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Abstract

We present Topological Point Cloud Clustering
(TPCC), a new method to cluster points in an ar-
bitrary point cloud based on their contribution
to global topological features. TPCC synthesizes
desirable features from spectral clustering and
topological data analysis and is based on consider-
ing the spectral properties of a simplicial complex
associated to the considered point cloud. As it
is based on considering sparse eigenvector com-
putations, TPCC is similarly easy to interpret and
implement as spectral clustering. However, by
focusing not just on a single matrix associated
to a graph created from the point cloud data, but
on a whole set of Hodge-Laplacians associated to
an appropriately constructed simplicial complex,
we can leverage a far richer set of topological
features to characterize the data points within the
point cloud and benefit from the relative robust-
ness of topological techniques against noise. We
test the performance of TPCC on both synthetic
and real-world data and compare it with classical
spectral clustering.

1. Introduction

A central quest of unsupervised machine learning and pat-
tern recognition is to find meaningful (low-dimensional)
structures within a dataset, where there was only apparent
chaos before. In many cases, a data set consist of a point
cloud in a high-dimensional space, in which each data point
represents a real-world object or relation. Dimensionality
reduction and clustering methods are thus often used as a
first step towards extracting a more comprehensible descrip-
tion of the data at hand, and can yield meaningful insights
into previously hidden connections between the objects.
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The paradigm of most classical clustering algorithms as-
sumes that there are only a few “fundamental types” within
the observed data and every data point can be assigned to
one of those types. How the notion of type is interpreted
varies in different approaches, but in most cases, the data
is assumed to be a disjoint union of these types plus noise,
and the focus is on identifying an optimal local assignment
of the points to the respective types (clusters). For instance,
many prototypical clustering algorithms like k-means clus-
tering (Steinhaus| |1957)) or mixture models like Gaussian
mixtures (Day, |1969) aim to group points together that are
close according to some local distance measure in R™. Other
variants, like DBSCAN, aim to track dense subsets within
the point cloud (Ester et al.,[1996)), and subspace clustering
aims to find a collection of low-dimensional linear sub-
spaces according to which the points can be grouped (Chen
& Lerman, [2009). On the other hand, quantifying and uti-
lizing the overall shape of the point cloud, i.e., how it is
globally assembled from the different clusters or how to
find the best possible cluster types to build up the data is
typically not a concern.

In comparison, topological data analysis (TDA), which has
gained significant interest in the last decades (Carlsson &
'Vejdemo-Johansson, [2021)) emphasises an opposite perspec-
tive. Here the dataset is effectively interpreted as one com-
plex object, a topological space, whose “shape” we try to
determine by measuring certain topological features (typi-
cally homology) to understand the global make-up of the
entire point cloud. Such topological features are virtually
omnipresent and are very flexible to describe highly com-
plex shapes. For instance, in medicine, they can measure the
topology of vascular networks and can distinguish between
tumorous and healthy cells (Stolz et al., [2022). In public
health studies, they have been used to analyse health care
delivery network efficiency (Gebhart et al., [2021), and in
Biochemistry, persistent homology has been used to analyse
protein binding behaviour (Kovacev-Nikolic et al., |2016).
In Data Science, the Mapper algorithm uses topological
features of data sets to produce a low dimensional represen-
tation of high dimensional data sets (Singh et al., 2007).

One key insight that has driven the success of the ideas
of TDA is that insightful higher-order information is often
encoded in the topological features of (some amenable rep-
resentation of) the data. However, in contrast to classical



Topological Point Cloud Clustering

n-simplices

]

Illl} : E;

s90)|dwis-u

HEEN =

Q

3
¢ e

0O-Eigenvectors of L, n-th feature space X,

Hodge Laplacians L, Subspace Clustering on zero eigenvectors

Simplicial Complex 2

° L
Representation °

°
points

Extract Simplex Features

: ,
0-dim top. featuresm

2-dim top features

.
— r [
edges‘ T €1pl\ |Edges[ I
: p
Simplices 1-dim top. features €3 o, Faces[ll |
A /N A o Top. signature
e LN L] L) i
s faces — Neighbourhood of p
dim O dim1 dim 2 dim 3 ('

Pool features of step 2

Figure 1. Schematic of topological point cloud clustering (TPCC). Step 1. To capture the topological shape of the point cloud a
simplicial complex is constructed. Step 2. Associated Hodge-Laplace operators are constructed separately for each dimension. The
method extracts information from the sparse Hodge-Laplace operators by computing their O-eigenvectors. The 0-eigenvectors are indexed
by the simplices in the respective dimensions. We use these eigenvectors to embed the simplices into a single featurespace F,, for each
dimension of the simplices and perform subspace clustering on these feature spaces. Step 3. For each simplex, we relay the clustering
information back to its vertices. Every point is thus equipped with a topological signature, aggregating information on topological features
over all dimensions. Finally, the original points are clustered using a standard clustering approach on their topological signature.

clustering, the question of how the individual data points
contribute to the make-up of the overall topological object
is typically not a result of these types of analysis. This can
render the interpretation of the results difficult, as often the
individual data points have a concrete and meaningful (of-
ten physical) interpretation and we would thus like to know
how these points relate to the overall measured topological
object.

The aim of this paper is to combine the advantages of these
two perspectives and to establish a synthesis of traditional
clustering algorithms with their easily interpretable output
and the powerful notion of topological features of TDA.
Topological Point Cloud Clustering (TPCC) bridges this
gap between the local nature of classical clustering and the
global features of TDA, by aggregating information gained
from multiple levels of a form of generalized spectral clus-
tering on the k-simplices.

Contributions We develop a novel topological point
cloud clustering method that clusters the points according to
what topological features of the point cloud they contribute
to. We prove that the clustering algorithm works on a class
of synthetic point clouds with an arbitrary number of topo-
logical features across arbitrary dimensions. Finally, we
verify the accuracy of topological point cloud clustering on
a number of synthetic and real-world data and compare it
with other approaches on data sets from the literature.

Organisation of the paper We introduce necessary topo-
logical notions in Section 2] In Section[3} we describe the
main idea of topological point cloud clustering. A theoret-
ical result on the accuracy of the algorithm on a class of
synthetic point clouds is then presented in[d Finally, we
show the distinguishing power of topological point cloud
clustering on synthetic data, protein data and physically
inspired real-world data in Section [5] In particular, we
compare the results of our algorithms with other clustering
methods and study the robustness of TPCC against noise on
synthetic data. Certain technical aspects of our algorithm
and our running example are explained in more detail in

Appendix [A]and Appendix

Related Work Our work builds upon several ideas that
have been promoted in the literature. In particular, TPCC
may be seen as a generalization of spectral clustering
[2007). Spectral clustering starts with the construc-
tion of a graph from an observed point cloud, by identifying
each data point with a vertex and connecting close-by points
with an edge. Vertices are then clustered according to their
spectral embedding, i.e., the dominant eigenvectors of the
graph representation considered (typically in terms of an
associated Laplacian matrix). However, these eigenvectors
used by spectral clustering are merely related to connectivity
properties (0-homology), and the produced clustering is thus
restricted in terms of the topological features it considered.

Topological Mode Analysis (Chazal et al, 2013) clusters
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point clouds using persistent homology. However, because
only 0-dimensional homology is considered the approach
cannot cluster according to higher-order topological features
like holes, loops and voids.

Our work does not just build a graph from the point cloud
data but employs a simplicial complex to describe the ob-
served point cloud (similar to how it is done in persistent
homology) and embeds and clusters all k-simplices into the
0-eigenvector space of the k-th Hodge Laplacian. Related
ideas of using embeddings based on the Hodge-Laplacian
can be found in (Schaub et al., 2020; |(Chen & Meila, 2021}
Ebli & Spreemann, 2019): The idea of defining a harmonic
embedding to extract meaningful information about a sim-
plicial complex has been discussed in the context of tra-
jectory classification (Schaub et al., [2020; Frantzen et al.,
2021). In (Chen & Meila, 2021), the authors study how
this embedding is affected by constructing more complex
manifolds from simpler building blocks. However, they do
not study how to decompose the underlying points based on
this embedding. In (Ebli & Spreemann, [2019), the authors
develop a notion of harmonic clustering on the simplices
of a simplicial complex. We use an extended version of
this clustering as one step in TPCC. (Krishnagopal & Bian{
coni, 2021)) have as well considered harmonic clustering of
simplices but only use it to detect large numbers of commu-
nities in small simplicial complexes. In (Perea, |2020), the
author uses a smoothed version of cohomology generators
to quantify homology flows and build circular coordinates.
From a certain point of view, this is surprisingly similar
to considering zero eigenvectors of Hodge Laplace opera-
tors. Some related ideas to our work are also investigated
in (Stolz et al., |2020), where the authors provide a tool
for detecting anomalous points of intersecting manifolds.
As we will see, our algorithm is able to detect not only
these points but can provide additional information about
all remaining points as well. There has been some work
on surface and manifold detection in point clouds (Martin
& Watson, |2011; Hoppe et al.,[1992). In contrast to TPCC,
these algorithms don’t provide any clustering or additional
information on the points and are confined to manifold-like
data, which is usually assumed to be a 2-dimensional sur-
face in 3-dimensional space. Approaches utilising tangent
bundle constructions assume that the data corresponds to
intersecting manifolds and that the desired clusters are rep-
resented by individual manifolds (Wang et al.,[2011; |Gong
et al.,|2012} Tinarragel [2023). However, this may not be the
case in real-world applications. TPCC does not make such a
restrictive assumption and is thus more widely applicable

The Hodge-Laplacian has also featured in a number of
works from graph signal processing and geometric deep
learning. A homology-aware simplicial neural network is
constructed in (Keros et al.} 2022), extending previous mod-
els (Roddenberry et al., [2021; Bunch et al.,|2020) on sim-

plices of dimension two (Ebli et al., 2020; [Bodnar et al.,
2021)). However, these approaches focus on a scenario
where the higher-order simplices have some real-world
meaning, e.g., 1-simplices can be identified by streets, neu-
ral links, or pairs of co-authors. In contrast here our primary
focus is on a scenario in which we are only given a point
cloud to start with and thus only the points have a real-world
meaning, whereas the higher dimensional features are added
via some artificial simplicial complex simply to extract fur-
ther information about the shape of the data. This is the case
in most standard application scenarios.

2. A Topological Notion of Features

A main goal of topology is to capture the essence of spaces.
Topological tools try to describe globally meaningful fea-
tures of spaces that are indifferent to local perturbations and
deformations. This indifference of topological features to
local perturbations can be a crucial asset when analysing
large-scale datasets, which are often high-dimensional and
noisy. To leverage these ideas, we need to explain what we
mean by fopological features throughout the paper. A key
assumption in this context is that high dimensional data sets
may be seen as samplings from topological spaces — most
of the time, even low-dimensional manifolds (Fefferman
et al.| |2016). Rather than providing a complete technical
account, in the following, we try to emphasize the relevant
conceptual ideas and refer the interested reader to (tom
Dieck, 2008; |[Bredon et al., |1993; [Hatcher, [2002)) for further
details.

Simplicial Complexes The prototypical topological space
is a subset of R™ and hence continuous. Storing the infinite
number of points in such a space individually is impossible.
On the other hand, our observed point cloud will always
be discrete and non-connected. Simplicial complexes (SC)
bridge this gap between the continuous spaces of topology,
and the discrete nature of our point cloud. They offer a way
to build topological spaces from easy-to-define building
blocks. Indeed, a well-known theorem in topology (Quillen}
1967) asserts that any topological space with the homotopy
type of a CW complex can be approximated by a simplicial
complex.

Definition 2.1 (Abstract simplicial complex). An abstract
simplicial complex S consists of a set of vertices X and a
set of finite non-empty subsets of X, called simplices S,
such that (i) .S is closed under taking non-empty subsets and
(i) the union over all simplices |, cg 0 is X. For simplicity,
we often identify S with its set of simplices and use S,, to
denote the subset of simplicies with n + 1 elements.

Intuitively, in order to build a simplicial complex S, we
first start with a set of vertices V. These are called the 0-
simplices. We can then add building blocks of increasing
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dimension. The 1-simplices represent edges between 2 ver-
tices, the 2-simplices are triangles between 3 vertices that
are already connected by edges. An n-simplex resembles
an n-dimensional polyhedra. An n-simplex o, connects
(n + 1) vertices, given that they are already connected by
all possible (n — 1)-simplices. These (n — 1)-simplices are
then called the faces of o,,. We call two (n — 1)-simplices
upper-adjacent if they are faces of the same n-simplex. Cor-
respondingly, we call two n-simplices lower-adjacent if
they share a common (n — 1)-simplex as a face.

Vietoris-Rips complex Building the Vietoris-Rips com-
plex is a method of turning a point cloud into a simpli-
cial complex, approximating the topological features of the
space it was sampled from. The Vietoris-Rips complex takes
2 arguments as input: The point cloud X and a minimal dis-
tance €. It then builds a simplicial complex S by taking X as
the set of vertices (and thus of 0-simplices) of S. Between
every two distinct vertices of distance d < e it adds an edge,
i.e. an 1-simplex. Inductively, it then adds an n-simplex for
each set of (n + 1) vertices in X with pair-wise distance
smaller than e. In practice, one often restricts this process to
simplices of dimension n < N for some finite number N.

Boundary matrices and the Hodge-Laplacians All topo-
logical information of a simplicial complex S can be en-
coded in its boundary matrices B,,. The rows of 5, are
indexed by the n-simplices of S, the columns are indexed
by the (n + 1)-simplices.

Definition 2.2. Let S = (S, X) be a simplicial complex
and < atotal order on its set of vertices X. Forn > i,n > 1
we define the ¢-th face map f]': S,, = S,,—1 by

Tnt = {xo, 21, ., Tiye oo, Tnt

£l dxo, z1, ..

where we have that zo < z1 < --- < z,, and Z; denotes the
omission of z;. Then we define the n-th boundary operator
B, : R[Sp+1] = R[S, ]by

MHZ

We identify B,, with its' matrlx representation in lexico-
graphic ordering of the simplex basis.

fn+1

Note that with this definition, By is simply the familiar
vertex-edge-incidence matrix of the associated graph built
from the 0- and 1-simplices of S.

Definition 2.3. The n-th Hodge-Laplacian L, of § is a
square matrix indexed by the n-simplices of S:
L, =B B, 1+B.,B (1)

where we take 5_1 to be the empty matrix.

The key insight about the B,, is the following lemma:

Lemma 2.4. For a simplicial complex S with boundary
matrices B; we have that B,, o B,,11 = 0 forn > 0.

Algorithm 1 Topological Point Cloud Clustering (TPCC)

Input: Point cloud X, maximum dimension d
Pick € and construct VR complex S of X
Construct Hodge Laplacians Lg, ..., Lqg of S
fori =0toddo

Compute basis v}, . .., v}, of 0-eigenvectors of L;

Subspace Clustering on rows of [v}, ..., v} |
Assign clusters to corresponding i-simplices of S
for x € X do

(Top. signature of z:) Collect cluster information of
t-simplices o; with z € o;
end for
end for
Cluster X according to topological signatures
Output: Labels of x € X

Topological features: Homology and Betti numbers
One of the main topological concepts is homology. The
k-th homology module Hy(X) of a space X encodes the
presence and behaviour of k-dimensional loops, enclosing
generalised (k + 1)-dimensional voids/cavities. The k-th
Betti number B (X) of X denotes the rank rk Hy (X) of
the corresponding homology module. The 0-th Betti num-
ber By(X) is the number of connected components of X,
B (X) counts the number of loops and Bz (X') counts how
many 3-dimensional cavities with 2-dimensional borders
are enclosed in X, and so on.

The following connection between the homology of an SC
and its Hodge Laplacian will prove essential to us:

Lemma 2.5 ((Eckmann, (1944/45;; [Friedman, [1998))). For
a simplicial complex S, let L, be the Hodge Laplacians
and B,, be the Betti numbers of S. Then we have that
rkker L,, = B,,.

The dimension of the kernel of the Hodge-Laplacian is equal
to the number of orthogonal zero eigenvectors of L,, over
R. Hence the Hodge-Laplacian provides a gateway for
accessing topological features by computing eigenvectors.

3. TPCC: Algorithm and Main Ideas

In this section, we will describe Topological Point Cloud
Clustering and its main ideas. A pseudocode version can be
found in Algorithm ]

Running example To illustrate our approach, we use
the example displayed in Figure |l| consisting of two 4-
dimensional tori, depicted here in their projection to 3d
space. We connected the tori with two lines, which are
again connected by a line. Additionally, the point cloud
includes two separate connected components without higher
dimensional topological features. Our point cloud has thus
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11 topological features across 3 dimensions. In terms of
Betti numbers, we have By = 3, By = 6, and By = 2. For
an in-depth discussion of the topology and construction of
the running example, see Appendix [B]

Step 1: Approximating the space To characterize our
point cloud in terms of topological information, we sug-
gest using the framework of simplicial complexes and the
Vietoris-Rips Complex due to their straightforward defini-
tions. The goal of this paper is to show that even with this
naive approach of constructing a simplicial complex, a topo-
logically meaningful clustering can be achieved. However,
we note that TPCC is agnostic towards the method the sim-
plicial complex was constructed. In low dimensions, the
a-complex provides a computationally efficient alternative
with a lower number of simplices. Complexes built using
DTM-based filtrations are another alternative more robust to
outliers (Anai et al., 2020)).

The general assumption is that the points of the point cloud
are in some general sense sampled, potentially with some
additional noise, from a geometrical space. Now we would
like to retrieve the topology of this original geometrical
space from the information provided via the sampled points.
Hence, following common ideas within TDA, we construct
a computationally accessible topological space in terms of a
simplicial complex on top of the point cloud approximating
the ground truth space. We denote the simplicial complex
associated to our toy point cloud by S. We note that the
TPCC framework works both with simplicial as well as with
cellular complexes. For simplicity however, we chose to
stick with simplicial complexes throughout this paper.

Step 2A: Extracting topological features Having built
the simplicial complex &, we need to extract its topological
features. However, standard measures from topological
data analysis only provide global topological features: For
instance, Betti numbers are global features of a space, and
persistence landscapes measure all features at once (Bubenik
et al.,|2015)). In contrast, we are interested in how individual
simplices and points are related to the topological features of
the space. It is possible to extract a homology generator for
a homology class in persistent homology (Obayashil [2018)).
This approach is however not suitable for us, because the
choice of a generator is arbitrary, and only the contribution
of a small number of simplices can be considered.

TPCC utilises a connection between the simplicial Hodge-
Laplace operators and the topology of the underlying SC.
The dimension of the 0-space of the k-th Hodge-Laplacian
Ly, is equal to the k-th Betti number By, (Eckmannl|1944/45;
Friedman, (1998)). Furthermore, the rows and columns of
the Hodge-Laplacian Ly, are indexed by the k-simplices of
S and describe how simplices relate to each other, and in
particular how they contribute to homology in terms of the

null space of the Ly.

Let us now consider a concrete loop/boundary F of an
(k + 1)-dimensional void. We can then pick a collection
S of edges/k-simplices that represents this loop/boundary.
By assigning each simplex in S the entry =1 based on
the orientation of the simplex, and every other simplex the
entry 0, we obtain a corresponding vector es. The Hodge
Laplace operator Ly = B} _Bj,_1 + B Bjl consists of two
parts. The kernel of the down-part, B,llBk_l, is spanned
by representations of the boundaries of (k + 1)-dimensional
voids. Hence, eg lies in this kernel: B,;r_lBk,leS = 0.
The kernel of the up-part of the Hodge Laplacian, BB, ,
is spanned by vectors that represent smooth flows along
the k-simplices. Thus by smoothing along the k-simplices
one can turn eg into an eigenvector €g of the entire Hodge
Laplace operator Ly:

Liés = B _Bj_1es + BpB} s = 0. )

We call er := €g the characteristic eigenvector associated
to the loop/void F.

For simplicity, let us first consider the case where the k-th
Betti number By (S) is 1. Then the zero-eigenvector vy of
Ly has one entry for every k-simplex and is the character-
istic eigenvector e for the single topological feature F in
dimension k. The entries of vy measure the contribution
of the corresponding simplices to /. Intuitively, we can
visualise the homology “flowing” through the simplices of
the simplicial complex. The entries of the eigenvector corre-
spond to the intensity of the flow in the different k-simplices.
Because of the way we constructed €, the homology flow
is then concentrated along the k-dimensional boundary of
a hole/void in the space. In the 1-dimensional setting, this
corresponds to harmonic flows along edges around the holes
of an SC (Schaub et al.,2021)). The case for the Betti number
larger one Bj, > 1 will be discussed in more detail in the
following paragraph.

Step 2B: Clustering the n-simplices Extending ideas
from (Ebli & Spreemann, 2019; Schaub et al., 2020) we
use the obtained coordinates for each simplex to cluster the
simplices. In the case where L, has a single O-eigenvalue,
we can easily cluster the simplices by simply looking at the
entries of the 0-eigenvector e: We can ignore the sign of
the entry e, of e corresponding to a simplex o because this
only reflects whether the arbitrarily chosen orientation of
o aligns with the direction of the “homology flow”. Then,
we assign all simplices o with absolute value of e, above
a certain threshold |e,| > ¢ to the cluster of homologically
significant simplices. The remaining simplices are assigned
to a separate cluster.

In the case of multiple boundaries of voids of the same di-
mension, i.e. By > 1, each boundary F again corresponds
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Figure 2. Above we depict the heatmaps for all 16 distinct combi-
nations of topological features encoded in the topological signature
across 3 dimensions of our toy example. Note that some of the
features are redundant, as both edges and faces can measure mem-
bership of a torus.

to a “homology flow” with an associated characteristic eigen-
vector e, of Ly. The e, span the zero-eigenspace Ej, of
L. However, an eigenvector solver will yield an arbitrary
orthonormal basis e1, ..., ep, of Ej which is only unique
up to unitary transformations. For a k-simplex o € Sk, let
e; (o) denote the coordinate associated to o of the i-th basis
vector e; of F; obtained by the eigenvector solver. Now we
denote by ¢: S, — RB*,

1o (e1(0),ea(0),. .. ep, (o)) € RP*

the embedding of the simplices into the k-th feature space
X, = RBr. Note that because we could have started with
any orthonormal basis of E}, the feature space is only de-
fined up to arbitrary unitary transformations. The points of
the feature space X}, represent different linear combinations
of the basis vectors of the zero eigenspace of Li. They
also represent linear combinations of the ex,, and hence
intuitively of the topological features.

In the most simple case, the ez, are orthogonal to each
other and thus have disjoint support. Then they represent
orthogonal linear combinations of the original basis of Fy
in the feature space X. Hence the “natural” €z, -basis can
be recovered by subspace clustering the k-simplices on the
feature space X, as depicted in the top of Figure[I] For
computational reasons, we subsample the simplices used
for the subspace clustering. The remaining simplicies will
then be classified using a k-nearest neighbour classifier on
the feature space Xj. See Section [3|and Appendix [C|for a
discussion of more complicated special cases.

Step 3A: Aggregating the information to the point level
Finally, we can try to relate the information collected so far
back to the points. For every point x and every dimension
d, we aggregate the cluster ids of the d-simplices which
contain x. We call the collected information the fopological
signature of p.

Definition 3.1 (Topological Signature). Let X be a point
cloud with associated simplicial complex S. For a simplex
o € S, we denote its cluster assignments from the previous

Figure 3. The final clustering obtained with TPCC. There are 10
clusters in total. Two clusters identify the two tori (turquoise
and ochre), two disconnected cubes (red and lime), dark blue and
salmon for the connecting lines of the tori to the middle, azure for
the middle line, yellow for the intersection of the lines, and fuchsia
and brown for the gluing points of the points to the tori. Note that
there are virtually no outliers.

step of TPCC by C(c). Then, the topological signature 7(x)
of a point z € X is the multi-set

7(z) ={C(0) : 0 € S,z € o}}.

After normalising for each i by the number of i-simplices
containing the point, topologically similar points will have
a similar topological signature. Figure[T] Step 3 illustrates
how the topological signature is calculated. In Figure 2] we
show how the different features of the topological signature
highlight topologically different areas of the point cloud.
Interestingly, we can even retrieve information on the gluing
points between two topologically different parts. In Figure[3]
the “gluing points” between the tori and the lines receive
their own cluster. This is because roughly half of the sim-
plices adjacent to the gluing points receive their topological
clustering information from the torus and the other half from
the adjacent lines. Hence the gluing points are characterised
by a mixture of different topological signatures.

Step 3B: Computing the final clustering If we apply
k-means or spectral clustering to a normalised form of the
topological signatures of the points of our toy example, we
arrive at the clustering of Figure[3]

In comparison to standard clustering methods, TPCC can
assign the same cluster to similar sets of points consisting
of multiple connected components if they share the same
topological features. In Figure[3] the two dark blue lines are
assigned to the same cluster, because they both lie on the
same loop and have no additional topological feature. This
highlights the ability of TPCC to take higher-dimensional
information into consideration,exceeding the results obtain-
able by proximity-based information.

Choice of parameters TPCC needs two main parameters,
€ and d. For the choice of the maximum homology de-
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Figure 4. The circle is divided into two parts by a vertical line.
This gives the corresponding SC two generating loops in dimension
1, corresponding to a 2-dimensional 0-eigenspace of the Hodge-
Laplacian L; and a 2-dimensional 1* feature space A;. However,
now there are three linear subspaces corresponding to linear com-
binations of the two generating loops. TPCC is able to detect three
different clusters of topologically significant edges.

gree d to be considered there are three heuristics listed in
decreasing importance:

I. When working with real-world data, we usually know
which kind of topological features we are interested
in, which will then determine d. E.g., if we are inter-
ested in the loops of protein chains, we only need 1-
dimensional homology and thus choose d = 1. When
interested in voids and cavities in 3d tissue data, we
need 2-dimensional homology and thus choose d = 2,
and so on.

II. There are no closed n-dimensional submanifolds of
R"™. This means that if the point cloud lives in an
ambient space of low dimension 7, the maximum ho-
mological features of interest will live in dimension
n — 1 and hence we can choose d = n — 1.

III. In practice, data sets rarely have non-vanishing highly
persistent homology in degree above 2 and considering
the dimensions 0-2 usually suffices. Otherwise, one
can calculate persistent homology up to the maximum
computationally feasible degree to identify dimensions
with sufficiently persistent homology classes, and then
take d as the maximum of these dimensions.

Picking the correct value of € means choosing the correct
scale. For the experiments in Figure[7] we have implemented
a heuristic which computes the persistence diagram of the
point cloud, and then picks the € maximizing the number of
topological features with high persistence and minimizing
the number of features with low persistence for this value.
As can be seen, this method performs comparatively well
for considerable noise.

Technical considerations: Linear combinations of fea-
tures In practice, topological features of the same dimen-
sion are not always separated in space. A bubble of soap

may consist of two individual compartments divided by a
thin layer of soap. This middle layer then contributes to the
boundaries of the two voids, i.e. to two topological features
of dimension 2. How is this reflected in the ex,?

This time, the characteristic eigenvectors €, corresponding
to boundaries F; of voids of the same dimension are not
orthogonal anymore. The supports of the e, overlap in the
same simplices the corresponding boundaries J; overlap.
In the feature space X of the example in Figure ] this is
represented by the red, the green and the orange line having
an approximate angle of 60° to each other. The left loop is
represented by an eigenvector €z with support on the green
and orange edges, and vice-versa the right loop by ez with
support on the green and red edges. The homology flow on
the middle line on the green edges is a linear combination
of the homology flows of both generating loops.

4. Theoretical Guarantees for Synthetic Data

In this section, we give a result showing that the algorithm
works on a class of synthetic point clouds with an arbi-
trary number of topological features in arbitrary dimen-
sions. The proof utilises the core ideas of the previous
section. An easy way to realise a flexible class of topo-
logical space is to work with the wedge sum operator V
gluing the two spaces together at a fixed base point. For
k > 0 and two topological spaces X and Y we have that
Bi(X VY) = Br(X) + Br(Y). Hence the wedge sum
combines topological features.

Theorem 4.1. Let P C R" be a finite point cloud in R™ that
is sampled from a space X. Furthermore, let X = \/, 7 S?i
with finite indexing set T with |[Z| > 1 and 0 < d € N
be a bouquet of spheres . We assume that the geometric
realisation of the simplicial approximation S is homotopy-
equivalent to X, and furthermore that the simplicial sub-
complexes for the S% only overlap in the base-point, and
divide S% into d;-simplices.

Then topological point cloud clustering recovers the differ-
ent spheres and the base point accurately.

The full proof is given in Appendix [D}

5. Numerical Experiments

Comparison with k-means and spectral clustering We
validated the effectiveness of TPCC on a number of synthetic
examples. In Figure[5} we have clustered points sampled
randomly from two spheres and two circles. The algorithm
recovers the spheres and circles. Normal (zero-dimensional)
Spectral Clustering and k-means fail in choosing the right
notion of feature, as the figure shows. For a visual compar-
ison of TPCC with other clustering algorithms on various
datasets see Figure[9]in the appendix.
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TPCC SpC  k-means  OPTICS  DBSCAN AC  Mean Shift AP ToMATo
2 spheres, 2 circles (Fi ure. 0.97 0.70 0.48 0.01 0.00 0.66 0.84 0.01 0.90
Toy example (Flgureﬁg 0.98 0.33 0.28 0.19 0.11 0.33 0.81 0.00 0.91
Circle with line (Figure 0.85 0.23 0.16 0.11 0.00 0.25 0.00 0.23 0.09
Sphere in circle, noise = 0 (Figurelto ) 1.00 0.34 0.02 0.19 0.00 0.29 0.00 0.12 0.06
Sphere in circle, noise = 0.3 (Figure[7{bottom)  0.53 0.28 0.01 0.22 0.30 0.27 0.00 0.13 0.46
Energy landscape (Flgureﬁleft) 0.88 0.01 0.01 0.00 0.00 0.13 0.00 0.01 —0.02

Table 1. Quantitative performance comparison of TPCC with popular clustering algorithms. We show the Adjusted Rand Index of
TPCC, Spectral Clustering (SpC), k-means, OPTICS, DBSCAN, Agglomerative Clustering (AC), Mean Shift Clustering, Affinity Propagation
(AP), and Topological Mode Analysis Tool clustering (ToMATo) evaluated on six data sets. On every data set TPCC performs best,
indicating that the other algorithm are not designed for clustering points according to higher-order topological features.

Point Cloud

Figure 5. TPCC is the only approach correctly distinguishing the
spheres and circles.

’%{?& 5)%‘:&’ o
y‘ u':“# %iw&

Figure 6. Left: Energy landscape of cyclo-octane clustered by topo-
logical point cloud clustering. We have four different clusters, with
the green one being the anomalous points. Right: Clustering of the
Henneberg surface.

Comparison to Manifold Anomaly Detection In
2020), the authors propose a topological method for
detecting anomalous points on manifolds. In Figure [6| we
use TPCC on the same datasets (Martin & Watson|, 2011},
[Adams et all,[2014) to show that our approach is also able to
detect the anomalous points. Additionally, our method can
classify the remaining points based on topological features.

Experiments with Synthetic Data As we make use of
topological features, TPCC is robust against noise by design.
We compare the accuracy of the clustering algorithm against
k-means and spectral clustering on a point cloud consisting
of a sphere, a circle, and a connecting line in Figure[7]

On low to medium noise levels, TPCC significantly outper-
forms all other clustering methods. On higher noise levels,
the topological features of the point cloud degenerate to fea-
tures that can be measured by ordinary spectral clustering.
Then, TPCC and spectral clustering achieve similar accuracy
scores. In Figure [7] we see that already a noise setting of

Clustering by TPCC

>
8 Method
o -
=] \ — KMeans
8 N\ —— Spectral Clustering
<% — TPCC
— — Spectral Clustering . l- "'
h onVRcomplexs @ oy -
02 N \ ‘q
;",—".. Y
8,
0.0 # -.- .

0.0 0.2 0.4 06 08 10
Noise

Figure 7. We have added i.i.d. Gaussian noise with varying stan-
dard deviation specified by the parameter noise on all three
coordinates of every point. (For scale: The radius of the inner
sphere is 1.) Left: Accuracy of TPCC, k-Means and two versions of
Spectral Clustering with increasing noise level. Spectral clustering
uses the radial basis affinity matrix, as implemented in scikit-learn.
Spectral Clustering on VR complex uses the underlying graph of
the simplicial complex used for TPCC. Accuracy is measured by
adjusted rand index and averaged over 100 samples. Right: Exam-
ple point clouds used for testing and clustering obtained by TPCC
fornoise = 0.0 and noise = 0.3.

noise = 0.3 distorts the point cloud significantly, yet TPCC
still performs well.

Proteins Proteins are molecules that consist of long
strings of amino acid residues. They play an integral role in
almost every cellular process from metabolism, DNA repli-
cation, to intra-cell logistics. Their diverse functions are
hugely influenced by their complex 3d geometry, which
arises by folding the chains of amino acid residues. The
available data of protein sequences and 3d structure has
increased dramatically over the last decades. However, func-
tional annotations of the sequences, providing a gateway
for understanding protein behaviour, are missing for most
of the proteins. (Smaili et al.} 2021) have shown that har-
nessing structural information on the atoms can significantly
increase prediction accuracy of ML pipelines for functional
annotations. Thus being able to extract topological infor-
mation on individual atoms of proteins is very desirable for
applications in drug discovery, medicine, and biology.

We tested TPCC on NALCN channelosome, a protein found
in the membranes of human neurons (Zhou et all, 2022}
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Figure 8. Clustered atoms of NALCN channelosome. Points that
border one of the holes are coloured red, blue, and green. The
points without contribution to a loop are marked in yellow.

Kschonsak et al.,|2022). The NALCN channel regulates the
membrane potential, enabling neurons to modulate respira-
tion, circadian rhythm, locomotion and pain sensitivity. It
has a complex topological structure enclosing 3 holes that
are linked to its function as a membrane protein.

The core idea is that when biological and topological roles
correlate, TPCC offers a way to better understand both.

6. Discussion

Limitations TPCC can only cluster according to features
that are visible to homology, e.g. connected components,
loops, holes, and cavities. For example, TPCC cannot distin-
guish differently curved parts of lines or general manifolds.
TPCC constructs a simplicial complex (SC) to extract topo-
logical information Thus it needs to pick a single scale for
every SC. If the topological information of the point cloud
lie in different scales, TPCC thus needs to do multiple fea-
ture aggregation steps for SCs of different scale. Finally, the
points can be clustered according to the combined features.
However, for each different scale the entire zero-eigenspace
of the Hodge-Laplacian needs to be considered. Future work
will focus on a method to cluster points based on the most
persistent topological features across all scales.

Persistent homology and the calculation of the zero eigen-
vectors of the Hodge Laplacian are computationally expen-
sive and thus running TPCC directly is not feasible on large
data sets. However, usually the topological information can
already be encoded in small subsets of the entire point cloud.
In Table 2l we show that TPCC in combination with landmark
sampling scales well for larger data sets while achieving
high clustering performance. In addition, we believe that
the main advantage of TPCC is that it can do something
no other existing point cloud clustering algorithm can do

or was designed for, namely clustering points according to
higher order topological features. Future work will focus on
additionally improving efficiency by removing the need to
compute the entire zero-eigenspace of the Hodge-Laplace
operators.

Because TPCC uses persistent homology, it is robust against
small perturbations by design. In Figure [7] we analysed
its clustering performance under varying levels of noise.
However, with high noise levels, topological features vanish
from persistent homology and thus TPCC cannot detect them
anymore. In future work, we try to take near-zero eigen-
vectors of the Hodge Laplacian into account, representing
topological features contaminated by noise. This is similar
to Spectral Clustering, where the near-zero eigenvectors
represent almost-disconnected components of the graph.

Conclusion TPCC is a novel clustering algorithm respect-
ing topological features of the point cloud. We have shown
that it performs well both on synthetic data and real-world
data and provided certain theoretical guarantees for its ac-
curacy. TPCC produces meaningful clustering across var-
ious levels of noise, outperforming k-means and classical
spectral clustering on several tasks and incorporating higher-
order information.

Due to its theoretical flexibility, TPCC can be built on top of
various simplicial or cellular representations of point clouds.
Interesting future research might explore combinations with
the mapper algorithms or cellular complexes. In particular,
applications in large-scale analysis of protein data constitute
a possible next step for TPCC. TPCC or one of its interme-
diate steps has potential as a pre-processing step for deep
learning techniques, making topological information about
points accessible for ML pipelines.
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A. Implementation

To construct the simplicial complex used in TPCC from
a point cloud, we first computed a persistence diagram.
Then we selected the parameter ¢ in the range of the most
persistent homology features. Hence, we connected all
points p; and ps with ||p1 — p2fl2 < . We also chose
until which dimension we build the simplicial complex by
looking at the topological features of the underlying point
cloud. In practice, on all considered data sets the maximum
dimension of topological features was 2. Hence building the
simplicial complex up to dimension 3 suffices: We note that
computing information on the k-th homology group and the
k-th Betti number requires the simplices of dimension up
to k + 1. This is reflected in the shape of the k-th Hodge
Laplacian Ly, == B,LlBk_l +BkB,I featuring 3y,. The k-th
boundary matrix B maps (k + 1)-simplices to k-simplices.

Computational Complexity Persistent homology and the
calculation of the zero eigenvectors of the Hodge Laplacian
are computationally expensive and thus TPCC in its pure
form does not scale well for large data sets. The complexity
of random sparse eigensolvers is approximately O(kT +
k2n) for n x n matrices where k is the number of desired
eigenvectors and 7" is the number of flops required for one
sparse matrix vector multiplication (Halko et al., 2011). The
number of non-zero values in the k-th Hodge-Laplacian is
bounded by the number of ordered pairs of upper-adjacent
and of lower-adjacent k-simplices. For a fixed point density,
fixed ¢, and fixed k, the number of k-simplices n is linear
in the number of points.

However, we believe that the main advantage of TPCC is that
it can do something no other existing point cloud clustering
algorithm can do or was designed for, namely clustering
points according to higher order topological features.
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‘ 2spheres 6spheres

Number of points \ 4600 33600

TPCC Landmark sampling 0.7s 48.7s
Persistent homology 2.0s 4.1s

Eigenvector computation 3.6s 31.4s

Sum of times 6.3s 84.2s

Adjusted Rand Index 0.93 0.94

TPCC+witness  Landmark sampling 0.7s 48.7s
Witness complex 02s 615.5s

Persistent homology 05s 4.7s

Eigenvector computation 5.4s 19.7s

Sum of times 6.8s 688.65

Adjusted Rand Index 0.95 0.97

SpC Time 1.7s 346.3s
Adjusted Rand Index 0.71 0.47

Table 2. We test the scalability of clustering approaches using
TPCC. We compare the accuracy the running time and the Adjusted
Rand Index (ARI) of TPCC and Spectral Clustering on the data set of
Figure[5]and on a version with more points, spheres and circles. We
also compare two different versions of constructing the SC in step
1 of TPCC: We used a naive python implementation of min-max
landmark sampling to select respectively 400 or 1200 landmarks.
For the first version we constructed the Vietoris-Rips complex
directly on this point cloud. For TPCC+witness we constructed
the witness complex based on the landmarks and the entire data
set. After running TPCC, we cluster the remaining points using a 1-
nearest neighbour approach. Both the TPCC approaches achieved a
significantly higher ARI than Spectral Clustering. On the large data
set, TPCC using landmark sampling and a VR construction had a
significantly smaller running time then basic Spectral Clustering.

Because TPCC is agnostic to the type of simplicial com-
plex constructed, its computational scalability can easily
be improved by using a more efficient construction than
Vietoris-Rips. Usually, the topological information of a data
set is already contained in a small subset of the points. It is
thus possible to use a witness complex construction (Silva &
Carlsson, 2004), or to sample landmark points representing
the topological structure, doing TPCC on them, and then
clustering the remaining points using k-nearest neighbours.

In Table 2] we show that using TPCC in conjunction with
min-max landmark sampling and a k-nearest neighbour
approach to classify the remaining points scales well to
larger data sets while maintaining a high accuracy.

Min-Max landmark sampling Min-max landmark sam-
pling provides a way to approximate the topology of a point
cloud using a set of landmarks L. For a point cloud X, a
distance function d: X x X — R>¢, and a desired number
of landmarks 1 < k < | X| we first sample a point x € X
uniformly at random and add it to the set of landmarks L.
Then we iteratively add the point z € X maximising the
expression

min d(l, x)

to L until |L| = k. (For example, compare (Perea, [2020).)
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Figure 9. Comparison of clusterings produced by TPCC and other clustering algorithms on existing and new datasets. While
TPCC is not able to find any structure in the third dataset, it identifies the topological substructures in the fourth and fifth dataset. (Cf.
scikit-learn, (Pedregosa et al] [2011)) While TPCC is the only algorithm clustering the four connected circles respecting the topology,
it still is inconsistent in whether to assign the shared parts of circles and rectangle to the cluster of the circle or the connecting lines.
Theoretically, these shared parts would belong to 4 additional clusters. However, this would require the subspace clustering to identify 9
different linear subspaces, which is not feasible with the implementation of subspace clustering we were using.

Witness complex The (weak) witness complex, as intro-
duced in (Silva & Carlsson|, [2004), provides a way to ap-
proximate the topology of a large point cloud by a simplicial
complex with significantly fewer vertices. It takes as input
the original point cloud X, a set of landmarks L in an am-
bient Euclidean space, and a parameter R determining the
length of edges. It then constructs a simplicial complex on
L, where the simplices are added based on whether they are
“witnessed” by points in X. While witness complexes are
very robust topological approximators, their construction is
computationally demanding for large point clouds X.

Supplementary material Code of our implementation to
reproduce the experimental results will be made available
in the supplementary material.

Software used We implemented the algorithm in python.
We use the Gudhi library (The GUDHI Project, 2013)) for all
topology-related computations and operations. For general
arithmetic and clustering purposes we use NumPy

2020), scikit-learn (Pedregosa et al.l [2011), and
ARPACK (Lehoucq et al}[1998). For subspace clustering,
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we use DiSC (Zografos et all,[2013). For 3d visualisation,
we use blender with blendplot 2017).

B. Running Example

Figure 10. The point cloud of our toy example projected to 3d
space. Every point is represented by a small cube.

Our toy example consists of two tori. A torus can be seen
as a doughnut where we removed the filling. Topologically,
it consists of a single connected component. Hence its 0-th
Betti number By is 1, counting the number of connected
components. There are two main directions a 1-dimensional
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loop can wrap around a torus. First, there is the large loop
going around the entire circle spanned by the torus. Second,
a loop can just wrap around a side of a torus. All other
loops can be generated by concatenation of the previous two
types of loops. Hence the 1% Betti number Bj is 2, counting
the number of generating loops. Finally, there is a single
2-dimensional cavity in a torus, representing the void left
behind by removing the filling of the doughnut. Thus, the
27 Betti number B, of a torus is 2. We can embed a torus
in 4-dimensional space by taking it to be the product of
two 1-dimensional spheres. Note that we project the tori to
3-dimensional space only for better readability in our plots.
We sample the point cloud by first taking 5000 points in a
grid on each of the tori. We then randomly forget 20% of the
points in order to simulate noise. The tori are connected by
two straight lines, from which we each sample 300 points
uniformly at random. We connect the two lines by another
straight line with 300 randomly sampled points. The three
lines add two more loops to the topological space Finally,
we sample 200 points uniformly at random from two cubes
not connected with the rest of the topological space. Our
point cloud has 11 topological features across 3 dimensions.
In terms of Betti numbers, we have By = 3, B; = 6, and
By =2.

C. Technical considerations

0-Eigenvectors of L,

NNEEEE Eﬁ

Figure 11. We cluster the edges of the simplicial complex S de-
picted in Figure our toy example. Its first Betti number B (S)
is 6, corresponding to a 6-dimensional zero-eigenspace of L.
We show a projection of the 6-dimensional feature space X} to
3-dimensional space. There are six different subspace clusters:
three 1-dimensional lines in purple, green, and pink correspond-
ing to ordinary loops in the point cloud. Furthermore, there are
two 2-dimensional subspaces marked in brown and orange. They
represent the edges in the two tori of our data set. Finally, there
is one 0-dimensional cluster corresponding to the edges without a
contribution to homology in the two cubes marked in blue.

Multi-dimensional subspaces of the feature spaces X},
In practice, most of the subspaces of the feature space X},
used for subspace clustering are 1-dimensionaﬂ However,
sometimes more complex substructures arise: Recall that
our toy point cloud (Figure[I] Input) consisted of two tori.

! Although we could regard the simplices without homological
contribution as lying in a 0-dimensional subspace.
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The 1-homology of each of the tori is generated by two
loops, one of which follows the larger circle of the associ-
ated filled doughnut, the other one encircling a slice of the
doughnut. Now imagine an edge e starting in one of the out-
ermost points of the torus. If the edge faces in a left or right
direction, it will only contribute to the first loop. If it faces
up or down, it only contributes o the second loop. However,
an edge can point in an arbitrary superposition of the two
directions. Thus also its homological contribution will be
an arbitrary superposition of the two generating loops of the
tori. In other words, the embeddings into the feature space
t(e) € X = RBk of the edges e running along the generat-
ing loops of the tori correspond to points on two orthogonal
lines. The embeddings of all other edges on the surface of
the torus lie on the 2-dimensional subspace of & spanned
by the two lines. Because the angles of the edges can vary
continuously, the edges correspond to arbitrary points on
the 2-dimensional subspace. Thus, we propose clustering
the edges based on membership in arbitrary-dimensional
subspaces. In the toy point cloud example, we can hence
measure to which torus an edge belongs by identifying the
2-dimensional subspace its eigenvector coordinates lie on.
This is illustrated in Figure [T} By allowing for detection
of arbitrary dimensional subspaces of X} our approach is
able to detect significantly more topological features than
the precursor approach in (Ebli & Spreemann, 2019).

Extracting the dimensionality of topological features
TPCC not only distinguishes different topological features,
it is also capable of extracting additional information on the
features. In particular, there are two ways the framework
can distinguish between different dimensionalities of the
features:

I. A 1-dimensional loop will appear in the zero-
eigenspace of the 1-Hodge Laplacian, whereas a 2-
dimensional boundary of a void will appear in the
0-eigenspace of the 2-Hodge Laplacian. This informa-
tion can easily be relayed back to the points.

II. Topological features will manifest as linear subspaces
of different dimensions of the zero-eigenspaces of
the corresponding Hodge Laplace operators. Usually,
these subspaces will be 1-dimensional. The subspace
corresponding to the first homology group of the torus
is however 2-dimensional. (Cf. the previous para-
graph.) This is because edges on the torus can point in
arbitrary superpositions of the two ”generating homo-
logical dimensions”. (This, by Hurewicz’s thm., corre-
sponds to the respective generators of the fundamental
group commuting with each other.) We can view this
as the feature being another notion of 2-dimensional
and relay the information back to the points.
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D. Proof of Theorem 4.1

Theorem. Let P C R” be a finite point cloud in R™ that is
sampled from a space X. Furthermore, let X = \/,_; S‘iii
with finite indexing set T with |Z| > 1 and 0 < d € N
be a bouquet of spheres . We assume that the geometric
realisation of the simplicial approximation S is homotopy-
equivalent to X, and furthermore that the simplicial sub-
complexes for the S% only overlap in the base-point, and
divide S% into d;-simplices.

Then topological point cloud clustering recovers the differ-
ent spheres and the base point accurately.

Proof. The k-th Betti number of S is equal to the number
of ¢ € Z with d; = k (Cor. 2.25 (Hatcher, 2002)). Be-
cause spheres are orientable, we can simply assume that
the d;-simplices in S?i are oriented such that each two adja-
cent d;-simplices induce opposite orientations on the shared
(d;)-simplex. We now claim that for each ¢ € Z the indi-
cator vector e; on the d;-simplices in Sf"’ is an eigenvector
of the d;-th Hodge Laplacian L; of S. Because of our
assumption on S, there are no (d; + 1)-simplices upper-
adjacent to the d;-simplices of Sf". Hence, we obtain the
first half of our claim, namely that By, B:{L_ e; = 0 holds.
We have assumed that S was constructed in such a way
that each (d; — 1)-simplex oq, 1 of S has exactly two

upper-adjacent neighbours o and o7 . Because o and

ai induce the opposite orientation on 04,1, the corre-
sponding entries of the (d; — 1)-th boundary matrix Bg,_1
of S are 1 and —1. Thus we also have B4, _1e; = 0 and fi-
nally Ly, e; = BdiB;L, e; + BdTi_lei,lei = 0. This proves
the claim.

The eigenvectors e; of the same dimension are orthogonal
and match in number with the corresponding Betti number
of §. Hence the e; span the eigenspaces of the Hodge
Laplace operators of S. For all ¢ € Z the entries of the
d;-simplices in Sgi in the matching zero eigenvectors e; are
1 for j = 4, and O else. All other d-simplices for d > 0
have trivial eigenvector entries. Thus, subspace clustering
recovers the top-level simplices in each of the spheres and
assigns every other simplex to the trivial homology cluster.
The topological signature of the points in the sphere S?i
in dimension d; will then feature a characteristic cluster
of (d;)-simplices and a trivial signature across the other
dimensions. Finally, the topological signatures of the base
point will feature all characteristic clusters. Hence k-means
on the topological signatures can distinguish the points on
the different spheres and the base point. (]
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