and convolutional transformer block for capturing more precise local spatial con-
text. Apart from incorporating explicit convolution, some works|Liu et al.|(2021); Dong et al.|(2021);
Yuan et al.| (2021a); Wang et al.| (2021)) try to incorporate some desirable properties of convolution
into the Transformer backbone.

3 METHOD

3.1 OVERALL ARCHITECTURE

The Multi-scale Attention Fusion mechanism is proposed to extract fine-grained and coarse-grained
features at a token level and fuse them dynamically, which formulates a general vision transformer
backbone, dubbed as MAFormer, improving the performance in various visual tasks. Fig.[T{a) shows
the overall architecture of MAFormer. It takes an image X € RH¥>*W >3 ag input, where W and H
represents the width and height of the input image, and employs a hierarchical design. By decreasing
the resolution of feature maps, the network captures multi-scale features across different stages. We
partition an input image into patches and perform patch merging, receiving % X % visual tokens
with C' feature channels. From there, the tokens flow through two stages of MAF Blocks and the

two stages of the original Vision Transformer Blocks. Within each stage, MAFormer adopts a patch
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Figure 2: Different designs in dual-stream multi-scale representations.

Table 1: Detailed settings of MAFormer of different model sizes and their performance on
ImageNet-1k validation set. In all configurations, the expansion ratio of each MLP is set as 4.

Models Dim Blocks Params(M) FLOPs(G) Top1(%)
MAFormer-S [64, 128, 320, 512] [3,5, 8, 3] 23 4.5 83.7
MAFormer-B [64, 128, 320, 512] [3, 8, 20, 7] 53 9.8 85.0
MAFormer-L [128, 192, 448, 640] [3, 8, 24, 7] 104 22.6 85.9

merging layer by convention which downsamples the spatial size of the feature map by 2x, while
the feature channel dimension is increased.

According to recent studies into feature representations Raghu et al.|(2021)), visual transformers like
the ViT attend locally and globally in its lower layers but primarily focus on global information
in higher layers. In light of the pattern, we incorporate multi-scale feature representations in the
first two stages of MAFormer, while in the last two stages, the original vision transformer block is
utilized, where the resolution of the features is reduced and the computational cost of full attention
becomes affordable.

3.2 MULTI-SCALE ATTENTION FUSION BLOCK

In this section, we elaborate the details of our Multi-scale Attention Fusion (MAF) block. As shown
in Fig.[T(b), the MAF block includes a Local Aggregation branch and a Global Learning with Down
Sampling (GLD) branch, generating token-level fine-grained and coarse-grained features respec-
tively. Both streams are fed into a fusion module to improve the capability of feature representation.

Local aggregation. Previous hybrid networks Dai et al.| (2021); |Li et al.| (2022)) utilize CNNs to
extract local features, which are further integrated into a Transformer branch. Yet, such approaches
risk the mismatch between convolution and self-attention. In MAF, we avoid the incompatibility
and explore the usage of local window-based multi-head attention mechanisms as the fine-grained
representation. Considering an input X € R¥*W > 'the local aggregation X ! is defined as:

X} = Local-Window-Attention (LN (X'~1)) + X'~
X} =MLP (X}) + X}, (1)

where X! denotes the output of I-th Transformer block.

Global feature extraction. Although local window self-attention methods have achieved excel-
lent performance, they can only capture window-wise information and fail to explore the dependen-
cies across them. Also, existing methods are still challenged in global dependency extraction due to
insufficient usage of coarse-grained contextual information. As such, efficient capture of the global
dependencies is constitutive for model representation.

To address these issues, we introduce a Global Learning with Down-sampling (GLD) module to
extract global information from a large-sized input. To this end, we first utilize a single neuron layer
that is fully connected to the feature input. Without cutting out any dimensions, it output a down-
sampled contextual abstraction that is dynamically learned. As illustrated in the Fig. [I[c), the input
X e REXWXC s first flattened to X € RE*E, where L is equal to H x W. Then X¢ € RE*F
is globally extracted by a fully connected layer, downsized to scaling ratio /N. During experiments,
we have tuned several values of N and 0.5 is optimal, which is set as the default in MAFormer.
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Further, we encode the token-level location information of the input into global representations via
positional embeddings. As illustrated in the Fig. [I[c), the Pos operation utilizes a layer-wise
bilinear interpolation as the measure and F'C' represents as the full connection.

XG = Pos (X5") + FC(XE), )
where X(, denotes the global branch output of {-th Transformer block.

Multi-scale attention fusion (MAF). We develop two types of dual-stream multi-scale represen-
tations, as shown in Fig. 2] First, we extract global dependencies on top of local representations as
an enhancement, aiming to provide information flow across local windows. As shown in Fig. 2[b),
the GLD module takes the output of local window attention and fuses the global representations
back with local. However, such approach can only capture the global correlations between local
attributes, not from input. Therefore, we propose the Multi-scale attention fusion (MAF) measure,
extracting the local and global scales of input directly and separately. Both stream of information
are fed into a fusion block via attention, as shown in Fig. @ke). In this way, the MAF block can
capture the correlations between each local-global token pair, enabling the local features to adapt to
the global representations.

Given extracted local features X; € RC*Lrocat gnd global features X¢ € RCXLH""”“Z, the Multi-
scale Attention Fusion is defined as:

QL _ XLWClgocal,
Ko = XgWiore 3)
VG — nggl()bal,

where Wéj’cal, WIg{l(’b“l, W‘g/l"b“l are learning hyper-parameter matrix. Then we calculate the Multi-
scale Attention Fusion (MAF) between every pair of X, and Xg:

QLKL
Vd

MAF(QL7 Kg, Vg) = softmax( Wa. 4

4 EXPERIMENT

In this section, we first provide ablation studies of the MAF block. Then, we give the experi-
mental results of MAFormer in three settings: image classification, object detection with instance
segmentation and semantic segmentation. Specifically, we use ImageNet-1K |Deng et al.|(2009) for
classification, MSCOCO 2017 |Lin et al.| (2014} with Mask R-CNN [He et al.|(2017) and Cascade R-
CNN|Ca1 & Vasconcelos|(2018) for object detection with instance segmentation, and ADE20K [Zhou
et al.| (2017) for semantic segmentation, where we employ the semantic FPN [Kirillov et al.| (2019)
and UPerNet Xiao et al.[(2018)) as the basic framework. All experiments are conducted on V100
GPUs.

4.1 ABLATION STUDY AND ANALYSIS

The multi-scale attention fusion (MAF) module in MAFormer network is mainly a composition of
three: the Local Aggregation mechanism, the Global Learning with Down-sampling (GLD) module,
and the dynamic fusion module. In the following experiments, we explore the best-performed struc-
ture of MAFormer by substituting and ablating different parts of the network. We set MAFormer-S
as the baseline and all experiments are conducted on the image classification dataset ImageNet-1K.

Local aggregation. The selection of attention method in the Local Aggregation module is very
flexible, which could be substituted by different approaches on window based self-attention Huang
et al.| (2019); [Liu et al| (2021); Ho et al| (2019). In the MAF block, we compare the original
work on window partition [Liu et al.[|(2021)) and its recent variant cross-shaped window based self-
attention [Dong et al.| (2021). As shown as Table[2] the experiments demonstrate that MAFormer-S
using the cross-shaped window based self-attention outperforms shifted window-based self-attention
by +0.2% top-1 accuracy on ImageNet 1K, which is set as the default approach.
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Table 2: Ablation study of different local aggregation and global feature representation modules.

Method ~ Params Attention in Local Aggregation Global Feature Extraction Topl (%)

Swin-T 20M  Shifted Window [Liu et al.[(2021) None 81.3
CSWin-T ~ 23M  Cross-shaped|Dong et al.|[(2021) None 82.7
MAFormer-S 23M  Shifted Window [Liu et al.[(2021) GLD 83.4
MAFormer-S 23M  Cross-shapedDong et al.[(2021) Convolution 83.4
MAFormer-S 23M Cross-shaped Dong et al.|(2021) GLD 83.7

Table 3: Accuracy of MAFormer-S using different structure design.

Framework Params(M) Dual Stream Design Topl (%)
DS-Net|Mao et al.|(2021) 23M  Co-Attention from Convolution and Self-attention  82.3
MAFormer-S 23M Local-Enhanced Fusion Attention 83.5
MAFormer-S 23M Multi-scale Fusion Attention 83.7

Global feature extraction. Global information is vital to feature representation. We show in
Table 2] that MAFormer-S with GLD yields +1% top-1 accuracy than methods without global in-
formation on ImageNet-1K. We also compare GLD with other measures that extract global infor-
mation and down-sample the input at the same time. As shown, GLD brings +0.3% accuracy than
basic-configured convolution, demonstrating that the detailed information from global tokens can be
extracted in a learnable and dynamic manner using GLD, with local positional information encoded.

Fusion structure analysis. The implementations of different connection modules are compared
in Table 3] As shown, our proposed Multi-scale Fusion Attention is more efficient than the previ-
ous local/global dual-stream architecture Mao et al.| (2021). Also, MAF is validated in our experi-
ments with +0.2% superiority over the local enhanced fusion measure. Instead of fixing the fusion,
cross-scale information transfers are automatically determined by feature themselves, making the
combined more effective.

4.2 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. In this section, we conduct experiments of MAFormer on ImageNet-1K classifica-
tion [Deng et al.| (2009) and compare the proposed architecture with the previous state-of-the-arts.
MAFormer follows Jiang et al.| (2021) by default and is trained with Token Labeling Jiang et al.
(2021). Dropout regularization rate |Srivastava et al.| (2014) is set as 0.1/0.3/0.4 for MAFormer-
S/B/L respectively, as shown in Table [I} The learning rate of MAFormer-S and MAFormer-B are
1.6e-3, while for MAFormer-L it is 1.2e-3. All experiments are conducted on V100 GPUs.

Results. As shown in Table [T} MAFormer-S with only 23M parameters can achieve a top-1 accu-
racy of 83.7% on ImageNet-1k. Increasing the embedding dimension and network depth can further
boost the performance. Table |4 shows in details that MAFormer outperforms the previous state-of-
the-art vision transformers. Specifically, MAFormer-L achieves 85.9% Top-1 accuracy with 22.6G
FLOPs, surpassing CSWin-B |Dong et al.|(2021) and LV-ViT-L Jiang et al.| (2021) by 1.7% and 0.6%
respectively. MAFormer variants also outperform the prior art hybrid architectures Dai et al.|(2021));
Mao et al.| (2021) and local window-attention-based transformers [Huang et al.| (2021)); |Chen et al.
(2021a); Liu et al.| (2021)) by large margins with a fair amount of computation.

4.3 OBIJECT DETECTION AND INSTANCE SEGMENTATION ON MSCOCO

According to recent studies [Raghu et al.| (2021)), the lower layers of attention-based networks per-
form poorly on aggregating local correlations when trained a small amount of data, given the lack of
inductive bias. As a result, state-of-the-art transformer backbones on the ImageNet provide no sig-
nificant improvement to downstream subtasks. MAFormer, on the other hand, utilize local window
based attention in the lower layers and strategically encode global information with it. In this way,
local patterns are easier to acquire when the training data is not sufficient, making it a general and
efficient visual backbone.

Settings. To demonstrate the merits of MAFormer on downstream tasks, we evaluate the model
on COCO object detection task |Lin et al.| (2014). We first utilize the typical framework Mask R-
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Table 4: Comparison with the state-of-the-art on ImageNet-1K. { indicates with Token Label-
ing Jiang et al.[(2021).

Models [Train Size Test Size Params(M) FLOPs(G)[Top1(%)
DeiT-S [Touvron et al.|(2021a) 2242 2242 22 4.6 79.8
Swin-T |Liu et al.[(2021) 2242 2242 29 4.5 81.3
CrossViT-15 |Chen et al.[(2021a) | 2242 2242 27 5.8 81.5
CoAtNet-0 Dai et al.[(2021) 2242 2242 25 4.6 81.6
Focal-T |Yang et al.[(2021) 2242 2242 29 4.9 82.2
DS-Net-S Mao et al.[(2021) 2242 2242 23 35 82.3
Shuffle-T [Huang et al.[(2021) 2242 2242 29 4.6 82.5
CSWin-T Dong et al.[(2021) 2242 2242 23 43 82.7
MAFormer-S 2242 2242 23 4.5 83.0
LV-ViT-St [Jiang et al.|(2021) 2242 2242 26 6.6 83.3
MAFormer-St 2242 2242 23 45 83.7
CrossViT-18 [Chen et al.[(2021a) | 2242 2242 44 9.5 82.8
MixFormer-B4 |Chen et al.[(2022)] 2242 2242 35 3.6 83.0
Swin-S [Liu et al.[(2021) 2242 2242 50 8.7 83.0
DS-Net-B [Mao et al.[(2021) 2242 2242 49 8.4 83.1
Twins-SVT-B |Chu et al.[(2021b) | 2242 2242 56 8.3 83.2
CoAtNet-1 Dai et al.|(2021) 2242 2242 42 8.4 83.3
Shuffle-S [Huang et al.|[(2021) 2242 2242 50 8.9 83.5
Focal-S |Yang et al.[(2021) 2242 2242 51 9.1 83.5
CSWin-S [Dong et al.|[(2021) 2242 2242 35 8.9 83.6
LV-ViT-M{ |Jiang et al.[(2021) 2242 2242 56 16 84.1
MAFormer-Bf 2242 2242 53 9.8 85.0
DeiT-B |Touvron et al.|(2021a) 2242 2242 86 17.5 81.8
CrossViT-B [Chen et al.[(2021a) 2242 2242 105 21.2 82.2
Swin-B [Liu et al.|(2021) 2242 2242 88 15.4 83.5
Focal-B |Yang et al.[(2021) 2242 2242 90 16.0 83.8
Shuffle-B [Huang et al./(2021) 2242 2242 88 15.6 84
CSWin-B |Dong et al.|(2021) 2242 2242 78 15.0 84.2
CoAtNet-3 [Dai et al.[(2021) 2242 2242 168 34.7 84.5
CaiT-M36 [Touvron et al.[(2021b)| 2242 3842 271 247.8 85.1
LV-ViT-L{ [Jiang et al.|[(2021) 2882 2882 150 59.0 85.3
MAFormer-Lf 2242 2242 105 22.6 85.9

CNN|He et al.|(2017), where we configure 1x schedule with 12 epochs training schedules. In details,
the shorter side of the image is resized to 800 while keeping the longer side no more than 1333. We
utilize the same AdamW |Loshchilov & Hutter| (2017) optimizer with initial learning rate of le-4,
decayed by 0.1 at epoch 8 and 11(1x schedule), and weight decay of 0.05. We set stochastic drop
path regularization of 0.2 for MAFormer-S backbone, and 0.3 for MAFormer-B and MAFormer-L
backbone, referred in Table [T}

To extend our research, we evaluate MAFormer in another typical framework Cascade R-CNN|Cai &
Vasconcelos| (2018)). For Cascade R-CNN, we adopt 3x schedule with 36 epochs training schedules
and the multi-scale training strategy |Carion et al.| (2020); [Sun et al.| (2021) to randomly resize the
shorter side between 480 to 800. We utilize the same AdamW [Loshchilov & Hutter|(2017)) optimizer
with initial learning rate of le-4, decayed by 0.1 at epoch 27 and 33, and weight decay of 0.05.
We set stochastic drop path regularization of 0.2, 0.3, and 0.4 for MAFormer-S, MAFormer-B and
MAFormer-L backbone respectively.

We compare MAFormer with various works: typical CNN backbones ResNet [He et al.| (2016),
ResNeXt Xie et al| (2017), and competitive Transformer backbones PVT Wang et al.| (2021),
Twins |Chu et al.| (2021b), Swin|Liu et al.|(2021) and CSWin |Dong et al.| (2021).

Results. Table reports box mAP (AP%) and mask mAP (AP?) of the Mask R-CNN framework
with 1x training schedule. It shows that the MAFormer variants notably outperform all the CNN
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Table 5: Object detection and instance segmentation performance on the COCO val2017 with the
Mask R-CNN framework. The FLOPs (G) are measured at resolution 800x1280, and the models are
pretrained on the ImageNet-1K.

Backbone Params | FLOPs Mask R-CNN 1x schedule

M) | (G) |AP"|APY | APL|AP™ | AP |APR
Res50 |He et al.|(2016) 44 260 [38.0|58.6 4143445511367
PVT-S [Wang et al.|(2021) 44 245 |40.41] 629 | 43.8 | 37.8 | 60.1 | 40.3
ViL-S |Zhang et al.|(2021) 45 218 [44.9|67.1 |493 | 41. | 64.2 | 44.1
TwinsP-S |Chu et al.|{(2021b) 44 245 1429|658 | 47.1 | 40.4 | 62.7 | 429
Twins-S |Chu et al.|(2021b) 44 228 4341660 | 473|403 | 632|434
Swin-T [Liu et al.|(2021) 48 264 |42.2]64.6 |46.2|39.1 | 64.6 | 42.0
CSWin-T |Dong et al.|(2021) 42 279 146.7|68.6 | 51.3 422 |65.6|454
MAFormer-S 41 256 [47.0| 69.5 | 51.6 | 42.7 | 66.5 | 46.1
Res101 He et al.|(2016) 63 336 |40.4|61.1 442364 |57.7|38.8
X101-32 [Xie et al.|(2017) 63 340 [41.9(62.5]459 | 375|594 |402
PVT-M |Wang et al.|(2021) 64 302 [42.0(64.4|4561|39.0 | 61.6 | 42.1
VIL-M [Zhang et al.|(2021) 60 261 |434| - - 1397 - -
TwinsP-B |Chu et al.|{(2021b) 64 302 [44.6|66.7 | 489 | 40.9 | 63.8 | 44.2
MixFormer-B4 |Chen et al.[(2022)| 53 243 |45.1]67.1 |49.2|41.2 | 64.3 | 44.1
Twins-B |Chu et al.|[(2021b) 76 340 [45.2(67.6 493|415 | 64.5 |44.8
Swin-S [Liu et al.[(2021) 69 354 |44.8|66.6 | 489 | 40.9 | 63.4 | 442
CSWin-S |Dong et al.|(2021) 54 342 147.9(70.1 | 52.6 | 43.2 | 67.1 | 46.2
MAFormer-B 71 354 149.6|71.4 | 54.7 | 44.6 | 68.6 | 48.4
X101-64 Xie et al.|(2017) 101 493 [42.8]63.8|47.3| 384 | 60.6 | 41.3
PVT-L |Wang et al.|(2021) 81 364 (429|650 |46.6 | 39.5|61.9 |425
ViL-B [Zhang et al.|(2021) 76 365 [45.1] - - | 410] - -
TwinsP-L |Chu et al.|(2021b) 81 364 454 - - | 415] - -
Twins-L |Chu et al.|(2021Db) 111 474 1459 - - | 416 | - -
Swin-B |Liu et al.|(2021) 107 496 (469 - - | 423] - -
CSWin-B |Dong et al.|(2021) 97 526 |48.7]70.4 (539|439 |67.8 |47.3
MAFormer-L 122 609 |50.7|72.4 | 55.6 | 454 | 69.7 | 49.2

Table 6: Object detection and instance segmentation performance on the COCO val2017 with the
Cascade R-CNN framework. The FLOPs (G) are measured at resolution 800x1280, and the models
are pretrained on the ImageNet-1K.

Backbone Params | FLOPs Cascade R-CNN 3x schedule

M) | (G) |AP"| AP, | APY; | AP™| AP | AP
Res50 [He et al.|(2016) 82 739 463 | 64.3 | 50.5 | 40.1 | 61.7 | 434
Swin-T |Liu et al.|[(2021) 86 745 |50.5]169.3|54.9 | 43.7 | 66.6 | 47.1
CSWin-T |Dong et al.[(2021) 80 757 |525]71.5|57.1 | 453 | 68.8 | 489
MAFormer-S 80 733 |52.6| 71.3 | 57.3 | 45.7 | 68.9 | 49.8
X101-32 [Xie et al.|{(2017) 101 819 |48.1| 665|524 |41.6 | 639 | 452
Swin-S [Liu et al.|(2021) 107 838 |51.8| 704 | 563 | 44.7 | 67.9 | 48.5
CSWin-S Dong et al.|(2021) 92 820 [53.7|72.2 | 584 | 46.4 | 69.6 | 50.6
MAFormer-B 109 833 | 544|728 | 59.2 | 46.8 | 70.4 | 51.0
X101-64 [Xie et al.|(2017) 140 972 |48.3] 664 | 52.3 | 41.7 | 64.0 | 45.1
Swin-B |Liu et al.|(2021) 145 982 5191709 | 56.5 | 45.0 | 68.4 | 48.7
CSWin-B Dong et al.|(2021) | 135 1005 |53.9| 72.6 | 58.5 | 46.4 | 70.0 | 50.4
MAFormer-L 160 1088 |54.7 | 73.2 | 594 | 47.3 | 71.2 | 51.3

and Transformer counterparts. Our MAFormer-S, MAFormer-B, and MAFormer-L achieve 47.0%,
49.6%, and 50.7% box mAP for object detection, surpassing the previous best CSWin Transformer
by +0.3%, +1.7%, and +2.0%. Besides, our models present consistent improvement in instance
segmentation, with +0.5%, +1.4%, and +1.5% mask mAP higher than the previous best backbone.
Notably, MAFormer-B outperforms CSWin-S and Swin-S with far less parameters.

Table E] contains the box mAP (AP?) and mask mAP (AP™) results from the Cascade R-CNN
framework with 3x training schedule. It shows that MAFormer variants outperform all the CNN
and Transformer counterparts in great margin. Specifically, MAFormer-S, MAFormer-B, and
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Table 7: Comparison with previous best results on ADE20K semantic segmentation. UPerNet:
learning rate of 6 x 107>, a weight decay of 0.01, a scheduler that uses linear learning rate decay,
and a linear warmup of 1,500 iterations. Semantic FPN: learning rate of 2 x 10~%, a weight decay of
1 x 10™4, a scheduler that uses Cosine Annealing learning rate decay, and a linear warmup of 1,000
iterations. The FLOPs are measured at resolution 2048x512.

Models Semantic FPN 80K UPerNet 160k
#Params(M) | FLOPs(G) | mIoU(%) | #Params(M) | FLOPs(G) | mIoU(%) | MS mIoU(%)

Res50(He et al.|(2016) 29 183 36.7 - - - -
Twins-S |Chu et al.[(2021a) 28 144 432 54 901 46.2 47.1
TwinsP-S |Chu et al.|(2021a) 28 162 44.3 55 919 46.2 47.5
Swin-T [Liu et al.|(2021) 32 182 41.5 60 945 44.5 45.8
Focal-T |Yang et al.|(2021) - - - 62 998 45.8 47.0
Shuffle-T |Huang et al.|(2021) - - - 60 949 46.6 47.6
MAFormer-S 28 170 47.9 52 929 48.3 48.6
Res101|He et al.|(2016) 48 260 38.8 86 1029 - 44.9
TwinsP-B |Chu et al.|(2021a) 48 220 44.9 74 977 47.1 484
Twins-B [Chu et al.|(2021a) 60 261 453 89 1020 47.7 48.9
Swin-S |Liu et al.|(2021) 53 274 452 81 1038 47.6 49.5
Focal-S |Yang et al.[(2021) - - - 85 1130 48.0 50.0
Shuffle-S [Huang et al.|(2021) - - - 81 1044 48.4 49.6
Swin-B |Liu et al.|(2021) 91 442 46.0 121 1188 48.1 49.1
MAFormer-B 55 274 49.8 82 1031 51.1 51.6

MAFormer-L achieve 52.6%, 54.4%, and 54.7% box mAP for object detection, surpassing the pre-
vious best CSWin Transformer by +0.1%, +0.7%, and +0.8%. Besides, our variants also have
consistent improvement on instance segmentation, which are +0.3%, +0.4%, and +0.9% mask mAP
higher than the previous best backbone. It shows with a stronger framework, MAFormer still surpass
the counterparts by promising margins under different configurations.

4.4 EXPERIMENTS OF SEMANTIC SEGMENTATION WITH SEMANTIC FPN AND UPERNET ON
ADE20K

Settings. ADE20K [Zhou et al,| (2017) is a widely used semantic segmentation dataset, covering
a broad range of 150 semantic categories. It has 25K images in total, with 20K for training, 2K
for validation, and another 3K for testing. We further investigate the capability of MAFormer for
semantic segmentation on the ADE20K dataset. Here we employ the semantic FPN [Kirillov et al.
(2019)and UPerNet Xiao et al.|(2018)) as the basic framework. All experiments are conducted on 8
V100 GPUs. For fair comparison, we train Semantic FPN |Kirillov et al.[(2019) 80k iterations with
batch size as 16, and UPerNet Xiao et al.| (2018 160k iterations with the batch size as 16 and the
image resolution is 512x512.

Results. In Table [/} we provide the experimental results in terms of mloU and Multi-scale tested
mloU (MS mloU). It shows that MAFormer-S, MAFormer-B achieve 47.9, 49.8 with the seman-
tic FPN framework, 6.4 and 2.6 higher mIoU than the Swin-Transformer |Liu et al.| (2021). Also,
MAFormer-S, MAFormer-B achieve 49.8, 51.1 with the UPerNet framework, 3.9, 3.0 higher mloU
than the Swin-Transformer|Liu et al.| (2021]).

5 CONCLUSION

In this paper, we introduce a general vision transformer backbone MAFormer, which integrates
local and global features in tokens. MAFormer can improve the information interaction between
local windows, where both local and global features are deployed with a linear operation to ensure
the consistency of features distribution. With an outstanding performance on image classification
and dense downstream tasks, MAFormer has shown its promising potential in vision tasks. In the
future, MAFormer can be utilized as a general backbone in the self-supervised pre-training tasks.
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