
Under review as a conference paper at ICLR 2022

PICKING UP THE PIECES: SEPARATELY EVALUATING
SUPERNET TRAINING AND ARCHITECTURE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable Neural Architecture Search (NAS) has emerged as a simple and
efficient method for the automated design of neural networks. Recent research
has demonstrated improvements on various aspects on the original algorithm
(DARTS), but comparative evaluation of these advances remains costly and dif-
ficult. We frame supernet NAS as a two-stage search, decoupling the training of
the supernet from the extraction of a final design from the supernet. We propose
a set of metrics which utilize benchmark data sets to evaluate each stage of the
search process independently. We demonstrate two metrics measuring separately
the quality of the supernet’s shared weights and the quality of the learned sam-
pling distribution, as well as corresponding statistics approximating the reliance
of the second stage search on these components of the supernet. These metrics
facilitate both more robust evaluation of NAS algorithms and provide practical
method for designing complete NAS algorithms from separate supernet training
and architecture selection techniques.

1 INTRODUCTION

Neural architecture search (NAS) describes the problem of automatically selecting an effective neu-
ral network architecture for given data. In their survey of work on NAS, Elsken et. al. establish three
necessary components to achieve this goal: a search space to define the set possible architectures, a
search strategy to traverse over potential solutions, and a performance estimation strategy to rate the
quality of potential solutions considered by the search strategy (Elsken et al., 2019).

In recent years a variety of search spaces and benchmark problems have been proposed in NAS
(Elsken et al., 2019). Exploring the space of search strategies has similarly generated vast interest,
with approaches spanning evolutionary algorithms (Real et al., 2018), Bayesian optimization (Zela
et al., 2018), reinforcement learning (Pham et al., 2018), and, most recently, direct gradient descent
(Liu et al., 2019). Various methods for performance estimation have also been proposed, including
weight inheritance (Real et al., 2017), predictive models (Liu et al., 2018), shortened training (Zoph
et al., 2018), and weight-sharing (Pham et al., 2018).

However, the search space, search strategy, and performance estimation components of a NAS al-
gorithm do not operate in a vacuum, and the interactions and relationships between them may dra-
matically affect the behavior and performance of the overall algorithm. For example, performance
estimates that extrapolate from previously seen models are biased by the search strategy’s method for
traversing the search space and differentially sampling different models. Here, we suggest that the
overwhelmingly trend in the current literature is to focus a study on innovations within a single one
of these aspects (e.g. shared-weight model training for performance estimation) without a broader
and systematic consideration, analysis, or even toolset for exploring the effects that this innovation
may have on other components of the NAS algorithm (e.g. search strategy for selecting architecture
topologies). While we do claim to provide a perfect solution for the analysis an algorithmic inno-
vation’s impact on each of the different components, here we provide one example of a systematic
strategy and open-source toolset for performing such an investigation – and demonstrate a specific
example of how such a perspective modifies the way that we interpret the theoretical impact of an
important recent algorithmic and innovation.

This paper focuses specifically on the class of algorithms which combine a weight-sharing perfor-
mance estimation strategy and a gradient-based search strategy into the training of a single model.

1

Under review as a conference paper at ICLR 2022

This approach trains a neural network representing a superposition of every architecture in the
search space instead of training individual architectures and obtains performance estimates from this
shared-weight model. This technique, which we will refer to as the supernet or supergraph method,
was originally demonstrated by Pham et al. (2018), however the gradient-based training method con-
tributed by DARTS (Liu et al., 2019) eliminated the need to train a second reinforcement learning
model to select architectures, leading to the development of the series of NAS algorithms combining
performance estimating and search in a single model considered here. Note that following Bender
et al. (2018), the term “One-shot NAS” has been used to refer to supernet methods as they train a
single model rather then iteratively training candidate architectures. However, as we will discuss
iterative search algorithms implemented on top the supernet, we adopt the supernet terminology
used by Wang et al. (2021). Differentiable supernet NAS algorithms have gained popularity due to
their speed attained through weight-sharing – especially relative to employing the “gold standard”
performance measure of training a neural network from multiple different random initializations and
measuring the accuracy on a held-out set of validation data that often requires thousands of GPU
hours for a single run (Zoph et al., 2018). They also benefit from and their ease of implementation
within popular deep learning frameworks as a result of their reliance on gradient based optimization.

Importantly for this paper’s perspective, these algorithms establish a special relationship between
the search strategy and the performance estimation strategy – collapsing both components to the
training of a single neural network. This presents a particular example of the cross-component in-
teraction phenomenon described above during the supernet training, where the shared weights are
trained to maximize the performance of the previously explored architectures, and are then em-
ployed to estimate the performance of new potential architectures. The feedback loop between these
two processes thus creates an opportunity to bias search towards familiar solutions, possibly at the
expense of undervaluing architectures which have high train-from-scratch performance, but may not
perform well with the weights learned on previously explored architectures. This interaction is seen
again post-supernet training, when the shared-weight model (itself embodying the chosen perfor-
mance estimation strategy) is often critical in the process to select the single best architecture from
the search space. With both architecture performance estimation and search strategy represented by
the training of a single sueprnet model, it is perhaps not surprising that the distinct contributions of
these two are not easily measured or conceptualized. We might further expect the degree to which
this may be an issue to vary with the convexity of the search space, and the search strategy used to
traverse that landscape.

In order to facilitate a greater understanding of, and more robust comparisons between, differentiable
supernet NAS algorithms, here we present two statistics designed to separately evaluate (1) the ar-
chitecture search and (2) the performance estimation components of the supernet training process.
We also demonstrate the value of separately evaluating performance estimation and search during
supernet training by presenting a two-stage framing of differentiable stochastic NAS, delinking the
process of training the supernet from the process of selecting an architecture using the supernet.
Using our statistics of the Stage-1 supernet training, we present a method for approximating the
reliance of the Stage-2 architecture selection methods on the performance estimation capabilities
of the supernet versus the discovery of quality architectures through supernet training. We offer
empirical results demonstrating the capabilities of using the presented statistics to design NAS al-
gorithms through the composition of separate supernet training and architecture selection methods,
as well as highlighting a case-study demonstrating the importance of considering the interactions of
Stage-1 supernet training and Stage-2 architecture selection on the analysis of a recent algorithmic
innovation.

2 RELATED WORK

2.1 DIFFERENTIABLE SUPERNET NAS

DARTS was the first published differentiable NAS algorithm, utilizing a “continuous relaxation”
method to parametrize the set of possible architectures, by placing trainable weights on each possible
operation (Liu et al., 2019). The final model is selected from these trained architecture weights
by simply keeping only the operations with the largest weight. This method is general enough to
support the discovery of a broad range of neural network topologies through the use of a “zero”
operation, representing the lack of an edge between nodes. Numerous works since the publication

2

Under review as a conference paper at ICLR 2022

of DARTS have attempted to demonstrate simple improvements on DARTS to stabilize training,
avoid the hard prune at the end of training, or improve scalability. For example, PC-DARTS (Xu
et al., 2020) has demonstrated partial channel training, allowing the use of larger supernet model.
This work addresses the final hard prune by removing the magnitude based prune and substituting
a perturbation-based pruning algorithm. While Chu et al. (2021) stabilizes the training process
using an auxiliary skip connection, in contrast to prior work which relied on the Hessian eigenvalue
regularizer.

In motivating SNAS, Xie et al. comment on the performance estimation aspect of DARTS, demon-
strating the disparity in the validation accuracy obtained from the shared weight model of DARTS
using the whole shared-weight model and the pruned final architecture (Xie et al., 2019). Stochastic
differentiable NAS algorithms, like SNAS, offer one answer to this question of performance estima-
tion in differentiable NAS through the use of sampling. These methods preserve the gradient-based
approach of DARTS, while proposing a specific (and increasingly discrete) architecture at each step.

Motivating the performances estimation abilities of shared weight models more generally, Bender
et al. (2018) implement a path-based form of dropout, randomly masking portions of the shared
weight model during training and demonstrated a strong correlation between performance estimates
from shortened training and the shared weight model, suggesting that the two methods of perfor-
mance estimation are comparable.

2.2 ZERO-SHOT NAS

Recently, methods have been proposed to select an architecture without training even a single archi-
tecture model. Much of these methods are based on proxies, like EcoNAS (Zhou et al., 2020), while
TE-NAS (Chen et al., 2021a) recently demonstrated a zero-shot search based on measures emerging
from deep learning theory. Abdelfattah et al. (2021) demonstrate a range of measures which have
been used to compute saliency in other deep learning problems as possible measures to be useful
in NAS. In this work we modify the adapted synflow measure demonstrate by Abdelfattah et al.
(2021) as well their implementation Jacobian covariance measure developed by Mellor et al. (2021)
to function as architecture selection techniques on a supernet.

2.3 SUPERNET NAS EVALUATION

Research on the evaluation of NAS methods has developed as a result of difficulties in comparing the
performance NAS algorithms demonstrated in different architecture search spaces, as the selection of
search space can have a greater effect on the final performance than the selection of NAS algorithm,
which can be made clear through performing a random search (Li & Talwalkar, 2019).

Yu et al. (2020) initiated the critical inquiry into the use of weight-sharing for performance es-
timation by evaluating popular weight-sharing NAS algorithms in a reduced search space of 32
architectures. They demonstrated a lack of correlation in ranking between the performance esti-
mates obtained from the shared-weight model and the trained from scratch test accuracy for and
an improvement in performance of the final model achieved by not using weight-sharing. Further
research evaluating the rankings of small samples (Yang et al., 2020) or small search spaces (Zhang
et al., 2020) showed high variance in rankings across random seeds after training the shared weight
model through random sampling. Like these prior works, we also suggest the the accuracy of the top
model alone can be a misleading evaluation technique for NAS algorithms. However, our basis for
this assertion is not the design of the search space, but that the reported accuracy value may be due
to the unintended interactions between algorithmic innovation presented and other components of
the NAS algorithm (e.g. performance estimation or search strategy), and not necessarily well repre-
sent the merits of the proposed methodology itself. This motivates our proposal here for additional
metrics which evaluate separately the performance estimation or architecture sampling aspects of a
given algorithm.

This work is most aligned with direction of NAS evaluation research demonstrated by Zela et al.
(2020). In this work they propose the dominant eigenvalue of the Hessian of the validation loss
w.r.t. the architecture parameters as a statistic which helps to explain the failure modes of DARTS.
Specifically, they associate a large eigenvalue with a significant drop in performance resulting from
pruning. We are also attempt to establish statistics which indicate the potential outcome of archi-

3

Under review as a conference paper at ICLR 2022

tecture selection for a given trained supernet, however we are not focused on the pruning-based
architecture selection used by DARTS. Instead of formulating our statistic to account for the failure
modes of a specific NAS algorithm, we propose statistics based on the broad theory of the NAS
process.

3 CASE STUDY: TWO MODIFICATIONS TO DARTS

To motivate the importance of separating the evaluation of different components of a NAS algorithm
proposed below, here we present a experimental case study. Two recent papers demonstrated non-
overlapping modifications to DARTS named DARTS- (Chu et al., 2021) and DARTS-PT (Wang
et al., 2021). Each paper aimed to tackle the problem of unstable architecture weights in DARTS.
DARTS- addressed this issue by adding an auxiliary skip connection to each mixed operation in
DARTS, aiming to stabilize the training of architecture weights. DARTS-PT instead dismissed
the architecture weights entirely, using a perturbation based method of selecting operations after
training the supernet. The authors conclude that the perturbation technique may work better if
DARTS is trained without architecture weights at all as they were able to demonstrate a smaller
error using their method on a supernet trained with fixed architecture weights than on a supernet
trained by DARTS. This result would suggest that the core innovation of DARTS, the continuous
relaxation technique for approximating gradient updates to the architecture of the model, may not be
of significant use. However, the generality of these conclusions are unclear from DARTS-PT alone.

Search Space DARTS DARTS-
Max α Perturb Perturb w/ fix α Max α Perturb Perturb w/ fix α

NAS-Bench-201 45.7 11.89 6.20 6.75 6.56 7.22
S1 3.84 3.5 2.86 2.62 2.87 2.76
S2 4.85 2.79 2.59 2.65 2.47 2.80
S3 3.34 2.49 2.52 2.58 2.53 2.54
S4 7.2 2.64 2.58 3.44 2.67 2.61

Table 1: A case study showing the importance of separately evaluating supernet training and
archtiecture selection. The DARTS-PT architecture selection method run on a supernet trained on
standard DARTS (left) shows improved peformance when not training architecture weights. But
when the same perturbation method is applied to a supernet trained via DARTS- to results from in-
cluding auxiliary skip connection (right), we see improvement when including architecture weights.
This reversal to the “Stage-2” perturbation method of selecting architectures is due to that method’s
reliance on the (“Stage-1”) training of the supernet. The top method for each search space is indi-
cated in bold while the top architecture selection technique for the version of DARTS which did not
attain the overall top result is italicized.

By implementing DARTS- within the provided codebase for DARTS-PT and replicating their tests,
we observe a reversal of this result in Table 1. We have run trials on CIFAR10 of perturbation search
applied to DARTS- in each of the search spaces where DARTS-PT with a fixed α was shown to
outperform DART-PT with a trained alpha (though this was only the case for S3 on data sets other
than CIFAR10). Once training of the architecture weights is stabilized via the auxiliary skip con-
nection, training with architecture weights actually does provide an improvement to the perturbation
based selection method. Perturbation applied to DARTS trained with a fixed α still appears to be an
effective method, attaining 2 of the top 4 results it held prior to comparison with DARTS- and the
perturbation method appears quite effective overall, attaining the top result for every search space
except S1. However, these results do suggest that the striking result that the process of training
architecture weights actually results in a lower final performance after perturbation-based selection
will likely not generalize beyond the original formulation of DARTS. Although the perturbation
method does not utilize the architecture weights, the DARTS- results indicate that they influence the
training of the shared weights in a way which can assist the perturbation process if the architecture
weights are being trained effectively.

We do not present this case study in order to undermine the assertions supporting DARTS-PT about
the inadequacy of architecture weight pruning as an architecture selection method. In fact, this

4

Under review as a conference paper at ICLR 2022

assertion aligns closely with the work demonstrated in this paper about alternative architecture se-
lection techniques for differentiable NAS. Rather, we present this case study in order to demonstrate
the necessity of a common theoretical frame in order to produce general insights to the architecture
selection process in supernet NAS. In this case, an insight into the limitations of the architecture
weights, turned out to no longer hold across a minor modification of the supernet training method.
This specificity of the insight would have been difficult to anticipate as supernet methods lack a com-
mon interpretation of the architecture weights or method to evaluate them, beyond the performance
of their argmax. We propose a general method for evaluating the supernet training and architecture
selection methods separately as a path towards more general insights and rigorous understanding of
supernet-based NAS algorithms.

4 TWO STAGE SEARCH

Much of the criticism of DARTS has focused specifically on the method by which the final archi-
tecture is extracted from the supernet. These issues with the “hard-prune” implemented in DARTS
distract from evaluation of the process by which DARTS trains the supernet. We view this as an
extreme example of a broader phenomenon by which the reliance on the accuracy of final selected
architectures as the standard performance metric dilutes our ability to evaluate specific innovations
to the shared-weight model training and/or final architecture selection components of NAS. To rem-
edy the lack of feedback on these individual aspects of a NAS algorithm, we employ a two stage
search framework for differentiable supernet-based NAS.

We consider the training of the supernet as a “Stage-1 search algorithm” on its own. Although these
algorithms do search the architecture space, their output is not a single final architecture but some
form of information about the relative quality of architectures. We consider two possible forms this
information can take: a weighting/sampling distribution over the architecture space (exemplified
by α in DARTS) and a trained supernet model which able to provide performance estimates of
individual candidate architectures. Note that the Stage-1 search algorithm need only provide one of
these, as One-Shot NAS does not utilize any learned distribution over the architecture space, and the
default Stage-2 search method for DARTS makes no use of the supernet model’s shared weights.

We then denote the architecture selection process inherent to all supernet-based NAS algorithms
as “Stage-2 search”, which takes in the supernet model and associated weighted distribution over
the architecture space and selects the single top architecture for that search space. The purpose
of this terminology choice is to draw attention to distinct components of existing NAS algorithms
and investigate their relationship to each other. There are numerous ways that a final architecture
can be obtained from any supernet training algorithm and, though some selection algorithms may
be more suitable for particular training algorithms, no supernet training algorithm is necessarily or
trivially tied to a particular architecture selection algorithm, or vice versa. We utilize the original
names of the algorithms to denote Stage-1 search algorithms for shared-weight model training, such
as DARTS and SNAS, while we name the Stage-2 search algorithms after the architecture selection
criterion used.

Note that these two search stages are simply a decomposition of the supernet-based search, and do
not also consider or propose additional steps in the NAS search pipeline, such as obtaining train-
from-scratch accuracy over multiple trials or further finetuning of the best of these models – as noted
by Li & Talwalkar (2019) as aspects of the original DARTS search method.

Through this framing of two-stage supernet-based NAS, we are able to unify several disparate
strands of NAS research. As the default Stage-2 search method of DARTS is notoriously unsta-
ble, techniques such as that of Wang et al. (2021) have been developed to bypass it. At the same
time, zero-cost NAS methods, such as those of Abdelfattah et al. (2021) have provided advanced
statistics for the rapid evaluation of sampled architectures. Positioning both of these techniques as
Stage-2 search algorithms allows us to broaden the application of the former beyond DARTS and
integrate the latter with supernet-based NAS techniques.

We evaluate both search stages and their combination using NAS-Bench-201 Dong & Yang (2020),
relying on the train-from-scratch test accuracy metrics provided for each architecture in the bench-
mark. To begin to explore the generality of these results, we provide results on the three provided
benchmarks within the dataset (CIFAR-10, CIFAR-100, and ImageNet16-120). Cognizant of the rel-

5

Under review as a conference paper at ICLR 2022

atively small search space of this setup, we also provide results on CIFAR-10 on the larger DARTS
search space.

4.1 EVALUATING STAGE-1 SEARCH

We consider the process of training a supernet to be Stage-1 of the architecture search, resulting
in a relative ranking estimating the quality of architectures (or their subcomponents of individual
edges/nodes/operations). How much this process actually constitutes a search of the architecture
space depends entirely on the training method. If we were to substitute training a subset of the su-
pernet for individual model training in an evolutionary NAS algorithm, we would obtain a training
method where the supernet is trained via an explicit search of the architecture space. Along these
lines, the Random Search with Parameter Sharing (RSPS) (Li & Talwalkar, 2019) training method
can be viewed as a random search of the architecture space or, conversely a supernet training method
which involves no search of the architecture space (as the information about the observed perfor-
mance of sampled architectures is not used to inform the search process). The algorithms we con-
sider here, differentiable supernet training methods, occupy a more ambiguous position. DARTS and
its variants do not evaluate individual architectures in the search space during training, but do eval-
uate supersets of components of the search space. In NAS-Bench-201, and any other search space
encoded as a set of single-choice categorical variables, the sampling-based differentiable NAS algo-
rithms actually do iterate over architectures within the search space, though only those that impose a
discrete constraint like GDAS are actually evaluating individual architectures. In general, these dif-
ferentiable supernet training methods can be construed as implicitly searching over the architecture
space, performing and retaining record of comparative evaluations within the search space, but not
necessarily at the level of individual architectures.

We wish to, as separately as possible, evaluate how these algorithms train their architecture and
shared weights. As NAS-Bench-201’s search space allows a single operation at each edge, the ar-
chitecture weights, after a softmax, correspond exactly to a categorical distribution over operations.
From the probability of each operation in a model, we can take their product to find the sampling
probability mass assigned to each architecture in the search space. We utilize the benchmark data set
to compute the probability of sampling architectures of a given test accuracy, allowing us to evaluate
the quality of the architecture weights by directly observing the sampling probability mass they have
assigned to the highest performing models in the search space. Fig. 1 (Right) shows the cumulative
distribution of sampling probability by test accuracy. Points above the baseline of uninformed ran-
dom sampling (dashed line) demonstrate algorithms with a tendency to oversample high performing
architectures, while curves below the baseline undersample high performing architectures.

In order to evaluate the quality of the shared weights learned by the supernet training algorithms,
we utilize them to record a validation accuracy for every architecture in the search space. We then
rank every architecture according to its approximated performance and compare this ranking to the
ground truth ranking obtained using the benchmark test accuracy. For a given test accuracy level,
the proportion of architectures with ground truth accuracy of at least that level that are also predicted
to be in that ranking is recorded (e.g. if 20% of the architectures in the top decile of models accord-
ing to their train-from-scratch test accuracy are predicted to be in the top decile via shared-weight
validation accuracy for a given algorithm, then at the test error threshold separating the top decile
of architectures from the bottom 90%, that algorithm would have a “top-architecture-identification”
(i.e. recall) rate of 20% or 0.2). Fig. 1 (Left) shows this curve relative to a baseline of random
performance-estimation validation rankings. Points above the baseline better estimate performance
for higher-performing architectures, while points below the baseline curve are worse at estimating
the performance of higher-performing architectures. In addition to the CIFAR-10 performance es-
timation and sampling probability curves Fig. 1 (Top), the metrics on Imagenet Benchmark from
NAS-Bench-201 in Fig. 1 (Bottom) show that SNAS and Dirichlet Neural Architecture Search (Dr-
NAS) highly outperform the other algorithms at both estimating performance of top architectures
and biasing the sampling distribution towards them. Interestingly, DARTS (which never samples
discrete architecture during the training of the shared-weight model) performs very poorly at both
performance estimation and oversampling of top architectures. With the DARTS- innovation, the
supernet does improve its ability to oversample high-performing architectures, making the algorithm
competitive with the worse performing sampling-based approach we investigated (GDAS).

6

Under review as a conference paper at ICLR 2022

Although only one Stage-2 method we evaluate actually directly relies on validating individual archi-
tectures using the supernet, by obtaining performance estimates for each architecture in the search
space and then attempting to rank them, we provide a proxy measure the amount of information
about the relative quality of individual architectures within the supernet, which should also play a
role in determining any other statistic computed over individual architectures using the supernet.

Figure 1: (Left) Top Arch ID rate of shared-weight based validation accuracy and benchmark test
accuracy across test error threshold groups of the architecture space. (Right) Sampling probability
mass across test error threshold groups of the probability space.

4.2 EVALUATING STAGE-2 SEARCH

In our Stage-2 metric, we seek to evaluate the ability of an algorithm to select the top discrete
architectures from a given supernet. In order to evaluate the architecture selection process, we
define a standardized input for the Stage-2 search algorithms. We wish to provide a sufficiently
broad baseline such that it is suitable for evaluating any Stage-2 search algorithm which can be
implemented on top of a supernet training algorithm. As we consider the supernet itself as the input
to the architecture selection algorithms, our baseline must consist of a standardized set of supernets,
trained in a manner such that evaluating architecture selection methods on them facilitates estimation
of their efficacy across a range of Stage-1 search methods.

Unfortunately, there is no readily apparent method for training architecture weights that could serve
as a suitable baseline. As the method by which they train the architecture weights is the defining
characteristic for several of the Stage-1 search algorithms we examine and the simplest method to
train the architecture weights is already one of the algorithms (DARTS) it is not feasible to de-
sign a baseline training method which involves training the architecture weights without biasing the
baseline towards evaluating compatibility with a specific Stage-1 algorithm.

The core of our baseline Stage-2 evaluation technique is given by the algorithm ”Random Search
with Parameter Sharing” (RSPS) proposed by Li & Talwalkar (2019) as a baseline method for eval-
uating the contribution of weight-sharing in NAS. Additionally, sampling architectures uniformly at
random and training the supernet by adjusting the weights for a single architecture at a time presents
the simplest method for training a supernet.

7

Under review as a conference paper at ICLR 2022

In order to simulate the benefit of architecture weights without actually training architecture weights,
we utilize the relationship between the architecture weights and architecture sampling. As we are
using a NAS benchmark to support this evaluation method, we have access to the ground truth per-
formance of every architecture in the search space and can design an arbitrarily good distribution
over the architecture space. As such, we augment our RSPS training method by replacing the uni-
form sampling with a sampling distribution where the probability of sampling a model is inversely
proportional to its performance (so the sampling probability linearly decreases over the ranking by
test accuracy), formulating and idealized version of discrete sampling based supernet NAS. We also
utilize this distribution for evaluation of Stage-2 search algorithms which sample architectures from
the supernet.

In addition to the RSPS model evaluated with (RI and without RU the biased sampling distribu-
tion), we run each Stage-2 search algorithms on a randomly initialized model with and without the
idealized sampler (NI and NU respectively). We compute statistics corresponding to the reliance of
the Stage-2 algorithm on the architecture discovery and performance estimation via supernet shared
weights by taking the difference in performance on these baseline models. The measure correspond-
ing to reliance on the supernet having learned effective architecture parameters is computed as the
difference between the performance of the biased sampling supernet and the uniform sampling su-
pernet. The measure corresponding to reliance on obtaining information about the effectiveness
of individual candidate architectures using the supernet’s weights, is computed as the difference
between performance on the uniform sampling supernet and the randomly initialized supernet.

valid synflow jacob_cov perturb

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Te
st

 A
cc

ur
ac

y
Ga

in

N_I - N_U
R_I - R_U
R_U - N_U
R_I - N_I

Figure 2: Comparison of Stage-2 search algorithm performance with given baseline models. ”Ini-
tial” refers to untrained model, ”Uniform” refers to a model trained by training a uniformly ran-
domly sampled architecture at each batch, and ”Biased” refers to a model trained by an architecture
sampled from an arbitrarily good distribution at each batch.

We examine four techniques for Stage-2 search: searching based on the validation accuracy obtained
from the shared weight model (“valid”); the top two measure reported in Abdelfattah et al. (2021),
synflow and jacob cov, and the perturbation based method demonstrated in Wang et al. (2021) (“per-
turb”). The first 3 methods are sampling based random searches: a sample of 100 architectures is
drawn from the architecture distribution provided by the supernet and then the canditate architec-
tures are ranked by either the validation accuracy, synflow, or jacobian covariance, outputting the
highest ranked architecture. The perturbation based method instead operates directly on the super-
net, iteratively masking out operations and computing validation accuracies to prune operations one
by one until a final model is produced.

8

Under review as a conference paper at ICLR 2022

5 PUTTING IT TOGETHER

The concept of separate Stage 1 and Stage 2 search algorithms hinges on the assumption that these
algoritm are not closely coupled in practice: that a better result may be obtained by swapping the
Stage 2 search algorithm that was originally paired with a given Stage 1 search algorithm in an
appropriate context.

The results of evaluating all of the reviewed Stage 1 and Stage 2 search algorithms in combination
seem to support his assumption.

prune valid synflow jac cov perturb
darts 40.16± 7.83 9.07 ±1.65 9.48± 2.33 10.03± 0.20 14.34± 3.66
darts- 9.36± 2.17 11.90± 0.65 6.29 ±0.46 8.16± 2.03 10.17± 1.16
snas 5.92 ±0.25 8.31± 3.36 6.36± 0.10 7.71± 0.27 7.24± 1.54
gdas 12.55± 8.54 17.40± 4.39 7.03 ±0.20 9.30± 1.26 8.25± 1.46

dirichlet 5.64 ±0.00 6.35± 0.08 6.04± 0.28 7.35± 0.75 5.88± 0.22

Table 2: Combined results of all S1 and S2 search algorithms on CIFAR-10 in NAS-Bench-201

We also evaluate each Stage-1 and Stage-2 algorithm and their combinations on CIFAR100 and
ImageNet16-120, with the result provided in the Appendix.

5.1 DARTS-SPACE RESULTS

prune valid synflow jac cov perturb
darts 3.27± 0.44 3.48± 0.47 3.66± 0.59 3.01 ±0.23 3.25± 0.10
darts- 2.66 ±0.15 2.98± 0.22 3.22± 0.43 3.11± 0.40 2.72± 0.25
snas 3.10± 0.14 3.19± 0.31 3.61± 0.67 3.13± 0.35 2.96 ±0.32
gdas 3.04± 0.39 4.01± 0.62 4.94± 0.29 3.17± 0.23 2.90 ±0.11

dirichlet 2.65 ±0.06 3.36± 0.07 3.67± 0.66 3.21± 0.32 2.78± 0.05

Table 3: Combined results of all S1 and S2 search algorithms on CIFAR-10 in DARTS-space

6 CONCLUSION

In order to facilitate integration of recent advances in NAS and well as more robust evaluation in
NAS research, we have reframed existing differentiable supernet NAS algorithms as combinations
of two separate search algorithms, the first being an implicit search via the process of training the
supernet using architecture weights and the second being the process of selecting an architecture
using the supernet. We propose two statistics approximating the quality of the weighting over the
architecture space and the capacity of the supernet to provide information about the relative qual-
ity of individual candidate architectures, as well as two corresponding statistics approximating the
reliance of architecture selection methods on each of these components of the supernet.

We measure the performance of each of 5 Stage-1 and 5 Stage-2 search methods in combination,
noting that we did not find consistent combinations of algorithms optimal across different datasets,
search spaces, and training conditions. We did find, however, that our statistics did elucidate prop-
erties of the Stage-1 search algorithms which achieve top performance across search spaces, like
the capacity of SNAS or DirichletNAS to estimate performance, that distinguished them from less
successful Stage-1 search algorithms.

7 REPRODUCIBILITY

We trained each model on a single Tesla V100 GPU. We utilized the random seeds [1, 2, 3] in our
case study and [10, 11, 12] in our main experiment. The source code utilized in the course of this
experimentation is provided in full at: https://github.com/anon-submit-ml/picking-up-pieces

9

Under review as a conference paper at ICLR 2022

REFERENCES

Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane. Zero-Cost
Proxies for Lightweight NAS. In International Conference on Learning Representations (ICLR),
2021.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 550–559, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.press/v80/bender18a.html.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HylVB3AqYm.

Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search,
2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. In International Conference on Learning
Representations, 2021a.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization, 2021.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=9FWas6YbmB3.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1294–1303, 2019.

Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. Darts-: Ro-
bustly stepping out of performance collapse without indicators. In International Conference on
Learning Representations (ICLR), 2021.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019a.

Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network.
In The IEEE International Conference on Computer Vision (ICCV), October 2019b.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architec-
ture search. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Jour-
nal of Machine Learning Research, 20(55):1–21, 2019. URL http://jmlr.org/papers/
v20/18-598.html.

Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin.
Dsnas: Direct neural architecture search without parameter retraining, 2020.

Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Müller, Ali Thabet, and Bernard Ghanem.
Sgas: Sequential greedy architecture search. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Conference on Uncertainty in Artificial Intelligence, July 2019.

10

http://proceedings.mlr.press/v80/bender18a.html
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html

Under review as a conference paper at ICLR 2022

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision – ECCV
2018, pp. 19–35, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01246-5.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architec-
ture optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
7816–7827. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8007-neural-architecture-optimization.pdf.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search without
training. In International Conference on Machine Learning, 2021.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In ICML, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 2902–2911.
JMLR.org, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In AAAI, 2018.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable nas. In International Conference on Learning Representa-
tions (ICLR), 2021.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture
search. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rylqooRqK7.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. {PC}-
{darts}: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=BJlS634tPr.

Antoine Yang, Pedro M Esperanca, and Fabio Maria Carlucci. NAS evaluation is frustratingly hard.
In International Conference on Learning Representations, 2020. URL https://arxiv.org/
pdf/1912.12522.pdf.

Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu. Efficient neural architecture search via proximal iterations. In
AAAI Conference on Artificial Intelligence, 2020.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=H1loF2NFwr.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning: Ef-
ficient joint neural architecture and hyperparameter search. In International Conference on Ma-
chine Learning AutoML Workshop, 2018. URL https://arxiv.org/pdf/1807.06906.
pdf.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hut-
ter. Understanding and robustifying differentiable architecture search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1gDNyrKDS.

11

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://papers.nips.cc/paper/8007-neural-architecture-optimization.pdf
http://papers.nips.cc/paper/8007-neural-architecture-optimization.pdf
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://arxiv.org/pdf/1912.12522.pdf
https://arxiv.org/pdf/1912.12522.pdf
https://openreview.net/forum?id=H1loF2NFwr
https://arxiv.org/pdf/1807.06906.pdf
https://arxiv.org/pdf/1807.06906.pdf
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS

Under review as a conference paper at ICLR 2022

Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang, Yujing Wang, Hui Xue, Chen Zhang, and
Yaming Yang. Deeper Insights into Weight Sharing in Neural Architecture Search. arXiv e-prints,
art. arXiv:2001.01431, January 2020.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for
neural architecture search. In International Conference on Machine Learning, 2019. URL http:
//arxiv.org/abs/1905.04919.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8697–8710, June 2018. doi: 10.1109/CVPR.2018.00907.

A APPENDIX

A.1 REVIEW OF SEARCH 2 METHODS IN PRIOR WORK

0 2 4 6 8 10 12 14
Count

Arch weight/distr prune

Random search

Perturb

Population search

S2
 se

ar
ch

 m
et

ho
d

Figure 3: Stage-2 search methods of published NAS algorithms

We review a set of 20 published supernet NAS algorithms to determine the nature of the Stage-2
search method used. We find that existing techniques overwhelmingly utilize some form of archi-
tecture weight or distribution pruning to select a final architecture.

Algorithm S2 Search method Notes Reference

DARTS Arch prune Suggests multiple trials for final arch 2019
DARTS- Arch prune 2021

PC-DARTS Arch prune Combined prune on op, edge weights 2020
RSPS Random search 2019
SNAS Arch prune Prune ops, no method for edge pruning 2019
GDAS Arch prune 2019a
DrNAS Arch prune 2021b

ProxylessNAS Arch prune Sample during training 2019
ENAS Random search Uses trained sampler 2018

OSNAS Random search 2018
DARTS-PT Perturbation 2021
P-DARTS Arch prune Progressive prune, alter search space 2019
SDARTS Arch prune Arch selection not directly addresssed 2021
R-DARTS Arch prune Final arch selected from multiple trials 2020

SETN Random search Uses trained sampler 2019b
BayesNAS Arch prune Entropy-based prune 2019

NASP Arch prune Proximal algorithm, applied during training 2020
SGAS Arch prune Progressive prune on multiple metrics 2020

NAOnet Population search Gradient based updates to population 2018
PARSEC Arch prune Sample during training 2019
DSNAS Arch prune Sample during training 2020

Table 4: Detailed account of Stage-2 Search method review.

12

http://arxiv.org/abs/1905.04919
http://arxiv.org/abs/1905.04919

Under review as a conference paper at ICLR 2022

In the above table, note that when ”sample during training” is included in the notes, this signifies that
discrete architectures are sampled during the training process, while the final architecture selection
method does not depend on sampling. This is technically not true for GDAS, as it samples a single
operation on each edge in same search space utilized by DARTS which does not allow an operation
on every edge, resulting in sampling a subset of the supernet that is not necessarily equivalent to any
architecture within the search space. SNAS and DrNAS also utilize sampling during training, but
use relaxed samples, not discrete architectures.

As clarified in the notes, there is significant variation among the architecture techniques labeled
as ”arch prune.” Many methods utilize more complex parameterizations of the architecture space
than DARTS, but largely still prune based on magnitude. BayesNAS instead utilizes the entropy of
the architecture parameterization as a pruning criterion, while SGAS develops two different criteria
incorporating magnitude, entropy, as well as the histogram intersection of the architecture parame-
terization over several updates. The technique used by NASP is a proximal algorithm, which in the
general case would be incorrect to describe as pruning, however the proximal algorithm used in this
case applies the constraint of the L0 − balltheresultingprocessissimilar.

A.2 CIFAR-100 RESULTS

Figure 4: Left: Top arch ID rate across test regret threshold groups of the architecture space. Right:
Sampling probability mass across test regret threshold groups of the probability space.

prune valid synflow jac cov perturb
darts 61.03± 0.00 36.41± 3.19 33.24± 33.24 36.44± 1.15 44.13± 5.60
darts- 32.46± 4.93 44.68± 7.47 28.51± 28.51 32.18± 2.46 35.11± 3.55
snas 28.37± 1.33 36.95± 6.32 29.08± 29.08 32.47± 3.77 33.65± 3.35
gdas 83.58± 8.80 52.97± 7.97 30.21± 30.21 36.20± 2.74 38.81± 4.05

dirichlet 28.62± 1.57 30.03± 0.56 27.48± 27.48 34.44± 3.77 29.29± 2.43

Table 5: Combined results of all S1 and S2 search algorithms on CIFAR-100 in NAS-Bench-201

A.3 IMAGENET16-120 RESULTS

prune valid synflow jac cov perturb
darts 81.59± 0.00 79.21± 5.36 57.41± 0.90 71.52± 4.47 65.04± 1.22
darts- 77.03± 4.70 77.49± 5.21 54.68± 1.44 61.61± 5.11 64.65± 3.03
snas 53.66± 0.00 53.44± 0.11 56.93± 2.31 54.64± 0.76 56.20± 2.97
gdas 58.98± 0.00 69.26± 4.79 58.62± 0.82 63.39± 4.54 59.01± 2.13

dirichlet 53.66± 0.00 54.68± 0.17 53.66± 0.00 56.15± 1.46 56.04± 3.07

Table 6: Combined results of all S1 and S2 search algorithms on ImageNet16-120 in NAS-Bench-
201

13

Under review as a conference paper at ICLR 2022

valid synflow jacob_cov perturb

10

5

0

5

10

15

20

Te
st

 A
cc

ur
ac

y
Ga

in

N_I - N_U
R_I - R_U
R_U - N_U
R_I - N_I

Figure 5: Comparison of Stage-2 search algorithm performance on CIFAR-100 with given baseline
models. ”Initial” refers to untrained model, ”Uniform” refers to a model trained by training a uni-
formly randomly sampled architecture at each batch, and ”Biased” refers to a model trained by an
architecture sampled from an arbitrarily good distribution at each batch.

Figure 6: Performance of Stage-1 and Stage-2 search on CIFAR-100 algorithm combinations,
ordered by score.

A.4 PREDICTING COMBINED PERFORMANCE

Separate measures for evaluating Stage-1 and Stage-2 search facilitate estimation of the quality of
combining Stage-1 and Stage-2 methods. To empirically test the utility of these measures, we com-
bine the separate evaluation methods via a simple ranking technique to generate a unified ranking.

14

Under review as a conference paper at ICLR 2022

Figure 7: Left: Top arch ID rate across test regret threshold groups of the architecture space. Right:
Sampling probability mass across test regret threshold groups of the probability space.

We compared this estimated ranking based on separate evaluation to the observed performance of
each combination of search Stage-1 and search Stage-2 implemented on NAS-Bench-201.

We denote the ranking of Stage-1 search algorithms by sampling probability as rα1 and the ranking
by correlation of shared-weight validation accuracy with benchmark test accuracy as rβ1. For Stage-
2 models we compute the performance on the uniform baseline as rα2 and the performance on the
biased baseline as rβ2. Then we compute a score for each combination of Stage-1 and Stage-2
algorithm as follows:

score = rα1(|rα1 − rα2
|+ 1)× rβ1(|rβ1 − rβ2|+ 1)

The scoring formula uses the difference between ranks to capture a mismatch in the capabilities of
Stage-1 algorithms and those relied on by the Stage-2 search algorithms, adding 1 to avoid attributing
undue weight to the Stage-1 and Stage-2 algorithms sharing a rank. We then scale this difference
by the Stage-1 ranks as they are approximations of the supernet model’s performance estimation
and top architecture discovery capabilities, which should correlate with overall performance. As
the Stage-2 ranks are computed using the difference in performance between pair of models rather
than being a measure of model performance, we do not incorporate their magnitude. Given that
NAS algorithms have been demonstrated which do not rely one of either a learned distribution over
architectures or ever using the supernet to evaluate individual architectures, we use multiplication to
combine the two separate measures so that a combination which succeeds at one of the two measures
is scored above one which is mediocre at both.

After computing the scores, we then test the Stage-2 search algorithms on each Stage-1 algorithm,
producing measurements of the benchmark test accuracy of the final architecture we are able to
compare against the ranking implied by our scores, as shown in Fig. 7.

These final scores, with the accompanying ordering, suggest that these measures are a useful, but
imperfect message for estimating the combined performance of a supernet training algorithm and
architecture selection algorithm.

The purpose of this provided ranking is not necessarily to propose a specific method for ranking
combinations of Stage-1 and Stage-2 algorithms but rather to provide an empirical demonstration
of the usefulness of the proposed evaluation techniques and broader perspective of evaluating sep-
arately the performance estimation, architecture sampling, and architecture selection. These evalu-
ation techniques can be utilized by researchers who develop new Stage-1 or Stage-2 algorithms to
provide additional information about how their algorithm functions and how it might interact with
other NAS techniques that is not provided when only the final test accuracy is reported.

15

Under review as a conference paper at ICLR 2022

Figure 8: Performance of Stage-1 and Stage-2 search algorithm combinations, ordered by decreas-
ing score, with benchmark test accuracy plotted in blue on the left axis and score plotted in red on
the right axis.

16

	Introduction
	 Related Work
	 Differentiable supernet NAS
	Zero-shot NAS
	Supernet NAS evaluation

	Case Study: two modifications to DARTS
	 Two stage search
	Evaluating Stage-1 search
	Evaluating Stage-2 search

	Putting it Together
	DARTS-space results

	Conclusion
	Reproducibility
	Appendix
	Review of Search 2 methods in prior work
	CIFAR-100 results
	ImageNet16-120 results
	Predicting combined performance

