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ABSTRACT

3D maps assembled from planar primitives are compact and expressive in repre-
senting man-made environments, making them suitable for a spectrum of appli-
cations. In this paper, we present NeuralPlane, a novel approach that explores
neural fields for multi-view 3D plane reconstruction. Our method is centered
upon the core idea of distilling geometric and semantic cues from inconsistent 2D
plane observations into a unified 3D neural representation, which unlocks the full
leverage of plane attributes. This idea is accomplished by NeuralPlane through
several key designs, including: 1) a monocular module that generates geometri-
cally smooth and semantically meaningful segments as 2D plane observations, 2)
a plane-guided training procedure that implicitly learns accurate plane locations
from multi-view plane observations, and 3) a self-supervised feature field termed
Neural Coplanarity Field that enables the modeling of scene semantics alongside
the geometry. Without relying on plane annotations, our method achieves high-
fidelity reconstruction comprising planar primitives that are not only crisp but also
well-aligned with the semantic content. Comprehensive experiments on Scan-
Netv2 and ScanNet++ demonstrate the superiority of our results in both geometry
and semantics. Our project page: https://neuralplane.github.io/.

1 INTRODUCTION

While inferring dense geometry such as volumetric grids and meshes from 2D images has been
extensively studied (Schönberger et al., 2016; Murez et al., 2020; Wu et al., 2023b), there is also a
growing realization that reconstructs sparse 3D maps composed of self-contained primitives (Xue
et al., 2024; Li et al., 2024; Kluger et al., 2024; Mazur et al., 2024). In this paper, we focus on
reconstructing structured indoor scenes as configurations of planar primitives. Among the most
common geometric primitives, such as line segments and edges, planar primitives are particularly
instrumental in describing man-made environments. Furthermore, they are compact and expressive
parametric entities that provide not only strong geometric cues, but also rich semantic information.
From this lens, 3D maps built by planar primitives are notably lean and convenient for practical use,
and have been successfully deployed in various applications in areas such as robotics (Zhou et al.,
2021; Liu et al., 2023) and augmented reality (ARKit, 2024; ARCore, 2024).

The reconstruction of 3D planes is conventionally approached by fitting planar primitives to an un-
ordered point cloud or a mesh generated from depth sensors or multi-view stereo (Yu & Lafarge,
2022). The input geometries of these methods are typically noisy and incomplete, and provide only
limited semantic information for robust plane detection. A recent work by Watson et al. (2024)
incorporates optimized 3D semantic embeddings into the plane fitting module, i.e., RANSAC (Fis-
chler & Bolles, 1981), which helps to discern adjacent planes. However, it still heavily relies on the
quality of input geometry, and requires to train from additional plane annotations. These prior ef-
forts basically decouple 3D plane reconstruction as two independent problems of non-plane-biased
geometry recovery and plane estimation, which bottlenecks the full utilization of plane attributes.
Departing from such geometry+RANSAC paradigm, Xie et al. (2022) developed the first learning-
based model that incrementally reconstructs planes from posed video fragments. However, though
supervised by 3D plane annotations, the method struggles with its adaptability to intricate structures.

Motivated by previous limitations, as well as the success of neural fields in sparse geometry encod-
ing (Ye et al., 2023; Xue et al., 2024; Li et al., 2024) and 3D segmentation (Ying et al., 2024; Kim
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Figure 1: Structured 3D reconstruction in planar primitives with neural fields.

et al., 2024), we introduce a new approach named NeuralPlane. The proposed method maintains
a consistent neural representation for environmental plane structures from multi-view inconsistent
plane observations, which further enables the extraction of high-quality 3D planar primitives.

Fig. 1 (a) provides an overview of our pipeline, which unfolds into three phases: 1) Firstly, we com-
bine two robust vision models into a training-free module capable of excavating well-defined plane
segments from a single image. Plane parameters of these segments are initialized simultaneously,
yielding a set of locally estimated 3D entities referred to as Local Planar Primitives. 2) Secondly,
we design a plane-guided training procedure where the high degree of intra-primitive geometric
regularity is explored to optimize the density field. Although this effectively mitigates the issue of
poor surface reconstruction when encoding the scene geometry by volume density, we recognize
that the density field alone is insufficient for extracting semantically well-aligned planar primitives.
Thereby, we also propose Neural Coplanarity Field, a self-supervised feature field that involves high-
level semantics. This neural field utilizes local planar primitives for inter-primitive reasoning within
a contrastive learning framework, and can accurately capture the coplanar relationships between
different regions. 3) Finally, on top of the learned neural representation, we conduct a two-stage
plane extraction process. Before geometrically fitting planar primitives, the neural representation
is grouped into isolated regions based on the learned coplanarity features, wherein a novel module
called Neural Parser is introduced to facilitate the discrimination of plane instances.

Fig. 1 (b) showcases the superiority of our NeuralPlane over existing state-of-the-arts (Xie et al.,
2022; Watson et al., 2024), where our method faithfully rebuilds scene layouts as sets of crisp planar
primitives while preserving fine-grained semantics. In summary, our key contributions are:

• We present NeuralPlane, a novel approach for multi-view 3D plane reconstruction that
eschews plane annotations. It enjoys the synergy between geometry and semantics in the
context of neural fields and achieves leading performance in extensive experimental studies.

• To capture accurate plane locations, a self-prompting mechanism that integrates two ro-
bust vision models is first proposed to excavate 2D plane regions, wherein strong plane
regularity is then applied to guide the optimization of the implicitly encoded geometry.

• We enhance plane discrimination by incorporating semantics: Neural Coplanarity Field
acts as the core driver of involving the semantic separation via contrastive learning, while
Neural Parser is introduced to jointly model the learned coplanar relationships.

2 RELATED WORK

2.1 MULTI-VIEW PLANE RECONSTRUCTION

The basis of 3D plane reconstruction from multi-view images lies in the detection of planar regions
from either raw RGB inputs or inferred dense geometries. Despite impressive progress in single view

2
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plane detection (Yang & Zhou, 2018; Liu et al., 2019; Yu et al., 2019), a unified multi-view plane
reconstruction remains challenging due to severe cross-view inconsistencies. Several attempts have
been made to locally recover 3D planes from a limited number of images by predicting plane corre-
spondences (Jin et al., 2021; Agarwala et al., 2022; Tan et al., 2023) or stereo matching (Liu et al.,
2022). However, scaling to multi-view scenarios for global reconstructions is still problematic. More
related to us, PlanarRecon (Xie et al., 2022) is the first learning-based model that reconstructs 3D
plane maps by incrementally detecting, tracking, and fusing 3D planes from posed video fragments.
Chen et al. (2023) draw upon neural fields to detect planar primitives from RGB-D sequences. Air-
Planes (Watson et al., 2024) benefits from the conventional two-stage pipeline of fitting planes to
non-plane-biased geometry inferred by an efficient 3D surface reconstruction method (Sayed et al.,
2022), while lifting the learned 2D plane priors into 3D for robust plane distinction.

2.2 HIGHER-LEVEL MAPPING VIA NEURAL RENDERING

Neural rendering has emerged as a powerful technique that allows distilling various 2D observa-
tions from multiple views into 3D neural fields. It has greatly reshaped a wide range of 3D scene
reconstruction and understanding tasks. Recent works (Ye et al., 2023; Xue et al., 2024; Li et al.,
2024) find the neural field favorable for implicitly encoding sparse parametric primitives such as
line segments and edges. Object-compositional neural representations have also been extensively
explored for object-centric mapping (Yang et al., 2021; Yu et al., 2022a; Wang et al., 2023; Park
et al., 2024). Besides, there are advances in constructing semantic maps with neural fields by distill-
ing high-dimensional features (Kobayashi et al., 2022; Kerr et al., 2023) or optimizing a contrastive
loss (Fan et al., 2023; Bhalgat et al., 2023; Kim et al., 2024). Our study falls within the exploration
of neural fields for parametric primitives. However, rather than focusing solely on geometry, we also
integrate semantics to construct the neural representation from a broader perspective.

3 METHOD: NEURALPLANE

Given a set of posed images, our goal is to recover the underlying scene structure using a collec-
tion of 3D planar primitives. To this end, we first process the input images to acquire monocular
plane priors known as local planar primitives (Sec. 3.1). Then, we introduce our neural scene rep-
resentation, which is optimized under the plane guidance (Sec. 3.2). Once optimized, the neural
representation is made explicit by our plane extraction algorithm (Sec. 3.3).

3.1 GENERATING LOCAL PLANAR PRIMITIVES

Essentially, a local planar primitive P = (M ⊆ I,π) is defined as a plane segment M of a single
image I , associated with plane parameters π = [n, o] that have been transformed into world space.
Here, n ∈ R

3 and o ∈ R
+ are respectively the unit normal vector and the offset of the plane from

the origin. Although remarkably advanced single-view plane recovery models (Tan et al., 2021; Shi
et al., 2023) can be employed to estimate such local planar primitives, we will show that purely local
yet robust image priors are sufficient to achieve satisfactory performance, which eliminates the need
to deliberately train a model on plane annotations.

Plane Segments from Monocular Priors. We define the plane segment M of a local planar primi-
tive P as an image region that (1) has consistent normal directions and (2) is geometrically contin-
uous. To excavate such plane segments from an input image, we repurpose a pre-trained monocular
normal predictor (Bae et al., 2021) and the powerful Segment Anything Model (SAM) (Kirillov
et al., 2023). Specifically, we start by applying K-means clustering (Lloyd, 1982) to the predicted
normal map, obtaining low-frequency regions with each having similar normal directions. Subse-
quently, SAM’s automatic mask generator is employed to further segment these smooth regions by
selecting the smallest mask for each prompt. This over-segmentation using SAM not only allows us
to enforce geometric continuity approximately but also produces semantically meaningful segments.
Finally, masks exceeding a specified size threshold are chosen as the desired plane segments.

Initializing Local Plane Geometry. For each local planar primitive P , we initialize its plane normal
n by averaging the predicted normals within the plane segment M. Since poses of input images
are often estimated by Structure-from-Motion (SfM) systems that concurrently output sparse 3D
keypoints, we propose to initialize the plane offset using this readily accessible by-product. Specifi-
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Figure 2: Plane-guided neural fields learning. The overall training scheme consists of two
branches: (a) the geometry branch (Sec. 3.2.1) translates plane constraints into two intra-primitive
regularization terms, i.e., Lnormal and Lp-depth; (b) the semantics branch (Sec. 3.2.2) performs inter-
primitive reasoning via contrastive learning, and introduces a query-based learning module (Neural
Parser) to jointly model the captured coplanar relationships.

cally, the plane offset is initialized by minimizing the total distance from 3D keypoints {p1, . . . ,pm}
detected in M to the plane:

ō = argmin
v∈R+

m
∑

i

wi
∑

wi

∥n̄ · pi + v∥22, (1)

where n̄ is the initialized plane normal, and the weight wi = 1/ēi, indicating the reliability of pi, is
approximated using the average reprojection error ēi across views where pi is visible. Though error-
prone, the process is sufficient to provide effective geometry guidance for our neural representation,
which will be detailed below.

3.2 LEARNING NEURAL REPRESENTATION UNDER PLANE GUIDANCE

Note that local planar primitives are generated with minimal dependence on viewpoint, thus resulting
in severe inconsistency across views. We acknowledge that it is non-trivial to explicitly establish
correspondences and merge them into a compact 3D plane reconstruction. As a consequence, we
propose to fuse them implicitly using neural fields. The overall training scheme of our NeuralPlane
is illustrated in Fig. 2, which consists of two major branches: 1) the geometry branch (Sec. 3.2.1)
focuses on learning accurate plane locations, while 2) the semantics branch (Sec. 3.2.2) captures
coplanar relationships between different regions from conflicting 2D plane segments.

3.2.1 GEOMETRY BRANCH

NeuralPlane implicitly encodes scene geometry as volume density. In this section, we translate
strong plane constraints provided by generated local planar primitives into two regularization terms
to alleviate the well-known shape-radiance ambiguity (Zhang et al., 2020).

Preliminaries. Standard NeRF (Mildenhall et al., 2020) represents a scene as a continuous volume
density function σ : R3 7→ [0, 1] and a continuous view-dependent color function c : (R3, S2) 7→
[0, 1]3. According to the volume rendering formula, given a ray r emanating from camera center
oc with direction v, its expected termination point x is computed by integrating N sampled points
{pi = oc + tiv|i = 1, . . . , N, ti < ti+1} along the ray:

x =

N
∑

i=1

h(ti)pi, h(ti) = T (ti)α(ti) =





i−1
∏

j=1

(1− α(tj))



α(ti). (2)

The piecewise-constant function h(ti) is an approximation of the rendering probability density func-
tion (PDF) to weight the contribution of each sampled point. The opacity value α(ti) is computed
as α(ti) = 1− exp(−σ(pi)∆t).
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Explicit Normal Regularization. To ensure normal consistency on planar surfaces, a normal
regularizer Lnormal is introduced to penalize the deviation of the NeRF-derived surface normal n̂
from n̄ defined in Sec. 3.1. We estimate n̂ in an algebraic manner, using triplets of rays sam-
pled from the plane segment M of a local planar primitive P . More precisely, for each ray triplet
T = {ri(t) = oc + tvi}

3
i=1 randomly drawn from Pa, we render its expected termination points

{xi}
3
i=1 by eq. (2), and estimate the normal of the plane passing through:

n̂ = −sign(z⊤v1) ·
z

∥z∥
, where z = (x2 − x1)× (x3 − x1). (3)

Here, the direction of n̂ is adjusted to point towards the camera (same as n̄a) by checking the angle
between z and v1. Then, the normal loss with respect to Pa is defined as:

Lnormal(σ;Pa) = ET ∼Pa
∥1− n̂⊤n̄a∥1. (4)

Pseudo-Depth Supervision. We observe that though the normal regularization induces smoothness
in planar regions, it alone is not enough for high geometric accuracy. To further guide the learning
process, we introduce plane-derived pseudo-depth as extra supervision. The pseudo-depth D is
computed as the ray distance from the camera centre oc to the corresponding P : D = −(ō + n̄ ·
oc)/ cosϕ, where ϕ is the angle between n̄ and the ray direction v. Since defectively estimated
n̄ and ō lead to noisy D, we draw inspiration from DS-NeRF (Deng et al., 2022) to model the
depth label of ray r as a random variable normally distributed around D with variance β−1: d ∼
N (t;D,β−1). For each ray ri drawn from Pa, we minimize the KL divergence between the pseudo-
depth distribution N (t;Da

i , β
−1) and the piecewise-constant rendering PDF ha

i (t):

Lp-depth(σ, π̄a;Pa) = Eri∼Pa
DKL

[

N (t;Da
i , β

−1)∥ha
i (t)

]

. (5)

In addition, we enable gradient descent over the estimated plane parameters π̄a (i.e., n̄a and ōa),
using gradient signals from Lp-depth to jointly optimize the inaccurate local geometry.

3.2.2 SEMANTICS BRANCH

As highlighted by AirPlanes (Watson et al., 2024), semantics are crucial in 3D plane reconstruction
since ideal planar primitives need to be semantically self-contained. For instance, though geomet-
rically coplanar, a closed door should be regarded as a different planar primitive from the wall that
encloses it. However, it is intractable for purely geometric methods, e.g., RANSAC, to resolve such
semantic conflicts. To address this, we retrofit the neural field with plane-level semantics.

Neural Coplanarity Field. We start by introducing Neural Coplanarity Field (NCF) φ : R3 7→ R
d

Figure 3: Visualization of NCF.

that outputs a d-dimensional feature φ(p) over any
3D location p. The coplanarity between two rays
is defined as the probability that their expected
termination points lie on the same plane struc-
ture. Here, we aim to measure such coplanarity us-
ing the similarity between their rendered features,
which we call the coplanarity feature: f(x) =
∑N

i=1 h(ti)φ(pi).

The desired NCF is trained through the margin-
based contrastive learning paradigm (Chopra et al.,
2005) where the objective comprises two terms: the
intra-primitive pull loss Lpull and the inter-primitive
push loss Lpush.

Considering two rays from the same local planar
primitive Pa, e.g., ri and rj , their coplanarity fea-
tures constitute a pair of positive samples and are
pulled close by minimizing the L2 distance:

Lpull(φ;Pa) = E{ri,rj}∼Pa
∥f(xi)− f(xj)∥2. (6)

Next, we define the primitive-level coplanarity feature of Pa as: f̄a = Er∼Pa
f(x). Lpush is com-

puted over these primitive-level features, as we find that this can reduce computation overhead and
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accelerate convergence. Note that local planar primitives are generated through over-segmentation,
and Lpush is allowed to be computed across images; thereby, two primitives in a batch do not neces-
sarily belong to distinct planar structures. This ambiguity prompts us to incorporate the geometry:
f̄a and f̄b form a pair of negative samples only if the estimated plane parameters π̄a, π̄b are suffi-
ciently far from each other. More formally, the push loss with margin m is formulated as:

Lpush(φ;Pa, Pb) = 1[∥ōa−ōb∥>to or ∥n̄a·n̄b∥<tn] · ReLU(m− ∥f̄a − f̄b∥2), (7)

where 1[·] is the indicator function, and to, tn are pushing thresholds w.r.t the offset and normal.

As shown in Fig. 3 (c), we visualize the rendered feature maps using PCA (Hastie et al., 2009) to
demonstrate what is learned by NCF. The reference views and ground truth are also provided for
comparison. The results shows that the proposed NCF can successfully capture the coplanar rela-
tionships between different regions with clear boundaries, considering both geometry and semantics.

Neural Parser. To obtain instance centroids and subsequently decompose the learned feature field
into instances, one can apply unsupervised clustering methods to thousands of rendered features af-
ter training (Bhalgat et al., 2023). However, instead of this post-processing, we propose a learning-
based module called Neural Parser to concurrently learn a set of semantic prototypes during training.
Each prototype is assumed to be the centroid of an isotropic Gaussian distributed cluster of copla-
narity features, which could be used to represent a semantically isolated subregion.

As illustrated in Fig. 2, we are motivated by NEAT (Xue et al., 2024) to adopt a query-based ar-
chitecture, where Np semantic prototypes {ρi ∈ R

d}Np
are predicted from Np learnable queries

{qi ∈ R
dq}Np

(randomly initialized) through a simple feed-forward network (FFN) θ : Rdq 7→ R
d.

During each training iteration, the rendered primitive-level features {f̄} are utilized to supervise the
module. Specifically, we first apply DBSCAN (Ester et al., 1996) to these noisy features to obtain
Nc centroids {µi ∈ R

d}Nc
. Then, the bipartite matching is performed between the predicted pro-

totypes {ρi}Np
and centroids {µi}Nc

using an efficient Hungarian algorithm (Jonker & Volgenant,

1987). The matching loss is the L2 norm between each pair. With the optimal permutation of as-
signment τ determined, our objective is to further minimize the distance between the prototypes and
their matched centroids:

Lnp(θ, {q}; {µ}) =

min(Np,Nc)
∑

i=1

∥ρτ(i) − µi∥2, ρτ(i) = θ(qτ(i)). (8)

Overall Training Scheme. NeuralPlane is trained by assembling all loss terms:

L = Lrgb(σ) + EPi∼P [λ1Lnormal(σ;Pi) + λ2Lp-depth(σ, π̄i;Pi) + λ3Lpull(φ;Pi)]

+ E{Pi,Pj}∼P [Lpush(φ;Pi, Pj)] + Lnp(θ, {q}; {µ}),
(9)

where Lrgb is the standard NeRF photometric loss, and the set P denotes all local planar primitives.
We set the balancing parameters λ1, λ2, λ3 to 0.01, 0.1 and 0.5, respectively.

3.3 EXTRACTING GLOBAL 3D PARAMETRIC PLANES

Once the implicit neural representation is optimized to encode both the geometry and semantics of
the scene, a straightforward 3D plane extraction method is employed to make the representation
explicit. The process involves five steps: (1) render sufficient termination points and their copla-
narity features from training views; (2) assign the label of the nearest semantic prototype to each
point based on its rendered coplanarity feature; (3) group these points according to their labels; (4)
parametrically fit 3D planes to each point group using RANSAC; (5) project the inliers onto each
fitted plane and triangulate the rasterized projection into a mesh, which represents the final planar
primitive. We refer the reader to Appendix A.1 for more details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate NeuralPlane’s ability to reconstruct 3D plane maps, we conduct experiments
on 12 challenging real-world indoor scenes: 8 scenes from ScanNetv2 (Dai et al., 2017) and 4 scenes
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Figure 4: Qualitative results on ScanNetv2. For each scene, the first row presents the top view of
the entire room, and the second row displays the details viewed from a given pose. Only the best two
geometry+RANSAC methods are included for comparison. NeuralPlane reconstructs clean planar
structures with fine details and coherent semantics.

from ScanNet++ (Yeshwanth et al., 2023). Following standard practice (Xie et al., 2022), we adopt
scripts provided by PlaneRCNN (Liu et al., 2019) to generate ground-truth 3D planes for evaluation.

Baselines. Our NeuralPlane is evaluated against the learning-based multi-view plane reconstruction
approach PlanarRecon (Xie et al., 2022), as well as a wide variety of geometry+RANSAC methods.

The geometry of the latter is inferred either by learning-based Multi-View Stereo (MVS) methods,
including SimpleRecon (Sayed et al., 2022) and FineRecon (Stier et al., 2023), or by representative
indoor neural surface reconstruction methods (Wang et al., 2021) listed as follows: (1) Manhat-
tanSDF (Guo et al., 2022), which improves the reconstruction quality by enforcing the Manhattan-
world assumption to planar regions like walls and floors; (2) NeuRIS (Wang et al., 2022), which
utilizes predicted normal priors to adaptively guide the optimization of neural representations; (3)
MonoSDF (Yu et al., 2022b), which uses both learned monocular depth and normal priors; (4)
ObjectSDF++ (Wu et al., 2023a), which extends MonoSDF by incorporating dense instance anno-
tations for high-fidelity object-compositional surface reconstruction. We also include the traditional
surface reconstruction method (Schönberger et al., 2016; Kazhdan & Hoppe, 2013) implemented
in COLMAP (Schönberger & Frahm, 2016). Given meshes produced by these methods, we run
Sequential RANSAC or its variant, namely AirPlanes (Watson et al., 2024), to partition them into
planar primitives. For all data-driven components, we use the official pre-trained models.

Metrics.We evaluate the geometric quality of 3D plane reconstruction utilizing standard 3D metrics
introduced by Bozic et al. (2021). Among these metrics, we adopt Chamfer Distance and F-score
with a threshold of 5 cm as the comprehensive metrics for comparison. To assess how well the
reconstructed planar primitives align with the ground-truth scene semantics, we further employ three
conventional segmentation metrics (Arbeláez et al., 2011; Tan et al., 2021; Shi et al., 2023): rand
index (RI), variation of information (VOI) and segmentation covering (SC).

Implementation Details. NeuralPlane is implemented in Nerfstudio (Tancik et al., 2023) on top
of Nerfacto, a unified approach in the literature of NeRF. Considering the lack of texture in typical
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Table 1: Quantitative results on ScanNetv2. Top-3 results are highlighted as first , second and
third . At the top, we also report the quality of raw geometries in 7 baseline methods, using official
scene reconstructions as the ground truth. † is tested with its MLP variant. ‡ produces a set of seman-
tically decomposed reconstructions, and Seq.RANSAC is executed on each of them independently.

Geometry Segmentation

Method Accu. ↓ Comp. ↓ Chamfer ↓ Prec. ↑ Recall ↑ F-score ↑ RI ↑ VOI ↓ SC ↑

COLMAP (Schönberger et al., 2016) 18.35 13.40 15.88 40.5 42.4 41.2 - - -

SimpleRecon (Sayed et al., 2022) 6.74 5.55 6.15 59.2 58.8 59.0 - - -

FineRecon (Stier et al., 2023) 6.12 4.19 5.16 68.6 72.9 70.6 - - -

ManhattanSDF (Guo et al., 2022) 9.95 7.51 8.73 50.4 50.9 50.6 - - -

NeuRIS (Wang et al., 2022) 10.23 5.69 7.96 62.0 64.8 63.2 - - -

MonoSDF† (Yu et al., 2022b) 5.28 5.07 5.18 69.7 69.7 69.7 - - -

ObjectSDF++† (Wu et al., 2023a) 8.82 5.25 7.03 54.9 68.9 60.9 - - -

COLMAP

+Seq.RANSAC

19.32 13.37 16.34 40.6 40.9 40.6 0.928 3.91 0.154

SimpleRecon 6.24 6.00 6.12 57.7 52.6 54.9 0.949 2.65 0.272

FineRecon 5.20 5.65 5.43 69.1 64.9 66.7 0.941 2.56 0.276

ManhattanSDF 9.37 8.70 9.04 50.6 51.0 50.8 0.930 2.82 0.281

NeuRIS 9.87 6.35 8.11 59.6 59.3 59.3 0.945 2.57 0.293

MonoSDF 5.91 5.43 5.67 65.9 66.1 65.9 0.945 2.38 0.333

ObjectSDF++‡ 8.41 5.35 6.88 58.0 68.8 62.8 0.952 2.32 0.334

SimpleRecon

+AirPlanes (Wat-

son et al., 2024)

5.43 6.60 6.01 59.2 51.5 55.1 0.944 2.51 0.341

FineRecon 4.93 5.95 5.44 70.8 62.2 66.2 0.947 2.43 0.310

ManhattanSDF 9.46 9.30 9.38 52.7 50.2 51.3 0.940 2.61 0.315

NeuRIS 6.05 7.38 6.71 66.2 56.7 61.0 0.943 2.55 0.291

MonoSDF 4.57 6.33 5.45 72.2 62.0 66.6 0.948 2.38 0.346

PlanarRecon (Xie et al., 2022) 7.74 11.85 9.80 55.2 44.3 49.0 0.909 3.27 0.265

NeuralPlane@PlaneRecTR 5.38 4.65 5.02 67.6 70.0 68.7 0.949 2.37 0.364

NeuralPlane 4.92 4.27 4.59 70.5 71.9 71.2 0.955 2.25 0.376

indoor scenes, we use the COLMAP toolbox (Sarlin et al., 2019) that supports LoFTR (Sun et al.,
2021)1, to export adequate 3D keypoints for the initialization of local planar primitives.

We train NeuralPlane for 4k iterations with batches of 8192 rays across all scenes. For the first
1k iterations, we nullify Lp-depth and Lpush on local planar primitives that observe fewer than 50
keypoints. After the density field is holistically optimized to a decent state, we re-estimate the
plane offsets of these nullified primitives using rendered depth, globally activate the overall loss
in eq. (9), and enable the local geometry refinement. We list several key hyperparameters used in
our main experiments: the dimension of coplanarity feature d = 4, the pushing thresholds (to, tn) =
(8 cm, cos 10°), and the number of semantic prototypes Np = 32. A fixed set of hyperparameters is
employed across all test scenes. Preprocessing local planar primitives takes around 2 to 5 minutes,
followed by about 6 minutes for training on a single NVIDIA RTX 3090 GPU.

4.2 EVALUATION

ScanNetv2. We select 8 challenging scenes with diverse layouts to benchmark the adaptability of
various methods. To demonstrate the superiority of our local planar primitives generation method
introduced in Sec. 3.1, we include a variant denoted by NeuralPlane@PlaneRecTR, where the ini-
tial local planar primitives are instead produced by PlaneRecTR (Shi et al., 2023). As reported in
Tab. 1, NeuralPlane excels existing methods across all metrics. For geometry+RANSAC methods,
we observe that AirPlanes (Watson et al., 2024) in combination with FineRecon (Stier et al., 2023)
or MonoSDF (Yu et al., 2022b) exhibits impressive results in Precision but suffers a significant
drop in Recall. This indicates that incorporating learned plane embeddings can effectively avoid
the undesirable fusion of adjacent planes and thus better fit the input geometry (high precision).
However, the involvement of plane embeddings during RANSAC also incurs the risk of missing
planes, resulting in more false negatives (low recall). In contrast, NeuralPlane strikes a good bal-
ance between Precision and Recall. In addition, we observe that independently applying RANSAC
to each decomposed mesh of ObjectSDF++, which is optimized with ground-truth instance anno-
tations, yields improved geometry and segmentation. However, NeuralPlane achieves even better
segmentation with only machine-predicted masks. See Fig. 4 for qualitative evaluation.

1a transformer-based dense matcher pretrained on a large dataset of internet photos (Li & Snavely, 2018).
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Table 2: Quantitative results on ScanNet++. Top-3 results are highlighted as first , second and
third . † is tested using its Multi-Res Grids variant.

Geometry Segmentation

Method Accu. ↓ Comp. ↓ Chamfer ↓ Prec. ↑ Recall ↑ F-score ↑ RI ↑ VOI ↓ SC ↑

COLMAP

+Seq.RANSAC

24.42 14.53 19.47 47.4 44.2 45.4 0.920 3.91 0.160

SimpleRecon 11.03 8.54 9.79 43.9 45.8 44.6 0.936 3.17 0.195

FineRecon 4.70 6.03 5.36 80.3 71.1 75.3 0.929 2.79 0.252

ManhattanSDF 8.72 8.67 8.70 59.4 56.3 57.7 0.928 3.06 0.248

NeuRIS 5.35 4.33 4.84 81.4 80.4 80.9 0.941 2.46 0.315

MonoSDF† 5.59 4.60 5.09 77.0 78.5 77.7 0.939 2.47 0.288

SimpleRecon

+AirPlanes

7.97 9.84 8.91 46.5 42.1 44.1 0.931 2.90 0.219

FineRecon 3.21 7.54 5.37 84.0 68.7 75.5 0.941 2.66 0.277

ManhattanSDF 7.35 9.84 8.59 57.9 52.0 54.5 0.935 2.85 0.267

NeuRIS 2.99 6.38 4.69 87.3 73.8 79.9 0.943 2.53 0.287

MonoSDF† 3.21 7.38 5.29 82.8 67.6 74.2 0.935 2.69 0.264

PlanarRecon 7.91 20.67 14.29 53.1 38.0 43.8 0.900 3.49 0.231

NeuralPlane@PlaneRecTR 6.03 6.31 6.17 71.1 69.1 70.0 0.939 2.72 0.301

NeuralPlane 4.33 4.87 4.60 80.8 78.7 79.7 0.950 2.38 0.356

Figure 5: 3D plane reconstruction results on ScanNet++.

ScanNet++. We further conduct experiments on 4 scenes from the newly released ScanNet++ (Yesh-
wanth et al., 2023), ensuring that no pre-trained model adopted in our method or baselines has en-
countered similar scene layouts before. These scenes are challenging due to the significant absence
of textures. We observe that low-texture regions generate normal priors that provide NeuRIS with
relatively precise geometry guidance, but result in sparse and misleading SfM keypoints for our
method. Despite this, as reported in Tab. 2, our approach still achieves competitive geometric per-
formance. Moreover, our method consistently demonstrates remarkable segmentation performance,
preserving fine-grained and coherent semantics (see qualitative results in Fig. 5). It is also worth
noting that in our method, geometry is directly represented by volume density, which allows for a
40× training speedup compared to other neural implicit methods. A more detailed comparison of
reconstruction efficiency is provided in Appendix A.4.

Table 3: Ablation study on proposed components. NCF and NP denote the proposed neural
coplanarity field and neural parser module, respectively. The best results are in bold.

Components Geometry Segmentation

Method Lnormal Lp-depth Refine. NCF NP Chamfer ↓ F-score ↑ RI ↑ VOI ↓ SC ↑

Nerfacto - - - - - 19.61 17.3 0.903 4.66 0.119

Model A - ✓ ✓ ✓ ✓ 4.96 68.1 0.951 2.27 0.371

Model B ✓ - ✓ ✓ ✓ 10.01 41.9 0.935 2.98 0.305

Model C ✓ ✓ - ✓ ✓ 5.02 66.0 0.944 2.44 0.358

Model D ✓ ✓ ✓ - - 4.98 66.1 0.940 2.59 0.352

Model E ✓ ✓ ✓ ✓ - 4.91 69.8 0.947 2.40 0.364

NeuralPlane ✓ ✓ ✓ ✓ ✓ 4.59 71.2 0.955 2.25 0.376
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4.3 ABLATION STUDY

Ablating Components. To verify the merits of each component in NeuralPlane, we conduct abla-
tions using the 8 scenes from ScanNetv2. Quantitative results are listed in Tab. 3 , where Nerfacto is

Figure 6: Qualitative ablation on compo-
nents. The upper part shows the recon-
structed 3D planes in different colors. The
lower part presents the error map.

our backbone with default settings and in Model E,
the neural parser is replaced by post-clustering simi-
lar to ContrastiveLift (Bhalgat et al., 2023). Nerfacto
and models A through C all struggle with degraded
reconstruction quality due to insufficient geometric
guidance. Model D disregards high-level semantics
during the plane extraction, resulting in significant se-
mantic conflicts as depicted in Fig. 6 (d). NeuralPlane
excels all these models on all metrics, demonstrating
that geometry and semantics are tightly entangled in
the task, and that the combination in our method ap-
pears notable synergy.

Ablating Number of Semantic Prototypes. Remem-
ber that the number of semantic prototypes Np is
a heuristically determined hyperparameter in neural
parser and we opt for Np = 32 across all scenes in our
main experiments. We assess the effect of varying Np

on the reconstruction results and observe that both ge-
ometry and segmentation deteriorate as Np continues
to increase (see Fig. 7 (a)). This could be explained
by the inherent ambiguity in defining what constitutes
a single plane structure: in Fig. 7 (b), we illustrate
that by controlling Np, one can adjust the level of de-
tail (LOD), while the level with Np = 32 is potentially
closer to the ground truth used for evaluation.

Figure 7: Ablation study on number of semantic prototypes. (a) There is a minor decline in
performance as Np grows. (b) A case shows that the level of detail is controlled by Np.

5 CONCLUSION

Reconstructing man-made environments as arrangements of planar primitives demands not only ge-
ometric fidelity but also semantic alignment. In this paper, we introduced NeuralPlane, a novel plane
reconstruction pipeline that learns accurate 3D locations and instance-level semantics of plane struc-
tures from multi-view plane observations implicitly using neural fields. We presented an annotation-
free module that incorporates strong single image priors to identify well-defined 2D plane segments,
and demonstrated how these segments can drive the joint modeling of scene geometry and seman-
tics. Our method achieves remarkable performance in delivering high-quality planar primitives with
fine details and coherent semantics. Besides, our approach shows the potential in adjusting the level
of detail, which we believe is practical and will provide inspiration for future research.
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A APPENDIX

In Appendix A.1, we first provide additional details about the method, including the procedures of
generating 2D plane segments and extracting 3D parametric planes. Next, we present further im-
plementation details, including the network architecture and training configurations (Appendix A.2).
Then, detailed descriptions on the data processing steps, implementation details of baseline methods
and the evaluation protocol are provided in Appendix A.3. More experimental evaluation and quali-
tative results can be found in Appendix A.4. Finally, in Appendix A.5, we discuss the limitations of
our method and anticipate future research trajectories.

A.1 ADDITIONAL METHOD DETAILS

2D Plane Segments from Monocular Priors. In Sec. 3.1, when identifying plane regions from
a single image, we first apply K-means clustering (K=8) to its estimated normal map, and select
the largest 6 clusters as initial masks (see Fig. 8 (c)), assuming they correspond to low-frequency
regions. We then utilize the zero-shot capacities of the Segment Anything Model (SAM) to gen-
erate all possible plane instances by prompting with 256 query points evenly sampled from the ini-
tial masks. SAM-generated masks are filtered using post-processing techniques including stability
checks and non-maximal suppression (NMS) introduced by Kirillov et al. (2023). After eliminat-
ing unstable and duplicate masks, we retain only the smallest mask for each query. The overlaps
between the SAM-generated masks and the initial masks, expected to be geometrically continuous
and smooth, represent the desired 2D plane segments (see Fig. 8 (d) ). We further remove noisy 2D
plane segments whose pixel areas are less than 0.4 % of the image size.

Figure 8: 2D plane segment generation. We cluster (b) monocular normal priors for (c) initial
masks, and then enforce geometric continuity by semantic over-segmentation for (d) 2D plane seg-
ments. (e) Single-view plane segmentation results by PlaneRecTR (Shi et al., 2023). (f) Ground
truth rendered from 3D plane annotations.

Compared to the PlaneRecTR’s predictions in Fig. 8 (e) and the ground truth in Fig. 8 (f), our method
exhibits over-segmentation; in other words, it tends to split a single plane into multiple segments due
to SAM’s fine-grained visual understanding capability.

Pseudo-Depth Supervision. In Sec. 3.2.1, plane-derived pseudo-depth is introduced as extra reg-
ularization. The expected pseudo-depth D of a ray r originated from local planar primitive P is
computed base on the estimated plane parameters π̄ = [n̄, ō] (defined in world space). More pre-
cisely, let the expected termination point of r be denoted by x = oc +Dv, where oc is the camera
center and v is the unit direction vector. Since r is assumed to terminate at the planar surface π̄, we
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have

n̄ · (oc +Dv) + ō = 0, (10)

which can be rewritten as

D =
−(ō+ n̄ · oc)

⟨n̄,v⟩
=

−(ō+ n̄ · oc)

cosϕ
, (11)

where ϕ is the angle between n̄ and v.

Motivated by DS-NeRF (Deng et al., 2022), the pseudo-depth loss defined in eq. (5) encourages the
termination distribution of a ray to match the pseudo-depth distribution. Different from the paper,
we allow gradients to flow through the pseudo-depth distribution, thereby jointly optimizing n̄ and
ō. Here, the KL divergence is computed as:

DKL

[

N (t;D,β−1)∥h(t)
]

=

∫

N (t;D,β−1) log

[

N (t;D,β−1)

h(t)

]

dt (12)

≈
∑

j

N (tj ;D,β−1) log

[

N (tj ;D,β−1)

h(tj)

]

∆tj , (13)

where N (t;D,β−1) denotes the normal distribution that are used to model the noisy pseudo-depth
variable d, and h(t) is the piecewise-constant approximation of the rendering probability density
function defined in eq. (2). Then, we have:

DKL[N (t;D,β−1)∥h(t)]

∝
∑

j

exp

(

−β(tj −D)2

2

)

(

log

√

β

2π
−

β(tj −D)2

2
− log h(tj)

)

∆tj .
(14)

The variance parameter β−1 is fixed to 0.005 across all rays.

3D Parametric Plane Extraction. After the training is completed, in Sec. 3.3, we design a straight-
forward algorithm to extract 3D parametric planes from the learned neural representation. More
specifically, for a given local planar primitive P , we randomly sample 128 rays from its 2D plane
segment and render their termination points. The normal of P is also assigned to each termination
point as its local normal. To render the coplanarity features more efficiently, instead of sampling and
integrating features along the rays, we simply use features queried at the termination locations as the
ray-level coplanarity features. To group these termination points into different subregions, we first
find the closest semantic prototype to each coplanarity feature by measuring the Euclidean distance
in feature space. If more than half of the features share the same nearest semantic prototype, then we
assign the label of that prototype to all the points. Otherwise, this local planar primitive is consid-
ered ambiguous and discarded as an outlier. We continue sampling until the number of successfully
labeled points exceeds 2 × 106.

After grouping these points by their labels, we sequentially fit 3D planes to each group using
RANSAC. A point is considered an inlier if: (1) the angle between its normal and the normal
hypothesis is less than 20°, and (2) the distance from the point to the plane is less than 0.08 m.

Next, given a collection of fitted plane parameters and inliers, we can transform them into triangu-
lated planar surfaces by:

(1) Downsample the inliers using voxel grid filtering with a leaf size of 1 cm.

(2) Project the downsampled points onto the fitted plane and rasterize the 2D projection map
into a regular binary grid with a resolution of 2 cm.

(3) Traverse the binary grid and triangulate by connecting occupied neighbors, which produces
a 2D mesh.

(4) Backproject the 2D mesh into the original 3D space to obtain a 3D mesh that represents a
real-world planar structure.
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A.2 ADDITIONAL IMPLEMENTATION DETAILS

Network Architecture. The neural coplanarity field is configured as a separate output head along-
side the default Nerfacto model (see Fig. 9). The coplanarity features are encoded by a 12-level
hashgrid with resolutions sampled from 16 to 256, and a 4-layer MLP with hidden dimensions of
256 and ReLU activation. To speed up the training process, we follow GARField (Kim et al., 2024)
to first render the hash value and then feed it into the coplanarity feature MLP. In addition, we con-
strain coplanarity features to a unit hypersphere. The feed-forward network θ employed in Neural
Parser is a 3-layer MLP with both input and hidden dimensions of 8 and ReLU activation.

Figure 9: Network architecture.

Training Details. Before training, camera poses are centralized without scale adjustment, and we
disable joint pose optimization using the provided poses. During each training iteration, we ran-
domly select 128 local planar primitives with probabilities weighted by the sizes of corresponding
2D plane segments. In each local planar primitive, we uniformly sample n = 8192 / 128 = 64 rays,
with N=48 points sampled per ray. We further randomly generate 64 triplets and 64 pairs of rays to
obtain explicit surface normals for Lnormal defined in eq. (4) and positive samples for Lpull defined in
eq. (6), respectively. The push margin m in eq. (7) is set to 1.5 for the first 1k iterations, and is later
increased to 2. In Neural Parser, the DBSCAN epsilon is fixed to 0.2. We optimize plane parameters
of local planar primitives using Adam optimizer with an exponential decay schedule from an initial
learning rate of 1 × 10−3 to 1 × 10−4.

A.3 MORE DETAILS ON EXPERIMENTS

A.3.1 DATASETS

In our experiments, two publicly available datasets, ScanNetv2 (Dai et al., 2017) and Scan-
Net++ (Yeshwanth et al., 2023), are used to evaluate our method as they offer surface reconstruc-
tions and densely annotated instance-level semantics that can be further processed (Liu et al., 2019)
to obtain the ground truth. Specifically, we sample 8 scenes from the official validation set of Scan-
Netv2 and 4 scenes from ScanNet++. All frames are resized to a resolution of 640 × 480. For each
scene from ScanNetv2, one-eighth of the frames are uniformly selected for reconstruction, while in
ScanNet++, equally spaced frames are downsampled according to the number of registered frames,
leaving 150∼279 frames per scene. Tab. 4 lists more details of the 12 selected scenes.

A.3.2 IMPLEMENTATION DETAILS ON BASELINE METHODS

All the baseline methods are implemented following the official codebases and instructions. FineRe-
con (Stier et al., 2023) recovers accurate surfaces by introducing a depth guidance strategy, and here
we use the multi-view depth predicted by SimpleRecon (Sayed et al., 2022) for such additional prior.
Besides, as pointed by Yu et al. (2022b), the MLP architecture is inherently robust to motion blur
and noisy camera poses due to its “smoothness bias”. Thus, we adopt the MLP variant of MonoSDF

17



918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2025

Table 4: Details of selected scenes. For each scene, we downsample the video to a lower frame rate.
Down. Rate denotes the downsample rate. Area is the surface area of ground-truth mesh.

Scene ID Type # of Frames Down. Rate Area (m2)

S
ca

n
N

et
v

2

0084 00 bathroom 247 12.5 % 42.68

0164 03 kitchen 140 12.5 % 28.97

0217 00 bedroom 156 12.5 % 40.65

0316 00 lounge 97 12.5 % 26.56

0356 00 bedroom 170 12.5 % 27.77

0427 00 conference room 165 12.5 % 24.11

0488 01 kitchen 137 12.5 % 38.53

0568 00 lounge 207 12.5 % 71.49

S
ca

n
N

et
+

+ f6659a3107 conference room 181 1.8 % 133.38

31a2c91c43 bathroom 184 2.4 % 31.72

7bc286c1b6 bathroom 150 3.3 % 25.13

303745abc7 office 279 4.4 % 63.43

for experiments on ScanNetv2, while in ScanNet++ with high-quality RGB captures, we use the
Multi-Res.Grid variant for faster convergence.

The Sequential RANSAC employed in baselines and our method is all adopted from Planar-
Recon (Xie et al., 2022), with thresholds specifically fine-tuned for each method. We render per-
pixel depth map for each RGB keyframe using geometries given by various baseline surface recon-
struction methods so as to combine these methods with AirPlanes (Watson et al., 2024).

A.3.3 EVALUATION PROTOCOL

As several methods such as FineRecon (Yu & Lafarge, 2022) can predict geometry for unseen re-
gions, we mask out these regions via a visibility check, and only preserve the observed areas for
a fair evaluation. Tab. 5 (a) lists the metrics in geometry, where P and P

∗ are point clouds evenly
sampled from the predicted and ground-truth mesh, each consisting of 200 000 points.

To assess how well the plane reconstruction aligns with the ground-truth semantics, we follow the
evaluation protocol of PlanarRecon (Xie et al., 2022), reporting segmentation quality using three
typical metrics. These metrics are listed in Tab. 5 (b) and were originally used for comparing par-
titions (Meila, 2005; Arbeláez et al., 2011). The ground-truth clustering C

∗ is the partition of the
ground-truth mesh into sets C∗

1 , C
∗
2 , · · · , C

∗
K∗ , where C∗

i represents the collection of vertices of the
i-th ground-truth planar primitive. The predicted clustering C is obtained by partitioning ground-
truth vertices according to the plane IDs of their nearest neighbors in the predicted mesh. The total
number of vertices in the ground-truth mesh is denoted by NC.

• Rand Index represents the probability that C and C
∗ agree on the clustering of a randomly

selected pair of vertices, where Ndisagree is defined as the number of pairs that are clustered
differently by C and C

∗.

• Variation of Information, the sum of the entropies of C and C
∗ minus the mutual informa-

tion between them, measures the distance between two partitions by information difference.

• Segmentation Covering is the average of mutual coverings between C and C
∗, where the

covering C(C∗ → C) is computed as:

C(C∗ → C) =
1

NC

∑

C∈C

|C| · max
C∗∈C∗

IoU(C, C∗).

A.4 MORE EXPERIMENTAL RESULTS

Ablating Feature Dimension of NCF. We investigate the performance of our proposed NeuralPlane
when using different feature dimensions d. Specifically, we evaluate the effect of varying d from
1 to 128 using F-score, VOI, and SC metrics on ScanNetv2 dataset. As illustrated in Fig. 10, the
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Table 5: Definitions of metrics. The quality of 3D plane reconstruction is evaluated by both geom-
etry and segmentation metrics.

(a) Evaluation Metrics for Geometry.

Metric Definition

Accuracy meanp∈P (minp∗∈P∗∥p− p∗∥2)

Completeness meanp∗∈P∗ (minp∈P∥p− p∗∥2)

Chamfer (Accuracy + Completeness) /2

Precision (%) meanp∈P (minp∗∈P∗∥p− p∗∥2 < 0.05)× 100

Recall (%) meanp∗∈P∗ (minp∈P∥p− p∗∥2 < 0.05)× 100

F-score (%) 2× Precision × Recall/ (Precision + Recall)

(b) Evaluation Metrics for Segmentation.

Metric Definition

Rand Index
NC(NC − 1)− 2Ndisagree(C,C

∗)

NC(NC − 1)

Variation of Information H(C) +H(C∗)− 2I(C,C∗)

Segmentation Covering
C(C∗ → C) + C(C → C

∗)

2

performance of NeuralPlane is almost optimal when d is larger than 2. Similar results are also
observed by ContrastiveLift (Bhalgat et al., 2023) and AirPlanes (Watson et al., 2024). In light of
this, we simply choose d = 4 in our experiments for a trade-off between performance and efficiency.
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(b) Segmentation

Figure 10: Impact of different numbers of feature dimension.

Ablating DBSCAN Epsilon. To supervise the neural parser module, our proposed method uses
DBSCAN to first cluster the noisy primitive-level features rendered during each iteration. The study
on the impact of varying the DBSCAN epsilon is presented in Fig. 11. The results indicate that
the performance of NeuralPlane is close to optimal when the epsilon is in the range of 0.2 to 0.5.
A higher cluster epsilon leads to coarse-grained feature discrimination, while a lower epsilon may
result in over-segmentation. However, thanks to the robust mechanism of point grouping and pa-
rameter estimation introduced in Sec. 3.3, no significant performance deterioration is observed even
if DBSCAN is ineffective (with the cluster epsilon set to 2).
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Figure 11: Performance on ScanNetv2 with varying DBSCAN epsilon.

A Sensitivity Analysis of SfM Geometry. Incorporating geometric cues, such as estimated monoc-
ular depth and normal maps, into neural scene representations is widely adopted to improve the
performance of indoor 3D surface reconstruction (Yu et al., 2022b; Wang et al., 2022; Park et al.,
2024). Likewise, NeuralPlane requires additional geometric priors for the initialization of local
planar primitives. We find that, although sparse and noisy, the readily available SfM point cloud
is sufficient to provide a good initialization. To further analyze the robustness of our approach to
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SfM geometry of different quality levels, we utilize different SfM point clouds triangulated from
correspondences estimated with various feature matching techniques. Results in Tab. 6 demonstrate
that dense matching methods, e.g., LoFTR (Sun et al., 2021), are more favorable for our method, as
sparse matching methods, e.g., SuperPoint (DeTone et al., 2018) + LightGlue (Lindenberger et al.,
2023), are struggling with low-texture regions. Besides, our approach can consistently benefit from
the development of more advanced feature matcher, e.g., RoMa (Edstedt et al., 2024).

Table 6: Performance of NeuralPlane initialized with different SfM keypoints.

Geometry Segmentation

Method Chamfer ↓ F-score ↑ RI ↑ VOI ↓ SC ↑

w/o SfM Geometry 10.13 40.2 0.925 3.08 0.293

SuperPoint + LightGlue 5.90 65.4 0.942 2.49 0.345

LoFTR (Indoor) 4.57 72.8 0.956 2.24 0.380

LoFTR (MegaDepth)← in main paper 4.59 71.2 0.955 2.25 0.376

RoMa (Indoor) 4.62 73.2 0.956 2.12 0.400

Evaluation on Reconstruction Efficiency. In contrast to learning-based MVS methods that can be
implemented online at interactive speeds, our proposed NeuralPlane is a relatively time-consuming
method that requires per-scene optimization. However, our method is much more efficient than other
offline neural surface reconstruction methods. Tab. 7 presents a comparison of average execution
time against baseline models on ScanNetv2.

Table 7: Comparison of time consumption across neural implicit methods.

Pre-processing (min) Training (h) Inference (min)

ManhattanSDF (Guo et al., 2022) 44.5 5.6 2.3

NeuRIS (Wang et al., 2022) 0.5 4.2 1.2

MonoSDF (MLP) (Yu et al., 2022b) 0.3 7.5 0.7

NeuralPlane 2.9 0.1 0.5

Additional Qualitative Results. In Figs. 12 and 13, we visualize the entire 3D plane reconstruction
on ScanNetv2 and ScanNet++ datasets, drawing comprehensive comparisons against state-of-the-art
methods. Moreover, we provide close-up views rendered from reference poses in Fig. 14.

Out-of-Domain Experiment. While our work primarily focuses on indoor scenarios, we also con-
ducted experiments on two small-scale outdoor scenes from the Niantic MapFree dataset (Arnold
et al., 2022). The results in Fig. 15 highlight the potential of our method to generalize to outdoor
environments.

A.5 LIMITATIONS AND FUTURE WORK

Failure Cases. Fig. 16 illustrates several common failures, showcasing issues such as (a) missing
structures and (b) under-segmentation, both of which stem from inaccuracies in 2D plane observa-
tions. The method is also not equipped to handle (c) non-planar surfaces. Besides, manually setting
the number of semantic prototypes limits the adaptability of our method; for instance, an excessively
large value may lead to (d) over-segmentation.

NeuralPlane at its core is integrating noisy 2D plane observations into a unified 3D neural represen-
tation, but it may fail to recover from catastrophic errors such as severe inaccuracy in mono-normal
estimation and SfM geometry, which we did not consider. Meanwhile, the method is currently
restricted to compact environments and better suited to indoor settings. Complex and large-scale
scenes continue to pose many challenges, including (1) the need for large model capacities, and (2)
the presence of massive non-planar clutter, which we leave for future research. Intersection anal-
ysis (Nan & Wonka, 2017) or integrating other cues such as occlusion edges for more structured
reconstruction is another interesting research topic. It is also promising to implement our method in
an online and efficient SLAM framework (Zhu et al., 2022; Matsuki et al., 2024).
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Figure 12: More qualitative comparisons on ScanNetv2.
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Figure 13: More qualitative comparisons on ScanNet++. Ceilings and occluding walls have been
removed for better visualization.
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Figure 14: Close-ups of qualitative results.
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Figure 15: Our method generalizes to outdoor environments.

Figure 16: Failure Cases. In each case, from left to right: reference image, our reconstruction, and
the ground truth. (a) Planes nearing the optical axis, as well as intricate structures, are difficult to
detect in 2D and are thus likely to be absent from the final reconstruction. (b) The failure to seman-
tically differentiate between two adjacent planes in certain views could lead to under-segmentation.
(c) Non-planar surfaces are forcibly fitted into planes. (d) Over-segmentation due to a too large
value of semantic prototypes.
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